
March 1988 Report No. STAN-CS-88- 1200

Parallel Approximation Algorithms for Bin Packing

bY

R. J. Anderson, E. W. Mayr, and M. IL Warmuth

Department of Computer Science

Stanford University
Stanford, California 94305

Parallel Approximation Algorithms for Bin Packing
Richard J. Anderson Ernst W. Mayr

Department of Computer Science Department of Computer Science
University of Washington Stanford University

Seattle, Washington Stanford, California
Manfred K. Warmuth

Department of Computer Science
University of California
Santa Cruz, California

Abstract

We study the parallel complexity of polynomial heuristics for the bin packing prob-
lem. We show that some well-known (and simple) methods like first-fit-decreasing are
P-complete, and it is hence very unlikely that they can be efficiently parallelized. On
the other hand, we exhibit an optimal NC algorithm that achieves the same perfor-
mance bound as does FFD. Finally, we discuss parallelization of polynomial approxi-
mation algorithms for bin packing based on discretization.

OThe first two authors were supported in part by a grant from the AT&T Foundation, ONR contract
N00014-85-C-0731, and NSF grant DCR-8351757; the third author acknowledges the support of ONR grant
N00014-86-K-0454.

1 Introduction
In this paper we investigate the parallel complexity of bin packing. Since bin packing is NP-
complete, there is little hope for finding a fast parallel algorithm to construct an optimal
packing. However, quite a few efficient approximation algorithms have been developed for
bin packing, so it is natural to ask if fast parallel algorithms exist that find provably good
packings.

The bin packing problem requires to pack n items, each with size E (0, l), into a minimal.
number of unit capacity bins. For an instance I of the problem, OPT(I) will denote this
number.

There have been two different approaches taken in studying sequential approximation
algorithms for bin packing. One has been to look at simple heuristics and to analyze their
behavior. A prominent example of such a heuristic is First Fit Decreasing (FFD). It considers
the items in order of non-increasing size, and places each item into the first bin that has
enough remaining. It has been shown that the length of the packing generated by FFD
is at most +OPT(I) + 3 [2][10]. The o ther approach for approximation algorithms is to
look for algorithms with a performance bound of (1 + c)OPT(1) [S][ll]. Although these
algorithms give an asymptotically better performance bound, the known algorithms of this
type are complicated and have large runtimes. In this paper we are primarily concerned with
parallel algorithms using the first approach, i.e., implementing simple packing heuristics
that are relatively close to optimal. However, in the final section we briefly discuss a parallel
imple:mentation of the (1 + c)OPT(I) algorithm due to [6].

There are two reasons for investigating the extent to which simple bin packing algorithms
can be implemented as fast parallel algorithms. The first reason is to develop good parallel
algorithms for bin packing, with good time and processor bounds and close to optimal
performance. Furthermore, if the analysis of the sequential algorithms carries through to
the parallel case, we can avoid the monumental task of analyzing a bin packing algorithm
from scratch. Bin packing is closely related to certain scheduling problems since the items
can be viewed as tasks to be scheduled on a set of processors with the size of the items being
interpreted as the processing time needed. Thus it is conceivable that an efficient parallel
algorithm for bin packing could be of use for scheduling tasks on a multiprocessing system.

The other reason for attempting to implement the simple bin packing heuristics as fast
parallel algorithms is to investigate the nature of sequential algorithms versus parallel al-
gorithms. A number of sequential algorithms, such as the greedy algorithms for computing
a maximal independent set and computing a maximal path can be shown to be inherently
sequential. The bin packing heuristics also seem quite sequential in nature, so it is impor-
tant to examine to what extent this is inherent. The goal is to gain insight into what types
of algorithms can be sped up substantially with parallelism and what algorithms probably
cannot.

