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Abstract

A radio network is a synchronous network of processors that communicate

by transmitting messages to their neighbors, where a processor receives a
.

message in a given step if and only if it is silent in this step and precisely one

of its neighbors transmits. In this paper we prove the existence of a family of

radius-2 networks on n vertices for which any broadcast schedule requires at

least a( (log n/ log log n)*) rounds of transmissions. This almost matches an

upper bound of 0(log2 n) rounds for networks of radius 2 proved earlier by

Bar-Yehuda, Goldreich and Itai [BGI].
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1 Introduction

Packet radio networks have received considerable attention during the last decade

[BGI, CK, GVF, K,K GBK, SC]. A ra ao network is an undirected (multi-hop)d’

network of processors that communicate among themselves in synchronous time-

slots in the following manner. In each step a processor can either transmit or

keep silent. A processor receives a message in a given step if and only if it keeps

silent and precisely one of its neighbors transmits in this step. If none of its

neighbors transmits, it hears nothing. If more than one neighbor (including itself)

has transmitted, a collision occurs and the processor hears only noise.

In this paper we consider the broadcast operation in radio networks [BGI, CK,

CW, GVF]. Broadcast is a process by which a message M, initiated by a processor

s (the sender) is delivered to all other processors in the network.
.
A schedule S is a list (Tl, . . . , T,) of transmissions, specifying for each step i,

i = 1,2,. . . , t, the set T; of processors that have to transmit in step i. The schedule

is applied as a broadcast procedure as follows. In step i, every processor v E Ti

which already holds a copy of M transmits it (a processor v E Ti that does not

have a copy yet, remains silent). The schedule S is a broadcast schedule for the

sender s in G if after applying S, every processor in the network has a copy of M.

To formalize this notion, let us define for a vertex x the set I’(x) of its neighbors

in G and let deg(x) = II’(x)]. For T C V we let

c

H(T) = {x E V \ T : II?(x) n TI = 1).

Let S = (Tl,... , T,) be a sequence of subsets of V with Tl = {s}. Define Ur = {Y}

and for j 2 1

uj+l = Uj U H(Uj f~ Tj).
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Informally Uj is the set of vertices to whom the message M was relayed before

round j. The processors transmitting at round j are therefore those in Uj n Tj and

H(Uj n T]) is the set of those processors receiving the message on round j. We

say that S is a broadcast schedule for (G, s) if ?LJt  = V.

We are interested in the existence of short broadcast schedules. Clearly, the

radius of a network G from s (i.e., the largest distance between s and any other

vertex in G) serves as a lower bound for the length of any broadcast schedule.

Also, examples have been shown of radius-2 graphs of order n where every broad-

cast schedule requires Q(log n) rounds [BGI2]. In this paper we demonstrate the

existence of a family of radius-2 networks on n vertices for which the number of

rounds required by any broadcast schedule is

Note that the problem of finding efficient broadcast schedules depends on

whether the graph G is known to the designer of the procedure. Our lower bound

applies even at the harder case where G is known. For radius-2 graphs this is close

to optimal in that the methods of [BGI] yield a broadcast schedule of 0(log2  n)

rounds for them. The algorithm of [BGI] is probabilistic and does not assume

knowledge of the graph. Thus, except for the log log 72 terms the upper and lower

bounds match in a satisfactory way. Namely, for the family of graphs we construct

there is a lower bound for the length of any schedule, even if G is known. On the

&her hand there is a probabilistic algorithm of almost the same complexity which

requires no knowledge of the graph at hand. We think that @(log2 n) is the correct

answer and the (log log n)2 term remains only because of some weakness in our

proof technique.
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The situation is however less satisfactory when the radius grows. For general

graphs of diameter D the probabilistic algorithm of [BGI] yields a schedule of

0( D log rz + log2 n) rounds. The deterministic centerlized (polynomial time) algo-

rithm of [CW] constructs a schedule of length O(D log2 n). We cannot rule out

the possibility that an 0( D + log2  n) schedule always exists. The main difficulty

is in understanding how efficient one may get in pipelining the message passing:

Letting V; be all the vertices at distance i from the sender s, the network may be

engaged in passing A4 from V; to V;+l at the same time that it deals with Vj and

Vj+l for some j > i + 1. How efficiently this may be done we do not know. It is

an intriguing question to try and understand if this is indeed possible.

