
October 1987 Report No. S’I’AN-CS-87-1186

d Hierarchy of Temporal Properties

7Ahar Manna and Amir Pnueli

Department of Computer Science

Stanford University
Stanford, CA 94305

October 1987

A Hierarchy of Temporal Properties

Zohar Manna.
St anford University

and
Weizma,nn Institute of Science

Amir Pnueli
Weizmann Institute of Science

Abstract

We propose a classification of temporal properties int!o a, hierarchy which re-
fines the known safety-Ziveness classifica,tion of properties. The new classification
secognizes the cla.sses of safety, guarantee, persistence, fairness, and hyper-fairn,ess.
The cla,ssifica,tion suggested here is based on the diRerent< wa,ys a, property of fin&e
computa,tions can be extended into a property of infinite computations. For prop-
erties that are expressible by temporal logic a.nd predica,te automa,ta, we provide
a, synta.ctic cha,ra,cterization of the formulae and automata that specify properties
in t,he different, classes. VVe consider the verifica,tion of properties over a, given
program, and provide a. unique proof principle for each class.

0. Introduction

R,eactive systems are systems whose function is to maintain some continu-
- ous interaction with their environment. Such systems should be specified a*nd

analyzed in terms of their beha,viors, i.e., the sequences of st a.tes or events they
genera.te during t,heir operation. We may view a reactive program as a generat,or
of compututions, which are finite or infinite sequences of states or event,s.

The work of the first author was supported by the Nat,ional Science Foundation under Grant

DCR-84-13230 and by the Defense Advanced Research Projects Agency under Contract N00039-

84-C-0211. The work of the second author was done during a visit, to the University at Austin

which is gratefully acknowledged.

In general, we define a property as a set of computations. A program P is
said to have the property II if all the computations of P belong to II. Several lan-
guages and formalisms have been proposed for expressing properties of programs,
including the language of temporal logic and the formalism of predicate automata.

A useful partition of properties into the classes of safety and Ziveness prop-
erties has been suggested by Lamport in [L]. An important advantage of this
classification is that each class encompasses properties of similar character. For
example, safety properties characteristically represent requirements that should be
continuously ma.intained by the system. They often express invariance properties
of a system. Liveness properties, on the other hand, characteristically represent
requirements that need not hold continuously, but whose eventual realization must
be guaranteed. They often express the progress properties of a system. A complete
specification of a, system must include properties of both classes.

To draw a,n a*nalogue from sequential t’erminating programs, sa,fet.y proper-
ties correspond to pa.rtial correctness, which does not guarantee termination but
only that’ all terminating computa.tions produce correct results. Liveness proper-
ties correspond, a.ccording t,o our view, to total correctness which also guara.ntees
termination. For rea.ctive systems, which may never terminate, the role of live-
ness properties is even more important than that of termina,tion for sequential
programs.

While it is generally recognized tha,t a, complete specification of a system
should include both a safety and a, liveness part, there is an a,ddiGonal cost, in
a la,nguage that, can express both cla,sses of properties. For example, if we a.re
ready to restrict ourselves to expressing only safety properties, then t’he relatively
simpler language of predicates over finite behaviors suffices. The only justifica.tion
for using t(empora1 logic, which is a, considera,bly more expressive and consequently
more complex language, is for expressing liveness properties. Simila,rly, if we use
automata or transition systems for specification, and restrict ourselves to sa,fety
properties, it is sufficient to consider automata over finite inputs. Only when
we want to express liveness properties do we ha,ve to use automa& over infinite
inputs. Thus, a, ma*jor just,ifica.tion for studying the classification of properties is
to identify the tra,deoff bet’ween completeness of specification and complexity of
the specifying la,ngua,ge.

Another reason for the distinction between the classes is that their verification
calls for different proof principles. To esta,blish a safety or inva.ria,nce proper@, we
show tha.t it is initially true a,nd that it is preserved by each individual a,ction of
the program. To establish a liveness property we usually employ induction on the
c1istanc.c from t,he realiza,tion of t,he goal gua.ranteed by the property.

-1 formal cha,ra.cterizat8ion of the two cla,sses has been given by Alpern and

Schneider [A%]. Let C denote the set of states that may appear in computations,
C+ denote the set of all non-empty finite computations, Cw denote the set of all
infinite computations, and Coo = C+ U Cw denote the set of all finite and infinite
non-empty computations.

A property II C
computation 0 E C”‘:

Cw is defined in [AS11 to be a safety property if for every

* Va’(0’ 4 a): W’(0” f CW): 0’ - a” E II,

where 0’ I’ 0 denotes thak 0’ is a finite prefix of cr and a’ . a” denotes the con-
ca.tenation of 0’ and a”. This definition means that a computation belongs to II
iff all its finit,e prefices can be extended to computlations in II.

A property II C Yw is defined t,o be a liveness property if:

b-(a f s+>: 3&-r’ E CW): 0 * CT’ E II.

That is, every finite computation ca.n be extended to a computation in II.

Sistla [S] gave a syntactic characterization of the t$emporal formulae tha,t spec-
ify sa.fety properties. They are all t’he formulae that can be built up of propositions,
the posibive boolea,n opera,tors (V a,nd A). and the unless operator (weak until).
He also gave a cha.ra.cteriza,tion of formula,e expressing some restricted classes of
liveness properties.

Some consequences of the definition of safety and liveness, as given in [,4Sl]
a.nd sgnt,actically cha,ra,cterized in [S], a.re that the two classes are essentially dis-
joint’. Only t rivial properties such a,s F (the empty set of compuktions) and T
(SK’) belong t’o tlle intersection of the two cla.sses. For example, in general, a dis-
junction or a conjunction of a. safety property a.nd a liveness property is neither a
safety nor a liveness property. If we intend to base our verification a.pproach on
proof principles appropriate to each of t,he classes, then there are some properties,
such as the combinations of safety ant1 livcness mcntlioned a,bove, for which there

- ase no direct,ly applicable rules.

Mainly motiva,ted by these verification consideraCtions, a. different definit,ion
of the sa.fety-liveness cla.ssifica.tion was presented in [LPZ]. The classification pro-
posed in that pa,per is a hiera.rchy rafther tha,n a. partition, a,nd is ba.sed on the
synta.ctic form of the temporal formulae expressing properties in these cla,sses.
The classification is t 11c following:

-4 sufety property is a property specified by a temporal formula, of the form
Cl 13, for some past formula p. ([LPZ] uses temporal logic with past operators, and.a pa.st formula, 1s any formula containing no fut,ure operators.) A basic liveness

3 -

property is a property specifiable by a formula of one of the forms Op, q Op,
and OR,, for some past formula p. A liveness property is a positive boolean
combination of basic liveness properties.

Also established in [LPZ] is the fact that every temporal formula is equiva-
lent to a positive boolean combination of the basic liveness formulae, making the.
liveness class include all the properties specifiable in temporal logic.

This classification views liveness as an extension of safety properties, and
expkns why the proof rule for liveness properties has to be an extension of the
proof rule for safety. It also ensures that every specifiable property has a proof
rule adequa.te for its verifica,tion.

To furt,her ckrify the differences between the classification-as-partition ap-
proach, represented in [ASI]-[AS31 and [S], and the classification-as-hierarchy ap-
proach, represented in [LPZ] and this paper, let us consider aga,in the properties
of partial correctness, termina.tion, a,nd total correctness. Obviously, total correct-
ness is the conjunction of partial correctness and termination. Both approaches
agree on classifying pa.rtial correctness as a sa*fety propert’y. The pa.rtition approach
classifies termination as liveness, but classifies total correctness as a conjunction of
a sa.fety property and a liveness property. The hierarchy a,pproa.ch classifies both
termination and total correctness as liveness properties.

In the present pa,per we study in great’er deta,il the different classes of proper-
ties. We refine t,he hierarchy by identifying as sepasate subclasses the properties
expressible by the t,hree basic forms of liveness formulame. We study the inclusion
relations bet,ween these classes and their closure properties under union and in-
tersection. As justifica.tion for the distinction between these cla,sses, we mention
typical examples of properties falling into each of the classes.

We studv t’he proposed classification from three distinct viewpoints. First, wec
consider a semantic definition of t’he classes, not considering a,ny particular for-
malism for their specification. Next, we consider properties that are expressible
in temporal logic, a,nd give a syntactic cha.racterization of the formulae expressing

- properties in each class. Last, we consider the specification of properties by pred-- .ica,te automak. Again we give a, characterization of the classes by restrictions on
the automata expressing them.

,4 hiera,rchy, very similar to the one considered here, has been studied exten-
sively in the context of automata over infinite words, which is the third view we
consider. The propert,ies of the lower ranks of the hierarchy, which are our main
subject of interest, have been established by Landweber in [Lan]. The complete
hierarchy ha.s been analyzed by Wagner in [Wag], and several years later in [&Cam].
Consequently, many of the technical results described in the section on automata

- 4 -

have been established in these two works. The similar results about temporal logic
can usually be derived from the automata results by restriction to non-counting
automata ([Zl]). Indeed, the characterization of the temporal logic hierarchy, and
the fact that it is a strict hierarchy, have been recently obtained by Zuck ([Z2]).

Outl ine of the Paper

In Section 1, we present the semantic view of the classification. We intro-
duce two operators that genera,te infinitary properties out of finitary properties,
and base the classificat’ion on the combination of operators necessary to construct
properties in each of the classes. Some closur properties of the cla,sses are studied.

In Section 2, we restrict our attention to infinitary properties that are speci-
fiable by temporal logic. For ea,ch class, we specify a, syntactical restriction on the
formulae that’ define properties in this class. We show that, up to equivalence, the
sgnta,&cally restricted formulae possess the a,ppropriate closure properties of each
class.