In this paper we use the PRAM model of parallel computation [7]. We consider a parallel
algorithm to be fast if it is an NC algorithm [15], i.e., if it runs in polylogarithmic time using
a polynomial number of processors. However, the main algorithm that we give will obey a far
more reasonable bound, running in O(log n) time on an n/ log n processor EREW (exclusive
read, exclusive write) PRAM, and hence is asymptotically optimal. We say a problem is

1

inherently sequential if it is p-complete. This is relatively strong evidence that the problem
is not in AX, since if it were, then P = AU. We shall occasionally refer to an algorithm as
being a P-complete algorithm. The proper interpretation of this is that deciding the value
of a specified bit of the output of the algorithm is P-complete [l].

The main results of this paper are that the FFD heuristic is a p-complete algorithm,
and that a packing that obeys the same performance bound as FFD can be computed by a
fast parallel algorithm. The P-completeness result holds even if the problem is given with
a unary encoding. This is interesting since most known p-complete number problems, such
as Network Flow [8] and List Scheduling [9] can be solved by fast parallel algorithms if
the numbers involved are small. A notable exception is Linear Programming which is also
strongly ?-complete [5]. 0 ur algorithm for constructing a packing that obeys the same f
bound as FFD, packs the large items (items of size 2 i) in the same manner as FFD and then
fills in the remaining items. The algorithm runs in 0(log n) time using n/ log n processors.
The packing algorithm generalizes to an algorithm that constructs an FFD packing in time
O(log n) for all instances where all items are of size at least e > 0. It can thus be viewed
as an approximation scheme to FFD. As a subroutine, we also develop a new and optimal
EREW-PRAM algorithm to match parentheses.

2 P-Completeness Proof for FFD
In this section, we prove that, in all likelihood, the FFD bin packing heuristic is not efficiently
parallelizable. More formally, we show that the problem whether FFD places a distinguished
item into a certain bin is P-complete in the strong sense, i.e., it is P-complete even if the
items are given using a unary notation. Thus, to compute an FFD packing is difficult in
parallel even for “small” item sizes, i.e., item sizes that are fractions with small integer
numerators and denominators. This should be compared to the parallel complexity of other
number problems (or problems involving numbers in an essential way), like network flow
[8][12] and list scheduling [9]. These are p-complete only in the weak sense and can be
solved in JVC or 7&VC if the numbers involved are small.

Theorem 1 Given a Iist of items, each of size between 0 and 1, in non-increasing order,
and two distinguished indices i and b, it is P-complete to decide whether the FFD heuristic
will pack the ith item into the bth bin. This is true even if the item sizes are represented in
unary.

Proof: For the proof we use a reduction from the following variant of the monotone circuit
value problem: a circuit consists of AND and OR gates whose fan-out is at most two. This
restricted version is clearly P-complete as can be seen by an easy log space reduction from
the general monotone circuit value problem [13]. The details of the construction are omitted
here.

Our reduction is described in two stages. We first reduce the restricted monotone cir-
cuit value problem to an FFD bin packing problem featuring bins of variable sizes. The
construction is then modified to give an FFD packing into unit capacity bins.

2

fan-out one:
AND

OR

fan-out two:
A N D

OR

gate Pn:

bins items

Siy hi, Si-2C, Si-2E
6i, 6i, Si-2E, 6i-2C

Siy 6; 7 Si-2C:, 6im2E, 6im2C, Si-36, Si-4E
Siy Si, Si-2iZ:, Si-2E, Si-2tT, 6i-3E, Si-4C

Table 1: Bins and item sizes for various types of gates

Let&,..., Pn be the gates of an n-gate monotone circuit, i.e., each Pi is either AND(&, iz)
or OR(i&), with i1 and iz the inputs of the gate. Each input can be a constant (true or
false), or the value of some other gate @j, j < i. In our first construction, we transform
the sequence ,&, . . . , pn into a list of items and a list of bins. The list of item sizes will
be non-increasing. For every gate P;y we obtain a segment for each of the two lists. The

- segments for each list are concatenated in the same order in which the gates are given. For
ease of notation, let

