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Abstract

We propose a classification of temporal properties into a hierarchy which re-
fines the known safety-Ziveness classification of properties. The new classification
recognizes the classes of safety, guarantee, persistence, fairness, and hyper-fairness.
The classification suggested here is based on the different ways a property of finite
computations can be extended into a property of infinite computations. For prop-
erties that are expressible by temporal logic and predicate automata, we provide
a syntactic characterization of the formulae and automata that specify properties
in the different, classes. We consider the verification of properties over a given
program, and provide a. unique proof principle for cach class.

0. Introduction

Reactive systems are systems whose function is to maintain some continu-
- ous interaction with their environment. Such systems should be specified and
analyzed in terms of their behaviors, i.e., the sequences of st ates or events they
generate during their operation. We may view a reactive program as a generator
of computations, which are finite or infinite sequences of states or events.
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84-C-0211. The work of the second author was done during a visit, to the University at Austin
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In general, we define a property as a set of computations. A program P is
said to have the property Il if all the computations of P belong to Il. Several lan-
guages and formalisms have been proposed for expressing properties of programs,
including the language of temporal logic and the formalism of predicate automata.

A useful partition of properties into the classes of safety and Ziveness prop-
erties has been suggested by Lamport in [L]. An important advantage of this
classification is that each class encompasses properties of similar character. For
example, safety properties characteristically represent requirements that should be
continuously maintained by the system. They often express invariance properties
of a system. Liveness properties, on the other hand, characteristically represent
requirements that need not hold continuously, but whose eventual realization must
be guaranteed. They often express the progress properties of a system. A complete
specification of a system must include properties of both classes.

To draw an analogue from sequential terminating programs, safety proper-
ties correspond to partial correctness, which does not guarantee termination but
only that all terminating computations produce correct results. Liveness proper-
ties correspond, according to our view, to total correctness which also guarantees
termination. For reactive systems, which may never terminate, the role of live-
ness properties is even more important than that of termination for sequential
programs.

While it is generally recognized that a complete specification of a system
should include both a safety and a liveness part, there is an additional cost, in
a language that, can express both classes of properties. For example, if we are
ready to restrict ourselves to expressing only safety properties, then the relatively
simpler language of predicates over finite behaviors suffices. The only justification
for using temporal logic, which is a considerably more expressive and consequently
more complex language, is for expressing liveness properties. Similarly, if we use
automata or transition systems for specification, and restrict ourselves to safety
properties, it is sufficient to consider automata over finite inputs. Only when
we want to express liveness properties do we have to use automata over infinite
inputs. Thus, a major justification for studying the classification of properties is
to identify the tradeoff between completeness of specification and complexity of
the specifying language.

Another reason for the distinction between the classes is that their verification
calls for different proof principles. To establish a safety or invariance property, we
show that it is initially true and that it is preserved by each individual action of
the program. To establish a liveness property we usually employ induction on the
distance from the realization of the goal guaranteed by the property.

A formal characterization of the two classes has been given by Alpern and




Schneider [AS1]. Let ¥ denote the set of states that may appear in computations,
Yt denote the set of all non-empty finite computations, ¥“ denote the set of all
infinite computations, and £ = X1 U I* denote the set of all finite and infinite
non-empty computations.

A property Il € =% is defined in [AS1] to be a safety property if for every
computation ¢ € 3¢

cell & Yo'(o! <a): """ e %) ¢’ - 0" €,

where ¢/ < ¢ denotes that o' is a finite prefix of ¢ and ¢’ . ¢” denotes the con-
catenation of o’ and a”. This definition means that a computation belongs to Il
iff all its finite prefices can be extended to computations in Il

A property Il C X% is defined to be a liveness property if:
Vo(o € S1): 30’ (6’ € B¥):0 - 0’ € 1.

That is, every finite computation can be extended to a computation in II.

Sistla [S] gave a syntactic characterization of the temporal formulae that spec-
ify safety properties. They are all the formulae that can be built up of propositions,
the positive boolean operators (V and A). and the unless operator (weak until).
He also gave a characterization of formulae expressing some restricted classes of
liveness properties.

Some consequences of the definition of safety and liveness, as given in [AS1]
and syntactically characterized in [S], are that the two classes are essentially dis-
joint” Only trivial properties such as F (the empty set of computations) and T
() belong to the intersection of the two classes. For example, in general, a dis-
junction or a conjunction of a. safety property and a liveness property is neither a
safety nor a liveness property. If we intend to base our verification approach on
proof principles appropriate to each of the classes, then there are some properties,
such as the combinations of safety and liveness mentioned above, for which there
- ase no directly applicable rules.

Mainly motivated by these verification considerations, a. different definition
of the safety-liveness classification was presented in [LPZ]. The classification pro-
posed in that paper is a hierarchy rather than a. partition, and is based on the
svntactic form of the temporal formulae expressing properties in these classes.
The classification is t Lie following:

A safety property is a property specified by a temporal formula, of the form
L] p. for some past formula p. ( [LPZ] uses temporal logic with past operators, and
a past formula, 1s any formula containing no future operators.) A basic liveness



property is a property specifiable by a formula of one of the forms <>p, D Op,
and ODp, for some past formula p. A liveness property is a positive boolean
combination of basic liveness properties.

Also established in [LPZ] is the fact that every temporal formula is equiva-
lent to a positive boolean combination of the basic liveness formulae, making the.
liveness class include all the properties specifiable in temporal logic.

This classification views liveness as an extension of safety properties, and
explains why the proof rule for liveness properties has to be an extension of the
proof rule for safety. It also ensures that every specifiable property has a proof
rule adequate for its verification.

To further clarify the differences between the classification-as-partition ap-
proach, represented in [AS1]-[AS3] and [S], and the classification-as-hierarchy ap-
proach, represented in [LPZ] and this paper, let us consider again the properties
of partial correctness, termination, and total correctness. Obviously, total correct-
ness is the conjunction of partial correctness and termination. Both approaches
agree on classifying partial correctness as a safety property. The partition approach
classifies termination as liveness, but classifies total correctness as a conjunction of
a safety property and a liveness property. The hierarchy approach classifies both
termination and total correctness as liveness properties.

In the present paper we study in greater detail the different classes of proper-
ties. We refine the hierarchy by identifying as sepasate subclasses the properties
expressible by the three basic forms of liveness formulae. We study the inclusion
relations between these classes and their closure properties under union and in-
tersection. As justification for the distinction between these classes, we mention
typical examples of properties falling into each of the classes.

We study the proposed classification from three distinct viewpoints. First, we
consider a semantic definition of the classes, not considering any particular for-
malism for their specification. Next, we consider properties that are expressible
in temporal logic, and give a syntactic characterization of the formulae expressing

- properties in each class. Last, we consider the specification of properties by pred-
1éate automata. Again we give a characterization of the classes by restrictions on
the automata expressing them.

A hierarchy, very similar to the one considered here, has been studied exten-
sively in the context of automata over infinite words, which is the third view we
consider. The properties of the lower ranks of the hierarchy, which are our main
subject of interest, have been established by Landweber in [Lan]. The complete
hierarchy has been analyzed by Wagner in [Wag], and several years later in [Kam].
Consequently, many of the technical results described in the section on automata
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have been established in these two works. The similar results about temporal logic
can usually be derived from the automata results by restriction to non-counting
automata ([Z1]). Indeed, the characterization of the temporal logic hierarchy, and
the fact that it is a strict hierarchy, have been recently obtained by Zuck ([Z2]).

Outline of the Paper

In Section 1, we present the semantic view of the classification. We intro-
duce two operators that generate infinitary properties out of finitary properties,
and base the classification on the combination of operators necessary to construct
properties in each of the classes. Some closur properties of the classes are studied.

In Section 2, we restrict our attention to infinitary properties that are speci-
fiable by temporal logic. For each class, we specify a syntactical restriction on the
formulae that define properties in this class. We show that, up to equivalence, the
syntactically restricted formulae possess the appropriate closure properties of each
class.

In Section 3, we present the predicate automata as a formalism for specifying
infinitary properties. For each class, we specify a structural restriction on the
automata that define properties in this class. We prove that a property, which
can be specified by an automaton, belongs to one of the classes (according to
the semantic definition) iff it can be specified by an automaton that obeys the
structural restrictions associated with the class. A similar result is established for
the syntactical restrictions imposed on temporal logic formulae.

In Section 4, we establish the connection between specifications by temporal
logic and specifications by automata.

In Section 5, we list proof principles for the various classes.
1. Semantic View

The main issue in the safety-liveness dichotomy, according to the semantic
view, is how we can extend properties of finite computations into properties of
" infintte computations.

For a finite computation ¢ € 1 and a computation o’ € ¥°°, we denote by
o < o' the fact that o is a finite prefix of ¢’ but different from ¢’ (a proper finite
prefix). We denote by ¢ < ¢’ the more general relation (a < a) V (a = ¢').

