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Abstract

The reachability sets of Vector Addition Systems of dimension six or more can
be non-semilinear. This may be one reason why the inclusion problem (as well as
the equality problem) for reachability sets of vector addition systems in general is
undecidable, even though the reachability problem itself is known to be decidable. We
show that any one-dimensional projection of the reachability set of an arbitrary vector
addition system is semilinear, and hence “simple”.
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1 Introduction
Vector Addition Systems (VAS), and Petri nets, their equivalent graphical represent at ion,
are well-known models for the representation of aspects of parallel control, like liveness, or
absence of deadlock. A central problem in their study is the description of the set of all
states reachable in a given vector addition system, the so-called reachability set. In [7], it
was shown that the membership problem for VAS reachability sets is decidable. For VAS’s
of dimension at most five, [4] establishes that their reachability sets are in fact semilinear,
and gives an effective method for their construction. For dimensions above five, [4] also
exhibits examples of VAS’s with non-semilinear reachability sets.

The inherent complexity of VAS reachability sets is further underlined by the fact that
the containment problem as well as the equality problem for VAS reachability sets are
undecidable [l, 31, and by the exponential space lower bound known for the reachability
problem [6, 81. In particular, small “Petri net computers” can be built to simulate Turing
machine computations using exponential space.

Often, we are interested in the values attainable for a certain component of a VAS. We
will prove as the main result of this paper, that the projection of a VAS reachability set
onto a single coordinate is always semilinear, and hence has a (relatively) simple structure.
Of course, our result follows trivially if we restrict ourselves to VAS’s with components of
absolute value at most one. The problem is non-trivial, however, in the general case. A
constructive proof of our result would, in fact, provide another proof of the decidability
of the reachability problem since the latter is known to be recursively equivalent to the
problem of deciding whether zero is reachable in a specified component [3].

A variant of Petri nets allows inhibitor arcs which make the firability of a transition
dependent upon the condition that a place contain no tokens. It is well-known that the
reachability problem for Petri nets with inhibitor arcs is undecidable [3]. We give an
example of such nets for which certain components no longer have semilinear projections.

The remainder of this paper is organized as follows: in section 2, we give basic
definitions and state the main result of the paper. Section 3 first states a number-theoretic
Lemma which is essential for the subsequent proof of our result, and we conclude in section
4 outlining some possible extensions and open problems.

2 Basic Definitions and Main Result

We first introduce some basic concepts and notation. A vector addition system or VAS
is a pair (x, V). The vector x E N” is called the initial or starting vector, the integer
n is the dimension of the VAS, and V C Z” is a finite set of transition vectors. The
reachability set of a VAS (x, V) is the smallest set R(x, V) satisfying the following two
properties: (i) x E R( x, V), and (ii) whenever z E R(x,V),  v E V, and x + v E N”
t h e n  z +  v  E R(x,V);  i . e . ,  R(x,V) is closed under addition of transition vectors as
long as the sum has only nonnegative components. We also say that x E R(x) V) is
reachable in (x, V). A transition sequence (v (9 )i<;<t  of transition vectors v(‘) is applicable- -
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to some  vector y E N” if y + $,, u(j) E N” for all i = 1,. . . ,t. In this case, the vector
z = y + cgzl u(j) is called reachable from y in (x, V). To denote this, we also use y -+v z.
Thus, R(x,V) = {z; x +v z}.

For II: E Z”, we use x; to denote the i-th component of the vector x, and we let Ri(x, V)
stand for the projection (2;; z E R(x,V)} of the reachability set R(x, V) onto the i-th
component. The linear ordering < of the integers is extended, in the canonical way, to the
partial ordering 5 of Z”, i.e., for x, y E Z”, we have x 5 y iff xi 5 yi for 1 5 i 5 n, and
x < y iff x 5 y and x and y are different.

A linear subset I; of N” is a set of the form

1; = {b + knibti); n; E N for i = l,...,t}
i=l

for some vectors b, b(l), . . . , b(t) E N” ( often, b is called the base of L, and the b(;) its
periods). A semilinear set is a finite union of linear sets.