6i=1-2 and 6 =
1

n+l 5(” + 1)’
. The list segments for each gate are determined by Table 1 where gate pi is assumed to feed

into gate pj if it has just one output, and into gates pj and ,8k otherwise.
Let Ti denote any item of size Si, and F; any item of size 6; -2~. For every constant input

of gate P;, a Ti is removed from its list of items if the input is false, and an Fi if it is true.
We claim that packing the list of items (which is clearly non-increasing) into the sequence

of bins according to the FFD heuristic, emulates evaluation of the circuit in the following
sense. Consider the bins in list order. When we start packing into the first bin of P;‘s
segment, for i = 1,. . . , n, the remaining list of items starts with pi’s segment, and two of
the first four items in this segment have already been removed. The other two of these four

- items encode the values of the two inputs to gate pi: a Ti stands for a true input, Fi for
false. Suppose /?i is an AND-gate with fan-out two. Then pi’s second bin receives a Ti if
both of its inputs are true, and an Fi otherwise. In the first case, the second bin can further
accomodate only the last item in pi’s list, whereas in the second case, it has still room for
the third to last item in the list. As a result, pack+ P;‘s items leaves space in the amount
Of Sj - 6 and Sk - e in P;‘s last two bins if pi evaluates to true. If the output of pi is false,
the corresponding amounts are Sj and Sk. Thus, in the first case, Fj and Fk will also be
packed into the last two of P;‘s bins since they are the largest items to fit. In the other case,
Tj and Tk fit and will be packed. Therefore, after both inputs to pj (similarly, ,0k) have

3

6i-4C

hi

T;

6i-2C

F;

Sj-2E

Fj

Si-26

&-2E
Fk

Si-3E:

26i-4C Sithj

-3c
bitfik

-46

1s;-2c:

Si-26 Si-2E

E F;

2Si-46 Si

sj
Tj 61,

Tk

Si-36 Sp-4E

Sitfij bitbk

-3E -46

Figure 1: Packing for OR Gate with (a one true input, (b) two false inputs)

been evaluated, the two remaining of the first four items in pi’s (resp., @k’s) segment again
reflect properly the values of the two inputs to the gate. Figure 2 shows the packings for two
input combinations to a fan-out two OR-gate. The OR-gate functions quite similarly to the
AND-gate just described, with the role played by the first two bins more or less reversed.
The details of the simulations performed by the other types of gates listed in Table 1 are
left to the reader.

In the second part of the construction, we show how to use unit size bins. Let ul,. . . , uq
be the non-increasing list of item sizes, and let br , . . . , b, be the list of variable bin sizes
obtained in the first part. Define B to be the maximum of the bi, and let C = (2r + l)B.
We construct a list of decreasing items vl, . . . , vzr which when packed into r bins of size C
leave space bi in the ith bin. Let

Vi =
C - iB - hip if i 5 r;
C - iB, if i > 7‘.

When these items are packed according to the FFD heuristic, items vi and vZr+l-i end up
in the ith bin, thus leaving bi empty space. Also note that 2~2, is at least as large as ul.
Let f-w--,W2r+q be the list of item sizes obtained by concatenating the v- and u-lists, and
normalizing the sizes by dividing each of them by C. Assume without loss of generality that
the output gate Pn of the given circuit is an AND-gate. An FFD packing of the items in the
w-list into unit size bins will place the item corresponding to the second T, in Pn’s list into
the last bin iff the output of the circuit is true.

The two parts of the construction described above can clearly be carried out on a mul-
titape Turing machine using logarithmic work space. Since all numbers involved in the
construction are bounded in value by a polynomial in the size of the circuit, we have shown
that FFD bin packing is P-complete in the strong sense (under log space reductions), i.e.,
it remains P-complete even if numbers are represented in unary (with fractions given by a
pair of integers). 0

4

FFD is a rather simple sequential algorithm to achieve bin packings relatively close to
optimal. As we have just seen, however, it is another example for a P-complete algorithm,
a notion introduced in [l].

