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Abstract

This paper addrcsscs  the problem of planning robot motions in the presence of uncertainty.
It explores an approach to this problem, known as the preitn.a_ae  backchaining  approach..
B‘asically, a prcimagc is a region in space, such that if the robot executes a certain motion
command from within this region, it is guaranteed to attain a target and to terminate
into it. Preimagc backchainin,m consists of reasoning backward from a given goal region,
by computing prcimages of the goal, and then recursively prcimages of the prcimages,
until-some preimages include the initial region where it is known at planning time that.
t.he robot will be before executing the motion plan. 1n the paper, we first give a rigorous
formalization of the problem of planning motions in the presence of uncertainty; such
a formalization is necessary because in many regards reasoning with uncertainty is not
reducible to straightforward intuition. Then, WC investigate in detail the theory of the.
preimage backchaining approach; we give a new presentation of preimages, we explore
the notion of maximal preimages, and we extend the framework to the generation of
conditional motion strategies. Finally, we describe a complete set of algorithms that makes
it possible implementing the approach in a simpliftcd two-dimensional world, which we
call the mini-world. The restrictions imposed on the mini-world arc essentially a.imed
at reducing the conceptual and computational complexity of the geometric computations
required by the preimnge backchaining approach. Ncvcrthclcss, the mini-world is still
appropriate to handle rea.listic navlOc-0ztion  problems with omni-directional mobile robots.

Key-Words: Spatial Reasoning, Robot Planning, Motion Planning, Planning in the Pres-
ence of Uncertainty, Preimagc Backchaining.
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1 Introduction

In this paper, we address the problem of planning robot motions in the presence of uncer-
tainty. In principle, the robot may be any kind of rigid or articulated object capable of
controlling its motions within a workspace. In particular, it may be a manipulator arm,
a multi-joint multi-finger hand, a wheeled vehicle, or a free-flying vehicle. In practice,
however, the complexity of the motion planning problem augments exponentially with the
number of degrees of freedom of the robot system [45,48,6].

Motion planning in the presence of uncertainty is one of the important problems that we
have to solve in order to create autonomous robots [20]. By autonomous robots we mean
robots that are both automatic - i.e., that can execute tasks in the physical workspace
without human intervention -, and taskable - i.e., that accept high level task descrip-
tions. Such a description typically specifies uhf the user wants done rather than how
to do it. Therefore, at some level of reasoning, an autonomous robot has to plan the
motion commands and the sensing acts that are appropriate to achieve the goals, and it
must monitor their execution. Examples of sub-tasks that usually require motion plans
taking uncertainty into consideration are: grasping an object with the end-effector of a
manipulator robot, mating two mechanical parts in an assembly process, and navigating

from one location to another in an in-door environment. In this paper, we consider the
generic task of planning the motions of a single controlled object (i.e., the robot) among
fixed, un-movable, and rigid obstacles, from an initial region (a single location if there was
no uncertainty), where it is known that the moving object will be before executing the

4 plan, to a goal region. We distinguish among three types of uncertainty: uncertainty on
robot control (the robot does not execute motions exactly as they are specified), uncer-
tainty on dimensions and locations of obstacles in the initial world, and uncertainty on
on-line sensing. However, most of the paper concentrates on uncertainty on control and

. on sensing.

The solution to a motion planning prob!em without uncertainty is the geometrical descrip-
tion of a collision-free path of the robot from its initial location to a goal one. The solution
to a motion planning problem with uncertainty is a mofion sfrafegy.  Typically, a motion
strategy is an algorithm including motion and sensing commands, which takes advantage
bf various sources of information (e.g., model of the motions, prior model of the world,
on-line sensing) in order to reduce uncertainty and lead the robot to the goal position.
Thus, a strategy may include motion commands merely aimed at acquiring new pieces of
information. However, reaching a goal position is the only imposed goal. Reducing uncer-
tainty is important only when it is a prerequisite to achieving this goal. Although in this
paper we consider motion strategies using sensing, this is not always a requirement. For
instance, Erdmann and Mason [lS] investigate sensorless strategies capable of dealing with
uncertainty. However, such strategies require reasoning about operations, such as pushing
and sliding, which involve several independent moving objects. Planning sensory-based
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stratcgics  r e q u i r e s  r e a s o n i n g  a t  p l a n n i n g  t i m e a b o u t  picccs  of i n f o r m a t i o n  that will t>e

k n o w n  (with some u n c e r t a i n t y )  o n l y  at e x e c u t i o n  t i m e .

In this paper, we focus  on an  approach to  mot ion p l a n n i n g  w i t h  u n c e r t a i n t y  k n o w n  as

t.11~ preimage lackchainin.g  approach. Basically, a prcimagc of a target for a given motion
command is a region in space, such that if the robot e.uccutcs the motion command from
within this region, it is guaranteed to attain the target and to terminate into it despite un-

certainty; terminating the motion in the target typically requires sensory-b<ased  recognition
capabilities. Preimagc backchaining consists of reasoning backward from a given goal. A

search graph is built and explored by computing preimages of the goal for different motion
commands, and then preimages of the prcimagts, until some prcimages incIudc  the initial
region. The preimage backchaining approach has been first introduced by Lozano-Pdrcz,
Mason and Taylor [35], with subsequent contributions by Mason [39], Erdmann [17,18],
and Donald [10,12].

The contribution of this paper is threefold. First, it gives a rigorous formalization of
the problem of planning motions in the presence of uncertainty (Sections 2 through 5);
such a formalization is necessary because in many regards reasoning with uncertainty is
not reducible to straightforward intuition. Second, it brings new fundamental insights in
the theory of the preimage backchaining approach (Sections 6 through 13, and Section
l’i);’ iri particular, it introduces a new formal definition of preimages (Section S), which,
we believe, is clearer than the one used in previous papers; based on this definition, it
explores the notion of maximal preimage (Sections 9 through 12); it also extends the
formal framework of preimage backchaining to the generation of conditional strategies
(Section 17). Third, the paper describes a complete set of algorithms that makes it possible
implementin g the approach in a simplified two-dimensional world, which we call the m.ini-
world (Sections 14 through 16); although rather simple, the mini-world is still realistic
enough for some applications: for instance, it can be the world of an omni-directional
mobile robots with a polygonal outline moving among obstacles bounded by polygonal
outlines. Throughout the paper, we use examples in the mini-world to illustrate our
presentation; the restrictions imposed on the mini-world are essentially aimed at reducing
the conceptual and computational compIexity of the required geometric computations. A
final section (Section 18) relates our presentation to previous work.L

Durmg the last five years, a trend in research on autonomous agents interacting with a
dynamic and/or uncertain external world has been toward “reactive planning” (e.g., see
[22]). This trend grew up in reaction against the more traditional approach to planning,
which tends to decompose planning and execution between two successive phases. A new
extreme position related to this trend is to use no prediction of future states at all. A
criticizable effect of such a position is to produce planners that produce plans with no
provable properties relative to their correctness (but is there any more a plan?). We
think that plannin g is an essential capability of an autonomous agent in order to display
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intelligent behavior, and whether it is performed off-line or on-line, it should produce plans
with well-dcfincd  properties, so that if their execution fails, it is possibie to diagnose why.
Such a diagnosis is not important for correcting the plan (since it already failed), but to
determine the assumptions which were wrong, i.e. to learn from failure.

In. this paper, we concentrate our presentation on the planning of sfrongly  guaranteed
strategies. Strategies of this class arc guaranteed to succeed whenever errors on control,
model, and sensing remain within predefined  bounds specifying uncertainty. If such a
strategy fails, it means that one error exceeded these bounds during execution. Despite
some drawbacks (e.g., some motion planning problems may admit no strongly guaranteed
solution, or only complex ones), these strategies are most appropriate when off-line plan-
ning is prefered (e.g. in the context of industrial manufacturing [ZS]), or when on-line
interaction between the controller and the planner is limited (e.g. by the bandwidth of a
radio link). They also can be used on-line to plan motions to achieve short-term goals.
In addition, from a theoretical point of view, strongly guaranteed strategies raise many
interesting questions leading to study theoretical concepts with broader relevance. In the
conclusion, we will introduce a weaker (i.e., larger) class of motion strategies, which still
has provable properties, while being more adapted to reactive planning.

2 kdeling Task Geometry
Let us consider an object, A’, moving in a euclidean space called workspace. Any list of
parameters that completely specifies the position of every point on A at any instant t with

4 respect to a fixed Cartesian coordinate system W in the workspace defines a space called
the configuration space of A [34]. Any point in this latter space (i.e., any instantiated
list of parameters) is called a configuration of A.

There is an infinity of possible configuration spaces for A. We assume that one of them,
denoted C, has been arbitrarily selected as ihe configuration space of A. At every instant,
the mapping of A into C is a point, P, called the effector point. In the following, d(c)
denotes the region occupied by A in the workspace, when P’s position in C (i.e., d’s
configuration) is c.

hxample 1: Figure 1 shows several examples of configuration spaces:

- Figure 1 a: The configuration space of a two-dimensional rigid object A that can only
translate in the plane is R* (more precisely, it is isomorphic to R”). A configuration (2, y)
consists of the coordinates of a fixed reference point on A with respect to W.

- Figure 1 6: The configuration space of a two-dimensional rigid object A that can both
translate and rotate in the plane is R* x S’, where S’ is the unit circle. A configuration
(5, y, 0) consists of the two coordinates of a fixed reference point on A and the orientation

‘A table of symbols is given in Appendix at the end of the paper.
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a b C

Figure 1: Configuration Space Examples

of a fixed reference axis with respect to W. Similarly, if A is a three-dimensiona. rigid
object allowed to translate and rotate without restriction, C = X3 x SO(3), where SO(3) is
the three-dimensional Special Orthogonal Group. Then, if orientation is represented using
the Euler angles ($, 0, $), a configuration is the list (2, y, z, $, t9,d).

- Figure 1 c:: The configuration space of an articulated object with N rotating joints is a
sub&pace of (S1)N = S1 x . . . x S’. A configuration is a N-dimensional list (ql, q2, . . . . q,v),
each parameter qi specifying one joint angle. I

At this stage, a trajectory of A in the workspace can be described as a mapping r :
t ,f 3? -+ c f C, It can also be represented as a curve in configuration space x time
c x a?.

Now, let us assume that d’s workspace includes fixed obstacles D;, i = 1,2, _... The region
occupied by each obstacle D; in the workspace maps into C as another region called a
C-obstacle and denoted CBi2-  By definition, CBi = {C E C / d(c) n B; # 0).

Example 2: Figure 2 illustrates the case where both A and fli are convex polygona.
regions, A being only aIIowed to translate. The configuration of A is defined as the
coordinates of point P (when A is a rigid object only alIowed  to translate, the effector
point and the reference point coincide). The curve followed by P when A sfides in contact
with 8;‘s boundary, without overlapping of d’s and Di’s interiors is the boundary of CBi.
It can be proved that CO; is also a convex polygon [34].

If we also allow A to rotate, then CD; is a volume in R2 x S’ = {(z, y, 0)). Each cut through
CBi perpendicular to the &axis of C is a convex polygon. However, CBi is bounded by
curved surface patches (more precisely, ruled surfaces) [Xl. I

2A connected region Bi may map into C as a non-connected region CB;.



Figure 2: Mapping an Obstacle in Configuration Space

Several practical methods exist for computing either the exact or an approximate rep-
resent’ation  of a C-obstacle, when both d and t3i are polyhedral (or polygonal) objects

i34,3,f23,9,3O]. In particular, Donald [9] describes a method for computing the mapping of
polyhedral obstacles, when A is a rigid polyhedral object allowed to both transiate and
rotate.

. If the obstacles 0; are mobile obstacles, then it is possible to map the regions they occupy
in d’s workspace into regions of configuration space x time C x R Each cut C x {f}
perpendicular to the time axis includes the C-obstacle CB; at time t. In the rest of the
paper, we only consider fixed un-movable obstacles.

Let cjrcc = {C f C / d(c)n(UGi) = 8) = C-UCL3;. CfJee is catled free space. Whenever
the effector point P is in free space, it means that A has no contact with any obstacle L3i.
Let ccontoct = {C f C / d(c) n (U 0;) # 0 and d(c) n (U 0;) E a(u B;)}, where dS denotes
the boundary of the closed region S ? Cconlact is called contact space. Whenever P is
in contact space, it means that A has made a contact with one or several obstacles Di.
We always have a(UCB;)  c Ccontad, but, as illustrated by Figure 3 (there is no clearance
between A and D’s hole), it may happen that Cantact # a(UCGi)-

Mapping the geometry of the task into configuration space allows us to transform the
problem of planning the motion of a dimensioned object into that of planning the motion
of a point, P, from an initial region Z to a goal region G. Both Z and G are subsets

3We  aSsume  tha t hp ys&l objects occupy closed bounded regions in the workspace. We use the same
symbols, A and Bit to denote both the physical objects and the regions they occupy.
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Figure 3: Contact Space

of C. The motion path of P is constrained to lie entirely in Crr,, U Ccontact. Thus, config-
uration space makes explicit the geometrical constraints imposed on the motion of A by
the obstacles. However, it is easy to verify that different geometries in the workspace may
result in the same geometry in configuration space; so, the mapping between workspace
and configuration space is not a bijective one.