In Section 3, we present the predicate automata a,s a formalism for specifying
infinitary properties. For each class, we specify a structural restriction on the
automata that define properties in this class. We prove that a property, which
ca,n be specified by an automat80n, belongs to one of the classes (according to
the semantic definition) iff it can be specified by an a,utoma,ton tha,t obeys the
structural restrictions associated with t,he cla,ss. A similar result is established for
the syntactical restrictions imposed on temporal logic formulae.

In Section 4, we establish the connection between specifications by temporal
logic and specifica.tions by aCutomatJa.

In Section 5, we list proof principles for the various cla,sses.

1. Secant ic View

The ma.in issue in the sa.fety-liveness dichotomy, according to the semantic
view, is how we can extend properties of finite computations into properties of

- irLfinite computations.

For a, finite comput,ation 0 f E+ a.nd a computat,ion a’ E Coo, we denote b)
cr 4 a’ the fact tha.t o is a finite prefix of O’ but different from 0’ (a proper finit,e
prefix). We denote by o 5 O’ the more general relation (a + a’) V (a = 0’).

Properties II c S+ are referred to as finitary properties, while properties
II C C” a,re referred to a,s infinitnry properties. For a, property II C_ so0 , we
denote by Pref(II) the set’ of all finite prefices of II:

Pref(II) = { 0 E Y+ 1 CT -(0’ for some 0’ E II}.-

- 5 -

We denote by a[0 . . k] the finite prefix SO,. . . , Sk of the infinite computation 0 =
SO,... ,sk,sk+l,- -

Let II E Cf be a finitary property. We define the following four properties of
finite and infinite complltjations, A(II), E(IIj, R(II), S(II) C IF’, by:

. o f A(H) t-) Va’(o’ 5 a) : 0’ E I I .

Obviously, 0 E A(II) i# every finite prefix of 0 is in II.
We define the finitary and infinitary restrictions of A(II), by:

A#t) = A(II) n Es a n d A&I) = A(U) n CU.

. CT E E(II) - 3a’(o’ 5 +a’ f I I .

Obviously, 0 E E(II) ifl some finite prefix of 0 is in Il.

We define:

Ef(II) = E(II) n P,+ and ELJ(II) = E(II) n CU.

0 0 f R(II) H vaya 3 a) : W’(0 5 a” 5 a) : a” f I I .

Obviously, 0 E R(IT) iff
either 0 is finite and belongs to II,
or inSfinitely many finit’e prefices of 0 are in II.

We def ine:

nf(rI> = R(rI) n S+ and R,(LI) = R(II) n Ew.

0 0 E P(II) H 3a’(a’ -(a): va”(0’ 3 0” 3 a): 0” f II.

Obviously, 0 E P(II) ifl
either o- is finite a.nd belongs to II,
or all but finitely many finite prefices of o a.re in II.

We define:

q(II) = P(II) n C+ and Pw(lI) = P(II) n Cw.

We ca.11 Aw(II), Ew(II), R,(n), a,nd Pw(II) th e safety: guarant e e , recwrrence,
and persistence propert,ies induced by II, respect’ively. We cla,ssify a,n infinitar!
property II C 2” as follows:

-6-

n II is a safety property if II = A&I’) for some finitary II’.

n II is a guarantee property if II = E&I’) for some finitary II’.

n II is a Tecuwence property if II = R,(II’) for some finitary II’.

n II is a persistence property if II = P&I’) for some finitary II’.

We refer to these four classes of properties, denoted by d, E, R, and P,
respectively, as the basic classes.

A property II S. Cw is a fairness property if IT = R,(IIl) U Pu(lI,) for some
finitary II1 and lI2. Let .F denote the class of all fairness properties.

A proper@ is called a hyper-fairness property if it is definable as a boolean
combination of properties of the four basic classes. The class of all hyper-fairness
properties is denoted by 7-k Our proposal in this paper is to identify the intuitive
notion of liveness with the class of hyper-fairness properties. The motivakion and
arguments in favor of this identification will be discussed in the next section.

We observe the following facts about the defined classes.

Fact 1 (Duality)

The cla,sses JI and I: are dual under complementation, i.e., II 5 Ew is a sujety
property iff Cw - II is a gu#arantee property. Similarly, the classes 73 and P
are dual. The cla.ss ti is closed under complementation.

To show tha,t d and E a,re complementary, we observe that for a finitary
rI 2 x+:

This is because-

Cw -Ad(n) = E&‘-II), a n d
Y - E&I) = iz,(s+ - III).

cr c (s” - -4&-I)) ++ o q’A,(II)

-7 (Va’(CT’ 5 a): 0’ E II))

+-+ 3d(a’ 5 a) : a’ 4 rI

t-) 3a’(a’ 5 a) : 0’ f (c+ - I I) .

Similarly:
Y - R & I) = P&Z+ - I I) , a n d
cw - PLc)(rI) = R,(C+ - II).

The cla,ss 3-1, being defined as properties obtained by a boolean combina-
tion, i.e., union, intersection, and complementa,tion, of properties of the four basic

classes, is certainly closed under one more application of the boolean operation of
complement at ion.

Fact 2 (Closure)

The classes d, E, 73, P, a,nd 7-L are closed under union and intersection. The
class F is closed under union.

To show these closure properties, we need some operations on finitary prop-
erties. We use freely the boolean operations of union and intersection, and com-
plement&ion with respect to C+. We also use concatenation of properties:

The special property S is the set of all singleton computations, i.e., computations
consisting each of a, single state.

An additional finita.ry operator is the since operator, modeled after the cor-
responding temporal opera,tor. It is defined by:

(rI,)S(rI,) = {a f Cf 1 W(a’ 5 a):
[(a’ f II,> A (Vd’(a’ 4 0” 5 a): a” E II,)]}.

According to this definit8ion 0 E (IIl)S(II,) iff cr has a finite prefix 0’ in II;! and
all other prefices longer than 0’ are in III.

The closure propert’ies under the positive boolean operations are shown as
follows:

n For safety, the!- ase just,ified bJ-:

To support t,he la.st equality, we show inclusion in both directions.

Assume that, 0 E A,(II1). Tliis means that every finite prefix 0’ 3 cr is in II,.
Take any finite prefix a” 5 cr. Obviously, any finite prefix of a” is also a, finite prefix
of cr and hence is in III. It follows that a” f A(II1). Since a” is finite, actually
a” f A(IIl) n C+ = Af(IIl). Clea.rly a” E Af(IIl) U Af(I’Ia) Hence, a.ny finite
prefix of 0 is in Af(II1) U Af(II2). We conclude that 0 E A,(A#Il) U Af(l&,)),
and therefore:

Au(b) G A&‘Q(k) u Af(n2)).

- 8 -

By symmetry, also ALJ(I12) is contained in the same right hand side, and we
conclude

To show inclusion in the other direction, assume that 0 4 Aw(II1) U A,(II;!).
Then 0 must have a finite prefix al $ II1 and another finite prefix 02 4 II,.
Without loss of generality assume 01 5 02. It follows that 02 4 A#& and since
it has a prefix al $! III, also 02 6 A#Il). Hence 02 4 Af(II1) U A#& and
therefore 0 $! Aw(A#Il) U A#l2)).

n For guarantee, we use the previously established duality with safety to claim:

n For TecILTTence, we claim:

&d(Q) u R.W2) = &@l u E,).

Obviously 0 contains either infinitely many III-prefices or infinitely many IIp-
prefices i$ it contains infinitely many (II1 U II:!)-prefices.

Closure under intersection is given by the equality:

qnl) n RLJp2) = R,(h n [(Et - WfW2)l. C).

We observe t hak 0 E (II1 n [(C+ - IIl)S(Il;!)] - E) i.ff cr E Ill, o has a prefix 0’ + 0
such tha,t a’ E II2, and all other prefices, longer than 0’ and shorter than 0, are
not in III. This characterizes a finite computa.tion 0 in ITI, such tha.t its longest
proper prefix which belongs to II1 U II2 belongs in fa,ct to II;!.

Obviously, 0 has infinitely many ITI-prefices as well as infinitely many IIz-
prefices iff it ha.s infinitely many III-prefices whose longest proper (II1 UIIz)-prefix
is a &-prefix.

n For persistence, we use the duality with the TecTLTTence class. This yields:

P,(rIl) u Pw(r12) = P&I, u [(II:!)s(c+ - II,)] * c).

-9-

n The class of fairness properties is closed under unions. To see this, we observe
that

where

&d(q) = R”(q) u &$-q), guaranteed by the closure properties of 72, and

cd(q) = P,(~2) u fL(~~), guara,nt,eed by the closlu-e properties of 7’.

n The closure of ‘N under any boolean operations is obvious.

Fact 3 (Inclusion)

0’ f
true

The cla,sses of properties are rela*ted by the inclusion relations depicted in the
c1ia.gra.m of Fig. 1. The edges in the dia.gram represent strict inclusions.

To show t.llcl inclusions d U E c R and d U E C P, we observe tl1a.t:

Au(n) = R.&Q(~)) = L(A@)>,
a&q = &&q(q) = Pw(-q(Jq).

For exa,mple, an infinite o E &@#I)) iff o has infinitely ma,ny prefices
Ef(III), i.e., prefices 0’ containing a prefix 0” 5 a’ such that’ a” E II. This is
i.# 0 lia,s some prefix a” 4 B such that a” E II. Hence &&?S#)) = &$I).

The other inclusions are equally easy to show. The strictness of t,he inclusions
between the cla.sses below 3-1 is also straightforwasd to show.

Corollary (Normal Form)
s

Any hyper-fairness property is expressible as the intersection of several f&T-
ness properties.

Let II 5. Y’ be a hyper- fa,irness property. By definition it can be expressed
1 as a. boolean combination of properties in the classes d, Cc, R and P. We perform
the following transformations on the boolea,n expression:

First we push all the complementations inside. By the closure properties
described in Fact 1, a11 the complementations can be reduced to operations on
finitary properties.