Semilinear sets have many desirable properties. It turns out that they are exactly
the sets describable within the first order logic of the natural numbers with addition,
also known as Presburger Arithmetic [9]. 0 ur main result states that projections of VAS
reachability sets also fall into this class.

-The&m 1 Let (x, V) b e an arbitrary VAS of dimension n, and i E (1,. . . , n
projection Ri(x, V) of th e reacha,bility set R(x? V) is semilinear.

We shall give a proof of this Theorem in the next section.

}. Then the

3 Proof of Main Theorem
We first state a couple of lemmata which are essential later on in the proof of our main
result.

Lemma 3.1 Let S be a subset of N such that there are no, t > 0 with the property that

s E S, s 1 no * s+tES.

Then the set S is semilinear.

Proof: Define, for i = 0,. . . , t - 1,

Si := {s E S; s 2 no, s = i mod t},

and set
Sf := {s E S; s < no}.
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. Clearly, S = Sf U uk=A Sin Also, each Si is linear. For suppose that S; # 0, and let
m; := mints;  s E 5’;). Then rni 2 n 0, and by the condition of the Lemma, m; + kt E Si
for all k > 0. Since s E 5’; in fact implies s = m; mod t we obtain

Si = {m; + kt; k 2 O},

which is clearly linear.
Since Sf is finite, and since semilinear sets are closed under (finite) union, S is

semilinear. 0

Lemma 3.2 Let cy be an infinite sequence of vectors from N”. Then a contains an infinite,
(with respect to 5) nondecreasing subsequence.

This Lemma sometimes is referred to as Dickson’s Lemma [2]. We omit a proof which
can easily be obtained by induction on the dimension n.

Next, we describe an algorithm to construct, for a given VAS (x, V), its reachability tree
T( x, V). This reachability tree is a directed graph (not quite, but almost, a tree) whose
edges are labelled  with transitions w E V, and whose nodes are labelled with so-called
pseudo-vectors which we shall describe below. Our construction is similar to constructions
given in [5, 71, with some technical adaptations.

. Pseudh-vectors  of an n-dimensional VAS are vectors in (N U (w))~,  i.e., n-dimensional
vectors whose components are either nonnegative integers or the special element w. The
intuitive meaning for w is that it stands for a value that can become arbitrarily large.
Formally, it satisfies the following rules:

.
w+m= m + w = w, for all m E 2.

Applicability of (finite) transition sequences to pseudo-vectors, and reachability of one
pseudo-vector from another are defined as for vectors.

algorithm T(z, V);
co given a VAS (x,V), this algorithm constructs its reachability tree T = T(z,V) oc

begin
c let T initially consist of node T, with label Z(r) = 2;

mark T as active;
while T contains some active node p (with label Z(p)) do

for every v E V
(i) which is applicable to Z(p), and
(ii) for which there is no edge labelled v out of p yet

do
add to T a new, active node q, with label Z(q) = Z(p) + v;
add to T the arc (p,q), with label v;
if there is a node q’ with Z(q’) = Z(q) on the simple path from r to p
co a path is simple if it contains no cycle oc



. then
replace the arc (p, q) by (p, q’) with label v, and delete q from T

elsf there is a node q” on the simple path from T to p such that
(i) Z(q) and Z(q”)  have the same set of w-coordinates,
(ii> W’) < Z(q)

co if there are several such q” one is picked at random oc
then

co we call q an w-node oc
add to T a cycle, starting and ending in q, with the same edge sequence and edge
labels as the path from q” to q;
label the nodes on this cycle, including q, the same as the corresponding nodes on the
path from q” to q, except that all coordinates i where (Z(q”))i  < (Z(q)); become w;
mark all nodes on the cycle as active
co we call this cycle the w-cycle of q oc

fi
od;
mark p as inactive

od
end algorithm T.

As indicated in the specification of the algorithm, we shall refer to nodes where new
w-coordinates are introduced as w-nodes, and we call the cycle attached to such a node

. -whenit is created its w-cycle.