In the rest of this paper, we mainly consider a simple two-dimensional (2D) configuration
space (x> y), called the mini-world, to which some restrictions apply. In particular, there
is a finite number of C-obstacles in C, and every C-obstacle CB; is a polygonal region;
Ccontact consists of a finite number of finite straight segments. The other restrictions will be
stated when relevant in further sections. Our presentation of the preimage backchaining
approach directly applies to the mini-world, and a11 the illustrating examples take place
in the mini-world (eventuaIly with slight indicated differences). Although most of this
presentation remains vaIid in higher-dimensional configuration spaces, certain modeling
aspects and geometrica computations, not treated in this paper, are made considerably
more complex by increasing C’s dimension. Some geometrical computation problems in
higher-dimensional spaces are even still completely unexplored.

3 Modeling Task Physics
We are interested in planning motions with uncertainty. In particular (see Section S),
the motion of the effector point P may not be controlled perfectiy. In addition, the

8



gcomctry of the workspace, and so the geometry of c, may not be known exactly. Due
to uncertainty, it may be useful (or necessary) to include sensing acts other than position
sensing in motion plans. IIowever, the use of some sensors requires dealing with more
that just geometry. Certain physical properties of the workspace have to be modeled, and
mapped into constructs in configuration space. For instance, using visual sensing may
entail representing reflectance properties of obstacle surfaces.

In this paper, we assume that the robot is equiped with two sensors only, the position
sensor, which gives the current configuration of 4, and the force 3enJor, which measures the
reaction force gcneratcd by obstacles when d pushes on them. Using force sensing requires
mapping forces into configuration space. The rest of this section describes how wrenches
(combination of forces and moments) resulting from the contact of A with actual obsta.cles
can be mapped into C as generalized force vectors resultin,0 from the corresponding contact
of P with C-obstacles. Our description is inspired from Erdmann’s work [17], where more
detail can be found.

A wrench (F, n-l) applied to (or by) /! is mapped into C as a force vector f applied to (or by)
P. The component of f along each parameter axis of C is proportional to the acceleration
of A caused by the wrench along the degree of freedom corresponding to this axis. For
instance, in the configuration space C = (5, y, 0) of a rigid 2D object, a force vector is
made of three components respectively proportional to the linear acceleration of A along
the x- and y-axes, and to the rotational acceleration about the Q-axis.

Let us assume that d’s and 0;‘s boundaries are both frictionless. When there is no contact
between A and any of the Bi, then A cannot exert any force on its environment, so the
reaction force on A is null. Correspondingly, when P is in free space, the reaction force
on P is null. When there is a contact between A and an obstacle Bi, if A pushes on tii,
then B; pushes back. It turns out that, in configuration space, P and CB; behave in the
same manner. The generalized force exerted by A on B; is mapped into C as a vector faPPl
applied by P. It can be proved that the reaction wrench exerted by Bi on A maps into
C as a force vector, frccrct, which is perpendicular to the boundary of CL3i at the current
position of P. We say that CL3i reacts to faPPl by generating freacl. If faPPl is perpendicular
to the boundary of CD;, then freact = -f,,,,.

Let us now consider the case when the surfaces produce friction. A classical mode1 of
friction on a surface in the workspace, based on Coulomb’s law, is known as the friction
tune (in fact, it is a half-cone). The cone’s axis is normal to the surface at the considered
point (see Figure 4 CL); its extreme rays make an angle tan-$ with this axis, where ~1 is the
coefficient of friction (we assume the same value for the static and dynamic coefficients).
An applied force that points toward the surface inside the cone causes the generation of an
opposite reaction force having the same intensity (see Figure 4 6). An applied force that
points toward the surface outside the friction cone results in a reaction force aIong one
extreme ray of the friction cone (see Figure 4 c); then, the resulting net force is tangent to
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a b

Figure 4: Illustration of the Friction Cone

the surface.

The notion of friction cone in the workspace extends easily to the configuration space
of a translating object A. In such a space, at any point on the surface of a C-obstacle
CO;, friction can be modeled using a friction cone. The angle of this cone derives from
the friction coefficients of the actual surfaces in contact. The applied force, the reaction
force, and the friction cone in configuration space are related in the same fashion as in the
workspace. The friction cone at a point on a C-obstacle boundary thus specifies the range
of possible orientations of the reaction force on P at that point. Erdmann [l7] discusses
friction representation when d can also rotate. VC’ E Cjree U Ccolltactr  we denote F*(c’)
the range of reaction force that can be generated at position c* 4. If c* f Cjrce, then
F’(c’) = (0).

In our mini-world, the friction coefficient is constant along every edge of every C-obstacle.
Thus, both the angle and the orientation of the friction cone remain constant along an
edge. If the edge is frictionless, then ,Q = 0 and the cone reduces to its axis. The friction
cone associated with every C-obstacle vertex is the cone, the sides of which are the two
most extreme rays of the cones associated with the adjacent edges. Thus, WC assume
that when P is in Cconlact at a C-obstacle’s vertex, the reaction force generated by the
C-obstacle can be any non-negative linear combination of the reaction forces that can be
generated by the two adjacent edges. Figure 5 illustrates friction cones in the mini-world.
VJC’ E Gonloct: ~(6) denotes the unit vector pointing along the axis of the friction cone,
and 2+(c*) denotes the angle of the friction cone. Let E be an edge in Ccclntoct; y(E) denotes
both the unit outgoing normal vector to Z, and the unit vector pointing along the axis of
the friction cone at any position on E. In the mini-world, Vc’ f Cantact, F*(f) is the set
of all vectors included in the friction cone at c*.

‘As it will be e x plained further, co denotes an actual position of P in C, while c denotes a measured
position.
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Figure 5: Fkiction Cones in the Mini-World

We denote f the value of the reaction force on P, which is measured by the force sensor.

4 Lotion C o m m a n d s  .

A solution to a motion planning problem in configuration space is a plan including motion
commands expressing intended motions of the effector point P. If there were no uncer-

A tainty, one could consider formulating motion commands as geometrical paths (continuous
sequence of configurations) to be followed by P at execution time. However, since we
address the motion planning problem in the presence of uncertainty, we consider slightly
more sophisticated commands, called generalized motion commands.

A generalized motion command M is one of the form M = (CS,TC), where:

l CS is the control statement specifying the (possibly infinite) trajectory along
which the controller executing the command has to move P,

l TC is the termination condition specifying the condition upon which the con-
troller should terminate the motion of P.

The concept of control statement is illustrated by the following two examples.

Example 3: One type of control statement is pure velocity confrol. A velocity v is
specified, and executing the motion command causes P to move along a straight line in
C, with constant velocity v, when P is in free space and when P is in contact space with
v either pointing toward the outside of the C-obstacle or tangent to its boundary. The
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Sticking motion

a b

Figure 6: Sticking and Slidin,v Generalized Damper Motions

motion command causes no motion of P when it is in contact space, with v pointing toward
the inside of the C-obstacle. 6

Example 4: Another type of control statement, which makes use of force sensing, is
generalized damper control. The corresponding equation in C for this type of control is f =
B(vn,t - v), where v is the specifiedzommanded velocity, f is the reaction force on P, and
V nel is the net velocity of P; B is a constant, called the damper constant, which relates
velocities to forces. When P is in free space and when P is in contact space with v either
pointing toward the outside of the C-obstacle or tangent to its boundary, f = 0, so that
vnet = v. Then, as with pure velocity control, generalized damper control along v causes P
to move along a straight line with constant velocity V. When P is in contact space with v
pointing toward the inside of the C-obstacle, f # 0, so that vnet # v. Then, two cases are
possible: either v points inside’ the friction cone at the current position of P (see Figure
6 a), and P sticks to the boundary of the C-obstacle (no motion); or v points outside the
friction cone (see Figure 6 b), and P slides tangentially to the C-obstacle boundary. 1

Notice that both pure velocity control and generalized damper control, as we described
them, are ideal approximations of the behavior of actual controllers. Indeed, both suppose
that the controller can change the robot’s velocity instantaneously. Obviously this is
impossible with an object that has non-null mass. This approximation is one source of
error resulting in control uncertainty.

There are many other possible types of control statements than those presented in the
above examples. However, in our mini-world, we only consider those two. We denote pure
velocity control with commanded velocity v by V(v), and generalized damper control

‘We say that v p oints inside the friction cone if the vector -v originating at the cone’s apex is contained
in the friction cone.
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with comrnandcd  velocity v by GD(v). C encraiizcd damper is one sort of force-based
co mplinn  cc, which has received considcrabIe attention in the Robotics literature (e.g.,
see [44,3S,5S,wYG] for more detail). In particular, Mason [3S] analyzes generalized damper
control in configuration space. Khatib [2G] t din ro uccs the concept of “operational space”,
which is similar to configuration space in the case of a rigid moving object, and formalizes
the dynamic equations of a manipulator arm in this space; he applies this formalization
to define a hybrid position/force motion controIIer. BuckIcy [S] investigates generalized
spring control, another type of force-based compliant control, in configuration space; he
applies this type of control for planning motions of objects from contact to contact.

The termination condition TC is an expression of the general form tp(61, c(O,~~I, fio,b,l),
where: tp is a predicate; 61 is the elapsed time since the beginning of the motion; CI~,~~I
and flO,dtj  are the records of position and force sensing since the beginning of the motion.
Examples of termination conditions are [6t > Tj0 and [c(&) E S and angfe(no,  f(Si)) = O].
[6t > T,] means that the motion has to be terminated when its duration esceeds  To.
[c(bt) E S and angZe(no,  f(6t)) = O] means that the motion has to be terminated when the
measured configuration is in region S and the measured force ma.kes a null angle with the
given vector no.

Notice that a termination condition may not be guaranteed to ever terminate a motion.
-A particular case occurs when the motion physically stops by sticking against an obstacle,
while the termination condition does not recognize this situation (because it was not an-
ticipated at planning time). Then, although there is no more motion in the physical sense,
the controller does not know it and does not execute the next step in the motion plan.

A

5 Modeling Uncertainty

When considering a real robot operating in a real world, one has to take into account
possible errors arising from many different sources. It has become rather common to
group possible errors into three different types: conlrol  errors, model errors, and sensing
errors. Control errors result from the fact that no robot controller is perfect; for instance,
executing a motion command with CS = V(v) does not cause P to move exactly along v

e. in free space. Model errors arise from our inability to have an exact model of the workspa.ce
(e.g., we cannot know the exact dimensions of the objects in the workspace). Sensing errors
are inherent to the fact that sensors are measuring devices that have limited precision.

Let us consider that every error applies to the value of a parameter. Given the nominal
value p of a parameter p, the actual value pL of this parameter belongs to a set U,(p). We
call this set the uncertainty on the value of p. The set may be bounded or not, discrete
or not, finite or not. We assume a uniform probabilistic distribution of the actual value of
p over this set6. In our notations, we distinguish the actual value of a parameter from its

‘This assumption is directly related to our focus on (strongly) guaranteed strategies. Other types of prob
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nominal value by using a siar (‘> as exponent.

In the following, Z&(CS), r&(C), &(c), and Ill(f) d cnotc tllc functions spccifJ?ing uncer-
tainty on control, model, position sensing, and force sensing. Bejo\\*, iv-c3  specify a possible
representation of thcsc frlnctions in the mini-world. In the  rest of  the pape r ,  1~owcvcr,  wc

will ~ZSSUI~C  no model error, i.e. uc(cj = {c’}.

Control uncertainty: Let v be the specified (i.e., nominal) commsndcd vciocity in cithcr
V(v)  or  GD(v). At any ins tan t  dur in ,n the execution of the motion command, the actual
commanded velocity v* f uv(v), such that:
- mgle(v*, v) ,< 0,,
- Ik’ll f A&), an interval including IIvII,

where &ngfe(v’, v) evaluates to the angle between  ve and v, and llvll  evaluates to the
module of v. (Note that v* may not he constant during the motion.)

Thus, at each instant, the orientation of v* is within a half-cone, called the velocity cone.
This cone’s apex is at the current position of P; its axis points along t.he direction of v;
its cxtrcme rays make an angie 0, with this axis.

If CS = V(v) or GD(v) and P is in free space, the actual velocity of P is v*.

If CS = GE)(V) and P is in contact space, the actual velocity of P is vtet = f*/B+v* (see
Example 4). Let the negative velaciiy cone be the half-cone symctrical to the velocity cone
with respect to the apex. If the negative velocity cone is contained in the friction cone
at P’s current position, sticking is guaranteed (i.e., vzct = O), because P is guaranteed to
push against the C-obstacle within the friction cone; if the two cones have no intcrscction
[except their common apex), then sliding or moving away is guaranteed; in all other cases,
sticking is possible, but not certain. Notice that testing whether P may slide or stick
on a C-obstacle’s edge in the mini-world is made particularly simple by the fact that the
orientation of the friction cone remains constant along the edge. The test is illustrated by
Figure 7.