Properties Il C ST are referred to as finitary properties, while properties
Il C £¢ are referred to as infinitary properties. For a property Il C ©°° we
denote by Pref(II) the set of all finite prefices of Il

Pref(II) = {0 € T | 0 < o for some o' € 11}.



We denote by o[0 . . k] the finite prefix sg,. . ., sp of the infinite computation o =
S0y -+ ySkySk41s--- -

Let 1 CZ% be a finitary property. We define the following four properties of
finite and infinite computations, A(II), E(II), R(II), S(II) C £°, by:
o€ A(Il) « Va'(o! <a): o’ €11.
Obviously, o € A( ll) #ff every finite prefix of ¢ is in Il

We define the finitary and infinitary restrictions of A(II), by:
Ap(I) = AM Nt and Au(II) = A(I) N ¥

. o€ E(ll) » 30/ <o)’ €ll.
Obviously, o € E( ) +ff some finite prefix of ¢ is in II.
We define:

Ef(Il)=EM)NST and E,(1)= E(I)NE.

o0 cR(Il) = Vo'(o'<a): Fo"(c' 20" 2a): o€,

Obviously, ¢ € R(II) iff
either o is finite and belongs to I,
or infinttely many finite prefices of o are in Il

We define:

Rp(Il)=R(I)NT" and R,(I)=R(I)nN =¥

e 0 € P(Il) & Jo'(c) < a): Vo' (0! <" <X a) "€l

Obviously, o € P( II) iff
either o is finite and belongs to II,
or all but finitely many finite prefices of o are in Il

We define:
Pi(Il)=P(M)NT" and P,(II)=P(II)N =¥.
We call A, (1), E,(IT), R, (II), and P,(II) the safety, guarantee, recurrence,
and persistence properties induced by Il, respectively. We classify an infinitary

property II C X% as follows:
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II is a safety property if II = A, (II") for some finitary 117

II is a guarantee property if Il = E,(I') for some finitary 117

Il is a recurrence property if II = R, (IT") for some finitary 117

IT is a persistence property if 1l = P,(II') for some finitary 117

We refer to these four classes of properties, denoted by A, £ R, and P,
respectively, as the basic classes.

A property II C £¢ is a fairness property if II = R, (II;) U P,(Il) for some
finitary II; and IIo. Let F denote the class of all fairness properties.

A property is called a hyper-fairness property if it is definable as a boolean
combination of properties of the four basic classes. The class of all hyper-fairness
properties is denoted by H. Our proposal in this paper is to identify the intuitive
notion of liveness with the class of hyper-fairness properties. The motivation and
arguments in favor of this identification will be discussed in the next section.

We observe the following facts about the defined classes.

Fact 1 (Duality)

The classes A and £ are dual under complementation, i.e., Il C £ is a safety
property iff ¥« — II is a guarantee property. Similarly, the classes R and P
are dual. The class H is closed under complementation.

To show that A and &£ are complementary, we observe that for a finitary
IICSt:
oY Ay ()= E (ST -I),and

Y — E () = Au(ST — II).
This is because
o e (¥ — A () & o & AL(IT)
= =(Vo'( o' < a): o’ €
- o'’ <a): o’ ¢11
—3Jo'(c' <a): o' € (E+ —11).

Similarly:
T¥.R&I) = Py(ST -11), and

S — P,(II) = R,(ZF — 10).

The class H, being defined as properties obtained by a boolean combina-
tion, i.e., union, intersection, and complementation, of properties of the four basic
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classes, is certainly closed under one more application of the boolean operation of
complement at ion.

Fact 2 (Closure)

The classes d, &, R, P, and 7-L are closed under union and intersection. The
class F is closed under union.

To show these closure properties, we need some operations on finitary prop-
erties. We use freely the boolean operations of union and intersection, and com-
plement&ion with respect to ©1. We also use concatenation of properties:

Iy -y = {o1-02]01 € 1,00 € II5}.

The special property ¥ is the set of all singleton computations, i.e., computations
consisting each of a single state.

An additional finitary operator is the since operator, modeled after the cor-
responding temporal operator. It is defined by:

(I)s(Iy) = {@a € £ | 34/ (o' = Q):
[(a’ € HQ)A (Va"(a' <o = a): o' e “,)]}

According to this definition ¢ € (II1)S(Il9) iff o has a finite prefix ¢’ in II;! and
all other prefices longer than ¢’ are in IIy.

The closure properties under the positive boolean operations are shown as
follows:

m For safety, they are justified by:

Aw(nl) N Aw(HQ) = Aw(Hl N H2)7
Aw(Hl) U AW(HQ) = Aw(Af(Hl) U Af(Hg)).

To support the last equality, we show inclusion in both directions.

Assume that o € A, (I1). This means that every finite prefix ¢’ < o is in IIj.
Take any finite prefix o’ < o. Obviously, any finite prefix of ¢” is also a finite prefix
of ¢ and hence is in II;. It follows that ¢” € A(II;). Since ¢” is finite, actually
o € A(I;) NSt = Ay(IIy). Clearly 0" € Ag(Il;) U Ay(Tl2). Hence, any finite
prefix of o is in A¢(II;) U Af(IIo). We conclude that o € Ay (Af(II1) U Ay(II2)),
and therefore:

Au(Il1) C Aw‘(Af(Hl) U Af(H2))-
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By symmetry, also A, (Il9) is contained in the same right hand side, and we
conclude

AL(I) U A,(Ilp) C Aw(Af(Hl) U Af(Hz))

To show inclusion in the other direction, assume that o & A, (II;) U A, (Il).
Then ¢ must have a finite prefix o1 € II; and another finite prefix oo & Ils.
Without loss of generality assume o1 < o9. It follows that o9 € Af(Hz), and since
it has a prefix o1 ¢ II;, also o & Af(Il1). Hence o2 ¢ Af(II;) U Ag(Il2), and
therefore o ¢ AL (Af(Il1) U Af(Ily)).

m  For guarantee, we use the previously established duality with safety to claim:

Ew(Hl) U Ew(Hz) = Ew(Hl UHQ),
E,(II1) N E,(Il3) = Ew(Ef(Hl)ﬂEf(Hz)).

m For recurrence, we claim:
Ru(Il}) U R.(Ils) = Ru(Il; U Iy).

Obviously ¢ contains either infinitely many IIj-prefices or infinitely many II-
prefices iff it contains infinitely many (II; U Ils)-prefices.

Closure under intersection is given by the equality:
R.(I1) N Ry(Tly) = Ru(Iy N [(EF = T})S(Tlp)] - T).

We observe t hat o € (II; N [ (ST — I1;)S(Il)} - ©) iff o € 111, o has a prefix o/ < ¢
such that o' € II,, and all other prefices, longer than ¢’ and shorter than o, are
not in II;. This characterizes a finite computation o in Iy, such that its longest
proper prefix which belongs to II; U II5 belongs in fact to II;!.

Obviously, ¢ has infinitely many II;-prefices as well as infinitely many II,-
prefices iff it has infinitely many II;-prefices whose longest proper (IIy UIIy)-prefix
is a IIo-prefix.

m  For persistence, we use the duality with the recurrence class. This yields:
Pw(Hl) N Pw(H2) = Pw(Hl ﬂHQ):
P.(TI}) U P,(Ily) = Pu(I; U [(I)S(SF — ;)] - ).
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m The class of fairness properties is closed under unions. To see this, we observe
that

[Ro(T;) U Pu(TI2)] U [Ru(IT}) U Pu(I13)] = Ru(II}) U Pu(Il),
where

R.,(TIY) = Ru(II1) U R, (I} ), guaranteed by the closure properties of R, and
P,(1I4) = P,(II) U P,(I15), guaranteed by the closure properties of P.

s The closure of H under any boolean operations is obvious.

Fact 3 (Inclusion)

The classes of properties are related by the inclusion relations depicted in the
diagram of Fig. 1. The edges in the diagram represent strict inclusions.

To show the inclusions 4 U £ C R and A U £ C P, we observe that:

I
e
'S

™

=

Au(Il) = Ru(Af(ID))
E ()= R, Ef(I)) = Pu(Es(I)).

For example, an infinite o € R,(E(II)) iff ¢ has infinitely many prefices
o' € E;(1I), ie., prefices o' containing a prefix ¢” < o’ such that ¢ € II. This is
true ¢ff o has some prefix ¢’ < o such that ¢” € Il. Hence Ry (Ef(IT)) = Ey(II).

The other inclusions are equally easy to show. The strictness of the inclusions
between the classes below H is also straightforward to show.

Corollary (Normal Form)

Any hyper-fairness property is expressible as the intersection of several faur-
ness properties.