A number of other simple heuristics for bin packing can also be shown to be P-complete,
e.g., Best Fit Decreasing (BFD). The BFD heuristic considers items in order of non-increasing
size. It places each item into a bin in such a way as to minimize the left-over space.

3 A Parallel Alternative for FFD
Even though the FFD heuristic itself appears to be inherently sequential we are able to give
an NC-algorithm for bin packing that achieves the same overall performance bound as FFD.
This algorithm works in two stages. The first stage relies on

T h e o r e m 2 The packing obtained by the FFD heuristic can be computed by an NC-algorithm
JOT instances where all items have size at least e > 0. The algorithm uses n/log n processors
and runs in time O(log n).

The proof of this Theorem will be given in the next two sections. Here, we show how to
apply it to get a good parallel alternative for FFD. Our two stage algorithm first packs all
items of size at least + according to FFD, using the above algorithm. The second stage uses
the remaining items to fill bins up in a greedy fashion. It makes sure that each bin is filled to
-at lea& 5s before it proceeds to the next. We call the resulting packing a composite packing.
There are a number of possible algorithms to use for the second stage. One possibility is
to use the first-fit-increasing heuristic (FFI). An FFI packing can be computed by an NC-
algorithm, but it is not known how to do so for variable size bins with a linear number
of processors. Below, we give a different method which can be implemented with optimal
speed-up.

The following lemma establishes that the composite packing is within a factor of y of
optimal. Variants of this lemma have been used extensively in the analysis of bin packing
algorithms.

Lemma 3.1 The length of the composite packing L,(I) satisfies

6
L,(I) 5 max{Lffd(I), sOPT(I) + 1) 5 tOPT(I) + 4.

Proof: Let L be the length of the FFD packing of the items with size at least $. Clearly
L < Lffd(I), so if all the items packed by the second stage of the algorithm are placed into
the first L bins, then L,(I) 2 L&I). If more than L bins are used, then all bins except
possibly the last one are filled to at least g, so L,(I) 5 EOPT(L) + 1. 0

We now describe the second stage of the algorithm for constructing the composite packing.
It runs in O(log n) time and uses n/log n processors. Let ~1,. . . , u, be a list of items, all
of size less than i. The first step is to combine these items into chunks so that all chunks
(except possibly the last) have size between $ and i. The items of size at least & are big

5

enough, and each is put into a chunk by itself. For the remaining items, the partial sums
Sk = c l<j<k uj are determined using optimal prefix summation [14]. We combine the set of
items (uk 7 $j < sk < 12 }i+l to form a chunk. Since the items have size less than &, each
chunk will have a size between $ and $.

The bins packed by the FFD algorithm with items of size at least d can now be filled in.
We have, in parallel, each bin filled to less than 2 pick a distinct chunk to add to the bin.
Since the sizes are at least &, only a constant number of passes is needed. Each pass can be
implemented using parallel prefix computation.

If there are left over items, they are packed in new bins. The algorithm is similar to the
one just used for filling up the bins partially packed by the FFD algorithm, except that we
do not know the number of bins to use. Let ui,. . . , uq be the list of left over items (chunks),
each of size between $ and i, and let U = C&i uj. Since each bin can be filled to at least
i, [y] bins will certainly suffice. We start our iterative packing with this number of active
bins, arranged in an array. In a pass, each active bin determines how many bins to its left
(including itself) are filled to less than g, and how many items are currently packed in bins to
its right. Two parallel prefix computations are used to find these numbers. Then the largest
index is determined such that, to its right, there are enough items to satisfy the requests up
to and including the bin given by the index. The items currently stored in the rightmost
bins are used to fill up, one item per bin, the underfull bins to the left of or at the index.
Bins that are emptied by this process become inactive. Since the items have size at least $
a constant number of passes suffices. As above, each pass can be executed in O(log n) time
on an -n/ log’n processor EREW-PRAM.