2 Preliminaries

We prove the lower bound in the case where all the processors are at distance at

most two from the sender. The networks we consider are of the following form. We

start with a bipartite graph G(U, V, E) where U = (~1,.  . . , u,.}, V = {VI,. . . , vw>

and n = r + w. Further, we add a sender vertex s, adjacent to all the nodes of

U. After the first round (Tl = {s}), the message arrives at all neighbors of the

sender in U. The rest of the schedule therefore needs only ensure the arrival of

the message at all the processors of V. Consequently in a schedule S only the

set of transmissions is relevant while the order in which they are performed may

be ignored. Note also that each set Ti of those processors who transmit at round

i > 1 is, without loss of generality, a subset of U.

We represent each bipartite graph G(U, V, E) by its adjacency matrix A,,,

where Ai,j = 1 if (ui,vj)  E E and zero otherwise. For a given matrix A, a
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transmission T is a set of rows T 5 { 1, . . . , T}. The size of a transmission T is

denoted ITI. A schedule S is a set of transmissions. We say that a transmission

T hits a column j in A if there is exactly one row i E T s.t. A(i,j) = 1. The

transmission T misses column j if A(i, j) = 0 for all i E T. We denote by H(T, A)

(respectively, M(T, A)) the set of columns hit (respectively, missed) by T. For a

schedule S, H(S, A) = UTEs H(T, A) and M( S, A) = nTEs M(T, A). The schedule

S exhausts A if all the columns of A are in H(S, A). Note that for networks in the

particular form considered here, our notation of H(T) is consistent with the one

from the previous section.

In the proofs of the lemmas we use the following propositions. The first states

the Chernoff estimates [C] for the tails of the binomial distribution.

Proposition 2.1 (Chernoff) Let X be a random variable with a binomial dis-

. - tribtition and expectation E = E(X). Then for cu > 0,

1. PT(x > (1 +cu)E) < daZE.

2. PT(x < (1 -a)E) < daZE,

A slight modification of Proposition 2.1 yields

Proposition 2.2 FOT X, E and a! as in Proposition 2.1,

1. If F > E then PT(X > (l+ cu)F) < daZF.

2. If F < E then PT(X < (1 - CY)F)  < ~5~~~.

(Note that only Part 1 needs verifying while Part 2 is immediate.)

We recall two more easy facts, which we will use freely.
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Proposition 2.3 FOT 0 < cy < f and /? > 0,

e-3aP < (1 - ,r)p < e-&O.

Proposition 2.4 The function xeex increases when 0 < x < 1 and decreases-

when x > 1.

Unless specified otherwise, all logarithms are to base 2. For simplicity we omit

all floor and ceiling roundings throughout. Also, we assume without further notice

that all our parameters are sufficiently large whenever needed.

3 The Bound

Let us first motivate our lower bound technique. Consider a radio network of the.
form described in the previous section. Suppose the network is based on a bipartite

graph G(U, v, E) in which each vertex v E V has degree d. In our matrix notation

this corresponds to having exactly d l’s in every column. For such a network,

a simple probabilistic argument shows the existence of a broadcast schedule of

length O(log n). Th’IS is proved by considering a collection of 0( log n) random

transmissions, in which each row (U vertex) is chosen with probability -& For the

general case, decompose V into log IUI sets

V; = (V E V : 2i-’ 5 deg(v) < 2i} (1 L i L log lUl>

and let Gi be the subgraph of G induced by K U U. Each G; has an O(log n)

schedule and the concatenation of these schedules is an O(log2  n) schedule for

all of G. Our lower bound shows that for suitably chosen G’s this procedure is
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essentially the best possible. Each V; is set to have size polynomial in lUl and the

edges at Gi are drawn at random from an appropriate distribution.