We are left with a positive boolean combination of properties of the basic four
cla,sses. Use the inclusion relations of Fact 3 to reexpress all d a,nd E properties
as R and P properties.

- 10 -

Hyper - Foirness

” 4 [O”PivOOqi]

’ I Recurrence

R:oop

Fairness Y

F: c3opvoclq

Persistence
P:oop

Fig. 1 . Inclusion Reid ions between the Clusses.

- 11 -,

Expand the resulting expression by distributivity to obtain a conjunctive nor-
mal form, i.e., an intersection of unions of R and P properties. By the closure
properties of Fact 2, ea,ch union can be collapsed to a union of a single R prop-
erty and a8 single P property. It fo 11 ows that the hyper-fairness property can be
expressed as:

h [L(@j u cd(@)],
i=l

which is of course an intersection of fairness properties.

We may in fact consider a complete hierarchy of hyper-fairness properties
Fl c .F2 c ‘..) where Fk for k > 1 is defined as the class of all properties-
that can be expressed as the intersection of k fairness properties. As will be
discussed lat,er, it caa be shown tl1a.t the sequence .7=1 c F2 c . . . forms a. strict
hierarchy. Obviously 3-1 = U Fk, and the strictness of the hierarchy implies the

b>l
strict inclusion of F = Fl in K.

We refer to t,lie layers Fr2, n > 1, a,s the higher levels of the hierarchy. The
hierarchy we study here is a. corLjunctive one, meaning that the outermost operator
is an intersection or conjunction. The hierarchy- studied in [Lan], [Wag] and [I&n]
is disjunctive. Its k-th layer is given as:

fJ [EJrrt) n P,(nf)].
i=l

Obviously? these t4wo versions acre dual, a,nd propertics of one can be mapped t30
properties of the ot,lier by complementation.

e Comparison with Other Semantic Definit ions

In this section we would like to compare our definition with some alternative
_ characteriza.tions of the sa.fety-liveness classification, in particula,r to that of [AS11
: a,nd [S].

A sa.fety property is cha.racterized in [AS11 a,s a property II C C” such tha,t

afrI ++ Va’(a’ 3 a) : W’(0” E IT): 0’ - a” f I-I. (>*

To see that this cha.racterization precisely ma,tches ours, we observe t,hat the
expression

3a”(a” E Cd): 0’ * a” f II

can be rewritten as 0’ E Pref (II) for an infinitary II. Hence, the characterization
is equivalent to: -

aEH t) Va’(d 3 0): O’ f Pref (I I) ++ o f A,(Pref (n)).

This is the same as:
n = A,(Pref (n)).

It follows that any property satisfying (*j can be expressed as A,(II'), where II’
ha,ppens to be Pref (II). It is not difficult to see that, if II = Aw(II' j for an arbitrary
II’, then in fact II can also be expressed as -4, (PTef (II)).

Unfortunately, safety is where the agreement, between the various definitions
stops.

The definition in [AS11 1c iaracterizes a liveness property as an infinitary prop-
erty II C Xi”‘, such that

Va(a f II+): W(a’ E Y): 0 * 0’ E It.

That is, every finite computakion can be extended to an infinite one which belongs
to II. Our cha,racterization of hyperfairness (liveness) is quite different from this
definition, and can ahnost be described as orthogonal t,o the a,pproa.ch taken in
[ASl].

The differences are to a la,rge extent differences in the motiva,tion for wishing
to distinguish between safety and liveness. The definition of [AS11 is a,n attempt
to formalize the intuitive description of Lamport in [L] of liveness a,s a property
sta.ting t(hat

“Something good will eventually ha,ppen?”

as dual to safety, which is described as
“Nothing ba,d ever happens.”

There are two main points in which the current paper wishes to expand this view.

The first is that’ the “something good will eventually happen” is only a partial
characterization of liveness, adequa.te perha,ps for the case of finite computations,
where liveness usually deals with termina,tion, a.11 event tha,t is expected t,o happen
only once. This is characterized by our class E. However, when considering infinite
computations, there are at least two more basic forms of liveness, the one states
that “something good will happen infinitely often,” and the other states tha,t “from
a, certain point on, only good things will ha.ppen.” The approa,ch we present in
this paper is that these three basic forms of liveness-like uttera,nces should be
recognized sepa,rately.

- 13 -

Another point is that our interpretation of “something good” is that of a
finite-prefix property, which refers not only to the current state but in general to
the full preceding history. This leads to the usage of past formulae as expressing
properties of finite prefices, and causes another division point with the approach
in [ASl].

In this paper we refer to the class of liveness properties defined in [AS11 as
pure Ziveness. This is based on the interpretation that the definition of [AS11 tries
to purify the concept of liveness from any trace of safety, while our definition allows
sa,fety constraints as part of a liveness property.

It is possible to “purify” ea,ch of our classes of any taint of safety in the spirit
of [A%].

We define a property II to be a pure ~5, R., P,F, or ti property, if it is a, pure
liveness property aad also belongs to Cc, R, P, .F, or 3-1, respectively.

Given a property II in any of t’he classes C, Tt, P, or 7-& we can define

Pure (II) = II U E&C+ - Pref(II)).

Clea.rly, 0 E Pure (II) ifl either 0 E II or 0 contains a prefix 0’ 4 0 tlia’t cannot
be extended to a computation in II. Take any finite computa,tion 00. Either it
ca,n be extended to a comput8ation in II, or it belongs to C+ - Pref(II), in which
case any infinite extension of it will belong to &(Y+ - Pref(II)>. This shows tha,t.
Pure(n) is a pure liveness property. Due to the closure properties of the classes,
I, ‘X: P, a.nd 7-L? Pure(U) belongs to the same class to which II belongs. It follows
that Pure(II) is, respectively, a pure Z, R., P, F, or 3-1 property.

Note 0la.t the purification of a property usually enlasges it. This is beca,use
it removes from the constra,ints defining the proper@ all those which have the
chasacter of safety, and consequently admits additional computations.

One of the results of [AS11 is tha,t each X-property is the intersection of a,
pure liveness property with a, sa.fety property. This result can now be extended
to state tha.t? for CY E {I, R., F, .F, ‘FI}, each o-property can be represented as the

I intersection of a. pure a-propert,y and a safety property. This is due to the equality:

I I = Pure(n) fl d, (Pref(n>) .

Topological Character izat ion

It is possible to assign a t80pologica,l identificat,ion to the cla,sses of properties
considered a,bo\re. A na,tural topology can 1~ introduced into the space C” by

defining the distance between two computations o and CT’ f C” to be:

p(0,a’) = 2-“,

where k is the minimal index i such that o[i] # a’[;].

With this topology we can establish the following correspondence between our
classifica,tion and the first levels of the Bore1 hierarchy:

(A = F) II is a safety property iff it is a closed set.

(E = G) II is a guarantee property iff it is an open set.

(72 = Gs) II is a recurrence property iff it is a, G6 set.

(7’ = FT) II is a persistence property iff it is an F., set.

In the above we have denoted by F the family of all closed sets, by G the family
of all open sets: by Gc; all sets obtainable as a. counta.ble intersection of open sets.
and by FC all set’s obtainable as a countable union of closed sets.

,411 hyper-fa.irness properties are contained in both Gha and Fob, i.e., belong
to Gba IT Fob. Recall tha,t Gha are the sets obta,inable as a countable union of GF
sets, and Fa6 are the sets obtainaSble as a, countable intersection of Fa sets.

- 2. Expressiveness in Temporal Logic

Next, we rest’rict our aktention to infinitary properties that can be expressed
in temporal logic. We use the version of temporal logic defined in [LPZ]. It in-
cludes, among others, the future operators q (“henceforth”) and 0 (“eventu-
ally”), and t8he past operators O (“previously”), EI (“till-now”), 0 (“once”)!
and S (“since”).

We define the truth of temporal formu1a.e at position i > 0, in an infinite
computa.tion O: SO, ~1, . . . , in the following way:

- 15 -

(4 I= P * si k P, for a state (non-temporal) formula p

(5 i> I= P v Q * (4 I= P OL” (a, i> I= Q

(G) I= ‘P ++ not (G> I= P

(a,;) + Op ++ 3k(k 2 i):(a, k) +p

(4 I= @P ++ (i > 0) and (a,; - 1) k p

(a,;) +pSq ++ 3k(k 5 i): hk> I= Q A
‘fi(i < .i I k>:(Q) I= P1

We define:
clp = -0(-p),
0- p = true S p,

By = -0(1p).

We abbreviak e q (p ---+ q) to p + q, saying thak p entails q (we use --+ for
implica,tion). We are not very specific about the language in which state-formulae,
also called assertions, are expressed. An example is a first-order language over
some theory such as the integers. A computation 0 satisfies a temporal formula3 p,
denoted by 0 + p, if (a, 0) + p. A formula p specifies a property II(p) given by:

l-I(p) = { a f c” 10 + p } .

Two formulaSe 11 a.nd q ase defined to be equivalent,, p z q, if II(p) = II(q). Note
tha,t when we stake tha,t p x q, we mea.11 that p s q in the first position of every
computation.

Below, we present for each class of properties a syntactic cha.ra,cterization of
the formulae tl1a.t specify properties in tha.t class, examples of some formulae of
alternative forms tha.t also specify properties in that class, and some commentSs
about boolean closures of the cla,ss.

A formula of t,he form 011 for some past formula p is called a. safety formula,.
Obviously, every sa.fety formula specifies a sa.fety property.

Conversely, every safety property which is specifiable in temporal logic, is
specifiable by a sa.fet$y formula,. This means that every infinitary property II that
is expressible, on one hand, as ALJ(I”I’) for some finitary II’, and is specifiable,
on the other hand, by sonLe temporal formula, is specifiable in fa.ct by a. safet,J
formula.