The results presented in this and the previous section show that it is the small items
that make FFD hard to parallelize. Here, small need not even be “very small” since, as we
have seen, FFD is ?-complete in the strong sense. Using a different approach to pack small
items, however, still provides an asymptotically optimal NC-algorithm to achieve a packing
with the same overall performance as FFD.

4 Parallel FFD for Big Items
Let E > 0 be fixed. In this section, we describe our main algorithm. It constructs an FFD
packing for lists of items whose size is bounded below by c. The algorithm runs in time
c, logn where c, is a constant depending on 6. The algorithm can be implemented using
n/ logn processors on an EREW-PRAM, provided that the input list of items is given in
non-increasing order. Otherwise, we have to sort the list first, which, for the stated time
bound, requires a linear number of processors.

Performing an FFD packing on a non-increasing list of items can be viewed in two ways.
The first is to consider the items in order, move each one down the list of (partially filled)
bins and place it into the first bin it fits. An alternate way is to consider the bins one after
another, have each move down the list of items and pick up and pack any item that fits into
the available space. These two viewpoints lead to two different ways of decomposing the
initial problem into simpler parts, and we shall use both methods. We first subdivide the
list of items into contiguous sublists in such a way that the item sizes within any sublist are

6

.
within a factor of two. This can be done generating at most [log@l)] sublists. The sublists
are packed sequentially since there is only a constant number of them. Accordingly, the
algorithm is subdivided into phases, packing in phase i the items with size in (2-t’+? 2-‘I.

In phase i, we can disregard all bins that have space 2-(‘+f) or less space available.
Omitting these bins, we obtain a subsequence of bins called the i + l-projection of the
original list. To pack the sublist of items in phase i, we divide the i + l-projection of the list
of (partially packed) bins into runs. A run is a contiguous segment of bins whose length is
maximal subject to the following two conditions.

1. The available space is non-decreasing.

2. There is an integer t, called the type of the run, such that all bin sizes of the run are
in the interval (2-@+‘), 2-t].

A sublist of bins satisfying just the first of these two conditions is called a pre-run.
Packing a sublist (or as much of it as fits) into a run is achieved by alternating two

routines, forward-pack and filLin until no more iterns fit into bins of the run, or all items in
the sublist have been packed. The forward-pack routine determines how many consecutive
items at the beginning of the list will fit into the first bin of the run. Let this number be k.
The routine then determines how many consecutive chunks of k items each can be packed
into consecutive bins, following the FFD heuristic. To do so, it checks which bin could
actually accommodate the first k + 1 item chunk. Finally, forward,lzack packs, in parallel,

_ the chunks of k items into the appropriate number of leading bins of the run, removes these
bins from the run, and returns them as a pre-run.

algorithm FFD-pack(L, e);
co L is a sorted list of n items to be packed according to FFD; each item has size at least c oc
S := (PO); co S holds a list of runs; the initial run ps consists of n empty bins oc
for (i := 0; 2-’ 2 E; i++) do

L’ := sublist of items in L with sizes E (2-(‘+l), 2-‘1;
if L’ = () then continue fi; co go to beginning of loop oc
S’ := 0;
repeat

:= first run of the i + l-projection of S;
&ward-pack(p, +) ; co 4 is a pm-run oc
S” = fillin(co S” is a list of runs oc
remove from runs in S” bins with less than c space;
append S” to S’

until L’ = 0;
append the unused portion of the i + l-projection of S to S’;
S := S’ with the bins not in the i + l-projection of S merged back in

od
end.

procedure forward,pack(p, q!~);
if i 5 type of p then + := p; return fi;
let L’=ul,...,ul;
let sr 5 s2 5 . . . 5 slPl be the amounts of space available in p’s bins;
k := max{j] j 5 IL’1 and ul+ . . . + uj 5 ~1); CO note that k > 0 oc

7

let P be minimal subject to
1. r = min{ IpI , [t/k] }; or
2. (r + l)k < e ad %,+I + . . . + y,+l),+l 5 s,+I;

remove first r bins from p, put them into $;
if p = () then remove p from L’ fi;
in parallel, add items U(j-l)k+l, . . . , ujk to jth bin in $;
return

end.