In simple terms our proof may be described as making the following claims: In

dealing with Gi a transmission is almost useless unless its size is close enough to

!$ (Lemmas 3.1 and 3.2). Consequently we may think of each Vi as being handled

sepa,rately,  with almost no help from transmissions destined at other Vj’s. For

each individual Vi we show that if the edges at Gi are chosen at random from a

proper distribution then the sets hit by various transmissions cannot combine in

a way that is more efficient than in the situation where they are chosen randomly

and independently (Lemmas 3.3 and 3.4). This is because a transmission of the

right size not only hits a fraction of the target vertices, but also misses a fraction

of them. These two arguments are put together by a straightforward pigeonhole

argument to yield the theorem.
.

. -
Let us now transform the above informal description into a more precise frame-

work. Recall that our bipartite graphs are represented by an adjacency matrix

A 7’XW’ Throughout, we will have m = T’ for some constant c and w = m log r.

.4n i-block is a random r x m O-l matrix whose entries are chosen to be 1 with

probability pi = 2’/r. We should, in fact speak about i-blocks of dimensions r x m,

but the parameters r and m will always be clear from the context and we simplify

our notations by dropping these indices. Denote by A;,, the probability space of

all i-blocks (again T will be fixed and so we omit this index). There is an induced

- probability distribution on ,A, the set of all r x w O-l matrices: Independently

choose a O-block, a l-block,..., a (logr - l)-block and concatenate them to obtain

a member in d.

For a given transmission T with k rows, its range, R(T), is the interval of
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integers i such that:

where

log ; -n n<i<logF+b

a = 210glogr + 2,

b = log log log r + 2.

We are now ready to prove the lower bound itself.

Lemma 3.1 Given a transmission T and an integer i not in the range of T,

P r  IH(T,A)I >  ?--
( log2 r

< e-G% = o(l),

where A E di,,, the space of i-blocks.

_ Prdof: Fix T and i and let ITI = k. Let XT,i,j  denote the event in di,m “T hits

the j-th column in an i-block”. Recall that in an i-block the entries are chosen to

be 1 with probability p = 2i/r. We thus have

kpeBkpPr(XT,i,j)  = kp(l - P)~-’ 5 1 5 2kpeSkp .-

Therefore the expected number of columns that T hits over A E di,, is

( >* E(IH(T,A)l) 2 2kpmemkP .

There are two cases for which i $ R(T). If

then kp = y > 41og logr, so by (*) and by Proposition 2.4,

E(IH(T, A)I) 5 8mloglogre-410g10g’ < m
210g2r *
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In the other case

i < log 5 - a = log ; - 2 log log r - 2,.

sokp<.&<l,whichby()* and by Proposition 2.4 implies that

E((H(T,A)I) I 2kpm I m210g2r ’

Using Proposition 2.2 (Part 1) with cy = 1 and F = .$& we get

m
log2 r

<e-
1 - *.

Lemma 3.2 Let 0 5 i 5 logr - 1, let m 2 r* and let S be a schedule consisting of

t = o( log2 r) transmissions. Assume that i is not in the range of any transmission

in S. Then

PT (IH(S, A)( L. T> < 6, = (log2 r)e-* = o(l),

where A E di,,.

Proof: By Lemma 3.1 the probability that any transmission in S hits more than

.a columns is at most tee*. Therefore with probability 1 - te
-m

4b2r < l--S,-

the whole schedule hits at most s < 7 columns. 1

Now we show that a transmission of the proper size not only hits but also

misses a fraction of the vertices in Vi.