In the mini-world, both Ucs(V(v)) and Z&(GD(v))  arc denoted U”(v).

Model uncertainty: Consider the configuration space with a single C-obstacle C13, as
shown at Figure 8 a. Assume that one o f the dimensions of Ct3, d, is not precisely known.
Uncertainty on d can be defined by & = [dmin, d,,,]. One way to represent such un-
certainty is to extend the configuration space into a generaked  configuration space (see
Figure 8 6) by adding one extra-dimension corresponding to the d parameter. Each cut
perpendicular to the d-axis corresponds to a possible configuration space. The problem is
still to move a point, P. However, the difference with regular configuration space is not so

abilistic distributions have been used to model uncertainty in Robotics (e.g., see [16,49]).  More sophisticated
distributions could be used in addition to the uniform one in order for example to evaluate the probability
that a strongly guaranteed strategy will perform correctly or to guide trouble-shooting if the guaranteed
strategy happens to fail.
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Figure 7: Sticking Test With Control Uncertainty

much that the new space is three-dimensional (3, y, d); it is that P can only be controlled
along two of its axes (z and y). Indeed, as long as C-obstacles are rigid and un-movable,
P is constrained to move within one single plane perpendicular to the d-axis; but we do
not know the d-coordinate of this plane within the range [d,i,, d,,,].

A This technique for representing uncertainty on configuration space geometry can be applied
to N parameters (Nzl), by adding N axes to configuration space. Parameters need not be
continuous ones. They may also take their values from discrete and finite sets. Let $X be
the resulting generalized configuration space; Z&(C) = GC.

As investigated’ by Donald [10,12], most of the preimage backchaining approach can be
extended to such a generalized configuration space. However, in the rest of the paper, and
in the mini-world in particular, we assume that C’s geometry is perfectly known.

It is easy to model uncertainty on the friction cone, by defining a small cone and a large
cone. The only impact is on the sticking test illustrated by Figure 7. Sticking is guar-
anteed only if the negative velocity cone is contained in the small friction cone; sliding
is guaranteed only if the negative velocity cone and the large cone have null intersection.
In the following, we only consider cases where sliding has to be guaranteed. Therefore,
we assume no uncertainty on friction cones (alternatively, we can think of using the large
friction cone only).

Sensing uncertainty: Let c and f be the position and force measured by the sensors at
some instant. At the same instant, the actual position and force, c* E ~Jc) and f* f u,(f),

15



urnin

dmin _< d ,< Max

Figure 8: Representation of M o d e l  U n c e r t a i n t y
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/
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such that:
- UC(C) = C,,(c), the closed disk of radius pc centered at c,
- llf’ll E M.l - % llfll + 4 1
- If j[fjl >, E;, then atzgle(f’,f) < 0,; otherwise, the orientation of f has no significance.

Throughout the paper, we assume that time measurement is perfect. This is not quite
exact, because a real controller discretizes time. We also assume that the termination
condition of an executed motion command is continuously monitored, and that the motion
is instantaneously stopped (both in the control sense and the physical sense) when the
condition becomes true. Again, this is not exact. In fact, in first approximation, errors
on time measurement and on motion termination can be blended with other errors, by
enlarging control and sensing uncertainties. However, a more realistic approach would
be to treat them differently. An approach to the representation and the treatment of
uncertainty on time measurement, in the context of motion planning, can be found in [41].

6 Preimage BackchainingL -

Let 7 be a region in configuration space C. Let M = (CS,TC) be a generalized motion
command. Let 7 be the target of M, that is we want to bring the effector point P into T
by executing M. Uncertainty on control and sensing is specified by i&, U,, and L/f. WC

assume no model error.

We call preimage of 7 for M any region P in C such that: if the effector point P is
actually in P at the time when the execution of M starts, then, despite uncertainty, it is
guaranteed both that the resulting motion will terminate and that P will be in 7 when
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Pure Velocity Control Generalized Damper Control

a b

Figure 9: Examples of Preimages

the motion terminates. In other words, if the precondition P E P holds before executing
M, then the postcondition P f 7 will hold after executing the motion command. We will
give a more formal definition of a preimage later in Section 8.
.
Example 5: Figure 9 (ai and a2) shows examples of preimages of a target 7 for velocity
controlled motion command with two commanded velocities vr and ~2. Figure 9 (6, and b2)
shows examples of preimages of 7 for generalized damper motion commands with the same
two commanded velocities. In every example, a possible termination condition is: [c(6t) E
7 CB C,,(O) and ang(e(f@t), 47)) I 4(7) + Q], w here $ is the Minkowski’s operator for
set addition7. Preimages for generalized damper control are larger than those obtained
with velocity control, because generalized damper control has some limited capabilities to

‘?03  cpc(0)  is the edge 7 grown by pc.
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comply with the obstscic geometry, by sliding atong edges. 1

Now, suppose that an algorithm is avaiiabie for computing prcimages of a target 7 for a
motion command i&I (we will investigate preim&c computation in Sections 13 through 16).
Let us consider a motion planning problem specified by g, the goal region in which P has
to be moved, and 1, the region that is guaranteed to contain the initial position c;‘,;, of P.
Preimage backchaining consists of constructing a sequence of preimages PI, P2, . . . . ‘pq,
such that:
- P;, V’i E [1, q], is a preimage of pi-1 for a selected motion command Mi (with PO = 17);
- zrPq.

The inverse sequence of the motion commands which have been selected to produce the
prcimages, [Mq, MgmI, . . . . MJ, is the generated motion strategy. We say that this strategy
is strongly guaranteed because its execution is guaranteed to achieve the goal success-
fully, whenever the control errors and sensing errors remain within the ranges determined
by ucs, u,, and u/- As mentioned in the introduction, this paper focuses on this type of
strategy.

A motion planner is said to be strongly complete if it is guaranteed to generate a strongly
guaranteed strategy whenever such a strategy exists. At the eventual expense of strong
completeness, the problem of generatin,(J the sequence of preimages can be transformed
into’ the combinatorial problem of searching a graph by selecting motion commands from a
predefined discretized set. The root of this graph is the goal region G, and each other node
is a preimage region; each arc is a motion command, connecting a region to a preimage for
this command. Construction of this graph requires discretizing the set of possible control
statements. For instance, with velocity control and generalized damper control, it requires
discretizing the set of velocity orientations.

Exanple 6: Figure 10 illustrates the application of the preimage backchaining approach
to a simple example. Figure 10 a displays the initial region Z and the goal region s. Figure
10 b shows a preimage PI of G for the motion command MI = (GD(v& TCJ, where v1
is as shown in the figure and TC1 detects contact against G by measuring the horizontal
component of the measured reaction force. PI has no intersection with the initial region
1. Assume that we consider edge E, which is a subset of P,, as an intermediate target.
Figure 10 c shows a preimage P2 of E for M2 = (GD(v& TCZ). v2 is shown in the figure.
TC2 detects contact against E by measuring both the vertical component of the reaction
force. Since E is part of Pl, P2 is also a preimage of PI. P2 includes 1; so the problem is
solved. The generated strategy is [M2, Ml]. U

Some motion planning problems only admit conditional strategies (i.e. strategies with
conditional branching statements), or are more easily solved by generating such strategies.
The application of the preimage backchaining approach to the generation of conditional
strategies does not raise major difficulties, and will be considered in Section 17.
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Figure 10: Illustration of the Preimage Backchaining Approach
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.
A strategy with no iteration or recursion can only result in tllc execution of a bounded
number of motion commands. It may bc insufficient in the prcscncc of intinitcly r~la~~y
C-obstacle algebraic surfaces. IIowevcr,  since this is unlikely to happen in real world
problems, WC will not consider strategies with iteration or recursion in the rest of the
paper. The completeness of a planner restricted  to the clcass of motion problems that
can be .solvcd by executing  a bounded number of motion commands is called bounded
completeness.

Notice that the preimage backchaining approach can also bc useful to plan motions even
when thcrc is no uncertainty. Although thcrc exists more cffrcicnt path planning techniques
applicable to such situations, the approach may still present  some interest. Indeed,  since
the outcome of the planner is a channel formed by successive preimagcs, which is less
constrained than a unique path, it leaves the controller more opportunities for facing
contingencies  (e.g., unexpected obstacles) [S]. 11 owever, WC will not explore this aspect of
the approach further in this paper.

Note also that the relevance of the preimage backchaining approach is not limited to motion
planning. The principle of the approach may also be of interest for other types of action
planning problems, including the “robot planning” problems traditionally considered in
Artificial Intelligence [42]. Indeed, a preimage is nothing else than a precondition of a given.
postcondition (ideally, it is the weakest precondition). In motion planning, it has a strong
geometric flavor; but, in other domains, it may well have a more logic-oriented flavor. In
particular, goal regression, as presented in [54] and in [42] (Cha.pter S), is a similar technique
for planning in worlds represented as sentences in the first-order predicate language. ItA
resembles prcimage backchaining in that it consists of propagating goa.ls backward by
computing the weakest logical conditions whose satisfaction before executing a sequence
of actions guarantees the achievement of each of the goals after the a.ctions have been
executed.

In the following sections, we explore in detail the theory of the preimage backchaining
approach applied to motion planning. One of our underlying preoccupations is to attempt
to reduce the cost of searching the preimage graph, by analyzing the notion of maximal
preimage (with respect  to set inclusion). Indeed, intuitively, a large preimage has more
chance to include the initial region Z than a small one; in addition, if it is considered
recursively as an intermediate target, a large prcimage has more chance to admit large
preimages than a small one. Thus, considering larger preimages may reduce the size of
the search graph; in addition, it may have the side-effect of producing simpler strategies
(i.e., strategies with less motion commands). Another way of dealing with combinatorial
complexity would be to use heuristics for guiding the search; We will not explore it in this
paper because, except for simple cases, it seems that motion planning with uncertainty
tends to defy intuition and straightforward heuristics.
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7 Actual and Observed Trajectories

Given a starting position c:, the control statement  CS in a motion command M =
(CS,TC) specifics  a nominal trajectory of P. Iiowevcr, due to control errors, executing the
motion command may produce another trajectory, rL, called the actual trajectory. Fur-
th.ermorc, due to sensing errors, the termination condition TC may observe r* as another
trajectory, T, called the observed trajectory.

We represent an actual trajectory, Y, as (cr., f:.), where cf. and fp. are functions mapping
the clapscd time 61 since the beginning of the motion into the actual position of P and the
actual reaction force on P at this instant. Notice that this representation is redundant.
For example, in the mini-world, if CS = GD(v), fr.(Sl) is completely determined by the
actual velocity ?T. (the first d erivative of cl..), the friction cone on each C-obstacle edge,
and the damper constant. In particular, V6t >, 0:
- c;.(&) E c,,,, * f;@) = 0,
- cf.@t) E Gontact ---r, llf:*(WlI = 0 or angle(v(c:.(S2)),  f,‘.(B)) 2 $(cf.(dt)).

We represent an observed trajectory, r, as (c,, f,), where c, and f, are functions mapping
the elapsed time since the beginning of the motion into the measured position and the
measured force at this instant.

When planning a motion command to achieve some target, the motion planner has to
consider the set of possible actual trajectoriesthat can result from the execution of the
command, since they must all attain the target. It also has to consider the set of possible

1 observed trajectories, so that it can plan termination conditions that will guarantee the
controlIer  to terminate the motion when the goal is attained.

This leads us to introduce several notions, which are useful to formalize and explore the
preimage backchaining approach.

One notion is the directory of actual trajectories, which contains a description of all the .
possible actual trajectories that can be generated by executing a motion according to a
commanded control statement CS from a region S [39]:

-DEFINITION I: The directory of actual trajectories jar (z region S in C and
a  conirol  s ta t ement  CS is  the  s e t ,  d eno i ed  D’(S,  CS) ,  of  a/l the  t ra j e c tor i e s  r* of P
that would be generated by an ideal coniroller  executing every motion command h/I* =
(CS, false), with CS* E &s(CS), according to the ezact  specification of CS”, starting
from every position c: in S (i.e., c*(O) = C: E S). (The termination condition ‘false ’ is
the con3iant iermination condition which i3 never satisfied.)

The second notion is consistency between actual and measured data:

DEFINITION 2: A pair (c’, f’) of actual posiiion and force, and a pair (c, f) of measured
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position and jorce  nm consistent ;j and only if (c’, f’) E [l,(c) x U,(f).
.4n actual  tmjcctory  ;c* und an obscrvcd tralectory T arc consistent if and only  if, V6t 2 0:
(c;.(bt),  f,‘.(61)) E UC(c,(6t))  X Uj(fT(6t)). &,,;(r’) ‘AS’ (7 / TS anfi r arc consistent}.