Let Il C ¥“ be a hyper-fairness property. By definition it can be expressed
“ as a. boolean combination of properties in the classes A, &£, R and P. We perform
the following transformations on the boolean expression:

First we push all the complementations inside. By the closure properties
described in Fact 1, all the complementations can be reduced to operations on
finitary properties.

We are left with a positive boolean combination of properties of the basic four
classes. Use the inclusion relations of Fact 3 to reexpress all A and £ properties
as R and P properties.
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Safety Guarantee
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Fig. 1 . Inclusion Relat ions between the Classes.
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Expand the resulting expression by distributivity to obtain a conjunctive nor-
mal form, i.e.,, an intersection of unions of R and P properties. By the closure
properties of Fact 2, each union can be collapsed to a union of a single R prop-
erty and a single P property. It follows that the hyper-fairness property can be
expressed as:

k
N [Ru(T}) U P(T3)],
i=1

which is of course an intersection of fairness properties.

We may in fact consider a complete hierarchy of hyper-fairness properties
Fi ¢ Fo ¢ ..., where Fj, for k > 1 is defined as the class of all properties
that can be expressed as the intersection of k fairness properties. As will be

discussed later, it can be shown that the sequence F; C Fo C . . . forms a. strict
hierarchy. Obviously 'H = U Fi., and the strictness of the hierarchy implies the
k>1

strict inclusion of F = Fj in H.

We refer to the layers F,, n > 1, as the higher levels of the hierarchy. The
hierarchy we study here is a. conjunctive one, meaning that the outermost operator
is an intersection or conjunction. The hierarchy studied in [Lan], [Wag] and [[Xam]
is disjunctive. Its k-th layer is given as:

k
U [Ro(I}) N Pu(TI})].
=1
Obviously? these two versions are dual, and propertics of one can be mapped to

properties of the other by complementation.

Comparison with Other Semantic Definitions

In this section we would like to compare our definition with some alternative
. characterizations of the safety-liveness classification, in particular to that of [AS1]
“and [S].

A safety property is characterized in [AS1] as a property 1l C £% such that

cell & Voo <a): 3" (" es¥):d 0" eIl (*)

To see that this characterization precisely matches ours, we observe that the
expression
Jo"(oc" € T¥): 0’ 6" €T



can be rewritten as ¢’ € Pref (II) for an infinitary Il. Hence, the characterization
is equivalent to:

c€ll & Vo'(o'<0o)o' €Pref (11) & o€ Ay(Pref (I)).

This is the same as:
I = A,(Pref (1I)).

It follows that any property satisfying (*) can be expressed as Ay, (I'), where 11~
happens to be Pref (II). It is not difficult to see that, if Il = A, (II'j for an arbitrary
117 then in fact Il can also be expressed as A, ( Pref ().

Unfortunately, safety is where the agreement, between the various definitions
stops.

The definition in [AS1]d iaracterizes a liveness property as an infinitary prop-
erty 1l C ¢, such that

Vo(o € £1): 30’ (0! € 2¥): 0 - 0’ € 11

That is, every finite computation can be extended to an infinite one which belongs
to Il. Our characterization of hyperfairness (liveness) is quite different from this
definition, and can ahnost be described as orthogonal to the approach taken in
[AS1).

The differences are to a large extent differences in the motivation for wishing
to distinguish between safety and liveness. The definition of [AS1] is an attempt
to formalize the intuitive description of Lamport in [L] of liveness as a property
stating that

“Something good will eventually happen,”

as dual to safety, which is described as
“Nothing bad ever happens.”

There are two main points in which the current paper wishes to expand this view.

The first is that the “something good will eventually happen” is only a partial
characterization of liveness, adequate perhaps for the case of finite computations,
where liveness usually deals with termination, an event that is expected to happen
only once. This is characterized by our class £. However, when considering infinite
computations, there are at least two more basic forms of liveness, the one states
that “something good will happen infinitely often,”” and the other states that “from
a certain point on, only good things will happen.” The approach we present in
this paper is that these three basic forms of liveness-like utterances should be
recognized separately.



Another point is that our interpretation of “something good” is that of a
finite-prefix property, which refers not only to the current state but in general to
the full preceding history. This leads to the usage of past formulae as expressing

properties of finite prefices, and causes another division point with the approach
in [AS1].

In this paper we refer to the class of liveness properties defined in [AS1] as
pure Ziveness. This is based on the interpretation that the definition of [AS1] tries
to purify the concept of liveness from any trace of safety, while our definition allows
safety constraints as part of a liveness property.

It is possible to ““purify”” each of our classes of any taint of safety in the spirit
of [AS1).

We define a property II to be a pure £, R, P, F, or ‘H property, if it is a pure
liveness property and also belongs to £, R, P. F, or ‘H, respectively.

Given a property Il in any of the classes £, R, P, or H, we can define
Pure (I1) = 1l U E,(ZV — Pref(I1)).

Clearly, o € Pure (I1) iff either o € 1l or ¢ contains a prefix ¢’ < ¢ that cannot
be extended to a computation in Il. Take any finite computation oq. Either it
can be extended to a computation in Il, or it belongs to £t — Pref(II), in which
case any infinite extension of it will belong to E, (S — Pref(II)). This shows that
Pure(I) is a pure liveness property. Due to the closure properties of the classes,
I, R, P, and H, Pure(Il) belongs to the same class to which Il belongs. It follows
that Pure(II) is, respectively, a pure £, R, P, F, or 'H property.

Note that the purification of a property usually enlasges it. This is because
it removes from the constraints defining the property all those which have the
character of safety, and consequently admits additional computations.

One of the results of [AS1] is that each X-property is the intersection of a
pure liveness property with a safety property. This result can now be extended
to state that, for o € {I, R, P, F, H}, each o-property can be represented as the
. intersection of a. pure a-property and a safety property. This is due to the equality:

11 = Pure(Il) N Ay, (Pref(I1)) .

Topological Characterization

It is possible to assign a topological identification to the classes of properties
considered above. A natural topology can be introduced into the space ©“ by
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defining the distance between two computations ¢ and ¢’ € £ to be:
—k
p(o,0') = 27F,

where k is the minimal index : such that o[z] # o'[z].

With this topology we can establish the following correspondence between our
classification and the first levels of the Borel hierarchy:

(A =F) Il is a safety property iff it is a closed set.
(£ = G) IT is a guarantee property iff it is an open set.
(R = Gs) Tlis a recurrence property iff it is a Gg set.

(P = F,) 1l is a persistence property iff it is an F, set.

In the above we have denoted by F the family of all closed sets, by G the family
of all open sets, by G all sets obtainable as a. countable intersection of open sets.
and by F, all sets obtainable as a countable union of closed sets.

411 hyper-fairness properties are contained in both Gg, and F g, i.e., belong
to Gs, N F,s. Recall that Gy, are the sets obtainable as a countable union of G
sets, and F s are the sets obtainable as a countable intersection of Fj sets.

2. Expressiveness in Temporal Logic

Next, we restrict our attention to infinitary properties that can be expressed
in temporal logic. We use the version of temporal logic defined in [LPZ]. It in-
cludes, among others, the future operators Q ( “henceforth™) and O(“eventu-
ally”), and the past operators © (“previously”), B (“till-now™), o (““once™)!
and § ( “since™).

We define the truth of temporal formulae at position i > o, in an infinite
computation o: sg, $1, . . ., in the following way:



(o, = p — s; E p, for a state (non-temporal) formula p
(0,0)EpPVge (oi)FEpor(oi)fg

(0,i) = ~p < not (0,i) = p

(0,0) F Op & 3k(k >2):(0,k ) Ep

(0,))EQOp « (i>0)and (6,i—1) = p

| (e k) g A
(0,1) EpSq « Jk(k < o) Vit < j<k)(o,5)EPr

We define:
Op = ~O(-p),
<"> p = true S p,
Hp = - (-p).

We abbreviat e D [p — q) to p = q, saying that p entails q (we use — for
implication). We are not very specific about the language in which state-formulae,
also called assertions, are expressed. An example is a first-order language over
some theory such as the integers. A computation o satisfies a temporal formula p,
denoted by o = p, if (a, 0) = p. A formula p specifies a property li(p) given by:

II(p) = {a €Z¥ [0 =p}.

Two formulae p and q ase defined to be equivalent, p = g, if II(p) = 1I(g). Note
that when we stake that p ~ ¢, we mean that p = q in the first position of every
computation.

Below, we present for each class of properties a syntactic characterization of
the formulae that specify properties in that class, examples of some formulae of
alternative forms that also specify properties in that class, and some comments
about boolean closures of the class.

o Safety

A formula of the form Lp for some past formula p is called a. safety formula,.
Obviously, every safety formula specifies a safety property.