- 16 -

To see this, we observe that for every temporal formula 9, there exists an
effectively derivable past formula prefix(y) such that for each 0 E CW and k 2 0

w> I= PTefi454 * 3a’(a’ f Coo): a[0 . . k] - a’ + cp.

This means that prefix(p) hc aracterizes all the finite computations that can be
extended to computations satisfying 9. Then, if cp specifies a safety property, it
can be shown that p = q prefix(y).

Examples of properties specified by safety formulae are partial correctness,
mutual exclusion, absence of dea,dlock, etc. The closure of safety formulae under
conjunction a,nd disjunction is based on the following equivalences:

Note the analogy with the corresponding proof of closure for the semantic view.

l Guarantee

A formula of the form 012 for some past form& p is called a guarantee
formula. Obviously every gua.rantee formula specifies a, guarantee property.

Conversely, every guasantee property which is specifiable in temporal logic
can be specified by a guara.ntee formula. To see this we observe that, if 9 specifies
a8 guarantee property, then p % O(lprefix(lp)).

Examples of properties specifiable by guarantee formulae are tot)al correct-
ness, termina,tion, and gua,ra.ntee of a. goal tha,t has to be rea,ched once. The
closure of guarantee formulae under conjunction and disjunction is ensured by the
equivalences:

(01~ v &I = O(P v (2)’

(01~ A oql, ==: O(OpAOq).

l Recurrence

A formula. of the form •I 0 p for some pa,st formula p is called a recurrence
formula. A recurrence formula. obviously specifies a recurrence property.

Conversely, every recurrence property which is specifiable in temporal logic
can be specified bJ* a recurrence formula. This fact will be shown later.

An alt4ernaStive useful form for recurrence properties is the entailment p + Oq
or, equivalently, q (p + 0 q). To see that this formula, specifies a recurrence
property we observe:

(P=+OO = q O(EJ ‘P v [(-P)sql).

The formula on the right states the existence of infinitely many states such that
the last observed p was followed by (or coincided with) q. Recurrence formulae
can specify all the properties specifiable by safety formulae. This is due t,o the
equivalence:

q p z q O(El,).

They can also specify all the properties specified by guarantee formulae:

OP z q O(0 P).

Examples of properties specifiable by recurrence formulae are a(ccessibility,
la.& of individual starvation, responsiveness to requests, etc. Recurrence formulame
can also express weak fairness requirements. ,4 weak fairness requirement for a
transition r in a program is that, if T is continuously enabled beyond some point,
it will eventually be taken. This can be expressed by:

(EIEn(7-) 3 Otaken(r)) E q O(l~n(r) v taken(T)).

The closure of recurrence formulae under conjunction and disjunction is en-
sured by the equivalences:

(q op v q Oq) = q O(pVq),

(mop A q Oq) = q O[P A ccl v @ KT>%?l)l~

0 P e r s i s t e n c e

A formula, of the form OCIp for some pa,st formula p is called a. persistence

- formula.. Persistence formulae obviously specify persistence properties.

Conversely, every persistence property which is specifia.ble in temporal logic
can be specified by a, persistence formula. This follows by dualit,y from the corre-
sponding result for recurrence formula,e.

Simila.rly to recurrence, persistence formulae can specify all the properties
specifiable by safety and guaraatee formulae. This is supported by:

q p = on@ P>*

OP = OO(Op).

The closure of persistence formulae under conjunction and disjunction ca’n be
obtained by dua.lity from the closure properties of recurrence formulae.

- IS

l Fairness

A formulaof the form (7opvooq for some past formulae p and q is called
a fairness formula. Obviously, a1 fairness formula specifies a fairness property.

Conversely, every fairness property which is specifiable in temporal logic can
be specified by a fairness formula. This will be shown later.

It is easy to see that fairness formulae generalize both recurrence and persis-
tence formulae. An alternative form for fairness formu1a.e is: 0 Op --+ q Oq.
In this form they are useful for specifying strong fairness requirements, such as
DOE+) --+ DOtaken(which states that a transition which is enabled in-

finitely many times must be taken infinitely many times. Fairness formulae can
also describe systems whose response is guaranteed only if there are infinitely rna8nl
requests for this response. An example of such a system is an eventually relia#ble
channel .

Fairness formulae are closed under disjunction but not under conjunction. A
conjunct,ion of fairness formulae leads to the most general normal form of temporal
formulae: n

which are ident!ified a.s general hyper-fairness form&e.

We can summarize the relation of t,he property hiera,rchy to the formula, hier-
archy by the following proposition.

Propos i t i on

A property II, tha,t is specifia,ble by a temporal formula, is an a/-property iff
it is specifia,ble by an cu-formula, where cv E {safety, guarantee , recurrence .
persistewe, f a i r n e s s) .

The fact tha,t every a-formula, specifies an a-property is straightforward. The
Iother direction has been proved for the safety and guarantee cases. For the other
cases we have t,o rely on a simila,r proof for automata,, which we discuss next.

3. Predicate Automata

An alternative formalism for specifying temporal properties is given by finite-
state predica,te a,utomata (see [ASZ], [MP]). In the version we consider here, a,
predicat,e automat,on M consists of the following components:

- 19 -

, Q - A finite set of automaton-states.

qo E Q - An initial automaton-state.

T = {t(qi, qj)lqi, qjEQ} -A s e ot f transition conditions. For each qi, qj E Q, t(qi, qj)
is a state formula specifying the computation-states under which the automa-
ton may proceed from qi to qj. It is assumed that t(q, qo) = false for every
q E Q. We also assume that each t(qi, qj) is either syntactically identical to
the constant false, or holds over some computation-state s.

R c Q - A set of recurrent automaton-states.

P C_ Q - A set of persistent aut,omaton-states.

Let’
o:s(),s1,... E cw

be an infinite computat+ion. Computations are fed as input to the automaton,
which either accepts or rejects them. ,4n infinite sequence of a,utomaton-sta,tes

r:qo,ql,... E Q”

is called a run of JU over 0 if:
1 . qo is the init,ial sta,te of J4
2 . for every i > 0, c’i-1 + t(qi-1, qi).

Note tha’t the a.utomaton always starts at qo, and so causes it to move from qo
to Yl-

We define the infinit,y set of r, 1x$(r), to be the set of automaton-states that,
occur infinitely nia,ny times in r.

a A run r is defined to be a.ccepting if either Inf(r) n R # fl or Inf(r) C_ P. The
automakon JU accepts the computation cr if there exists a run of M over 0 which
is accepting. This definition of acceptance has been introduced by Streett ([St]).

An alternative definition, given in [MP], is that aEZ runs of M over 0 are
1 accepting.

The a,utoma,t.on ,U is called complete if, for each q E Q,

It is called deterministic if, for every q and q’ # q/l, t(q,q’) --+ +(q, q”), that is,
we cannot have both t(q, q’) and t(q, q”).

- 20 -

In this paper we restrict our attention to complete deterministic automata.
In deterministic automata there is exactly one run r corresponding to each input
computation 0, and hence the definition of acceptance in [MP] coincides with the
one used here.

Let G = R U P and B = Q - G. We refer to G and B as the “good” and
“bad” sets of states, respectively. We define the following classes of automata by
introducing restrictions on their transition conditions and accepting states:

l A safety automa.ton is such that, for every q E B, q’ E G, t(q, q’) = false. That
is, it cannot move from a bad state q E B to a good state q’ f G.

l A guarantee automaton is such that, for every q E G, q’ E B, t(q,q’) = false.

l ,4 recurren,ce automaton is such that P = 0.

l A persistence automaton is such that R = 8.

l A fairness automaton is an unrestricted predicate automaton.

We define the property specified by an automa3ton M, flM, as the set of all
infinite comput,ations that ase a.ccepted by M.

In order t’o atta,in expressive power comparable to (and even exceeding, see
[W]) tha.t of temporal logic we have to consider a more general type of automa,ton.

We define a. hyper-fairness automaton (liveness automa,ton) to be a structure

M = (Q,qo,TJ),

where Q, qo, and T ase as defined above, and L is a finite set of pairs of accepta,nce
sets:

L = {(Rl,Pl),...,(Rx,,Pk)}.

A run r of a liveness-automa,ton is accepting if, for each i = 1,. . . k, either
Inf(r) CT Ri # 0 or Inf(r) 5 Pi. T he notions of computations accepted by such an
automatjon and the properties specified by it are similar to the simpler case.

Obviously, all the preceding types of a.utomata are special cases of hyper-
fairness automa,ta witah k = 1. The hyper-fairness automaton is almost identical
to the automat’on studied by Streett in [St].

Propos i t ion

A proper6y II, that is specifiable by automata, is an o-property iff it is speci-
fiable by an a--automatCon, where Q f {safety, gua.rantee? recurrence, persis-
tence, fairness >.

- 21 -

For the first four types, this proposition has been proved in [Lan], with some
minor differences in the definitions of safety and hyper-fairness automata. The case
of fairness, and in fact the complete hierarchy above, has been solved in [Wag].

For completeness, we include below our version of a proof of the proposition,
which for most of the cases is straightforward.

P r o o f

It is simple to show that an a-automaton specifies an a-property. Let A4 be
an a-automaton. Since A4 is deterministic and complete, there is, for each finite
computation 0 f C+, a unique state q, denoted by b(qo,a), such that the run of
A4 on cr terminakes (a is finite) at q.

Define II, = {a E Cf 1 S(qo,a = q> for each q E &.