Since the range of possible reaction forces at a position C‘ is F(c’), WC can also define the
consistency between an actual position and a pair of measured position and force:

DEFINITION 3: An actual  position C* and a pair (c, f) o/ mcamred position. and force
are consistent if and only if 3f’ E F’(c*)  : (c', f‘) and (c, f) are consistenf.
AI;,,  (c, f) dGf {cc / cm and (c, f) are consistent} -

In the mini-world, K~O,(c, f) can be computed as folloivs:

- if llfll ,< EJ then: &(c, f) = &(c> n(Cfree U Cantact);
- if llfil > q then: Xi,, (c, f) = c,, (4 n {c'* E contact / angle@+"), f) 2 #(c") + Of}.
The third notion is confusability between actual data:

DEFINITION 4: Two pairs (c;,f,*) and (c;,f,‘) are confusable if and only if Sl(c, f)
such that (cT,f,‘) E UC(c) x u,(f) and (~a, f;) E UC(c)  x Ill(f). Otherwise they are distin-
guishible.
Two actual trajectories r; and r; are confusable if and only it, V’6t 2 0: (cri (St), fzi(6t))
and (cz; (IL!),  f$(St)) are confusable. Otherwise they are distinguishable.

1; the mini-world, two actual trajectories T; and 72’ are confusable if and only if the
following two conditions hold simultaneously, V&t >, 0:
- distance(c;;(&t),  c;;(6t))  5 2p,-,
- if IIf:;(st)ll  > 2~j and iIff;(6t)ll > 2~f, then angle(f;;(6t),f:;(bt)) < 26,.

If two trajectories are confusable, the motion planner cannot be certain that the control&r
will be able to distinguish between them at execution time.

8 Formal Definition of Preimages
Given a target’ 7 in C and a motion command M = (CS,TC), a preimage P is such
that any possible motion of P executed according to CS, starting from within P, follows a
trajectory 7 that is guaranteed to attain 7 (target attainment) in such a way that TC stops

‘We use two different words, farget  and goal, which the reader may consider rather indistinctively. How-
ever, our convention is to use the world target  when we are only interested in a singIe  step of preimage
backchaining. We use the word goal  when we are interested in a complete motion planning problem, which
may, or may not, require muItiple-step  recursion.



P i n t o  t h e  t a r g e t  (fargel  recognilion). We formalize these tivo concepts - target attainment
and target recognition - below, by defining two predicates, Attaia and ~ck~ieve.

Let us denote  Attain(7,CS,S) the condition that a motion executed according to CS is
guaranteed to attain 7 if the initial position of P is in S. This condition can be formalized
as foIlows:

DEFINITION 5: Attain(7, CS, S) tsf [VT* f D'(S,  CS), 3t 2 0 : c;.(t) E 71.

Obviously: Attain(T,CS,S) -8 [Vc: E S : Attain(7, CS, {c:})].

A preimage P of 7 for M = (CS,TC) must satisfy Attain(T, CS, P), since any motion
from within P must attain 7. However, it is only a necessary condition. A region S
satisfying Attain(7, CS, S) may not be a prcimage of 7 for M because executing M
from within S may not be guaranteed to terminate in 7 (it may even not be guaranteed
to terminate at all!). Appropriate termination of M is under the responsability of the
termination condition TC, which plays no role in the definition of Attain.

The termination condition TC = tp(bt,  c[o,atl,  f[o,atl) only applies to observed trajectories.
D*(S, CS) contains possible actual trajectories. Each such trajectory, ?, may be observed
.by Te as any trajectory r in &&*).

Let us denote Achieve(7, M, P) the condition that the execution of IM is guaranteed to
terminate in 7 if the initial position of P is inside P. It is formalized as follows:

. DEFINITION 6:
Let M = (CS,TC) and TC = tp(61, c[o,at], f[o,&
Achieve(T, M,F) %IE [VT+ E D’(P> CS), V(7 E Kfraj(T’) Z

l 3 > 0 : tp(t, c(o,~l, ~o,,I) = true;
* let< = Inf {t/W, qO,tol,  f[O,tor>  = true}; cf.(t0)  E 71.

The formal definition of a preimage derives directly from the specification of Achieve:

*DEFINITION 7: A preimage of 7 for ihe motion command M is a7ty region P such
that Achieve(7,  M,p).

This formal definition does not provide an immediate practical method for constructing
preimages.  However, we can easily derive the following properties:

PROPERTY 1:
a- Achieve(T, M, P)e Vc: E P:Achieve(T,M,{c:}).

b- If ‘P is a preimage of 7 for M, then any subset of P is also a preimage of 7 for M.
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C- /f PI and F2 are both preimnge.~  of7 jor M, then PI U’P, i.9 a prcimage of7 for n/I.

These properties naturally lead to the notion of maximal prcimagc:

DEFINITION 8: The region Pmaz(7, M) ‘Gf {~:/Achieve(T,  M, {cJ})}  is ihe maximal
preimage of 7 for M.

As mentioned in the preceding section, the size of preimages is an important factor to
consider both for reducing the cost of searching the preimage graph, and for producing
simpler strategies. Since every prcimage of a target 7 is included in a maximal prcimage
Pm”‘(7, M), for some M, we arc conducted to investigate the parameters in M influencing
the size of Pmar(7, M).

The size of Pm,*(7, M) depends on both the ability of the control statement CS to attain 7
and the ability of the termination predicate TC to recognize achievement of 7. Dependence
on CS is an important topic relating motion control to motion planning. Because there
is currentiy no substantial results (either theoretical or practical), we will not discuss it
further in this paper. In the next four sections, we address the dependence of the maximal
preimage on the termination condition.

9 Power of a Termination Condition

The following definition specifies a partial ordering on termination conditions for a given
target 7 and a given control statement CS:

DEFINITION 9: Let Ml = (CS, TC1) and M2 = (CS, TCZ) be two m.otion commands
that only differ by their termination conditions. TCI is said to be more powerful than
TC2 for CS and 7 if and only if Pmaz(7,  Mz) C pmOz(7, M,).

Therefore, if TC1 is more powerful than TCZ for CS and 7, then VP C C: P is a preinlage
of 7 for M2 implies that it is also a preimage of 7 for Mi.

Example 7: Consider the point-into-hole example shown at Figure 11 a. The two hori-
zontal edges on the sides of the hole are semi-infinite lines? The target 7 is the edge at the
bottom of the hole and CS = GD(v). Assume perfect control (v’ = v), but no position
feedback (pc = oo) and no force feedback (q = co). The termination condition can only
recognize achievement of the target by measuring the elapsed time since the beginning of
the motion. Therefore, any finite region P inside the shaded area displayed in Figure 11
a is a preimage for the termination condition 6t 2 T, where T is the maximal amount

‘Since some of the edges are not finite, this example  occurs in a space that slightly differs from the
mini-world. However, all the other mini-world specifications apply.
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a b

Figure 11: Illustration of the Power of a Termination Condition

of time required for attaining 7 from within P. Consider the maximal preimage P, with
TC1 = [& > T,], and the maximal preimage Pz with TC2 = [& 2 T,], where T2 < 5!-‘r
(Figure 11 b). Clearly, TCt is more powerful than TC3 for CS and 7. P

. The power of a termination condition depends on both its arguments - i.e. the information
it has access to during motion - and the knowledge embedded in its predicate - i.e. the
information that is transmitted by the planner. We analyze these dependences  in the
following two sections.

10 Role of Arguments in a Termination Condition
The general form of a termination condition includes the following arguments: St, the
elapsed time since the beginning of the motion; c[~,QJ, the record of position sensing since
the beginning of the motion; and fp+q, the record of force sensing since the beginning of
the motion. However, a particular termination condition may use only a subset of these
arguments. The foIlowing definition characterizes several types of termination conditions
depending on the arguments they actually use [17]“:

DEFINITION 10:
“Actually1 our terminology slightly differs from the definition given by Erdmann.
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Figure 12: Illustration of the Role of History in a Termination Condition

A termination condii ion using c(St) and/or f(6t) is called a ierminaiion condition with
instantaneous sensing.
A tcrminatihn  condiiion using St is called a term.ination  condition with time.
A terminaiion  condition using c(t) and/or f(t), for some t f [0,6t[, is called a termination
condition with history.

In Example 5, we used a termination condition with instantaneous sensing, but without
time and history to illustrate the notion of preimage. Indeed, instantaneous position and
force measurements were sufficient to reliably recognize entry into the target. However, as
we show below, there are situations where time and history are useful (or needed!).

For instance, consider Example 7 again. Since no position and no force sensing are avail-
able, the motion command can only rely on the elapsed time Et to recognize achievement
of the target. Note that in this case the only termination conditions without time are
the constant conditions frue and false. Only true can stop the execution of the motion
command, and the largest preimagc of 7 for (CS,Irue) is 7 itself!L
The example below illustrates the role of history in a termination condition: .

Example 8: Consider the motion planning problem depicted at Figure 12 (this example
is extracted from [%I]): th e region Z of possible initial positions of P consists of two points
iI and i,; the region G of goal positions of P consists of two points g1 and g2. Assume that
CS = GD(v), with v pointing downward, perfect control, imperfect position sensing (pc is
as shown in the upper right corner of the figure), and no force measurement. Thus, there
are two possible actual trajectories depending on the initial position of P. Uncertainty on
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position sensing makes the two trajectories distinguishable only during the interval where
they arc distant from each other by more than 2pC. Thus, by remembering sensing history,
the termination condition can terminate the motion inside the target.  ~1 spccificstiorl  for

c such a termination condition is the foIlowing:

then ifxc(6t) - xc; 5 2/r,
then fZag - 1;
else flag - 2;

else if ((fZag = 1) A (61 = T,)) V ((f Zag = 2) A (61 = T2))
then rcturn(true);
else return(false);

where:
- xc(&) is the z-coordinate of the measured position of P along the horizontal z-asis;
- xc; is the s-coordinate of the actual position of ii along the z-axis;
- ?k is the amount of time to attain point Az~ or A3 (see Figure 12), depending on whet
the motion starts from ii or from i2;
-x(i= 1 or 2) is the amount of time necessary to travel from i; to g;. 1

ler

-Notice that the above example could not be solved by a three-motion strategy (left-down-
right) avoiding all the obstacles, because the relative position of i2 and 92 is different from
the relative position of il and 91. It could also be solved, however, by generating a con-
ditional strategy (see Section 17) with two motion commands, none of them including a

. termination condition with history. However, the important event (that the two possible
trajectories become distinguishable) is used to build the branching statement in the strat-
egy. Thus, history is incorporated in the control structure of the motion strategy rather
than in the termination condition. In fact, this seems to be a general way of remembering
sensing history, removing the absolute need for termination conditions with history.

Termination conditions with instantaneous sensing, but without time and history, can be
at best as powerful as termination conditions with instantaneous sensing and either time,
or history, or both. Nevertheless, they seem sufficient for solving many realistic motion
-planning problems.

I
.

11 Termination Conditions With State

In this section, we explore how the planner can transmit some knowledge to the controller
in the termination predicate.

Remember that given a goal region G and an initial region 1, preimage backchaining
consists of constructing a sequence of preimages PI, P2, . . . . Pg such that: (1) P; is a preimage
of Pi-1 for a selected motion command Mi; and (2) 1 C Fq. When Pi is constructed, it is
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.
known by rccurrcncc that if the recursion upwinds  successfully, P will bc inside ‘P; LeTore
n/r; is executed.  Thus, if tlie planner W;LS  able to construct ‘P; and Mi sirnultnncorlsly,  it.
could embed this knowledge into tile termination predicate tpi of TC, jtllc tcrrllination
condition of Mi). This knowledge might contribute to augmenting the power of TC;.

This is the idea analyzed in this section. ~1Ithough the outcome is not a prnctical means
for constructing the resulting termination predicate, it is useful to establish limits on
termination conditions and preimages, before we explore techniques for constructing them.

Let us introduce the notion of termination condition with state:

DEFINITION 11: Let S be a region in C,  T a targef,  and CS a conlro/  slalcment.
TC; = tp:(&, CI~,~~J,  fIo,st]) is specified as follows:

1. c t- D*(S, CS).

1 2. For every 6t > 0 do:

l For every r* in L, if (cf.(&t),f,‘.(bt)) 4 LiJc(6t))  x  Uf(f(st)), then remove r*
from C.

\ _ l $  + {c ;@ ) / r * E c }. I f  Q C_ 7, ihen  eva luate  TCZ to  t rue ;  ofherwise
evaluate io false.

TC; is called a termination condition with state, and tp$ a termination predicate
vith state. We denote Mz = (CS, TCS).

TCZ embeds in its predicate the knowledge that the only possible actual trajectories are
those which may be produced by CS starting from within S. Indeed, the evaluation of
the termination condition does not consider trajectories that are not in z>*(S, CS), while
some of these trajectories might be confusable with trajectories in D*(S, CS). Thus, there
may be cases where a termination condition not embedding the above knowledge is not
able to recognize achievement of 7, while TCZ can.

Now suppose that the planner considers a region P as a candidate preimagc of 7 for aL
motion command whose control statcmcnt is CS. Using the termination condition with
state, it may attempt to construct the preimage of 7 relative to P:

DEFINITION 12: The region llp(T, MG) = {cz E P/Achieve(T, M& (~1)))  is  called
the preimage of I relative to P (for ihe conirol  statement CS in MG).