Conversely, every safety property which is specifiable in temporal logic, is
specifiable by a safety formula,. This means that every infinitary property Il that
is expressible, on one hand, as AW(H’) for some finitary 117 and is specifiable,
on the other hand, by some temporal formula, is specifiable in fact by a. safet;
formula.
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To see this, we observe that for every temporal formula ¢, there exists an
effectively derivable past formula prefiz(¢) such that for each ¢ € £ and k > 0

(0,k) | prefis(p) & 3o'(c' €T®)0[0.. K 0 .

This means that prefiz(p)characterizes all the finite computations that can be
extended to computations satisfying . Then, if ¢ specifies a safety property, it
can be shown that ¢ ~ prefix(y).

Examples of properties specified by safety formulae are partial correctness,
mutual exclusion, absence of deadlock, etc. The closure of safety formulae under
conjunction and disjunction is based on the following equivalences:

(Op A Og) = Dprag),
(Upv g ~ 0O EBpv .

Note the analogy with the corresponding proof of closure for the semantic view.

° Guarantee

A formula of the form <>p for some past formula p is called a guarantee
formula. Obviously every guarantee formula specifies a guarantee property.

Conversely, every guasantee property which is specifiable in temporal logic
can be specified by a guarantee formula. To see this we observe that, if ¢ specifies
a guarantee property, then ¢ ~ —prefiz(—p)).

Examples of properties specifiable by guarantee formulae are total correct-
ness, termination, and guarantee of a. goal that has to be reached once. The
closure of guarantee formulae under conjunction and disjunction is ensured by the

equivalences: :
(Op v O =V ag),
(<Op A <>q) ~ Q(@p/\@q).

° Recurrence

A formula. of the form =1 p for some past formula p is called a recurrence
formula. A recurrence formula. obviously specifies a recurrence property.

Conversely, every recurrence property which is specifiable in temporal logic
can be specified by a recurrence formula. This fact will be shown later.

An alternative useful form for recurrence properties is the entailment p = <>q
or, equivalently, (p—><>q). To see that this formula, specifies a recurrence
property we observe:

p=<9g ~ A oB-pVi(-p)Sq)).
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The formula on the right states the existence of infinitely many states such that
the last observed p was followed by (or coincided with) g. Recurrence formulae
can specify all the properties specifiable by safety formulae. This is due to the

equivalence:
d PR D O p).

They can also specify all the properties specified by guarantee formulae:

<>p %Dpjﬁm p).

Examples of properties specifiable by recurrence formulae are accessibility,
lack of individual starvation, responsiveness to requests, etc. Recurrence formulae
can also express weak fairness requirements. A weak fairness requirement for a
transition 7 in a program is that, if 7 is continuously enabled beyond some point,
it will eventually be taken. This can be expressed by:

(OEn(r) = Otaken(r)) ~ U O(=En(7)Mtaken(r)).

The closure of recurrence formulae under conjunction and disjunction is en-
sured by the equivalences:

ﬁ D ova Oy~ D O(pVa),
(0o O~ O oPAgVO[(=p)Sq]))-

e Persistence

A formula, of the form <>Dp for some past formula p is called a. persistence
formula.. Persistence formulae obviously specify persistence properties.

Conversely, every persistence property which is specifiable in temporal logic
can be specified by a persistence formula. This follows by duality from the corre-
sponding result for recurrence formulae.

Similarly to recurrence, persistence formulae can specify all the properties
specifiable by safety and guaraatee formulae. This is supported by:

10 ~ oO@ ).
Op =~ OO(OD).

The closure of persistence formulae under conjunction and disjunction can be
obtained by duality from the closure properties of recurrence formulae.
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° Fairness

A formulaof the form DOpVODq for some past formulae p and q is called
a fairness formula. Obviously, a fairness formula specifies a fairness property.

Conversely, every fairness property which is specifiable in temporal logic can
be specified by a fairness formula. This will be shown later.

It is easy to see that fairness formulae generalize both recurrence and persis-
tence formulae. An alternative form for fairness formulae is: DOp—> Oq.
In this form they are useful for specifying strong fairness requirements, such as
OO En(r) — OO taken(r), which states that a transition which is enabled in-
finitely many times must be taken infinitely many times. Fairness formulae can
also describe systems whose response is guaranteed only if there are infinitely manjy
requests for this response. An example of such a system is an eventually reliable
channel .

Fairness formulae are closed under disjunction but not under conjunction. A
conjunction of fairness formulae leads to the most general normal form of temporal

formulae:
n

/\ [ DOpz V Oin],

i=1
which are identified as general hyper-fairness formulae.

We can summarize the relation of the property hierarchy to the formula, hier-
archy by the following proposition.

Proposition

A property I, that is specifiable by a temporal formula, is an a/-property iff
it is specifiable by an «-formula, where « € {safety, guarantee, recurrence.
persistence, fairness).

) The fact that every a-formula, specifies an a-property is straightforward. The
-other direction has been proved for the safety and guarantee cases. For the other
cases we have to rely on a similar proof for automata, which we discuss next.

3. Predicate Automata

An alternative formalism for specifying temporal properties is given by finite-
state predicate automata (see [AS2], [MP]). In the version we consider here, a
predicate automaton M consists of the following components:
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Q - A finite set of automaton-states.
go € Q — An initial automaton-state.

T ={t(qi, 95)l4i, ¢;€Q} — A s ¢ D transition conditions. For each ¢;, ¢; € Q, t(g;, ¢;)
is a state formula specifying the computation-states under which the automa-
ton may proceed from g; to ¢;. It is assumed that t(q, go) = false for every
g € Q. We also assume that each #(g;, qj) is either syntactically identical to
the constant false, or holds over some computation-state s.

R € Q — A set of recurrent automaton-states.

P C Q - A set of persistent automaton-states.

Let
0:80,81,... € ¥

be an infinite computation. Computations are fed as input to the automaton,
which either accepts or rejects them. An infinite sequence of automaton-states

r1q0,q1,--- € Q¥

is called a run of M over o if:
1. g is the initial state of M

2. forevery i >0, si—1 = t(gi—1, ¢)-

Note that the automaton always starts at qg, and sg causes it to move from ¢
to ¢;.

We define the infinity set of r, Inf(r), to be the set of automaton-states that,
occur infinitely many times in r.

A run r is defined to be accepting if either Inf(r) N R # 0 or Inf(r) C P. The
automaton M accepts the computation ¢ if there exists a run of M over ¢ which
is accepting. This definition of acceptance has been introduced by Streett ([St]).

An alternative definition, given in [MP], is that all runs of M over o are
- accepting.

The automaton M is called complete if, for each q € Q,

(V )

qeqQ

true.

It is called deterministic if, for every q and ¢’ # ¢”, t(q,q¢') — —t(q, ¢"), that is,
we cannot have both (¢, q) and t(q, q”).



In this paper we restrict our attention to complete deterministic automata.
In deterministic automata there is exactly one run r corresponding to each input
computation o, and hence the definition of acceptance in [MP] coincides with the
one used here.

Let G =R U Pand B =Q ~ G. We refer to G and B as the ‘““‘good” and
“bad” sets of states, respectively. We define the following classes of automata by
introducing restrictions on their transition conditions and accepting states:

e A safety automaton is such that, for every q € B, q” € G, t(g, q) = false. That
is, it cannot move from a bad state ¢ € B to a good state g € G.

A guarantee automaton is such that, for every q € G, q” € B, t(q,q’) = false.

A recurrence automaton is such that P = {.

A persistence automaton is such that R = (.

A fairness automaton is an unrestricted predicate automaton.

We define the property specified by an automaton M, IIx4, as the set of all
infinite computations that ase accepted by M.

In order to attain expressive power comparable to (and even exceeding, see
[W]) that of temporal logic we have to consider a more general type of automaton.

We define a. hyper-fairness automaton (liveness automaton) to be a structure
M = <Q7QO7T3L>7

where Q, qg, and T ase as defined above, and L is a finite set of pairs of acceptance
sets:
L ={(Ry,Py),...,(Ry,Pp)}.

A run r of a liveness-automaton is accepting if, for each i = 1,. . . k, either
Inf(r) N R; # 0 or Inf(r) C P;. The notions of computations accepted by such an
automaton and the properties specified by it are similar to the simpler case.

Obviously, all the preceding types of automata are special cases of hyper-
fairness automata with k = 1. The hyper-fairness automaton is almost identical
to the automaton studied by Streett in [St].

Proposition

A property I, that is specifiable by automata, is an o-property iff it is speci-
fiable by an a-automaton, where a € {safety, guarantee, recurrence, persis-
tence, fairness }.
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For the first four types, this proposition has been proved in [Lan], with some
minor differences in the definitions of safety and hyper-fairness automata. The case
of fairness, and in fact the complete hierarchy above, has been solved in [Wag].

For completeness, we include below our version of a proof of the proposition,
which for most of the cases is straightforward.