Obviously, an infinite CY is accepted by ,A4 r;$ its corresponding run r either
visits infinitely many times states in R, or is constra,ined from a certain point to.
visit only P-st,ates. This means that either 0 contains infinitely many prefices in
II, for q E R, or that all but finitely many prefices of 0 are each in some II, for
q E P. It follows that

&VI = L(u n,) u pLc!(u rr,>.
QER QEP

Consequently, every property specifiable by a single a,utomaton is a fairness prop-
ert,y. However, a.s we will show for the special cases of an a-automa,ton, this
expression ca,n be further simplified.

n For a sa.fet,y a,utomaton, it is clear that no finite prefix of an acceptable com-
- put,a.tion caa be in IIB = U II,. This is because, once a run visits a ba,d state

q E B. it can never return to a gooc state. Hence for safety a\.utonlat,a we also have

which establishes IIM as a safety xoper t’y.

n For a guarantee a,utomaton, once a run visits a good state it can never visit a
bad state. It follows tha,t

Kbl = E,(IJ n,>,
!EG

- 22 -

which shows that II ,/M is a guarantee property.

I For a recurrence automaton, we are given that P = 0, and therefore

&I = R,(u n,>.

n For a persistence automaton, we are given that R = 8, and therefore

Consider now the other direction of the proposition. It states that a,n w
property specifiable by automata can be specified by an a-automaton. Assume
that an a-propert)y II is specifiable by automata. Thus, there exists a, liveness
a,utomaton

specifying

L= {(R1,P~~,...,(Rx:,PI,))

II.

Let 6: Q x C+ -+ Q be the function, based on T, that, for each state q E Q and
finite computatSion o E Ss, yields the state S(q, a) f Q reached by the a.utoma,ton
starting at q after reading the computation 0.

n Consider first the ca.se, that IJ is a safety property, and hence satisfies II =
A,(~re.f(W

We construct an a.ut,omaton:

M’= (Q,qo,T’,G,G),

where Q and qo are as before. G and B ase defined by:

G = {qo} U {q E Q I&d = q for some (T E Pref(II)),
B = Q - G .

The transition conditions T’ = {t’(q, q’)Iq, q’ E Q} are given by:

{

true 4EB,q’=q
t’(q?q’) = f a l s e 4EBA’#cl

t(wl’) 4 4 B.

- 23 L

We claim that, for a finite computation o E C+,

By the construction of G, if o E Pref(II), then b(qo,a) E G.

Assume that o $ Pref(II). T his means that o cannot be a prefix of a compu-
tation in II. Let S(q0, a) = q. We would like to show that q 4 G.

Assume to the contrary that q E G. This can only be caused by another finite
computa3tion 0’ E Pref(II) such that also S(qo, a’) = q. If a’ E Pref(II), there
must exist an extension 0” E Cw, such that CT’ . a” f II and hence is accepted by
M. Consider the mixed computation o . a” E CU. Let r be the run of (Q, qo, T)
over 0 . 0”) and r’ the run of (Q, qo, T) over a’ . a”. Since S(q0, a) = b(qo, a’) = q,
these runs coincide after a finite segment. It follows that Inj(r) = Inf(r’), and
hence o . a” should be accepted by M. This contradicts our assumption tha,t
o 4 Prej(II). H ence our claim is established.

It is now easy to show that o E Cw is accepted by M’ iff o E II.

Denote by 6’ the transition function based on T’. Assume that o is accepted
by M’, and let r be its corresponding run. To be accepting, r must go infinitely
many times t’hrough G-states. By the way we defined T’, this means tha,t M’ on11
visits G-sta.tes. Since T and T’ are identical as long as we only visit G-states,
this means that, for every O’ 4 0, 6(qo, a’) = S’(qO,a’) E G. It follows tha,t ever)
CT’ -4 0 is in Pref(II), a,nd since II is a safety property, that o f II.

In the other direction, assume that o is rejected by M’. This implies the
e x i s t e n c e o f a, m i n i m a l O’ 4 o s u c h tha,t 6’(qo, a ’) 4 G . S i n c e O’ i s m i n i -
mal, the run caused by O’ visits only G-states except the last. It follows that
~‘(VO?J) = S(qo,a’) g G and hence 0’ 4 Pref(II). Thus, 0’ cannot, be the prefix

- of a computation in II, and therefore o 4 II.

Consider the ca,se that II is a guarantee property.

In that case, we have that II = E,(II’) for some finitary property II’. We
1 define the sets G and B, as follows:

G = {q 1 Qo,a) = q for some o E II’},
B = Q - G .

Construct the automaton:

M’= (Q-qo,T’,G’,G),

- 24 -

where T’ is given by:

.

{

true q=,q’=4
t’(q,q’) = f a l s e qEG,q’ib

t(q7q’) Q BI G-

We show that 0 E Cw is accepted by M’ iff 0 E Il.

Assume that 0 is accepted by M’. Then there exists some prefix al -i (T
which causes M’ to visit a state in G for the first time while reading 0. Let
q = 6’(qo, al). Since q is the first visit to a G-state, it follows that the behavior of
M’ on al is identical to that of M on al, a,nd therefore also S(q0, al) = q. By the
definition of G, there exists a finite computation 02 E II’ such that S(qo, 02) = q.
Let 0’ f C” be the suffix of 0 following al, i.e., cr = al . 0’. Denote by rl the
run of M over 0 = al . of, a.nd by r2 the run of M over 02 . 0’. Obviously, rl
and r2 can differ only by a finit,e prefix. M a.ccepts a2 -0’ because 02 E II’. Since
hfM(r1) = Inf,,&& M must also accept al .c/ = 0’. Thus 0 E II.

Assume thak 0 E II. There must exist a prefix 0’ 4 0 such that 0’ f II’. Let
0’ be the minimal such prefix of 0. Let, q = 5(qo, a’). Obviously q E G, and q is
the first G-state tha,t ,U visitJs on rea,ding 0. It follows that’ also q = S’(qo,a’).
By the wa,y M’ is constructed, once it reaches a, G-sta,te it sta,ys there forever.
Consequently, M’ accepts 0.

n Next, consider the case that II is a, recurrence property. This means tha,t
II = RJJI’) for some finitary II’.

We perform a series of modifications on the individual pairs of sets R;, P;,
i = 1,. . . , k, until a11 the P,! = 0. These modifica,tions will preserve the property

- defined by the automa.ton M.

Without loss of generality, we define the modifications on the first pair RI, PI.
After obtaining a Pi = 0, we move on to the other pairs.

Assume that all the st’ates in the automa.ton are reachable. A cycle C in the
automaton is a set of stat#es such tha$t there exists a cyclic path in the a,utoma,ton
that passes only through the sta)tes in C, a,nd at least once through each of them.
We only consider accessible cycles. These are cycles such that the path leading
from qo to some q in C and the cyclic path traversing C are accessible, i.e., never
pass through transitions such that t(q;, qj) E false. A good cycle is a cycle such
that a, run r with Inf(r) = C is accepting. A persistent cycle is a good cycle C
such that C n RI = 0. Define Al to be the set of automaton-states participating
in persistent cycles.

Consider the automaton M’ coinciding with M in all but the set of accepting
pairs. The list of accepting pairs for M’ is (R’,, Pi), (R;, Pi), i = 2,. . . , kj where
we define:

R’, = RluAl,
Pi = 0 .

We wish to show that M and M’ accept precisely the same computations.

Consider first a computation CT accept,ed by M. Let J be the infinity set
InfM (r (o)) . clearly, J satisfies the requirements presented by (R;, Pi), i > 1,
in both automata. The acceptance for i = 1 implies that either J n RI # 8 or
J C PI. In the first case obviously J n Ri # 0. In the second case, if J n RI = 0,
then J is a persistent cycle. It follows that J C Al, and hence J n R’, # 0.

Consider, next, an infinite computation 0 accepted by M’. We will prove
that 0 is also accepted by M. Assume, to the contrary, that 0 is rejected by M.
Let J be as before. Since M’ accepts 0, J n R’, # 0. The rejection by M implies
tha.t J n RI = 0. Hence there must be some q E Al in J. Let 7r be a, cyclic path
from q to itself precisely traverskg J. In order for 0 to be rejected by M, J must
also contain a state q’ 4’ RI U PI. Since q E Al there must exist anot’her cycle
J’, such that J’ is a persist,ent cycle. Let 7r’ be the cyclic path from q to itself
precisely traversing J’. Let a’ be a. finite computation that causes the automaton
to move from q back to q along X’ .

The state q and computation a’ have the following property:

.

For every finite computakion g* such that 6(qo, a*) = q, there exists a positive
integer n (possibly dependent, on a*) such tha.t g* - (o’)~ contains a prefix 6 such
that 6 4 cT* ~(a’)~, ji?l + Io*l, in II’.

To see this, we observe tha.t the computation g* - (a’>” has J’ as infinity set,
and is therefore in II. Consequently, g* a (o’)~ must have infinitely many prefices in
II’? most of which are longer than D*. The shortest of these is a prefix of o* - (0’)”
for an a.ppropria#te n > 0.

Let, now 00 be a finite computation such tha(t S(qo,ao) = q, and 6 a finit’e
1 computation lea.ding the automaton from q to q along 7r. Consider the following

infinit’e computation:
‘I

0 = ooqa’)n1qcTf)n2 . . .)

where the 72j’s are chosen so tha,t 0-l’ has infinitely many prefices in II’. Tha,t is,
for each

‘I
aj-1 = a()6(a’)n1 . . . (a’)nj-16,

we choose an IZ~ > 0 such tl1a.t ayml - (~‘)~j has a prefix in II’, which is longer
tha,n 0:- 1.

- 26 -

It follows, on one hand, that, since a” has infinitely many prefices in II’,
CT” E II.

On the other hand, the infinity set corresponding to a” is J U J’, which has
an empty intersection with RI and at least one state q’ 4 PI. It follows that M
rejects a” which contradicts the assumption that M specifies II.

Consequently, there cannot exist a computation 0 which is accepted by M’
and rejected by M.