Obviously, if P = IIp(7, MG), then P is a preimage of 7 for M& Furthermore, we prove
the following lemma:
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LEMMA 1: I-J’P # Ilp(7, Ad;). fh en fhere  eztsts  no fermtnafion condifion  TC such fhaf
P is a  prcimngc  ofI Jar LM =  (CS,TC).

Proof: First, note that by definition: IIp(7, MG) C ‘P. So, if P # IIp(7, MS), it implies

that P - I-IF(7, M;) # 0.

Now assume the existence of a termination condition TC = tp(W q0,6tl, f[o.atl) such that P
is a preimage of 7 for M = (CS,TC), while P # IJp(7, 1MG). Consider  a sample motion,
commanded according to CS from an initia1  position inside P- IIp(7, IV:). Assume that
TC terminates this motion (in 7), while TCG would not have terminated it. Such a sample
motion necessarily exists, otherwise P = Il~(7, MG). Let us denote r the observed trajec-
tory and f. the instant when TC becomes true. Thus to = Inf {t/tp(61, c,[~,~~I, f,[o,ht]) =
t rue } .

Since TCG would not have terminated the motion at to: 37; f D’(‘P,  CS) such that
7- E L&i), h 1w i e c;$to)  4 7. This falsifies the condition Achieve(7, M, P), and

therefore contradicts the initial assumption that P is a preimage of 7 for M. 1

An immediate consequence of the above lemma is the following theorem:
T

‘THEOREM 1: A region P is a preimage of a targef 7 for a confrol  sfafemenf  CS if
and only if P = lIp(7,Ms), where MG = (CS, TCG). The equation P = IIF(T, MG) is
called ihe characteristic equation of preimages.

.
This theorem means intuitiveIy that there is no way to provide a termination condition
with more useful knowledge than is in TC& Note however that we cannot say that TCG
is the most powerful termination condition for CS and 7. Indeed, TC; does not denote
just one termination condition, but an infiniQ  of them (one for each region in C). This is
due to the fact that the termination predicate tp$ is the value of a function of P. This
value (i.e. the predicate itself) is fixed only when P is known.

The notion of termination condition with state can easily be generalized to termination
conditions without instantaneous sensing, history or time. For instance, a termination
kondition  TCs with state and time, but without sensing, i.e. without history and instan-
taneous sensing, is specified as follows:

1. c + V’(S, cs).

2. For every 6t > 0 do:

l Q - {c#t)/r’ E L}. If Q c 7, th en evaluate TCS to true; otherwise
evaluate to false.

In Example 7, the termination condition 6t 2 T is equivalent to TCs for a certain S easily
related to ht.

I 29



1
V

Figure 13: The Point-onto-Point Problem

12 Maximality of Preimages.
Consider two regions Pi and P2 that satisfy the characteristic equation of preimages for
a target 7 and a control statement CS. In general, their union is not a preimage of
7. Indeed, P, and p2 may be preimages for different termination predicates, and there
may exist no termination predicate capable of recognizing achievement of 7, if the initial
position of P is only known to be within Pi U P2.

In correlation with this fact, preimages of a target 7 for a given control statement CS
do not admit a unique maxima1 element (with respect to set inclusion) ouer all possible
termination condiiions  (as we saw in Section 8, a unique maximal preimage exists when
the termination condition is given in addition to the control statement). The following
two examples show that: (I) there may exist no maximal prcimage, and (2) if there exists
one, there may be an infinity of them.

Example 9: Let us consider again the point-into-hole problem under the same conditions
as in Example 7. There exists a non-countable infinity of preimages, none being maximal.
The union of al1 these preimages, which is an un-bounded region, is not a preimage; indeed,
no termination condition can terminate reliably a motion starting from anywhere in this
region, just by waiting a predefined finite amount of time. I

Example 10: Now consider the point-ontepoint  problem depicted at Figure 13, with per-
fect generalized damper control, commanded velocity pointing downward, and no position
sensing. The goal region consists of a single point g. Each point on the vertical half-line
above g is a maximal preimage. There is a continuous infinity of them. m
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It is rccuorlnblc  however to expect that if free space is bounded and if there are a finite num-
ber of algebraic constraints on the motion of P irnposcd by t!lc surfaces of the obstscfes”
then thcrc exists at Ic<ast one maximal prcimagc over a11 possible termination conditions.

13 Preimage Computation

.

Within the prcimage backchaining framework, WC would like to be able to compute a.
complete description of the preimagcs of a target 7 for a control statement CS, i.e., a finite
description of all the preimages. For example, if there exists a unique maximal preimage,
then its description subsumes all other preimagcs, since any prcimage is a subset of the
maximal preimage; thus a description of the maximal preimage is a complete description
of the prcimagcs. If there exist no maximal prcimagcs or several of them, then we may
hope that the set of preimages still admit a finite description usable by the preimage
backchaining algorithm for building the search graph; for instance, in Example 9, it would
be “every region included in the infinite shaded area”; in Example 10, it would be “every
point along a half-line drawn upward from the goal point g”.

Unfortunately, neither the specification of the predicate Achieve, nor the characteristic
equation of preimages, provide an algorithm for computing preimages, maximal or not. In

- fact, we know no generally applicable algorithm for computing a complete description of
preimages, at least for a realistic type of control statement. We even do not know whether
it is possible to produce such an algorithm. In order to realize the difficulty of computing
preimages, one may consider the supposedly simpler problem of constructing an algorithm.
for verifying that an input candidate region P is a preimage of a target T for a motion
command M. Even this problemstill has no known general solution. In principle, it requires
to check that when any observable trajectory r in (7 / 3? E P(P, CS) : r E K~,,;(?)}
terminates, then every actual trajectory r* in {r’ E V*(P, CS) / 7 E &&*)} has
attained 7; but, there may be a non-countable infinity of possible actual and observable
trajectories. In general, it is not kndwn how to characterize them finitely.

Despite the above remarks, there exist algorithms for constructing preimages. Some obvi-
ous ones work under very restrictive assumptions on control and/or sensing, for example

* that control is perfect. We will describe no such algorithms, but it is easy to imagine
simple ones by looking to some of the examples given above. Their applicability is very
limited. Instead, in the next three sections, we present an algorithm, which imposes no
such limitative assumptions, but which does not usually produce complete description of
preimages. Using this algorithm may result in a non-optimal overall backchaining preim-
age program. It may also augment the incompleteness of this program12.  However, its

“Erdmann [17] gives an example showing that in the presence of an-infinite number of C-obstacle algebraic
surfaces in a bounded free space there may exist no maximal preimage.

12Another  source of incompleteness is the discretization of control statements (see Section 6).
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,zpplicability is quite general.

. .

14 Backprojection from Target Kernel

This section and the next two present a technique for constructing prcimngcs, which may
not be tiaximal. Below, we introduce and formalize the basic ideas undcriying  this tcch-
nique. The two subsequent sections describe algorithms performing the rcquircd  geometric
computations in the mini-world.

The technique presented consists of: (1) identifying a subset of the target (the A~crncT)
such that if it is attained then achievement of the target is recognizable by a computable
termination condition without state, history, and time; and (2) determining a region (the
backprojection) from which a given motion command is guaranteed to attain that subset.

We already used F’(c’) to denote the range of reaction forces that can be generated at
position c*. Let us now denote J&(c*) the range of reaction forces that can be generated
at position c* when the specified control statement is CS. VCS : ?&(c‘) C F’(c’). In
particular, let CS = GD(v); if c* E Cjree,  then F&,)(c*) = (0); if c* E Cconlactr  then
3&&c’> = {f’ / 3v* E z&(v) : f* = f&&*, Bv')}, where fT&c*, BY*) is the reaction
force to Bv,’ at c*. frcnct (c*, Bv’) depends on the friction cane at cc as follows (see Figure
4): if‘Bv* points inside the friction cone, then f:cact = -Bv’; otherwise f:eact is equal to
the projection of -Bv*, perpendicular to the cone’s axis, onto the closest extreme ray of
the cone.

\ye can define the confusability of two actual positions for a given control statement as
follows:

DEFINITION 13:  Lef c; a n d  c; b e  two a c t u a l  p o s i t i o n s  i n  Cirec U Cconlact, a n d  C S
a conirol  statement. cl and c; are CS-confusable ij and oniy if Elf; f 3~&;) and
f.J E 3&(c;) Juch ihaf .(ci,f,‘) a n d  (ca, f;) a r e  c o n f u s a b l e .  O t h e r w i s e  t h e y  a r e  CS-
distinguishable.

Notice the role of CS in this definition. If both c; and cf are in Ccontoct, we may expect
detectable reaction forces, which may make the two positions distinguishable. However,
a position in Ccontaet entails a detectable reaction force only if P is guaranteed to push
suficiently hard on the C-obstacle’s boundary at that position. In order to know if it
is the case, CS must be taken into consideration. For instance, if CS = GD(v), the
reaction force on P at a position co in Cconloc( is guaranteed to be detectable if and only if,
Vv’ E U”(v) : l~fJ~ad(c*, Bv’)ll > 2e,. Thus, two positions c; and c;, which are closer than
2p, from each other, are GD( v)-distinguishable if and only if, Vv’ E UJv), the following
three conditions hold:
- lKa&;r Bv*>ll > 2%



.

Figure 14: Kernel of a Rectangular Region in Free Space

- wW;e,,,(c;,  Bv’), f,‘,,,(c;, Bv’)) > 25.
The third condition is equivalent to: Qngfe(v(c;), I) > 20, + $(c;) + +(c;).

If two positions are CS-distinguishable, then it is guaranteed that the controller will be
able to distinguish between them during a motion according to CS.

The kernel of a region for a given control statement is defined as follows:

DEFINITION 14: Let S be a region in Cjree  U Cantact and CS a control staiement. The
kernel of S for CS is the subset of S defined as: Xcs(S) dgf  {c’ E S / Vc” f C - S: c*
and c’* are CS-distinguishable).

Thus, &s(S) is the subset of S which consists of every point in S that, given CS, cannot
produce a measured position and a measured force consistent with those produced by a
point outside S. The dependence of the kernel of a region on the control statement must
be emphasized, since it seems to have been ignored by previous authors (e.g., [17]).

Example 11: Consider the target 7 in Figure 14. It is a rectangular region in free space.
&+,)(I), Vv, is obtained by shrinking 7 by 2p,. Note that it is important that 7 be
shrunk by 2p,, and not just by pc. Indeed, as illustrated by the figure, any position cc
closer than 2p, from the boundary of 7 may produce a measured position consistent with
that produced by a position cl outside 7. 1

Example 12: The target 7 in Figure 15 a is an edge in contact space adjacent to two
other edges Er and E;. The angle between 7 and Er is smaller than 26,, while the angle
between 7 and Ez is greater than 20,. CS = GD(v), with v pointing downward. Assume
that, Vv’ E Uv(v), VC* E 7 Ufl U&: liff;ocl(c*, Bv*)~( > 2~1. X..D<~,(~) is drawn in bold
line in Figure 15 6. The portion of 7, which is closer from El than 33, has been removed
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Figure 15: Kernel of an Edge in Contact Space

becausk actual reaction forces generated by contacts with 7 and with Cl can produce the
, same values on the force sensor. 1

P R O P E R T Y  2 :
- % and S, 5 Cfree U Cantad : Xcs(&) u &s(s,) c &s(& u sz).
- If SI and S2 are non-connected, ihen  A’&?~) &l&S~) = X&S1 U $9.

If a motion command is guaranteed to attain a point in the target kernel, then it is possible
to reliably recognize achievement of the target when the only positions that are consistent
with instantaneous sensing are in the target. This is illustrated by the following example
and formalized further.

Example 13: Let us consider Example 11 again. If a motion is guaranteed to enter the
kernel XV(~,(~), then it is also guaranteed that at some instant SI > 0 during the motion,
the measured position ~(61) belongs to the region denoted I_,, in Figure 16. This region is
obtained by shrinking 7 by pC. When ~(61) E T_,, is true, it is guaranteed that the target
7 has been achieved, since no actual position of P outside 7 is consistent with c(&) (do
not confuse consistency and confusability!). I

Now, in order to characterize the motions which are guaranteed to attain the target kernel,
let us introduce the notion of backprojection:
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Figure 16: Recognition of Achievement of a Target in Free Space

DEFINITION 15: Let  7  be  a  targe t  in  C  and  CS be  a  contro l  s ta t ement .  A  back-
projection from 7 for CS is any region 23 such that Attain(7, CS, B). Bmaz(7, CS) ‘kf
{c:/Attain(7, CS, {c:})} is th e maximal backprojection from 7 for CS.

The nption of backprojection differs from the notion of preimage because it does not address
-the target recognition issue. In the following, we only consider backprojections that are
maximal. Thus, often, we do not mention that they are maximal.

Example 14: Figure 1’7 a shows the backprojection from a segment? 71 in free space.
Any motion according to V(v) startin g from within the backprojection is guaranteed to.
attain the target segment, although, due to position sensing uncertainty, no termination
condition will be able to recognize it. Figure 17 6 shows the backprojection from an edge
72 in contact space, for GD(v). I

The following theorem can easily be proven from the previous two definitions:

THEOREM 2: rjmaz(X&7),  CS) is a preimage of 7 for  M = (CS,TC), where TC
= [q,,(c(w, f(W c 71.