* Lemma 3.3 Given a transmission T and an integer i in the range of T,

pr IM(T,A)I > m
2 log18  r

> 1 - ~~ = 1 - eD121,?r18r  = 1 _ o(l),

where A E di,,.



Proof: Assume ITI = k. Let YT,i,j denote the event in Ai,, “T misses the j-th

column of an i-block”.

Pr( YT,i,j)  = (1 - P)k > e-3kp.

’ By the assumptions of the lemma, i E R(T), hence

i 5 log % + log log log r + 2,

so

kp = g 2 410glogr.
r

Therefore the expected number of columns that T misses is

E(IM(T, A)I) 2 me-3kp > -IIf!-
log” r *

Usiqg Proposition 2.2 (Part 2) with CK = i and F = & we get

I

Define E = e?

Lemma 3.4 Define 7 = 210g18r  and let m > r3. Let S be a schedule consisting

of t = 0 (lo&, $) transmissions, and let i be an integer in the range of all the

transmissions in S. Then

where A E di,m-
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Proof: By induction on m. For m = r3 there are no transmissions so all the

columns are missed. For simplicity assume that m = $r3 for j 2 1. Apply one of

the transmissions T in S. Lemma 3.3 implies that with probability 1 - Em there

are at least y 1 r3 missed columns. This probability is at least 1 - E, since &m is

.a decreasing function of m and E,S 2 eWT = E. Using the induction hypothesis we

get that for the remaining t - 1 transmissions the schedule S \ {T} misses at least
d.
q-1 = $ columns with probability greater than ~~1~.

Combining the probabilities we get that the probability that at least $ columns

are missed is

Ym/v(l  - E) = (1 - E)logv  :(I - E) = (1 - j+l”gvrn  = 7m

I

Cor$lary  3.1 FOT m > r* and t = o ($&) (and hence also t = o(log, r) and

. - t=o(log,$)

PT Iwwl  L -&(
=‘>I. >Ym,

rlv 7‘ )
where A E di,m.

Lemma 3.5 Let m 1. 7‘5 and let 0 5 i 5 logr - 1. Then there exists a block

Bi such that fOT  every schedule S = S’U S” where S’ is a schedule consisting of

o(e) transmissions T such that i E R(T)og ogt and S” is a schedule consisting of

o(log2r)  transmissions T such that i 4 R(T), S does not exhaust the block Bi.

Proof: Consider an arbitrary schedule S = S’U S” as in the lemma. From

Corollary 3.1 it follows that with probability “ant > 0, S’ misses at least m’ = m/l

columns of an i-block. By Lemma 3.2, with probability 1 - SmI > 1 - eBfz, S” hits

less than m’/2 columns out of any m’ columns in an i-block.
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Combining these two results together we get that with probability at most

1 -rm(l- 6,) < 6, 5 em”, S exhausts an i-block. There are at most 2’ distinct

transmissions, hence the number of possible schedules is at most 2’ log2 ‘. Summing

the probabilities we get that 2r10g2 re-r2 < 1. Hence there exists a block Bi as

d e s i r e d .  i

Lemma 3.6 FOT every m L. r5 there exists a matrix Arxw such that no schedule

,w~th+g-g2) transmissions exhausts A.

Proof: Construct A as follows. For every 0 < i 5 logr - 1, choose the i’th block

in A to be the block Bi whose existence is assert’ed  by Lemma 3.5. Assume that

S is a schedule that exhausts A and S consists of o ( (&kJ2) transmissions.

The range of any transmission covers at most O(loglog r) blocks. Therefore,

. - by ‘a simple pigeonhole argument, there exists an i-block where i is covered by

the range of at most o(s) transmissions in S. Obviously there are at most

o(log2 r) transmissions whose range does not cover i. Applying Lemma 3.5 we get

a  contradic t ion.  i

Theorem 3.1 There exists an O(n*)-vertex radius-2 network for which the n,um-

ber of rounds required by any broadcast schedule is at least
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