Proof

It is simple to show that an a-automaton specifies an a-property. Let M be
an a-automaton. Since M is deterministic and complete, there is, for each finite
computation ¢ € £1, a unique state g, denoted by 8(go,0), such that the run of
M on ¢ terminates (a is finite) at q.

Define Il, = {a € S | §(go,0) = ¢} for each q € Q.

Obviously, an infinite o is accepted by M iff its corresponding run r either
visits infinitely many times states in R, or is constrained from a certain point to
visit only P-states. This means that either o contains infinitely many prefices in
I, for g € R, or that all but finitely many prefices of o are each in some I, for
g € P. It follows that

Ma = Ro( | ) U Po( | M)
gER geP

Consequently, every property specifiable by a single automaton is a fairness prop-
erty. However, as we will show for the special cases of an a-automaton, this
expression can be further simplified.

» For a safety automaton, it is clear that no finite prefix of an acceptable com-
putation caa be in IIg = U I,. This is because, once a run visits a bad state

q€EB
g € B. it can never return to a goocistate. Hence for safety automata we also have

My = Aol Ty,
qeCG

which establishes 11,4 as a safety property.

s For a guarantee automaton, once a run visits s good state it can never visit a
bad state. It follows that

My = Eo( | 1),
geG
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which shows that Il 54 is a guarantee property.

m For a recurrence automaton, we are given that P = (b, and therefore

qER

For a persistence automaton, we are given that R = {, and therefore

Iy = Po({J 1)
geEP

Consider now the other direction of the proposition. It states that an a-

property specifiable by automata can be specified by an a-automaton. Assume
that an a-property Il is specifiable by automata. Thus, there exists a liveness

automaton

MZ(Q?Q()»T)L>V L:{(Rlaplk)v'-«(RkﬂPk)}

specifying 1.

Let §: Q x©T — Q be the function, based on T, that, for each state ¢ € Q and
finite computation o € £, yields the state §(q, a) € Q reached by the automaton
starting at g after reading the computation o.

Consider first the case, that IT is a safety property, and hence satisfies Il =

| |
Au(Pref(ID)).
We construct an automaton:

MI = <Qaq07T’7 G7G>7

where Q and ¢g are as before. G and B ase defined by:

G = {9} U{q € Qlé(q,o)=( for some o € Pref(Il)},

B=0Q-6G.
The transition conditions 77 = {#'( q, ¢')|g, ¢ € Q} are given by:
true g€ B,qd =¢q
t'(q,¢') = { false g€ B,qd #¢
t(q',q,) 4 4 B
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We claim that, for a finite computation ¢ € &1,
o € Pref(Il) «  6(q0,0) €G.

By the construction of G, if o € Pref(II), then 6(qg,0) € G.

Assume that o € Pref(II). This means that ¢ cannot be a prefix of a compu-
tation in II. Let é(gp, a) = g We would like to show that q ¢ G.

Assume to the contrary that q € G. This can only be caused by another finite
computation o' € Pref(Il) such that also 8(gg, a” = q. If o' € Pref(Il), there
must exist an extension ¢” € £%, such that ¢/ . ¢” € Il and hence is accepted by
M. Consider the mixed computation ¢ . ¢’ € £%¥. Let r be the run of (Q, gg, T)
over o . ¢”, and r' the run of (Q, go, T) over o' . ¢”. Since 6(qo, a) = 6(qg, a) = q,
these runs coincide after a finite segment. It follows that Inf(r) = Inf( r'), and
hence o . ¢ should be accepted by M. This contradicts our assumption that

o &€ Pref(II). Hence our claim is established.
It is now easy to show that o € £“ is accepted by M’ iff o € II.

Denote by &' the transition function based on T2 Assume that ¢ is accepted
by M', and let r be its corresponding run. To be accepting, r must go infinitely
many times through G-states. By the way we defined T’ this means that M~ only
visits G-states. Since T and T~ are identical as long as we only visit G-states,
this means that, for every o’ < o, 8(qp, a) = §'(go,0’) € G. It follows that every
o' < ¢ is in Pref(II), and since Il is a safety property, that o € II.

In the other direction, assume that ¢ is rejected by M~ This implies the
existence of a minimal ¢’ < ¢ such that §'(¢p, a”) ¢ G. Since ¢’ is mini-
mal, the run caused by o’ visits only G-states except the last. It follows that
§'(q0,0") = 8(qo,0’) € G, and hence o' € Pref(Il). Thus, ¢’ cannot, be the prefix
of a computation in I, and therefore ¢ ¢ II.

m Consider the case that Il is a guarantee property.

In that case, we have that Il = Ew(H’) for some finitary property 11> We
" define the sets G and B, as follows:

G = {q| é(q0,0) = q for some o € 13,
B=Q-6G.

Construct the automaton:
MI = <Q* q0, Tla G? G)’



where T~ is given by:

o true qeG,q::q
t(q,q) = false ¢g€G,q¢ #¢q
t(¢,¢') ¢ ¢ G.

We show that ¢ € % is accepted by M’ iff o € Il.

Assume that ¢ is accepted by M> Then there exists some prefix 01 < o
which causes M~ to visit a state in G for the first time while reading o. Let
q = 8'(qo, o1). Since q is the first visit to a G-state, it follows that the behavior of
M= on oy is identical to that of M on o7, and therefore also 6(gg, 01) = q. By the
definition of G, there exists a finite computation o9 € 117 such that §(qg, o2) = q.
Let ¢/ € &% be the suffix of ¢ following o, i.e., ¢ = o1 . ¢'. Denote by ry the
run of M over ¢ = o1 . ¢/, and by rg the run of M over oy . o'. Obviously, r;
and ro can differ only by a finite prefix. M accepts o9 - o' because o9 € 117 Since

Inf aq(r1) = Inf p4(r2), M must also accept 01 - ¢’ = 0. Thus o € II.

Assume that o € Il. There must exist a prefix ¢’ < ¢ such that o/ € 117 Let
o’ be the minimal such prefix of 0. Let q = §( o, ¢'). Obviously q € G, and q is
the first G-state that M visits on reading o. It follows that also q = §'(gg,0”).
By the way M~ is constructed, once it reaches a G-state it stays there forever.
Consequently, M~ accepts o.

= Next, consider the case that Il is a recurrence property. This means that
Il = R,(TI') for some finitary I~

We perform a series of modifications on the individual pairs of sets R;, F;,
i=1,...,%k, until all the Pz.’ = (). These modifications will preserve the property
defined by the automaton M.

Without loss of generality, we define the modifications on the first pair R1, P;.
After obtaining a P{ = (), we move on to the other pairs.

Assume that all the states in the automaton are reachable. A cycle C in the
automaton is a set of states such that there exists a cyclic path in the automaton
that passes only through the states in C, and at least once through each of them.
We only consider accessible cycles. These are cycles such that the path leading
from ¢ to some q in C and the cyclic path traversing C are accessible, i.e., never
pass through transitions such that t(g;, qj) = false. A good cycle is a cycle such
that a run r with Inf(r) = C is accepting. A persistent cycle is a good cycle C
such that C N Ry = (. Define A; to be the set of automaton-states participating
in persistent cycles.



Consider the automaton M~ coinciding with M in all but the set of accepting

pairs. The list of accepting pairs for M is (R}, P|), R, Pi), i = 2. . ., k, where
we define:

Rll = Ry U Ay,

P| = o.

We wish to show that M and M~ accept precisely the same computations.

Consider first a computation ¢ accepted by M. Let J be the infinity set
Inf s (r(0)). Clearly, J satisfies the requirements presented by (R;, FP;), i > 1,
in both automata. The acceptance for i = 1 implies that either J N Ry # 0 or
J C Py. In the first case obviously J n R} # 0. In the second case, if J n Ry = 0,
then J is a persistent cycle. It follows that J C Ay, and hence J N R # 0.

Consider, next, an infinite computation o accepted by M’ We will prove
that o is also accepted by M. Assume, to the contrary, that o is rejected by M.
Let J be as before. Since M’ accepts o, J N R’l # (0. The rejection by M implies
that J N Ry = 0. Hence there must be some q € Ay in J. Let m be a cyclic path
from q to itself precisely traversing J. In order for o to be rejected by M, J must
also contain a state ¢ ¢ Ry U Py. Since q € A; there must exist another cycle
J', such that J” is a persistent cycle. Let 7’ be the cyclic path from q to itself
precisely traversing J> Let ¢’ be a. finite computation that causes the automaton
to move from g back to q along =’ .

The state q and computation ¢’ have the following property:

For every finite computation ¢* such that 6(qg, a*) = g, there exists a positive
integer n (possibly dependent, on o*) such that o* - (¢/)™ contains a prefix & such
that ¢ < o* - ('), |G| = |o*|, in N7

To see this, we observe that the computation o* -+ (a>” has J” as infinity set,
and is therefore in Il. Consequently, ¢* - (a’)“’ must have infinitely many prefices in
IT’', most of which are longer than ¢*. The shortest of these is a prefix of o* - (¢/)"
for an appropriate n > 0.