‘Proof: According to the definition of a backprojection, any execution of M from within
P”“(&j(‘;r), CS) is guaranteed to enter &s(7). In addition, whenever the effector
point P is actually in X&T), the termination condition TC specified in the theorem is
guaranteed to be satisfied. Thus, any execution of M from within Bmaz(&s(7), CS) is
guaranteed to terminate before the motion has traversed the target. Since the termina-
tion condition cannot be satisfied as long as P is not actually in 7, no execution of M
can terminate before entering 7. Thus, Bmaz(&(7), CS) is a preimage of 7 for M =

130nr  convention is to use the word stgmenf  in free space and the word edge in contact space.
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Figure 17: Examples of Backprojections

(CS,TC). 1

It is interesting to remark that the termination predicate is independent from the control
statement.

If we have at our disposal an algorithm for computing target kernels (see Section IS),
another one for computing backprojections (see Section Is>, and a third one for computing
Kior(c, f) (see Section ‘T), the above theorem directly provides a technique for computing
preimages. Obviously, however, the technique is not guaranteed to construct a prcimage
whenever one exists. For instance, in example 10, the goal region consists of a single point
g in free space. Xv+>({g}) = 0 and Bmar(X~~V)({g}), V(v)) = 0. More generally, in the
mini-world, any target in free space having one of its dimensions smaller than 2p, has an
empty kernel. Furthermore, when this technique generates a preimage, this preimage may
not be-maximal as illustrated by the following example.

Example 15: Let the target 7 be the edge in contact space shown in bold line at Figure
18 a. Assume CS = GD(v), where v points verticalIy downward. Figure f8 b displays
the backprojection Pr (shaded region) from the kernel of 7. Figure 18 c displays the
backprojection P2 (shaded region) from 7. Pz, which includes Pr, is a preimage for M =
w(v),[llfw)ll > 91). 1

One ad-hoc way to improve the backprojection-from-kernel technique is to complement
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Figure 18: Backprojection from the Kernel of an Edge in Contact Space

it by predcfined solutions for well-identified particular cases
the above two examples. Whenever such a case is identified,
is retrieved and selected; in a11 other cases, the more general
techn+e is applied.

such as those presented in
the corresponding solution
backprojection-from-kernel

In the next two sections, we give two algorithms, one for computing the kernel of a region,
the other for computing the maximal backprojection from a region. The applicability
of both algorithms is limited to the mini-world with generalized damper control. The

4 computation of KiO, (c, f) in the mini-world has already been presented in Section 7.

15 Computation of Region Kernels

In this section we describe an aIgorithm for computing the kernel k;(S) = &,,,,(S) of
a closed polygonal region S in the mini-world for generalized damper control. Examples
11 and 12 shown above already illustrated the c&es of a region in free space and an edge
in contact space. Here, Figure 19 is used to illustrate the computation carried out by the
algorithm with a region lying both in free space and in contact space.

The algorithm consists of the following two major steps. Comments are printed in italics.
The example shown at Figure 19 is commented next to the description of the algorithm.

Algorithm TK:

1.. (See Figure 19 b)

l Decompose S into convex poIygona1 regions S; (i = 1,2, --.) such that Ui si = S.
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Figure 19: Kernel of a Region Lying in Both Free Space and Contact Space
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l Represent every Si as the conjunction of the linear constraints imposed by ever y
Iinc supporting a segment of Si�S contour, i.e.:

si = &;[ z cosok,  + y  s i n  ak, 2 dk,]-

l Ei,ki t- segment of S;‘s contour supported by the line [z cos ok, + y sin CY~,  =
dki]-

l s;� - /jk ,☯z c o s o k ; + y sin a k ; 2 dki - Pk;], where Sk; = 2p, if Ei,ki C C/r,,, and

(This operation results in shijting  in by 2p, every segment of Si ‘s contour, if
it lies in free space. Indeed, every position in Si closer than 2p, from such
a segmeni is confusable with a position in free space on the oiher side of the
segmeni. Th is is not the case if the segment is an edge in contact space, since the
oiher side of such an edge is inierior io a C-obsiacle  and so, is not accessible”.)

. K,(S) c- u&f.

2. (See Figure 19 c)

~ l Mark every edge I C Ccontact  such that:
Vc’ E E --r’ Vv’ f zqv) : I[f;&c*, Bv’)[[ > 2Ef.

0 Ej (j = 1,2, . ..) f- edges of the polygon bounding S, which are in Cantact and
are marked.

l Compute q as follows:
- c’j’ t I;
- for every marked edge E C Ccontad -S, such that angle@(l), v(c’j)) 5 281, do:
q t- E! - 65 @ ~2,,(0)-

i Xv(S) ‘, Xv(S) U (Ujfj).

Example 16: Consider Figure 19. The region S is a triangle (Figure 19 a) and v is
pointing downward.

‘At step 1, a single region Sl = S is considered. Two segments of &‘s contour, El and &,
are situated in free space; the other segment, E3, is an edge in-contact space. Step 1 shifts
II and & in by 2p,, while it leaves E3 unchanged (the thickness of the obstacle is greater
than 2~4. Figure 19 b displays Sl.

At step 2, three edges in contact space, E3, Ed and E5 are marked; indeed, given v, they
are the only ones guaranteed to produce a detectable reaction force. The angle made by
E3 and E4 is less than 26,; the angle made by & and E; is greater than 26,. Step 2 removes
the portion of E3 that is closer from Ed than 2p, (see Figure 19 c).

“‘Actually, this is true only if the thickness of the C-obstacle is greater than Zp,.
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Figure 19 d shows the computed kernel  of S for GD(v). 1

Let n be the number of vertices in contact space, and q the number of vertices of 3‘. The
time complexity of Step 1 of algorithm TK is the complexity of the decomposition of S
into convex polygons. The complexity of a non-optimal decomposition is O(q logq)  Es?].
The time complexity of Step 2 is O(IL x q). In general 71 >> q, and the overall compleAxity
of TK is O(n x q).

16 Computation of Maximal Backprojections
In this section WC describe an algorithm for computing the maximal backprojection from a
region S in the mini-world for generalized damper control. \tTe first present an algorithm
applicable when S is either an edge in contact space or a segment in free space. Then,  we
propose an algorithm for treating the case when S is a collection of edges and segments,
or a two-dimensional region. The first algorithm is basically a more detailed version of the
algorithm desciibed  by Erdmann [17,18].

Let us first consider a region S, which is either an edge in contact spaceIs, or a seg-
ment in free space. The control statement is GD(v). The algorithm below computes
Bmor(G, GDfv)). I t consists of five major steps. Step 1 eliminates some non-interesting
cases. Steps 2 through 5 actually compute Bmar(S, GD(v)) and they are illustrated by
Figure 20.

Algorithm MBl:1

1. (This siep is here for completeness. It treats some non-interesting cases, rcsulling  in
B-‘(S,  GD(v)) = S.)

If one of the following two conditions i&not satisfied:

(1) the negative velocity cone at any position on S lies entirely in one of the two
sides (open half-planes) of the line supporting S,

(2) if S C Ccontact, then the negative velocity cone at any point on S lies within the
-side pointed out by the outgoing normal to S,

then B”“” (S, GD(v)) + S, and exit.

2. (This steps consists of marking every C-obstacle’s vertex where P could eiiher  stick,
or slide away from S. li is illustrated by Figure 20 a.)

“If we want S to be a portion of an edge, we first partition the edge into shorter colinear  edges, such that
one of the new edges is exactly S.
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l &lark every vertex  ,Y of every C-obstacie, which satisfies either one of the fol-
!owing two conditions:

(1) 3v’ E z&(v) :. v- points inside the friction cone at S, and S is not an
extremity of S,

. (2) AY is the extremity of both S and another edge Cc, and 3~. E U"(v) : VI
points outside the friction cone at any position on E, and its projection on 5
points away from G.

0 If S is a segment in free space, then treat its extremities as fictitious vertices,
and mark both of them.

3. (The contour of Ihe backprojeciion from S is made of S itself, portions of C-obstacles ’
edges, and poriions of ihe ezireme  rays of Ihe negaiiue velociiy cones erecied  at the
marked verlices.  This siep contributes in building Ihe contour by erecting the extreme
rays and determining their inieresling  poriions. Ii is illustraied  by Figure ZO 6.)

l Erect the two extreme rays of the negative velocity cone at every marked vertes;
&R t list of erected rays; activate every ray in fX.
(Poriions  of a ray can be active or inactive. Aciivating a ray makes the whole
half-infiniie  line aciive.)

l While LR # 0 do:

- R + first ray in LR; remove R from CR.
- If R intersects either S, or the active portion of another ray, or a C-

obstacle’s edge, then:

- Z1 + nearest intersection point from the marked vertex;

- inactivate R beyond 2,; denote 21 as an extremity of R; if the intersection
at Z1 occurs with a ray R’, remember 72’ as the reason for inactivating TL
beyond 2,;

- if R is remembered as the reason for inactivating a ray 72” beyond point
Z2, and if Zz is situated on the now inactive portion of 72, then: erase Zz
as an extremity of 72”; reactivate 72” beyond 22; and reinsert 72” into LX.

l Whenever the extremity 2 of the active portion of a ray is located on a C-
obstacle’s edge, partition this edge into two colinear edges adjacent at 2.

(Figure 20 b shows ihe erected rays. The aciive portions of them are represented
as bold lines. The lowest edge of ihe upper C-obstacle is decomposed into smaller
colinear edges.)
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4. (This step gives an orieniation lo each of Ihe lines fhai  may parficipale  lo ihe contour
of the backprojcciion from S. It prcparcs  step 5, which consists  of tracing along thcsc
lines. See Figure 20 c.)

o Orient S in such a way that any V* E &,(v) points toward the right of this
orientation.

o Orient each ray so that the interior of the negative velocity cone Iies on the
right-hand side.

l Orient every edge of every C-obstacle’s contour so that the ingoing normal to
the edge points toward the right.

5. (This’ siep  consisis  of tracing oui ihe backprojection region by tracing along some
of ihe lines according to iheir  orientafion. During this process, ihe backprojection
always lies on ihe lefi  side of ihe line that is currently traced. We get a list of ihe
successive vertices on the contour of the backprojeciion; this lisi is denoted BB. See
Figure 20 d.)

l FO + initial extremity of S (according to the orientation given to S);
. & +- final extremity of S;

cc c- s ;
L--l;dL3 + (Fo, FL).

l While F; # Fo do:

- Cc t first active portion of a ray or C-obstacle’s edge starting from Fi on the
left of Cc;

- i t i + 1; .Fi t final extremity of I; insert Fi at the end of 86.

l Bmar(,S,  GD(v)) + ?oZygo@B),  where Polygon(8B)  is the function that eval-
uates to the closed polygonal region bounded by the contour linking the vertices
listed in dB?

-Let n be the number of vertices in contact space. Step 2 of MB1 marks O(n) vertices.
At Step 3, O( ) yn ra s are erected. Each one has O(n) intersections with other rays. These
intersections can all be computed at the beginning of the iteration in the second operation
of Step 3. During the iteration, each ray is reinserted O(n) times in CR. Thus, the
complexity of Step 3 is U(n’). Th is is also the complexity of the overall algorithm.

Consider now a region S = Sr U . . . U Sp, where S;, Vi f [l, q], is either an edge in contact
space, or a segment in free space. For all i = 1 to q, we can compute Bmar(Si,  GD(v)) using

“Computing the m aximal backprojection aa a clo~cd  polygonal region results in inserting some portions
of rays abutting at sticking edges. However the probability that a motion reaches such a vertex is zero.
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Figure 21: U; f3‘na,(S;, GD(v))  ~ tjmar(Ui  So, GD(v))

algorithm MCl. Obviously, Ui Bmar(Si,  GD(v)) is a backprojection from S for GD(v)..
But, as shown by the followin,c~ example, it may not be the maximal one. Indeed, there may
exist positions in C from where we are certain that a motion according to GD(v) will attain
either one of the Si, without knowing which one. Such positions are in Bma*(S,  GD(v)),
but in none of the Bmar(Si,  GD(v))..
Example 17: Consider the case where C-j,,, = C. Let S be made of two segments SI and
S2 as shown in Figure 21 a. Obviously the maximal backprojection from S1 U S2 with v
pointing downward (shaded region in Figure 21 6) is larger than the union of the maximal
backprojections from St and Sz (shaded regions in Figure 21 c). 1

When a region S consists of several edges and/or segments Si, the backprojection from
S for some commanded velocity v is a strict superset  of the union of the backprojections
from the individual edges/segments Si, if and only if there exist i and j such tha.t: a
portion XIX2 of a right rayL7 bounding B”“‘(S;,  GD(CS)) and a portion YrYz of a left
ray bounding t3mar(S’, GDfv))  tin ersect at a point 2, within the two portions or at one
of their extremities X2 and/or Yr (see Figure 21 c). Let us denote XzYz the combination
of the two segments XI2 and ZV,, which do not lie in the interior of Bmar(Sj, GD(v))
and Bmar(Si,  GD(v)). In order to obtain the maximal backprojection from S, we have to
complete the union of the maximal backprojections from the individual edges/segments S;
by the maximal backprojection from Xlz4Y, (white region in Figure 21 c), for every such
intersections.