It follows that M’ is equivalent to M. We can repeat this process for each
i = 2,..., k until we obtain an automaton with all Pi = 0, i = 1,. . . , k.

It only remains to show that such an automaton is equivalent to an a,utomat,on
wit’h a single R and a, single P = 0. This is essentially the closure property
tha,t, states that) the intersection of recurrence automata, is equivalent to a single
recurrence aut,omaton. The construction of this automaton is similar in spirit to
the recurrence formula. for the intersection of recurrence formulas. The automaton
detects visits t’o Ra-stakes such that the most recent previous visit to an (RI U R2)-
state was in fact a visit to an RI-state (for k = 2).

w The case of a, persistence property II, that is specifiable by an automaton,
is ha,ndled by duality. We consider n = Cw - II, which can be shown to be a,
recurrencl property also specifiable by an a,utomaton.

By the construction for recurrence properties, there exists a, recurrence-auto-
maton

M* = (Q,qo,T,WJ)
specifying n. Then the following persistence automaton obviously specifies II:

M’ = (Q,qo,TAQ -R).

n The ca,se of fairness properties II specifiable by automata, is handled a.s follows.

Clea.rly the role of the set of pairs { (Ri 7 Pi)li = 1, . . . , k} is to define the
I subsets J C Q such that every computation cr with Inf(r(o)) = J is a,ccepted. Let,
F denote the family of these sets. Obviously J E F +-+ (Ri n J f 0 or J 2 Pi) for
ea,ch i = 1,. . . , k.

A characterization property, that can be derived from Wa.gner [Wag] (see also
[ICam]), is the following:

If M specifies a fairness property, then for each accessible accepting set J E F,

either A E F for every accessible cycle A _> J,
or B E F for every accessible cycle B 2 J.

- 27 -

An equivalent statement of this fact is that we cannot have a chain of three acces-
si ble cycles

BCJSA,

such that J f F, but B $ F and A $ F.

According to this characterization we can partition the family of accessible’
accepting sets into:

F= {Al,...,A,,Bl,.-.,Bn),

where, for each Ai and an arbitrary accessible cycle X, Ai C_ X --+ X E F, and
for ea,ch Bj and an arbitrary a.ccessible cycle X, X G Bj + X E F.

This leads to the construction of the following a,utomaton:

M’ = (Q’, q;, T’, R’, P’),

where Q’ = Q x Q”’ x 2 x 72 x 2.

Each sta.te q’ f Q’ has the following structure:

Q’= (Q,Ql,‘..)Qnz,fR,j,fP),

where q E Q, qi E Ai, i = 1,. . . , nz, fR, fp f (0, l}, and 1 5 j 5 12.

We assume that the states of M are ordered in some linear order. For ea.& Ai,
i = l,..., ~7, we define min(_4;) to be the state of Ai appearing first in t,he linear
order. For q E Ai, we define next(q,A;) to be the first state G f Ai appea(ring
after q in the linear order. If q f Ai is the last A;-state in the linear order then
next (q, A;) = min (-4;).

The role of the different components of q’ is as follows:

The state q simulates the behavior of the original automaton. Each qi E A;
anticipates the next A;-state we expect to meet. If the run visits all of the Ai
infinitely many times, ea,ch anticipa.ted qi will be matched infinitely many times.

The recurrence flag fR is set to 1 each time one of the anticipated A;-states
is matched.

The index j checks whether the run of M stays completely within one of
the sets B1, . . . , Bn from a certain point on. It moves cyclically over 1, . . . , n,
and at any point checks whether the next automaton-state is in Bj. If the next
automaton-sta,te is in Bj, then j retains its value and the next value of fp will be
1. Otherwise, j is incremented (modulo n), and the next value of fp will be 0.

qb = (40, min(A&. . . ,min(A,),O, 1,l).

- 28 -

T’ is defined as follows:

t’((wzl, - - - ,%n,fR,si,fP), (~,~l,...,~~,f’12,3,fp>> =

m

A I[(g = 4;) A (Gi = next(q&))] V [(’ # qi) A (ii = qi>l} A

[Cfa = 1) E \1;; (Q” = Qi)] A
i=l

{KG E Bj> A (3 = j)] V [(Q $Z Bj) A (3 = [j m o d n] + l j] } A

[(fP = 1) G (GE Bjj]..

The first clause in this definition states that the first component q follows the
same path that would be followed by the original automaton.

The second cla,use sta.tes tha,t eit’her the newly visited automaton-stafte 4
matches the anticipated A;-sta,te, and we modify 4; to the next A;-state in se-
quence, or there is no ma,tch and 4; remains the same.

The t#hird clause states t’hat .fR is set, to 1 iff i matches one of the anticipa.ted
A;-stat,es. If different from 1 it must be 0.

The fourth cla.use states that, if 6 belongs to Bj, then j is preserved. Other-
wise it is incremented in a cyclic manner.

The la.& cla,use stat>es that fp is set to 1 whenever 4” is in Bj, and to 0 if
- G$JBj-

The acceptance sets are defined by:

R’= {(war ?qm,Lj,fp) I for SOme q,qi,--,qm,.LfP)!

p’= {(4,41,- ,qm,fn,j,l) I for some q,!?l~---,!h,fR,j)-

Let 0 be a computation and r’ the corresponding run of M’ over 0. If 7%’ visit,s
R’ infinitely many times, t)his implies that r, the run of M over 0, visits infinite11
many times all the st’ates of some Ai. This shows that Inf (rj > Ai, and hence CT
is accepted by M a)s well as by M’.

If r’ sta.ys contained in P’ from a certain point on, this means tha,t the value
of j is never cha.nged beyond that’ point, and hence r is contained in Bj from thak
point on. Aga.in, this means that 0 is accepted lo!; M as well as by M’.

A similar argument shows that all computations accepted by M are also
accepted by M’. J

Deciding the Type of a Property

In this section we consider the following problem:

Given a liveness automaton M, decide whether the property specified by
this automaton is an a-property, where a f {safety, guarantee, recurrence,
persistence, fa irness) .

The following proposition gives an answer to this general question:

Propos i t ion

It is decidable whether a given liveness (hyper-fairness) automaton specifies
an a-property, for cv f {safety, guarantee, recurrence, persistence, fairness}.

Again, for the first four types, the answer has been given by Landweber in
[Lan]. For the case of fairness, as well as the classes below it in the hierarchy, it is
provided by Wagner in [Wag].

In the context of predica,te automata, this question was tackled in [AS3], where
a decision procedure is given for safety and pure liveness, which is not covered b3
the previous results.

Since the decision procedures for the cases we consider here are relatively
simple, we repeat them below, using our terminology.

First,, some definitions.

A set of a,utoma,ton-states A 2 Q is defined to be closed if, for every q, q’ E Q,

(4 E A A t(q,q’) $ false) -+ q’ E A.

: The closure 2 of a set of states is the smallest closed set containing A.
b

For a, given liveness automaton M, we define G = n (Ri U Pi).
i=l

l Checking for a safety property:
Let B = Q - G. T he automaton M specifies a safety property iff 2 n G = 0.

l Checking for a guarantee property:
M specifies a guarantee property ifi 6’ n B = 8.

- 30 -

sets
To check for the other levels of the hierarchy, we define the family of accepting
F:

F = {J I J is an accessible cycle, J n Ri # 0 or J C P; for each i = 1,. . . , k}.

The following are direct consequences of the characterizations in [Wag]:

l Checking for a recurrence property:
M specifies a recurrence property ifl, for every J E F and every accessible cycle
A 1 J, A E F.-

l Checking for a persistence property:
M specifies a persistence property iff, for every J E F and every accessible cycle
B c J, B E F.

l Checking for a fairness property:
M specifies a fairness property ifl there do not exist three accessible cycles
Bc JGAsuchthat JEF,butB,A$J.

As a matter of fact, the methods of [Wag] identify the exact location of a
liveness property in the hyper-fairness hierarchy, i.e.;the minimal k such that the
property can be specified by a liveness automa.ton with IL1 = k.

According to the characteriza.tion, this minimal k is the maximal 12 admitting
a chain of accessible cycles of the form

B1 C J1 c I32 C J2 C *** C Jn,

where Bi @ F and Ji E F for i = 1,. . . , nr.

4. Connections Between Temporal Logic and Automata

Temporal logic and predicate automata have been considered as alternatives
for specifying properties of programs. A compa.rison of their expressive power is
considered next.

Propos i t i on

A property specifiable by a,n a-formula is specifiable by an a-automaton, for
Q ranging over the five types.

This is based on the following construction, studied in [LPZ] and [Zl].

For each finite set of past formulae pl, . . . , pk, it is possible to construct a de-
terministic a.utomaton M with a$ set, of states Q and designa,ted subsets Fl, . . . , Fk.

- 31 -

The automaton M has the property that, for each i = 1,. . . , k, each infinite com-
putation 0 E Cw, and each position j 2 0,

Thus, the automaton M identifies, while reading 0 up to position j, which pi’s
hold a.t that position.

Using this basic construction, it is straightforward to build an a-automaton
corresponding to an a/-formula.

For example, for the fairness formula q Opl V OCIp2, let the automa.ton
mentioned above be (Q? qo, 7’) with the designated sets Fl and F2. Then the
corresponding fairness automaton is:

In the other direction, not every property specifiable by an automaton ca.n be
specified in temporal logic. Only a restricted class of automata, called counter-free
automata (see [MNP] and [WI), cadi be translated into temporal logic. A (liveness)
a.utomaton is defined to be counter-free if there exists no finite computat,ion cr and
state q such t’l1a.t q = S(q, an) for some n > 1, but 6(q,a) # q. The existence
of such q and CT would have enabled the automa,ton to count occurrences of 0
modulo 12.