Let now og be a finite computation such that 6§(gg,09) = g, and & a finite
 computation leading the automaton from q to g along =. Consider the following
infinite computation:
o =ogo(a Y é(a') 2. ..,
where the n]-’s are chosen so that ¢ has infinitely many prefices in 112 That is,
for each

03’_1 = ogo(a" )" ... ()16,
we choose an n; > 0 such that o/ ; - (o)™ has a prefix in 113 which is longer
than a;-’__ 1
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It follows, on one hand, that, since ¢” has infinitely many prefices in 117,
CT”ell.

On the other hand, the infinity set corresponding to ¢” is J u J7 which has
an empty intersection with R; and at least one state q” ¢ Pj. It follows that M
rejects o which contradicts the assumption that M specifies 1.

Consequently, there cannot exist a computation ¢ which is accepted by M~
and rejected by M.

It follows that M~ is equivalent to M. We can repeat this process for each
i = 2,...,k until we obtain an automaton with all Pi’ =0,i=1...,k

It only remains to show that such an automaton is equivalent to an automaton
with a single R and a single P = (). This is essentially the closure property
that states that the intersection of recurrence automata, is equivalent to a single
recurrence automaton. The construction of this automaton is similar in spirit to
the recurrence formula. for the intersection of recurrence formulas. The automaton
detects visits to Ro-states such that the most recent previous visit to an (R} U Rs)-
state was in fact a visit to an Rj-state (for k = 2).

m The case of a persistence property Il, that is specifiable by an automaton,
is ha,ndleq by duality. We consider II = ¥* — Il, which can be shown to be a
recurrence property also specifiable by an automaton.

By the construction for recurrence properties, there exists a recurrence-auto-
maton

'/M* = <Q’ q0, T’ R’ ®>

specifying II. Then the following persistence automaton obviously specifies II:

MI = <Q7QO7T~®7Q - R)

m The case of fairness properties Il specifiable by automata, is handled as follows.

_ Clearly the role of the set of pairs { (R;, P;)|: =1, ..., Kk is to define the
. subsets J C Q such that every computation o with Inf(r(c)) = 1 is accepted. Let
F denote the family of these sets. Obviously J € F « (R; N1 # § or 3 C F;) for
eachi=1,. .., k.

A characterization property, that can be derived from Wagner [Wag] (see also
[Kam)), is the following:

If M specifies a fairness property, then for each accessible accepting set J € F,

either A € F for every accessible cycle A D |,
or B € F for every accessible cycle B C 1.
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An equivalent statement of this fact is that we cannot have a chain of three acces-
si ble cycles
BCJCA,

such that J € F, but B ¢ F and A ¢ F.

According to this characterization we can partition the family of accessible”
accepting sets into:
F={4,,...,Am,B1,...,Bn},

where, for each A; and an arbitrary accessible cycle X, A; € X — X € F, and
for each B; and an arbitrary accessible cycle X, X € B; — X € F.

This leads to the construction of the following automaton:
M~ =(Q', g, T3 R P),

where Q= Q x @™ x 2 x n x 2.

Each state ¢’ € Q” has the following structure:

q, = <Q7QIa-"’qm1fRaj7fP>7

where ¢ €Q, ¢; € A;,i=1...,m, fp, fp€e{0,1},and 1 <j < n.
We assume that the states of M are ordered in some linear order. For each A;,
i =1,...,m, we define min(A;) to be the state of A; appearing first in the linear

order. For ¢ € A;, we define nezt(q,A;) to be the first state § € A; appearing
after q in the linear order. If q € A; is the last A;-state in the linear order then
next (¢, A;) = min (4;).

The role of the different components of ¢’ is as follows:
The state q simulates the behavior of the original automaton. Each ¢; € A;

anticipates the next A;-state we expect to meet. If the run visits all of the A;
infinitely many times, each anticipated ¢; will be matched infinitely many times.

The recurrence flag fp is set to 1 each time one of the anticipated A;-states
is matched.

The index j checks whether the run of M stays completely within one of
the sets By, ..., B, from a certain point on. It moves cyclically over 1, . . . , n,
and at any point checks whether the next automaton-state is in Bj. If the next
automaton-state is in Bj, then j retains its value and the next value of fp will be
1. Otherwise, j is incremented (modulo n), and the next value of fp will be 0.

q6 = {qo, min(Ay),...,min(A4m),0,1,1).
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T~ is defined as follows:

tl((q7QI7 ’qm7fRajafP)3 (67617"' aq~m>fR)j3fP>) =
t(g,q) A

a Al = a) A (G = neat(g:, A V [(§ # ¢i) A (G = @)} A

1=1
(¢ = gi)] A
L
{GeBH)AG=IV(GgB)A (=1 modn] + 151} A

[(fp = 1) = (G € By)).

The first clause in this definition states that the first component q follows the
same path that would be followed by the original automaton.

The second clause states that either the newly visited automaton-state ¢
matches the anticipated A;-state, and we modify ¢; to the next A;-state in se-
guence, or there is no match and ¢; remains the same.

The third clause states that fp is set to 1 iff ¢ matches one of the anticipated
A;-states. If different from 1 it must be 0.

The fourth clause states that, if ¢ belongs to Bj, then j is preserved. Other-
wise it is incremented in a cyclic manner.

The last clause states that fp is set to 1 whenever ¢ is in Bj, and to 0 if
q ¢ B;.
The acceptance sets are defined by:
R, = {<q~,QIv--- 7Q771717j7fp> I for some 9,91, - - aqnhjvfp}v
P/ = {<Q7q17"' ’qmvavja:l) | for some Qaqlv"'aq’nthaj}'

Let o be a computation and r” the corresponding run of M~ over o. If ¢/ visits
R” infinitely many times, this implies that r, the run of M over o, visits infinitell
many times all the states of some A;. This shows that Inf (rj 2 A;, and hence o
is accepted by M as well as by M~

If ' stays contained in P~ from a certain point on, this means that the value
of j is never changed beyond that point, and hence r is contained in B; from that
point on. Again, this means that ¢ is accepted by M as well as by M~
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A similar argument shows that all computations accepted by M are also
accepted by M~ od

Deciding the Type of a Property

In this section we consider the following problem:

Given a liveness automaton M, decide whether the property specified by
this automaton is an a-property, where a € {safety, guarantee, recurrence,
persistence, fairness).

The following proposition gives an answer to this general question:

Proposition

It is decidable whether a given liveness (hyper-fairness) automaton specifies
an a-property, for a € {safety, guarantee, recurrence, persistence, fairness}.

Again, for the first four types, the answer has been given by Landweber in
[Lan]. For the case of fairness, as well as the classes below it in the hierarchy, it is
provided by Wagner in [Wag].

In the context of predicate automata, this question was tackled in [AS3], where
a decision procedure is given for safety and pure liveness, which is not covered by
the previous results.

Since the decision procedures for the cases we consider here are relatively
simple, we repeat them below, using our terminology.

First,, some definitions.

A set of automaton-states A C Q is defined to be closed if, for every q, ¢’ € Q,

(4 € ANHed) # ) - ¢ €A

The closure A of a set of states is the smallest closed set containing A.
k
For a given liveness automaton M, we define G = ﬂ (R; U Pi).
=1
e Checking for a safety property:
Let B = Q — G. The automaton M specifies a safety property iff Bno-= 0.

e Checking for a guarantee property: )
M specifies a guarantee property iff G N B = §.



To check for the other levels of the hierarchy, we define the family of accepting
sets F

F ={J|J is an accessible cycle, J NR; # @ or J C P; foreach i = 1,. . ., k}.
The following are direct consequences of the characterizations in [Wag]:

e Checking for a recurrence property:
M specifies a recurrence property iff, for every J € F' and every accessible cycle
ADJ, A€ F.

e Checking for a persistence property:
M specifies a persistence property iff, for every J € F' and every accessible cycle
BCJ,BeF.

e Checking for s fairness property:
M specifies a fairness property iff there do not exist three accessible cycles
BC JC Asuchthat J e F,but B,A¢ J.

As a matter of fact, the methods of [Wag] identify the exact location of a
liveness property in the hyper-fairness hierarchy, i.e.,-the minimal k£ such that the
property can be specified by a liveness automaton with |L| = k.

According to the characterization, this minimal k is the maximal n admitting
a chain of accessible cycles of the form

BlCJ]CBQCJQC“'CJn,

where B; ¢ FFand J; € F fori=1,. .., n.
4. Connections Between Temporal Logic and Automata

Temporal logic and predicate automata have been considered as alternatives
for specifying properties of programs. A comparison of their expressive power is
considered next.