“We can always distinguish between the right and left extreme rays of the negative velocity cone.
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Tile computation of the maximal prcimage of AYzYz is achieved by the algorithm ~32
bciow, ivhich is a direct adnptation of MBl.

Algorithm MB2:

1. l hIark every vertex of every C-obstacle as in Step :! of 1MBl.

l n/fark X1 and Yz.

2. Erect rays, activate portions of rays, and partition edges exactly as in Step 3 of
MBl.

3. Orient lines exactly as in Step 4 of MBl.

4. l F. + Y2; Fl c- 2; F2 + Xl ;

‘5 +- FlF2;

i (- 2; 8t3 - (El, F1, a;
l While F; # Fo do:

- Cc + first active portion of a ray or C-obstacle’s edge starting from Fi on the
: left of E;

- i t- i + 1; Fi t fina extremity of I; insert Fi at the end of dt3.

l Bmaz(XzY2, GD(v)) t- Polygon(8B),  where Polygon(%) is the function that
evaluates to the closed polygonal region bounded by the contour linking the
vertices listed in df3.

The complexity of MB2 is the same that the complexity of MBl, i.e. O(n2), where n
is the number of vertices in contact space. However, since MB1 is applied before MB2,
results of computations done by MBi can be saved, and re-used at Steps 1, 2, and 3 of
M B 2 .

Let S=IJSi b e a finite union of segments in free space and edges in contact space. The
L maxima1 backprojection from S is computed by the algorithm ,VB3 below.

-

Algorithm MB3:

1. Compute B = IJ amaz(S’i, GD(v)) using MBl.

2. While the boundary of D includes two successive segments Xi2 and ZU,, such that
XJ is supported by a right ray and ZY2 by a left ray, do:

B + f3 u 8”“”<xBi, GD(v))
where f3”“’(GR2>  GW)) is computed using MB2.
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Figure 22: Illustration of Algorithm MB3

When MB3 terminates, f3 = Bmaz(S, GD(v)). Let n be the number of vertices in contact
space and q the number of edges and segments in S. The time complexity of MB3 is
U(q x n2).

Example i8: Figure 22 illustrates the computations performed by MB3. The region S
consists of three edges Si, S2, and &. The commanded velocity points downward. Step
1 computes the’ regions marked I, 2 and 3; these are the backprojections from Sr, S2,
and &, respectively. Step 2 first computes the regions marked 4 and 5. This creates two
intersecting right and left rays, so that Step 2 iterates and produces the region marked 6.
The resulting backprojections is the union of regions 1 through 6. 1

Finally, if S is a closed region bounded by straight edges and/or segments Si, i = 1 to q (see
for instance the kernel region at Figure 19) then Bmar(S, GD(v)) = am”‘(USi, GD(v)),
and can be computed using MB3.

Remark: MB3 is to be applied to a region S, even if it is made of a single segment/edge,
as illustrated below. Figure 23 a shows the backprojection from a single edge S computed
by MBl, and Figure 23 b shows the backprojection computed by MB3. In this example,
the-difference between the two backprojections is computed at Step 2 of MB3. This case
can happen only when a vertex is the extremity of two edges along which the motion is
guaranteed to slide. Including the difference into the backprojection is consistent with
computing backprojections as closed regions.
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L Figure 23: A Difference Between MB1 and MB3
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Figure 24: The Point-onto-Hill Problem

1 7 Generation of Conditional Strategies

The simple kind of graph searching algorithm used in Section 6 to introduce the preimage
backchaining approach can only generate linear strategies, i.e. sequences of motion com-
mands. However, some motion planning problems only admit conditional strategies for
solutions. In addition, as suggested in Section 10, conditional strategies are an alternative
to the use of termination conditions with history. In this section, we extend the original
framework in order to make it possible generating conditional plans.

Let us start with an example illustrating the need for conditional strategies. We use
this example to sketch an approach for planning such strategies. We give a systematic
presentation of the approach next to the example.

Example 19: Consider the two-dimensional point-ontehill problem depicted in Figure
24 a (this example is drawn from [33]). Th e “hill” consists of three edges, the top edge
G, the left edge El, and the right edge &. Both the left and the right edges are infinite
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haif-lines abutting to Lhe top edge .I8 The problem is to mow the reference point, P onto
G. TLC initial region Z is all free space. ‘IVe assume perfect =cneralizcd  damper control

( V- = v), no position feedback (pC = cc). perfect force sensing (~1 = 0 and 6, = 0), and
frictionicss edges (VC* f Cfcontact : #(c*) = 0).

A motion of P with a commanded veiocity pointing downward until contact (i.e. until f
> 0) is guaranteed to terminate in g U II U,‘,. Then, the orientation of the reaction force
makes it possible determining which of the three edges has been actually attained. If it is
the top edge, the goal is achieved; if it is the left edge, then P must be moved by sliding
along Cc1 towards the right until the orientation of the measured force shows that P is in
g; if it is the right edge a sliding motion towards the left is needed.

A conditional strategy is necessary for solving this problem. IdealIy,  it may be generated
as follows:

- First, the planner considers the goal G and generates two preimages of G, P, and pZ,
for two motion commands, M1 and M2 (see Figure 24 b); M1 = (GD(v,), TC), where vl
points toward the right, slightly downward, as shown in the Figure. M2 = (GD(v,), TC),
where v2 points toward the left, slightly downward. In both motion commands, TC =
[angle(f(62),  V(G)) = O]. It turns out that E1 C PI and E2 C P2. So, E1 is a preimage of G
for Ml, and & is a preimage of g for M2.

- Then, the planner considers {g, El, &} as a set of targets. It generates a preimage P of
~u&uE’ for the motion command M = (GD(v),[lf(&)[l > 0), where v points downward.
Not only P = Z, but the three conditions angZe(f, n) = 0, with n = V(G), v(E,), and v(&),

. are guaranteed to make it possible recognizing which target has actually been achieved at
execution time. Thus, the planner can generate the following strategy:

execute M = (GDW, llfll > 0);
if angle(f,  Y(&)) = 0

then execute M, = (GDW, [c7W(W, u(G)) = 01);
else if angle(f, u(f2)) = 0

then execute M2 = (GD(vz), [an&(W), u(G)) = 01);

RC1 = [angfe(f, v(&)) = 01, RC2 = [angle(f, v&)) = 01, and RC3 = [angfe(f, v(g)) = 0]
are called recognifion conditions. They allow the robot controller to identify which target
has actually been achieved after the first motion in the strategy. (RC3 does not appear in
the strategy because, if it evaluates to true, no action has to be taken.) R

Let us now formalize the approach outlined above. We define the preimage of a set of
targets as follows:

“This example occurs iri a space that slig!?tly differs from the mini-world.
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if R4 then execute M4;
if RI then execute Ml ;

else execute M2;
exit;

if R5 then execute M5;
execute M3;
exit;

Figure 25: Representation of a Conditional Strategy as a Graph

DEFINITION 16: Lei S7 = {‘&, 71, . . . . 7,) be a set of targets, M = (CS,TC) a
motion command, and RCI, RC2, . . . . RC, n condiiions,  called recognition conditions.
TC = tp(btj  C[O,dt]j  f[O,Jt])-  RCi  = rP;(A~ c[O,A]~ f[O,A])~ where A is ihe argument eualuaiing
to the duration of the ezecuiion of M, when the ezecution terminates.
A preimage of S7 for M and {R&, . . . . RC,} is any region P in C such thai ezecuting
M from within P is guaranteed to attain and terminafe in Ui z, in such a way th.at when
the motion terminates the following fwo conditions are snti.q+fied:
- 3i E [1, n] : RCi evaluates io ‘irue ‘,
- Vi E [I, n] : RCi evaluates to ‘true’ + z has been achieved.

The definition does not impose that the x be disjoint, so that several conditions RCi may
evaluate to true when the motion terminates.

In the following, we represent a conditional motion strategy as a labeled graph. Figure 25
shows an example of such a graph and the corresponding strategy. Nodes are alternatively
region nodes and motion nodea. Each motion node NM has a single parent & (a region
node), and one or several children Nq through Arr, (region nodes). Every arc connecting
NM to ly7, is labeled by a recognition condition RC;. The region P labeling A$ is a
preimage of { 7& . . . . 7n} (the regions labeling A+, through N7,) for M (the motion command
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IabeIing ;VM) and { RC1, . . . . RC,}. The graph has a root labeled by the initial region 1,
with a unique child labeled by the null motion (the fictitious motion that does not move
P). This node makes it possible selectin,d the first motion command from the sensory data
at the initial position c;‘,;, of P. If every motion node in the graph has a single child, then
the strategy is a linear one. We assume that the graph contains no cycle, but several nodes
may have the same label.

Note that this graph may not define a unique strategy. Indeed, the conditions labeling
the arcs originating at the same motion node need not be exclusive (i.e., Vi f j : RC;
evaluates to irxe + RC; evaluates to false). ?ve assume however that the arcs are scanned
sequentially by the conditional branching statement according to some prcdefined order,
as illustrated in Figure 25.

Now we can reformulate the preimage backchaining search algorithm as foIlows:

Algorithm PB: I
1. Create the region nodes Nz and NG labeled by the initial region Z and the goal region

g, and the motion node N*,,ll labeled by the null motion. Create an arc connecting
$5 to Nluu-

2.  ST - (G); Z’ - 1.

3. While 1’ # 0 do:

l Select a subset sl of ST, a motion command M = (CS,TC) and n recognition
conditions RC;, where n is the number of targets’in st. Compute a preimage
P of sl for M and {RCI, . . . . RC,).

l Create a motion node NM labeled by M, n region nodes N-r; labeled by the
targets in ts, and a region node Np labeled by P. Create an arc labeled by RC;
from NM to every iV7, and an arc from Np to NM.

l 2 + {c’EZ’nP/Vc’*EC - Z’n P :$z, C* E UJc) and c’* E L&(c)}.

(We assume ihai we do noi know how P has reached Z, or will reach Z. Thus,
even if a poriion of Z is in contact space, i t  i s  nof guaranieed  fo produce  a
deieciable  reaction force. Since posiiion sensing is ihe only sensing-dais, wifh
which we can reliably plan, we define 2 as the subsei  of ihe posiiions in 2’n P
ihai cunnoi  be confused wiih posiiions ouiside Z’ n P using position sensing
0 nly.)

l If 2 # 0 then create an arc from N,,,ll to NT, and label it by the condition
Iqo,(c(0), f(O)) c 1’ f-l PI-

(The argumenta of XL1 are c(0) and f(0) since the duration of the null moiion
is 0.)
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. ST - s u {p); 1’ t 1’ - 2.

4. Return the strategy described by the subgraph  made of all the nodes and arcs ac-
cessible from NT.

At this point it remains the problem of computing the preimage of a set of targets. This
problem requires being able both to compute the preimage of the union of the targets and to
generate recognition conditions. Thus it is at Icast as dificult as the problem of computing
the preimage of a single target. However, the backprojection method presented in the
previous section can easily be adapted to handle a set of targets. Given the algorithms
described in Section 15 and 16, the following theorem, which is an extension of Theorem
2, directly provides a technique for computing the preimage of a set of targets in the
mini-world:

THEOREM 3 :  Lei {7;, 72, .  ..., T,,) b e  the  s e t  o f  targeis  and  CS a  contro l  s ta t ement ,
B”“‘(U;  A&(~), CS) is a preimage of (3, . . . . x) for M = (CS,TC) and {RC1, . . . . RC,},
where RC; = [Kios(c(6t), f(6t)) C 7J and TC = [Vi RCi]-

The technique provided by this theorem consists of backprojecting from the union of the
kernels of the targets. Note that backprojecting from the kernel of the union of the targets
could produce a larger preimage of the union of the targets, but then there would be no
guarantee that the targets are distinguishable from each other.

This technique combined with the PB algorithm significantly augments the range of motion
planning problems in the mini-world that we can solve automatically.

18 Bibliographical Notes

Research on robot motion planning has become active in the mid-seventies, when the goal
of automatically programming robots from a geometrical description of the task was first
considered attainable [32,33,50]. S ince the early eighties, a great deal of effort has been
devoted to this domain. Part of this effort was motivated, on the one side by the diffi-
culties encountered in using explicit robot programming systems [28,29], and on the other
side by the goal of introducing autonomous robots in hazardous environments (e.g. nu-
clear sites, space, undersea, mines). Although automating robot programming has turned
out much more difficult than it first appeared, significant results with practical relevance
have recently been obtained. Mazer’s thesis [40] includes a chapter detailing why robot
programming is difficult.