Theorem 2 Algorithm T terminates.

. Proof: Applying Kijnig’s  Lemma, it suffices to show that there cannot be an infinite .
simple path starting from the root T. Since, whenever node q is reachable from node p in
T, label Z(q) contains at least the w-coordinates present in l(p), and since the dimension
n of the VAS is finite, it even suffices to show that there can be no infinite simple path
with all nodes having the same set of w-coordinates. The last claim follows immediately
from Lemma 2, applied to the projection of the labels onto the non-w-coordinates, and the
definition of the algorithm. 0

Lemma 3.3 Suppose 2 = Z(p) is the label of some node p in the reachability tree T(x, V).
Let ( ZJ(“))~<~<~ be a transition sequence applicable to z. Then there is a unique path in
T(x, V) sGGing from p whose edge label sequence is (v(“)l<i<t.- -

Proof: The proof is immediate from the statement of the algorithm, by induction on the
length t of the transition sequence. 0

Lemma 3.4 Let p be some w-node in the reachability tree T(x, V), and let (v(b))l<i<t be--
the sequence of edge labels along its w-cycle, starting at p. Then, for 6 = & v(j), we
have



.
(i) 6; > 0 for all coordinates i which become new w-coordinates at p;

(ii> 6; = 0 for all finite (i.e., non-w) coordinates of l(p).

FOT coordinates i which are already equal to w at earlier nodes on the (simple) path from
the root T to p, Si can be arbitrary.

Proo* Again, the claim of the Lemma follows immediately from the statement of the
algorithm. 0

.

As we have seen above, every vector sequence applicable to the initial vector x
corresponds to a unique path in T(x, V), starting at the root. Conversely, it is clear
that not every such path corresponds to an applicable vector sequence, due to the effect of
w-coordinates. However, we are still able to infer the existence of certain applicable vector
sequences from the structure of the reachability tree T(x, V).

More precisely, let p be some w-node in T(x, V), let p(l), . . . ,p(“) be the other w-nodes
on the simple path from T to p, in order, and let y and y(i) be the sequences of the edge
labels around the w-cycles through p and ~(“1, respectively. Also, let a(i) 7 for i = 1, . . . , k,
be the sequence of edge labels between p(;-*) (r for i = 1) and p(“) along any path from
the root to p, and let Q! be defined similarly between ptk) and p. For any vector sequence
,8 and p’, we shall use 6(p) to denote the sum of all the vectors in ,B, /?p’ to denote the
concatenation of ,0 and ,8’, and p” to denote the k-fold iteration of p.

Lemma 3.5 Let notation be as above. Then there are integers nl,. . . ,nk 2 0, and
bl,*-*, bk 2 0 such that, fOT every t 2 0, the vector sequence Ptt) defined as

p(t) =
4.

is applicable to the initial vector x, and

(5 nj ' 6(Y(j)) + s(Y))i > O
j=l

foT all w-coordinates of l(p).

. Proof: The proof is by induction on k.
k = 0: The claim follows since there are no w-coordinates in labels of nodes above p in

the tree, and because of Lemma 4.

k > 0: Suppose the Lemma is true for all values up to k - 1, and let nl,, . . . , ni-, and
b;, . . . , b;-l be numbers as claimed by the Lemma. Let

P4) t-n; +bi
= q)?(l) 92) * � l

t-niml +bi-,
q~-qY(k-l) “(k)$k)*

Also, let I’ be the set of w-coordinates of l(p(“)), and I the set of coordinates which become
new w-coordinates at p. Note that the i-th coordinate of Ctzi ng. S(y(j,) + a(~(~)) is greater
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. than zero for all coordinates in I’, by the second part of the induction hypothesis, and
equal to zero for all other coordinates, because of Lemma 4. Hence, there are minimal t’