It ha.s been shown in [Zl] that:

An a,utomaton specifies a. property specifiable by temporal logic iff it is counter-
free.

This result can be refined to provide a, translation from counter-free cu-a,utoma,ta
to cu-formulae.

Propos i t i on

A property specifiable by a. counter-free a/automaton is specifiable by a,n Q’-
formula,.

The transla.tion is essentially the one studied in [Zl], but shows that the
structure required in an cl-automaton corresponds to the structure required in an
cy-formula,.

It is based on the construction of a past-formula pq for ea,ch q E Q - {qo}
of a given counter-free semi-automa,ton (Q, qo, 7’) (i.e., an automaton without a,c-
cep t ante conditions). The formula pq chara,cterizes all the finit)e computations

- 32 -

leading from qo to q, i.e., for each infinite computation 0 E Cw and position j 2 0,

For example, the formula. corresponding to the (counter-free) fairness auto-
maton (Q, qo, T, R, P) is:

The a,bove two-way translation, subject to counter-freedom, provides a, sta.n-
dard reduction of results about automata into the corresponding results about
temporal logic.

We illustra,te this method on the following case of the proposition.

A fairness property II that is specifiable by temporal logic is q,ccifiable by a,
fairness formula.

P r o o f

Let. v be the formula specifying II. Using the first translation we construct a
counter-free automaton M. specifying the fairness property II. The part of the
proposition dealin,0‘ with fairness formulae specifiable by automata, tells us how-
to effectively- construct a fairness automaton M that specifies the same property.
The con&ruction of ,G only refines the structure of M,, splitting each state of
M, int,o many distinct states, respecting the transitions. It, follows tha.t, since-
M, is counter-free, so is M. We can now use tile s;~cond translation to construct
aS fairness formula 9% specifying II. J

This method was used in [ZZ] to establish the strict hierarchy for temporal
formulae, based on [I-Cam].

5. Proof Principles

One of the main reasons for separating the properties into classes is the expec-
ta,tion that each class will have an appropriate proof principle that can be aSpplied
to verify all properties in that class.

To discuss verifica,tion of properties over programs, we introduce a minimal
model of a program. The minima,1 model consists of the following elements:

- 33 -

Y

c

6

P

A finite set of program variables. This is a set of variables that the program
manipulates and controls. It includes both data variables, that are explicitly
mentioned in the program text, and control variables, such as the current
location of execution in the program.

A set of states. Each state s f C is an assignment of values to variables. .
States assign values to a denumerable set of variables that includes all the
program variables Y. For a variable y, we denote by s[y] the value assigned
by s to y.

,4 state formula (assertion) whose free variables are in 1’. This formula char-
acterizes the initial states of the program.

A state formula (assertion), whose free variables are a subset of two copies
of the program variables, denoted by Y and Y’, respectively. This formula,
called the transition formula, characterizes the relation holding between a
state and a possible successor state, obta,ined by a single execution step of
the program. The variables Y and Y’ refer to the values assigned to these
variables in the state and its successor, respectively.

A computation of such a program is an infinite sequence of states,

0 = S(-j,Sl,...,

such that SO + 6’ and, for each i 2 0, (si, s;+l) + p. The meaning of the second
requirement is that p is valid over the interpretation tha,t assigns to each y E E’
the value si [zJ], and to each y’ f Y’ the va,lue si+l [y].

To ensure that only infinite computations are considered (in the simplified
framework we assume in this paper), we assume t’hat the formula ‘d?j: 3$: p is
valid. This gua,rantees that el’er>- state has a successor.

s For a temporal formula 9 and a program A, we denote by ,4 + cp the fa,ct
that p is valid over all computations of the program A. We denote by A I- 9 the
fact that 9 is provably valid.

: Interface Rules

There are three interface axioms/rules from which all the temporal conclu-
sions about the program’s beha,vior can be drawn.

l Initialit y
A t - 6

It sta,tes that 8 always hold at the first sta.te of an A-computation.

- 34 -

l Invariance Rule

Let QCJ and $J be two state-formulae whose free variables range over Y. Denote
by v’, $’ the state-formulae obtained by replacing each free variable y f Y in
9 and + by its respective primed version y’ E Y’. This substitution can be
expressed by

9’ = v[Y’/Y] a n d $’ = $[Y’/Y].

The following proof rule establishes the invariance of cp until an occurrence of
$J .

(P A Y A -74 ---) (Y’ v 4’)

The conclusion of t,his rule uses the unless operator U, which is the weaker
form of the until operator. The conclusion states that, whenever 9 occurs, it will
continue to hold until the next ocurrence of $J, if any. If $J does not occur then p
must continue to hold for the rest of the computation. The rule requires that we
establish by state-reasoning (i.e., without temporal reasoning) the premise that, if
two states s and s’ (interpretations for Y and Y’. respectively) are related by p,
and the first satisfies p A -$, then the second state must satisfy 9 V 9. Obviously,
under this premise, as long as $ does not occur, 9 is preserved from each state to
its successor.

The inva.riance rule is often used in a simpler form, which is obtained by
ta.king $ = fa se in the general form. For this special $, p A +J, 9’ V $‘, a.nd 9 u$)1,
simplify to 9, ~9’, and q p7 respectively. The simplified rule is

As an example for the application of the simpler rule, consider the ca.se in
which

P(Y,Y'l (Y' = Y + I>,

describing a progra,m whose only a,ction is to increment y by 1. Let

Y: (Y L 0).

We can ea,sily establish the premise

((Y’ = Y + 1) A (y > 0)) + (y’ 2 0).

- 35 -

By the rule, we then conclude

A I- ((Y 2 0) * q (y > 0)).

l One-Step Eventuality Rule

Let 9, II, and 4’ be state-formulae as before.

This rule requires the premise sta.ting that, if 9 holds in a state s, a(nd $
does not, then $ holds in each of the A-successors of s. We can then conclude
that any occurrence of 9 in an A-computation must be eventually followed by an
occurrence of $.

In a more general framework, in which finite computations are also considered,
we have to add a premise guara~nteeing enableness. An appropriate premise is
$9 + (3ij’ : p).

As an example for the application of thtl rllle, consider aSgain the incrflmenting
program, and the state-formulame

Y: (Y = 4‘), $: (y = 5).

We establish the premise

((Y' = y+ 1) A (y =4)) + (y’ = 5),

a,nd trivially conclude

A t- ((y=4)*0(y=5)).

Wel l -Founded Eventua l i ty Rule

Obviously, the one-step eventuality rule is very weajk and ca,n be used to
esta,blish only the simplest type of eventualities, the ones tha,t can be obtained in
a single execution step from one state to the next one.

To derive stronger eventualities we combine this ba,sic rule with the powerful
well-founded induction rule for eventualities.

- 36 -

l We1 I- Founded Eventuality Rule

Let (W, -x) be-a well-founded ordering, and y(o), Q f W, a state-formula
parametrized by a parameter taken from the domain W of the ordering.

The premise of the rule states that, if P(CV) currently holds, then, eventually,
either $J will be established or 9 will hold for a smaller parameter ,8 4 a’.

This premise is typically established by the one-step eventuality rule. Since
the decrease of a well-founded parameter cannot go on indefinitely, the rule con-
cludes that eventually $ must occur.

Not,e that this more powerful rule does not explicitly refer to any program-
specific constructs, such as 9 and p. It relies on the third interface rule to help
it esta,blish the premise. This explains the name interface rules we have given
those rules, since they are the only ones tha,t explicitly refer to program-specific
constructs.

We now consider in turn each of
class a,n a,ppropriate proof principle.

Safety

the classes of properties, and give for each

A sa.fety formula, ha,s the general form up for some past formula p (i.e.,
p contains no future temporal operator). How do we verify that such a formula is

- valid over all computations of a program A?

Consider first the simple case in which p is a, state-formula. The suggested
proof method in this case is as follows:

Find a sta,te-formula y such that 9 --+ p, and prove

(W A I- (Y * w, using the invariance rule.

We ma.y then conclude
A l - op.

- 37 -

Consider next the more general case, that p is a past-formula. Our proposal
for dealing with this case is the following:

Without loss of generality we assume that negations appear only within state-
subformulae of p. A subformula p’ appearing in p is called a maximal state-
subformula of p if p’ is a state-formula and is not contained in a larger state-formula
appearing in p.

IJet Po,Pn,~-~ ,pm be the list of all the subformulae of p which either contain
a temporal operator , or are maximal state-subformulae of p. The order in which
they are listed is such that, if pj is a subformula of p;, then 2. < j. We also take
po = p. We refer to this list as the closure of the formula p.

We now define an extension of the program A, denoted by a, as follows:

Variables - i- = 1,’ U { bo, . . . , bm}. That is, we augment the original program
variables by additional boolean variables, bo, . . . , bm, one corresponding to
each subformula, in the closure of p.

The intended purpose of these variables is that, in position j 2 0 of a com-
puta.tion 0, (a, j) /= pi iff sj[t;] = true.

States - Y. Each st at,e a,ssigns values also to the variables bo , . . . , b, .

Initial Assertion - 6 = 0 A 8. The additional conjunct 8 is a, conjunction of clauses,
0i, i = 0,. . . , 172, one for each formula, in the closure. The clauses depend on
the structure of the formulae, as follows:

If p,; is a maximal state-subformula, then 0; is hi E p;.
If pi is l]jj, t’hen 0; is hi E (lbj).
If pi is pj V pk, then 0; is b; G (bj V bk).
If 11; is Opj, then 8; is bi E false.
If Pi is Pj SPk 7 then 8; is bi E bk .s
The intended purpose of these cla,uses is to guarantee tha,t bi G pi at the first

state of the computation.