During the last ten years, most of the effort has been oriented  toward solving the path
finding problem, i.e. the problem of planning motions without uncertainty. Over the last
few years, it has produced several major results, both theoretical and practical. Theoretical
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rcsuIts mostly concern lower and upper bounds of the complexity of multiple variants of the
path finding problem (e-g., see [48,6]). 111  particular, it has been shown that planning  the

motion of a robot with arbitrarily nialiy degrees of freedom is PSP:\CE-hard [45], and that
its time complexity is polynomial in the number of algebraic surfaces bounding the objects

if,the number of degrees of freedom is fixed [4’i]. Some path-finding methods have been
produced as a side-effect of these results, but most of them involve very large constants
and poiynomial exponents. Another important result is the development of the notion
of Configuration Space used throughout this paper, both as a conceptual tool and as a
technique for exploring motion planning problems. This notion was popularized by Lozano-
P&z in the early eighties [34] and has given birth to many techniques for computing C-
obstacles and finding collision-free paths amon,m obstacles (e.g., [3,23,30,12,37]).  Finally,
relatively fast path-finding algorithms have been defined and implemented. Although these
algorithms are not complete (they may fail to find a path whiIe one exists), they can solve
many practical probIems. In particular, Faverjon and Tournassoud  [21] reports a system
using an adaptation of Khatib’s Potential  J’Field method [25] for planning the motion of
a manipulator with eight degrees of freedom, operating in the complex environment of a
nuclear reactor. Lozano-P&ez et al. [36] and Mazer [40] describe an impressive system,
Handey, capable of planning all the motions required for assembling two polyhedral parts,
.in the’absence of significant uncertainty. These practical techniques could bring substantial
improvement to the programming of opkrations such as painting, welding, and riveting.

The problem of planning motions in the presence of uncertainty is conceptually more
difficult than the path finding problem. It has attracted less attention so far, and less

. results have been produced. Three basic approaches to this problem have been developed
to some extent.

The first has been proposed simultaneously by Lozano-PGrez 1331 and Taylor [SO], and is
known as the skeleton refining approach. It consists of: first, retrieving a plan skeleton
appropriate to the task at hand; and second, iteratively modifying the skeleton by inserting
complements (typically sensor-based readings). Complements are decided after checking
the correctness of the skeleton, either by propagating uncertainty through the steps of
the plan skeleton [50], or by simulating several possible executions [33]. Subsequent con-
-tributions  to the approach has been brought by Brooks [a], who developed a symbolic
computation technique for propagating uncertainty forward and backward through plan
skeletons, and by Pertin-l[‘roccaz  and Puget [43], who proposed techniques for verifying
the correctness of a plan and amending incorrect plans. Backward propagation of uncer-
tainty in this approach can be regarderd as a particular case of preimage backchaining
with known motion commands.

The second approach to motion planning with uncertainty has been proposed by Dufay and
Latombe [ 151, and is known as the inducfive learning approach. It consists of assembling
input partial strategies into a global one. First, during a training phase, the system uses
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the partial  strategies to make on-line decisions and execute scverai instances of the task
at hand. Second, during ;LH irlduction  ph‘asc, the system combines the execution traces
generated during the training phase. and generalizes them into a giobal  strategy. In fact,
the training phase and the induction phase arc interweaved. The generation of a strategy
for the task ends when new executions do not modify the current strategy. A system b,ased
on these principles has been implemented, and experimented successfully on several part
mating tasks. Some aspects of this approach have been extended by Andreae [l].

Both the skeleton refining and inductive learning approaches deal with uncertainty in a
second phase of planning. The plan skeleton and the local strategies used during the
first phase could be produced using path-finding methods assuming nuI1 uncertainty. The
second phase takes uncertainty into account, either by analyzing the correctness of the
current plan, or by directly experimenting with the local strategies and combining them
into execution traces shaped by actual errors. In contr‘ast, the rationale of the third
approach, preimage backchaining, is that uncertainty may affect the overall structure of
a plan, in such a way that a motion strategy may not be generated by modifying or
composing plans generated assuming no uncertainty. This can be illustrated by several
examples. Consider the task of inserting a pe,* into a hole; in the absence of uncertainty
(or equivalently with large clearance), the best strategy is to position the peg above the
hole, to align the two axes, and to move the peg downward; in the presence of uncertainty,
and with no chamfer, the best strategy is to tilt the peg before insertion, in order to be
certain to generate a contact between the tip of the peg and the entrance of the hole. In
a navigation task, with no uncertainty, the shortest route is the best; with uncertainty, a
route providing enough landmarks to make execution monitorable is necessary; it may be
irery different from the first one.

,

In addition to be based on a different rationale, preimage backchaining is a much more
rigorous approach to motion planning with uncertainty, than the other two approaches.
Consequently, it is natural to expect that preimage backchaining raises new theoretical
issues, which were not considered in the other approaches. It does not mean that these
issues are not present in the other approaches, but that they are hidden by their ad-
hotness. Conversely, solving these issues is a prerequisite to implementing the preimage
backchaining approach, but not to implementing the other approaches. This expresses the
fact that in general it is easier to build ad-hoc implementations of ad-hoc approaches than
ad-hoc implementation of rigorous approaches. It explains why preimage backchaining
has not yet been implemented, although as shown in this paper an implementation in a
two-dimensional world is possible.

The preimage backchaining approach was first presented by Lozano-P&ez,  Mason, and
Taylor [35]. This paper set up most of the basic framework. It directly introduced a
definition of preimages based on the use of termination condition with state. We think
that our definition is simpler. It allows us to analyze theoretical issues related to the
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maximality of preimages in a step-by-step fashion. Key concepts prior to this definition
are the directory of actual trajectories and the notions of consistency between actual and
measured data. The concept of trajectory directory was previously used by lMason [33] as
a tool to specify a termination condition with state.

Mason [39] investigated several control schemes for searching the graph of preimages. IIe
proved the strong bounded-completeness of the original scheme presented in [35].

Erdmann [17,18] contributed to the approach in several ways. He separated the problem ’
of computing a preimage into two sub-problems, reachability and recognizability. By con-
sidering reachability alone, he introduced the notion of backprojection, and used it for
computing non-maximal preimage. Algorithm MB1 is a detailed variant of Erdmann’s
algorithm. Algorithms MBi and MB3 are improvements allowing to backproject from
multiple edges/segments and from a polygonal region. Donald [12] presents another tech-
nique based on a plane sweep algorithm for computing the backprojection from a polygonal
region. In order to compute preimages as backprojections, Erdmann introduced the notion
of first entry sef,  which seems to be more powerful than the notion of target kernel. It is
not clear however how this notion could be implemented in a program. An extension of
the algorithm for computing backprojections to a three-dimensional configuration space
is proposed in [17]. An investigation of friction modelling in configuration spaces with.
rotational axes is made in the same publication.

Donald [lO,l2] extended the preimage backchaining approach to model uncertainty by
introducing the notion of generalized configuration space. He also inroduced  the notion of

. Error Detection and Recovery (EDR) strategies, which may fail. Such strategies, however,
either succeed or failed recognizably.

Buckley [5] prop osed an application of preimage backchaining to the analysis of the correct-
ness of a given motion plan. He also described a procedure for planning motion strategies
in the forward direction. This procedure is based on the notion of forward projeciion  (a
more appropriate terminology would probably be posGnage).  The procedure requires to
discretize configuration space into atoms and builds a transition graph between the atoms.
It is not clear however how to select the resolution of the discretization. Buckley imple-
mented a planner operating in a three-dimensional configuration space with translational
axes.

Hopcroft and Wilfong [24], Valade [53], Laugier and ThGveneau  [31], and Koutsou [2’7]
analyzed motions in contact space, without paying special attention to uncertainty. Within
the preimage backchaining approach, their work could contribute in defining heuristics for
searching the preimage graph.

The complexity of problems of planning compliant motions with uncertainty have been -
analyzed in a few papers (see [41,13,6,7]).  Canny and Reif [6,7] have proven that the
three-dimensional compliant motion planning problem is non-deterministic exponential
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time hard. Donald [13] 1 las shown that planning a guaranteed pianar multi-step strategy

-. with sticking termination conditions can be done in time polynomial in the number of
vertices in the polygonal environment, and roughly simply exponential in the numi,cr of

h steps in the strategy. The method prcscntcd in this paper corroborates this theoretical
result.

19 Conclusion

In this paper, we have addressed the problem of planning motions with uncertainty. Au-
tonomous robots need motion planning capabilities, and subtasks such as part mating and
navigation in cluttered environments require Icing able to deal with uncertainty.

WC have focused the paper on the preimage backchaining approach to motion planning in
the presence of uncertainty. First, we have given a detailed formalization of the class of
problems we are interested in (models of task geometry, task physics, motion commands,
and uncertainty). Then, we have defined preimage backchaining and analyzed several
underlying theoretical issues related to the power of termination conditions and the maxi-
mality of preimages.  Finally, we have proposed the first complete set of algorithms making
possible implementing preima.ge  backchaining in a simplified world, the mini-world. These
algorithms are based on the two concepts of target kernel and backprojection. These
algorithms are certainly the most important outcome of this papei.

Although rather simple, the mini-world is still realistic enough for some applications. For
instance, it can be the world of an omni-directional mobile robot, with a polygonal out-
line (typically a rectangular or hexagonal vehicle), moving among obstacles bounded by
polygonal outlines (e.g., pieces of furniture, machines). Possible application tasks for such
a robot is the transferring of objects in office, clean room, and shop-floor environments.
We are currently implementing the proposed algorithm for a similar robot. Our goal with
this implementation is not only to give an experimental valida.tion’of  these algorithms. It
is also to show that sophisticated methods for dealing with uncertainty, such as preimage
backchaining, can make it possible building low-cost smart robots.

i

:

There-are many directions in which the prcimage backchaining approach could bc usefully
extended. These are some of the questions we would like to answer in the future. How
to build practical procedures for computing prcimages and solve realistic motion planning
problems in spaces of dimension higher than 2 with rotational axes? What control schemes
are the most appropriate to the preimage backchaining approach (for instance, Shekhar
and Khatib [46] pro posed a compliant scheme with selectable compliance center, which
might result in larger preimages, but in a higher-dimensional space)? How to efficiently
generate weak guaranteed strategies such as those proposed by Donald [12,14], in order -to
build a reactive motion planner with provable properties? How to associate a monitoring
plan to a motion plan, so that if during the execution of the motion plan an error exceeds
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uncertainty bounds, possible failurcof  the motion plan can be recognized by the monitoring
plan cxccutcd in parallel ? Answering these questions will require a lot more research.
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Appendix: Table of Sytnbols

A Moving object
Gi Obstacle (; = 1, 2, . ..)
C Configuration space of A
P Effector point (mapping of A in C)
44 Region occupied by A when P’s position in C is c
CB; C-obstacle (mapping of B; in C)

c, ree Free space
Ccontact Contact Space
z Intial region of P in a motion planning problem
G . Goal region of P in a motion planning problem

.i;T Target of a motion command

‘Trait Initial actual position of P before executing a motion plan
=: Initial actual position of P before executing a motion command
M Generalized motion command

. c s Control statement
T C Termination condition

VW Pure veIocity  control statement

GW) Generalized damper control statement
B Damper constant (in generalized damper control)
V net Net velocity (in generalized damper control)
tp(bt,  c[0,6fl, fIo,Jtl) General form of the termination condition
wx(CS> Control uncertainty
uc(c> Model uncertainty
*V Specified commanded velocity

Z(v)
Actual commanded velocity
Uncertainty on commanded velocity

C

Z(c)

Measured position of P (configuration of A)
Actual position of P
Uncertainty on position sensing

f Measured reaction force on P
f* Actual reaction force on P
4 ( f 1 Uncertainty on force sensing
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;r
cr.
f;.
&toj( ?-*)
b(T MS)
.-*(7-,  M)
37s’) :
3&(c*)
f:eact Cc’ ? f&d 1
xcs w
qo, cc9 f 1
P=(T) CS)
distance(q, ~2)
and+1 1 v2)

Unit vector pointing along the friction cone at C* (Yc’ E Ccontdct)
Unit outgoing normal vector to edge Cr
:Inglc of the friction cone at c* (Yc- E Clcontarr.)
Angle of the friction cone along edge 45
Uncertainty on the orientation of the commanded velocity
Radius of the position uncertainty disk
Uncertainty on the module of the measured force
Uncertainty on.thc orientation of the measured force
Observed trajectory
Actual trajectory
Directory of actual trajectories
Elapsed time since the beginning of the execution of a motion
Function mapping 6t into the measured position along trajectory r
Function mapping 62 into the measured force along trajectory r
Function mappin g 6t into the actual position along trajectory T*
Function mapping St into the actual force along trajectory T*
Set of observed trajectories consistent with actual trajectories T*
Preimage of 7 relative to P
Maximal preimage of 7 for M
Range of reaction forces that can be generated at position cc
Range of forces that can be generated at position c* under CS
Reaction force to fzppl at position cc
Kern4 of region S for CS
Set of actual positions of P consistent with measurements c and f
Maximal backprojection from 7 for CS
Euclidean distance between two points cl and c2
Un-signed angle between two vectors vl and v2
Module of vector v
Position uncertainty disk centered at c
Minkowski’s operator for set addition
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