Proposition

A property specifiable by an a-formula is specifiable by an a-automaton, for
a ranging over the five types.

This is based on the following construction, studied in [LPZ] and [Z1].

For each finite set of past formulae p1,. .., pg, it is possible to construct a de-
terministic automaton M with a set of states Q and designated subsets Fy, ..., F}.
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The automaton M has the property that, for each z = 1,. . . , k, each infinite com-
putation ¢ € ¥, and each position 7 > 0,

6(go,0[0..5) € Fs  « (0,5) Fpi-

Thus, the automaton M identifies, while reading o up to position j, which p;’s
hold at that position.

Using this basic construction, it is straightforward to build an a-automaton
corresponding to an a/-formula.

For example, for the fairness formula D Opl V <>Dp2, let the automaton
mentioned above be (@, ¢o, T) with the designated sets Fj and Fy. Then the
corresponding fairness automaton is:

<Q7q07TaFl’F2>'

In the other direction, not every property specifiable by an automaton can be
specified in temporal logic. Only a restricted class of automata, called counter-free
automata (see [MNP] and [W]), can be translated into temporal logic. A (liveness)
automaton is defined to be counter-free if there exists no finite computation ¢ and
state q such that q = §(g,0™) for some n > 1, but é(q,0) # q. The existence
of such g and ¢ would have enabled the automaton to count occurrences of o
modulo n.

It has been shown in [Z1] that:

An automaton specifies a. property specifiable by temporal logic iff it is counter-
free.

This result can be refined to provide a translation from counter-free a-automata
to a-formulae.

Proposition

A property specifiable by a. counter-free aZautomaton is specifiable by an a-
formula,.

The translation is essentially the one studied in [Z1], but shows that the
structure required in an cl-automaton corresponds to the structure required in an
a-formula.

It is based on the construction of a past-formula ¢4 for each ¢ € Q — {go}
of a given counter-free semi-automaton (Q, go, T') (i.e., an automaton without ac-
cep t ance conditions). The formula ¢4 characterizes all the finite computations
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leading from ¢ to q, i.e., for each infinite computation o € £“ and position 7 > 0,
6(go,0[0..5])=¢q¢ < (0,7) Feq

For example, the formula. corresponding to the (counter-free) fairness auto-
maton (Q, go, T, R, P) is:

00 (V es) v OO(V )

qER geP

The above two-way translation, subject to counter-freedom, provides a stan-
dard reduction of results about automata into the corresponding results about
temporal logic.

We illustrate this method on the following case of the proposition.

A fairness property II that is specifiable by temporal logic is specifiable by a
fairness formula.

Proof

Let. ¢ be the formula specifying Il. Using the first translation we construct a
counter-free automaton M, specifying the fairness property Il. The part of the
proposition dealing with fairness formulae specifiable by automata, tells us how
to effectively- construct a fairness automaton M that specifies the same property.
The construction of Jq only refines the structure of M., splitting each state of
M, into many distinct states, respecting the transitions. It follows that, since

M, is counter-free, so is M. We can now use the second translation to construct
a fairness formula Y specifying II. d

This method was used in [Z2] to establish the strict hierarchy for temporal
formulae, based on [Kam].

5. Proof Principles

One of the main reasons for separating the properties into classes is the expec-
tation that each class will have an appropriate proof principle that can be applied
to verify all properties in that class.

To discuss verification of properties over programs, we introduce a minimal
model of a program. The minimal model consists of the following elements:
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Y — A finite set of program variables. This is a set of variables that the program
manipulates and controls. It includes both data variables, that are explicitly
mentioned in the program text, and control variables, such as the current
location of execution in the program.

3 — A set of states. Each state s € ¥ is an assignment of values to variables. .
States assign values to a denumerable set of variables that includes all the
program variables Y. For a variable y, we denote by s[y] the value assigned
by s toy.

6 A state formula (assertion) whose free variables are in Y. This formula char-
acterizes the initial states of the program.

p A state formula (assertion), whose free variables are a subset of two copies
of the program variables, denoted by Y and Y, respectively. This formula,
called the transition formula, characterizes the relation holding between a
state and a possible successor state, obtained by a single execution step of
the program. The variables Y and Y’ refer to the values assigned to these
variables in the state and its successor, respectively.

A computation of such a program is an infinite sequence of states,
T = 80,S1y:+-,

such that sg = 67 and, for each ¢ > 0, (s;, s;+1) E p. The meaning of the second
requirement is that p is valid over the interpretation that assigns to each y € Y’
the value s; [y], and to each y” € Y~ the value s;41 [y].

To ensure that only infinite computations are considered (in the simplified
framework we assume in this paper), we assume that the formula V7: 37: p is
valid. This guarantees that every state has a successor.

For a temporal formula ¢ and a program A, we denote by A = ¢ the fact
that ¢ is valid over all computations of the program A. We denote by A + ¢ the
fact that ¢ is provably valid.

. Interface Rules

There are three interface axioms/rules from which all the temporal conclu-
sions about the program3 behavior can be drawn.

e Initialit y
At-6

It states that € always hold at the first state of an A-computation.
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e Invariance Rule

Let ¢ and % be two state-formulae whose free variables range over Y. Denote
by ', ' the state-formulae obtained by replacing each free variable y € Y in
@ and % by its respective primed version y” € Y” This substitution can be
expressed by

o' = plY'/Y]and ¢' = $[Y'/Y].

The following proof rule establishes the invariance of ¢ until an occurrence of
(3
(P Ao A=) — (o' Vi)

Ak (¢ = pUy)

The conclusion of this rule uses the unless operator if, which is the weaker
form of the until operator. The conclusion states that, whenever ¢ occurs, it will
continue to hold until the next ocurrence of %, if any. If ¢ does not occur then ¢
must continue to hold for the rest of the computation. The rule requires that we
establish by state-reasoning (i.e., without temporal reasoning) the premise that, if
two states s and s” (interpretations for Y and Y~ respectively) are related by p,
and the first satisfies ¢ A =1, then the second state must satisfy ¢ V 1. Obviously,
under this premise, as long as ¥ does not occur, ¢ is preserved from each state to
its successor.

The invariance rule is often used in a simpler form, which is obtained by
taking ¢ = false in the general form. For this special 1, ¢ A =), ' V ¢/, and o U
simplify to ¢, ¢, and p7 respectively. The simplified rule is

(pA@)— ¢

AF(p= Uy)

As an example for the application of the simpler rule, consider the case in
which

p(y,y'): (¥ =y + 1),
describing a program whose only action is to increment y by 1. Let
¢ (y > o).
We can easily establish the premise
!
(W =y +D)Ay=0) -2 0

—_ 35 -



By the rule, we then conclude
AF(y> =080 > D00

e One-Step Eventuality Rule

Let ¢, ¥ and ' be state-formulae as before.

(PN A—p) — o

Al (p = Ov)

This rule requires the premise stating that, if ¢ holds in a state s, and
does not, then % holds in each of the A-successors of s. We can then conclude
that any occurrence of ¢ in an A-computation must be eventually followed by an
occurrence of .

In a more general framework, in which finite computations are also considered,
we have to add a premise guaranteeing enableness. An appropriate premise is

v — (37 : p).
As an example for the application of the rule. consider again the incrementing
program, and the state-formulae

o (y=4), (=5
We establish the premise
(Y =y+ DAy =4)— (@ =5),
and trivially conclude

AF (=4 = =9).

Well-Founded Eventuality Rule

Obviously, the one-step eventuality rule is very weak and can be used to
establish only the simplest type of eventualities, the ones that can be obtained in
a single execution step from one state to the next one.

To derive stronger eventualities we combine this basic rule with the powerful
well-founded induction rule for eventualities.
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o Wel I- Founded Eventuality Rule

Let (W, <) be_a well-founded ordering, and ¢(a), @ € W, a state-formula
parametrized by a parameter taken from the domain W of the ordering.

AF pla)= Oy v BB < a): ¢(B)]

AF (Bo:gp(a)) = O

The premise of the rule states that, if ¢(«) currently holds, then, eventually,
either ¢ will be established or ¢ will hold for a smaller parameter 3 < a.

This premise is typically established by the one-step eventuality rule. Since
the decrease of a well-founded parameter cannot go on indefinitely, the rule con-
cludes that eventually i) must occur.

Note that this more powerful rule does not explicitly refer to any program-
specific constructs, such as € and p. It relies on the third interface rule to help
it establish the premise. This explains the name interface rules we have given
those rules, since they are the only ones that explicitly refer to program-specific
constructs.

We now consider in turn each of the classes of properties, and give for each
class an appropriate proof principle.

Safety

A safety formula, has the general form Dp for some past formula p (i.e.,
p contains no future temporal operator). How do we verify that such a formula is
valid over all computations of a program A?