and n’ such that (i) the vector sequence cuy is applicable to x + S( ,8’@‘)),  and (ii) the i-th
component Of n’ * (Cj,lk-1 ng * 6( rcj,)  + &( Y(k)))  -I- &( 7) is positive for all i E I’. Note that
the components in I of this last sum are automatically greater than zero. We claim that
bi = t’.n:+bl for i = 1,. . . , k-1,bk=tf,n;=n’~n~fori=l,...,k--1,andnk=n’satisfy
the Lemma. Since the second part of the Lemma is true by construction we only have to
show that Ptt) is applicable to the initial vector x for all t .  For t  5 1 this is immediate
from the construction, and for t > 1 we note that

x +  qp’W+t’)a,t-1)  > x +  qp’w-w+t’)Cyyt-2),

and since y is applicable to the latter, so it is to the former. But this means in fact that
p(t)  is applica ebl to x, concluding our proof. 0

Lemma 3.6 Let a! be any vector sequence applicable to x such that the path corresponding
to Q in T(x,V) contains an w-node where the i-th coordinate becomes w. Then there is
some t > 0 such that Ri(x, V) contains (X + S(a))i + kt, for all k 2 0.

I Proof: Decompose QI into &I” where a’ is the prefix of a of maximal length ending
at the w-node where coordinate i becomes an w-coordinate. Then the claim follows from
Lemma 5 and Lemma 4. 0

. - We are now able to finish the proof of Theorem 1. We partition the vector sequences
applicable to the initial vector x into classes Cp and Co: the class CP, with p an w-node in
T(x, V) where the i-th coordinate becomes w, is to contain all applicable vector sequences
whose corresponding path in T(x, V) contains p, and Co all remaining vector sequences.

. Clearly, by the finiteness of the reachability tree, the set So = {(x + S(a));;  a! E Co} is
finite. Also, by Lemma 1 and Lemma 6, each of the sets SP = {(x + S(a));;  cy E C,} is
semilinear, and hence so is the union of the SP and So. Since this union is equal to Ri(x, V)
the proof of Theorem 1 is complete.

As an immediate consequence of Theorem 1 we also obtain that the set of all integers
which are equal to the sum of the components of a vector in the reachability set is
semilinear.

Corollary Let (x, V) b e an arbitrary VAS of dimension n. Then the set
L

I
~

Rc(x,V)  := {c(Y)i;Y E R(x,V)I
i=l

is s emilinear.

Proof: Modify the given vector addition system (x, V) by introducing the sum of the
components of a vector as an additional component. An annlication of Theorem 1 on the
resulting vector addition system (x’, V’) defined by

X’ I= (2 (x)i,  ‘17 * * * 7 xn)
i=l
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and

gives us the semilinearity of Rl (x’, V’) = Rc( x’, V’). 0

4 . Conclusion
In the terminology of Petri nets Theorem 1 means that the set of possible numbers of
tokens for a certain place of a Petri net starting with some initial marking is semilinear.
(For definitions see [3, 51.)

Allowing inhibitor arcs leads to a variant of Petri nets with undecidable reachability
problem [3]. In contrast to ordinary Petri nets there are examples of these nets with
non-semilinear projections for certain components.

Example: Petri nets with inhibitor arcs can be used to simulate programs via simulation
of register machine computations, and certain projections of the reachability set starting
with a certain initial marking correspond to the set of all values of a variable taken during
the run of the program.

In the following program the variable d takes all values in the non-semilinear set
:

. - A := {d E N : d 2 2,3c 2 1 : d = c + length(c)},

where length(c) = [log,(c + l)] is the length of the binary representation of c:

.-d 2;. -
. .-c 1;.-

while true do
c := c + 1;
if (3x : c = ax) then

d:=d+2
else

d:=d+l
fi

od.

bbviously a certain projection of the reachability set of the simulating Petri net will
P be the non-semilinear set A.

The above net, however, will contain several inhibitor arcs. In case of only one inhibitor
arc it is still open, whether there exists a net and a place in it with a non-semilinear set of
markings. Finally, it should also be mentioned that the reachability problem for nets with
only one inhibitor arc is still open.
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