_ Transition Assertion - b = p A fi. The a,dditional conjunct p is a conjunction of
cla.uses, pi, i = 0, . . . ,772, defined as follows:

If Pi is a maximal state-subformula, then pi is bi f pt.
If pi is lpj, then pi is b’; E (41;).
If pi is pj VP/., then pi is b’; E (b> V bi).

If pi is Opj, then pi is b’; E bj.
If pi is Pj spk, then pi is b’; E bi V (b> A bi).

The intended purpose of these cla-uses is to gua,rantee that, in a transition

- 38 -

from a state s to its successor state s’, bi E pi will be preserved, assuming it
already holds at S.

With this augmentation, we can now use the following proof rule:

Or, if we wish to represent the proof approach in a single rule, it will be of the
following form:

To prove up, find a sta,te-formula 9, possibly referring to I’ U { bo, . . . , b,,},
such tha,t

y + boA
8-v

A l - c]p

Examp le

For example, consider the incrementing program whose only action is to in-
crement y by 1. -4ssume tha,t its initial assertion y = 0, i.e., the initial value of y
is 0. We would like t,o prove for it the sa,fety property q [(y = 10) ---+ 0 (y = 5)].

We introduce two auxilia,ry boolean varia,bles bo, bl. The first variable bo? is
associaSted with (y # 10) V 0 (y = 5), which is the subformula whose invaria#nce
we wish to prove. The variable bl is associated with 0 (y = 5), which can be
represented a,s trueS (y = 5). T he -eneral construction calls for two more vasia,bles,g
2,~ and b3, corresponding, respectively, to the maximal state-subformulae y # 10- and y = 5. But in practice, we can skip these variables and refer to the subformulae
directly.

6 = 8 A 6 is given by the conjunction:

(Y = 0) A (bo = [(y # lo) v bl]) A (bl = (y = 5)).

j = p A /!S is given by the conjunction:

(y ’ = y + 1) A (bb EE [(y ’ # 1 0) v b’,]) A (b; E [(y ’ = 5) v bl]).

As our a,ssertion, we pick

y: b. A (y > 5 --) bl).

39 -

We first show that

This is because y = 0 implies y # 10 and y < 5.

Next we show that

By b, bb can be false only if y’ = 10, which is possible only if y = 9. But then, due
to the clause (y > 5 + bl) in y, bl E true and t,herefore, due to the last clause in
6. b’, E true, which leads to bb E true.

To show tha,t (y’ 2 5) ---+ b’, , given that (y > 5) --+ bl, we should consider the
ca,se y’ 2 5 while y < 5. By y’ = y + 1, this is possible only if y’ = 5, which, due
to bI, G [(y’ = 5) V bl], gives b’, E true. J

Guarantee

A guarantee formula has the general form Op for some past-formula p.

To verify thak such formula is valid over a, program A we recommend the
following approach:

Use the two eventuality rules discussed a,bove to prove

Then conclude

*4 I- o p .

Strictly speaking, this a,pproa,ch covers only the case that p is a. state-formula,.
To handle the case of a general pa,st-formula. we augment A as ljefore. and then

prove instea,d
ii I- (8 =+= Obo).

Examp le

For exa#mple, we may wish to prove, for the incrementing program, the yalidit)
of the guasantee property

O((y = 10) A 0 (y = 5)).

- 40 -

We rewrite the past-formula using the boolean variables bo and bl as done
above. The variable bo corresponds to the principal subformula (y = JO) A

O (y = 5), while bl corresponds to 0 (y = 5). As a matter of fact, the minimal
augmentation of the assertions associated with the program deals only with bl,
while we replace the principal subformula by (y = 10) A bl.

The extended initial and transition assertions are given by:

6: (y = 0) A (bl E (y = 5)),

b: (y ' = y + 1) A (b’, = [(y ’ = 5) v bl]).

We choose the parametrized assertion:

y(n): (n>o) A (y+n=lO) A (y>5+bl),-

with n ranging over the well-founded domain of the natural numbers.

We then prove

a t- (y(n) A -[(y = 10) A bl]) + 03m(m < n): y(m)
by one-step eventuality.

The conclusion by well-founded eventuality is

a I - 3n: p(l2j + O[(y = 1 0) A bl].

It only renkns to show that 6 -+ 32: y(72), which is obvious by ta(king 72 = 10,

and observing that y = 0. J

. We can sl1ow tha,t, for proving guarantee properties, it is sufficient to consider
the natural numbers as the well-founded ordering.

Recurrence

A recurrence formula has the general form q Op for some past-formula. p.

For the case that, p is a sta.te-formula, we recommend the following method-
ology:

Find a. state-formula y and prove

(4 A t- b,
(b) A I- y + op.

- 41 T

Then conclude
Al- mop.

For example, for the incrementing program, we may wish to prove the recur-
rence property Cl 0 (y mod 10 = 0). This property states that, in infinitely many
states, y is evenly divisible by 10.

For that simple case it is sufficient to take y: true, and simply prove, using
the well-founded eventuality rule,

A I- (true + O(ymodl0 = 0)).

For the case tha,t p is a. general past-formula, we augment the program as
before, and prove 2 t- OO bo by the same approach.

In contrast with proofs of guarantee properties, recurrence properties require
more complex well-founded orderings than just the natural numbers. In fact,
already for properties expressible by the formula Up V Oq, we need ordinals
higher than w (see [MP]).

Persistence

A persistence formula, has the general form 0 q Ip for some past-formula. p.

For the case that p is a, state-formula, we recommend the following method-
ology:

Find a state-formula y, such that y --+ p, a,nd prove

(4 A t- OY
(b) A I- y + q y.

Then conclude
A t - 00,.

For example, for the increment’ing program, we may wish to prove the persis-
* tence property OCl(y # 5).

We pick the state formula y: (y > 5), and easily show that

A4 I- O(y > 5),

A t-- ((y>5)+ q (y>5)).

For the case tha,t p is a general past-formula, we augment the program as before
and prove a I- out, 0, using the same a.pproach.

- 42 -

Fairness

A fairness forniula can always be represented as q Op + IJO g for past-
formulae p and q.

For the case that both p and q are state-formulae, we recommend the following
methodology :

Find a8 state-formula y(cu) parametrized by a well-founded parameter QI E W.
Prove

(a) A I- q (3a: y(a))

We may then conclude

A t- (q op + q oq).

The case of p and q being general past-formulae is handled again by aug-
mentation of the program. This time, however, we have to augment it by the
boolean varia,bles bo, . . . , b, corresponding to the closure of p, as well as by the
boolean variables CO, . . . , ck corresponding to the closure of q. lqTe then USC thr>
above met8hod to prove

,ii t- (q ob0 -+ 00~~).

Hyper- fa i rness

A hyper-fairness formula. is a conjunction of fairness formulae. Therefore, to
prove tha.t it is valid over a progra,m, it is sufficient to prove independently the
validity of each of the fairness formulae in the conjunction.

In this section we a.ssumed that the%program has no implicit fairness require-
- ments associated with it. Any assumed fairness requirement must be explicitly

included in the specification. For example, let the program contain two transi-
tions 71 and 72, and a,ssume we wish to prove the recurrence formula q Op under
the a,ssumptions of weak fairness for each of the t,ransitions. Then we sho~dd verify
the fa.irness formula.

q op V on(En(Tl) A +aken(q)) v ou(En(~2) A vhken(7-2)).

This formula states that either p happens infinitely many times, or from a cer-
tain point the execution is weakly unfa.ir towards ~1, or weakly unfa,ir towards 59.

- 43 -

Acknowledgement
We thank Martin Abadi, Tom Henzinger, Muli Safra, Fred Schneider, and

Lenore Zuck for many fruitful and illuminating discussions and constructive sug-
gestions. We wish to thank Carol Weintraub for typing the manuscript and Yehuda
Barbut for drawing the diagram.

[AS11

Lw

[AS31

[Kam]

Ll

La4

[LP Zl

References
B. Alpern, F.B. Schneider - Defining Liveness, Information Processing
Letters 21 (10) (1985).
B. Alpern, F.B. Schneider - Verifying Temporal Properties without using
Temporal Logic, Technical Report TR85-723 (1985), Cornell University.
B. Alpern, F.B. Schneider - Recognizing Safety and Liveness, to a.ppear
in Distributed Computing.
M. Kaminski - A Cla,ssification of w-Regular Languages, Theoretica.
Computer Science 36 (1985) 217-229.
L. Lamport - Proving the Correctness of Multiprocess Programs, IEEE
Trans. on Software Engineering SE-7, 1 (1977).
L.H. Landweber - Decision Problems for w-Automata, Mathematical Sys-
tems Theory 4 (1969) 376-384.
0. Lichtenstein, -4. Pnueli, L. Zuck - The Glory of the Past, Wc~rl;sl~o~~
on Logics of Progra.ms, Springer-Verlag LNCS (1985) 196-218.

[M N P] R . McNa.ught on. S. Papert - Counter Free Automata, MIT Press, Cam-

WI

PI

WI

. WI

F%Jl

WI
PA

bridge, MA (1971).
Z. Manna, A. Pnueli - Specifica.tion and Verification of Concurrent Pro-
gra,ms by KAutomata, POPL (1987).
A.P. Sistla, - On Characteriza,tion of Safety and Liveness Properties in
Temporal Logic, Proc. 4th Symposium on Principles of Distributed Com-
puting, ACM (1985) 39-48.
R.S. Streett - Propositional Dynamic Logic wit11 C‘onverse, Information
and Control 54 (1982) 121-141.
P. Wolper - Temporal Logic can be more Expressive, 22nd Symp. on
Foundations of Computer Science (1981) 340-348.
I<. Wa.gner - On w-Regular Sets, Information and Control 43 (1979)
123-177.
L. Zuck - Past, Temporal Logic, Ph.D. Thesis, Weizmann Institute (1986).
L. Zuck - Private Conimunica.t,ion.

- 44 -