Consider first the simple case in which p is a state-formula. The suggested
proof method in this case is as follows:

Find a state-formula ¢ such that ¢ — p, and prove

(a) 0 —¢,
(b) A (¢ = D), using the invariance rule.

We may then conclude
Al - Dp.
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Consider next the more general case, that p is a past-formula. Our proposal
for dealing with this case is the following:

Without loss of generality we assume that negations appear only within state-
subformulae of p. A subformula p’ appearing in p is called a maximal state-
subformula of p if p”is a state-formula and is not contained in a larger state-formula
appearing in p.

Let pg,p1,--.,pm be the list of all the subformulae of p which either contain
a temporal operator , or are maximal state-subformulae of p. The order in which
they are listed is such that, if p; is a subformula of p;, then « < j. We also take
po = p. We refer to this list as the closure of the formula p.

We now define an extension of the program A, denoted by fi, as follows:

Variables - ¥ = ¥ U { b, . .., bm}. That is, we augment the original program
variables by additional boolean variables, bo, . . ., by, One corresponding to
each subformula in the closure of p.

The intended purpose of these variables is that, in position y > 0 of a com-
putation o, (a, j) = p; iff 5[] = true.

States — . Each st ate assigns values also to the variables by , . . ., bm .

Initial Assertion — § = § A §. The additional conjunct 6 is a conjunction of clauses,
f;, i =0, ..,m,one for each formula, in the closure. The clauses depend on
the structure of the formulae, as follows:

If p; is a maximal state-subformula, then é; is b; = p..

If p; is —pj, then 6; is b; = (ﬁbj).

If p;is p; V py, then 8; is b; = (b; V b, )

If p; is @pj, then 8; is b; = false.

If pjis Dj Spy, then 8; is b; = by, .

The intended purpose of these clauses is to guarantee that b; = p; at the first
state of the computation.

. Transition Assertion — p = p A p. The additional conjunct g is a conjunction of
clauses, p;, i =0, . .., m, defined as follows:

If p; is a maximal state-subformula, then p; is b = p.
If pi is —pj, then p; is b; = (=b}).

If p; is p; V py, then p; is b, = (b’j Vb ).

If p; _is @pj, then p; is_ b, = bj.

If p; is pj Spy, then p; is U = b v (b’j A b;).

The intended purpose of these clauses is to guarantee that, in a transition
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from a state s to its successor state s’, b; = p; will be preserved, assuming it
already holds at s.

With this augmentation, we can now use the following proof rule:

A+ O,

A+ Op

Or, if we wish to represent the proof approach in a single rule, it will be of the
following form:

To prove Lp, find a state-formula ¢, possibly referring to ¥ U { by, . . ., b },
such that
06—
(PA@)— ¢
Al - Dp
Example

For example, consider the incrementing program whose only action is to in-
crement y by 1. Assume that its initial assertion y = 0, i.e., the initial value of y
is 0. We would like to prove for it the safety property D [(y = 10) — & (v =5)].

We introduce two auxiliary boolean variables by, b1. The first variable by, is
associated with (y # 10) vV € (y = 5), which is the subformula whose invariance
we wish to prove. The variable b; is associated with O (y = 5), which can be
represented as trueS (y = 5). The general construction calls for two more variables.
by and bg, corresponding, respectively, to the maximal state-subformulae y # 10
and y = 5. But in practice, we can skip these variables and refer to the subformulae
directly.

6=6na6is given by the conjunction:
(y = 0) A (b =[(y #10) V b1]) a (b = (v = 5)).
p = p A pis given by the conjunction:
(y?=y+1)AaByg=[(y #10) V] A (b =[(y” = 5) v b))
As our assertion, we pick
@by A (y 25— b1)
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We first show that A
6 — p.
This is because y = 0 implies y # 10 and y < 5.
Next we show that
(PAe)— ¢

By p, 6 can be false only if y”= 10, which is possible only if y = 9. But then, due
to the clause (y > 5 — b1) in ¢, by = true and therefore, due to the last clause in
p. by = true, which leads to by = true.

To show that (y>> 5) — b, , given that (y > 5) — by, we should consider the
case Y’> 5 while y < 5. By y?’=vy + 1, this is possible only if y”= 5, which, due
to ) = [(y>=5) V b1], gives b = true. 4

Guarantee

A guarantee formula has the general form Op for some past-formula p.

To verify that such formula is valid over a program A we recommend the
following approach:

Use the two eventuality rules discussed above to prove
AF (B =p).
Then conclude
AFop.

Strictly speaking, this approach covers only the case that p is a. state-formula,.
To handle the case of a general past-formula. we augment A as before. and then
prove instead

AF (8= Oby).

Example

For example, we may wish to prove, for the incrementing program, the validity
of the guasantee property

Oy =100 A (y = 5).
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We rewrite the past-formula using the boolean variables by and b; as done
above. The variable by corresponds to the principal subformula (y = 10) A
O (y = 5), while by corresponds to O (y = 5). As a matter of fact, the minimal
augmentation of the assertions associated with the program deals only with by,
while we replace the principal subformula by (y = 10) A b;.

The extended initial and transition assertions are given by:

é:(y =0) A (i =(y = 9)),

~

Py =y + 1) A(b=[(y =5) Vb))
We choose the parametrized assertion:

pn): (n>20a (y+n=10)a (y>5— by),

with n ranging over the well-founded domain of the natural numbers.

We then prove

A

AF (p(n) A=y =10) A by]) = OIm(m < n) ; ©o(m)

by one-step eventuality.

The conclusion by well-founded eventuality is
Al- 3npn) = Oy = 10) A by

It only remains to show that § — 3n: p(n), which is obvious by taking n = 10,
and observing that y = 0. d

We can show that, for proving guarantee properties, it is sufficient to consider
the natural numbers as the well-founded ordering.

Recurrence

A recurrence formula has the general form D I:an for some past-formula. p.

For the case that, p is a state-formula, we recommend the following method-
ology:

Find a. state-formula ¢ and prove

(a) A F Oe,
(b) A+ ¢ = Op.
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Then conclude

A OOp.

For example, for the incrementing program, we may wish to prove the recur-
rence property [] o (y mod 10 = 0). This property states that, in infinitely many
states, y is evenly divisible by 10.

For that simple case it is sufficient to take ¢: true, and simply prove, using
the well-founded eventuality rule,

A F (true = O(ymod10 = 0)).

For the case tbat p is a. general past-formula, we augment the program as
before, and prove A F 0o by by the same approach.

In contrast with proofs of guarantee properties, recurrence properties require
more complex well-founded orderings than just th tural numbers. In fact,
already for properties expressible by the formula Dp€\7a <>q, we need ordinals
higher than w (see [MP]).

Persistence

A persistence formula, has the general form O D Ip for some past-formula. p.

For the case that p is a state-formula, we recommend the following method-
ology:
Find a state-formula ¢, such that ¢ — p, and prove

(a) A+ Qo
by are=0

Then conclude

A t- <>Dp.

For example, for the incrementing program, we may wish to prove the persis-
* tence property Oy # 5).

We pick the state formula ¢: (y > 5), and easily show that

AF Oy > 5),
Ab(ly>5) = | (y>5)).

For the case that p is a general past-formula, we augment the program as before
and prove A - &by, using the same approach.
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Fairness

A fairness forniula can always be represented as D <>p -0 q for past-
formulae p and gq.

For the case that both p and ¢ are state-formulae, we recommend the following
methodology

Find a state-formula ¢(«) parametrized by a well-founded parameter o € W.
Prove

@AFd  (Bap(a)
(b) A+ gla) = pla) (g v BB < a)e(8))
() A (p A pla)) = Og vV 3B(8 < a): ()

We may then conclude

I H (0 O 0.

The case of p and q being general past-formulae is handled again by aug-
mentation of the program. This time, however, we have to augment it by the
boolean variables by, . . ., by corresponding to the closure of p, as well as by the
boolean variables ¢g, . . ., ¢, corresponding to the closure of g. We then use the

above method to prove ) ~
AV BAOKOO).

Hyper-fairness

A hyper-fairness formula. is a conjunction of fairness formulae. Therefore, to
prove that it is valid over a program, it is sufficient to prove independently the
validity of each of the fairness formulae in the conjunction.

In this section we assumed that the program has no implicit fairness require-
ments associated with it. Any assumed fairness requirement must be explicitly
included in the specification. For example, let the program contain two transi-
tions 77 and 79, and assume we wish to prove the recurrence formula Qp under
the assumptions of weak fairness for each of the transitions. Then we should verify
the fairness formula.

Q O pvO L En(r)a-taken(r1)) V <>D(En(7'2) A —taken(Ts)).

This formula states that either p happens infinitely many times, or from a cer-
tain point the execution is weakly unfair towards 7q, or weakly unfair towards 7.
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