The pre-run returned by forward-pack is subject to fill-in packing. Here, smaller items further
down in the list are packed into the space left after the forward packing. The function fill-in
first breaks the pre-run into runs. If all bins in the pre-run were actually filled by the forward
packing (that is, the number r of bins in the pre-run was determined by the second condition
for r in procedure forward-pack, these runs are all of type greater than the phase number i,
and no more items can be packed into them in phase i. Otherwise, if the pre-run contains a
run of type i (possibly since forward-pack did not pack the run since it was of type i), fill-in
tries to pack more items into the bins of the run. Due to the constraints on the amount of
space left in type i bins and the size of items packed in pl I ;rse i, at most one additional item
per bin can be packed by fill-in.

We can compute a fill-in packing by first merging the reversal (which is non-increasing)
of the list of amounts of space left in the bins of the run with the list of bin sizes. When
merging the two lists, we take care that all bins precede all items of the same size. We
then interpret the combined list as a string of parentheses, with each bin corresponding to
a opening, and each item to a closing parenthesis. The natural matching of the parentheses
can be seen to give the assignment of items to bins as obtained by FFD, since every item
goes into the smallest possible (and hence last in the reversed list) bin still available, and
the items are considered in decreasing order.

. The details of the implementation of fill-in will be given in the next section where we show
that it can be made to run in time O(log n) on an EREW-PRAM with n/ log n processors.

Assuming these resource bounds, we state

Theorem 3 Algorithm FFD-pack(L, E) runs in time cc log n on an n/ log n processor ERE W-
PRAM’. The constant c, is polynomial in I/C.

Proof: To analyze the complexity of FFD-pack we introduce a generalization of the concept
of a run: A stacked run or s-run of type j is a run of type j obtained from the j + l-projection
of the list of bins. As a consequence, an s-run of type j may be composed of several runs of
type j separated, in the original list, by runs of higher types. Because of this, the number
of runs can be larger than the number of s-runs, but at most by a factor of two. To every
s-run of type j, we assign a weight of 2 -‘j . The weight of a list of bins is the sum of the
weights of all its s-runs.

Consider the effect of forward packing items in phase i into bins of an s-run of type j, j <
i. Note that the items packed by the forward packing are not necessarily a contiguous sublist
since some of the items may be used as fill-ins. For the moment, we assume that enough items
are available to fully pack all bins in the s-run in the forward packing. Disregarding fill-in

8

items, the forward packing of the s-run can create at most 2-j/2-(‘+‘) - 2-(j+l)/2-’ = $2”-j
pre-runs which all decompose into runs of type i + 1 or higher (at most one run of any type
per pre-run). Thus, the weight of the s-runs resulting from forward packing to capacity one
s-run of type j (and disregarding fill-in items) in phase i is bounded by

:2i-j C2-2k < 2-2j.

k>i

The forward packing routine may also leave a partially filled bin or fail to pack a whole
s-run to capacity when it runs out of items. Since at most one s-run of every type can be
only partially packed in this way, this adds, for the whole phase, a weight bounded by

c 424 = -,
k>O 3

Next, we consider the effect of the fill-in routine on the weight of s-runs. In phase i,
JilLin is going to affect only s-runs of type i. Suppose when filling in an s-run of type i fill-in
creates two new s-runs of some type j > i. Then all items added to the bins in the first s-run
come after the items of the second s-run in the item list. Let u be the size of the fill-in item
packed into the first bin of the first new s-run, and v the size of the fill-in item in the second
s-run. Since the item of size v came earlier in the item list, it did not fit into the first bin of
the first run. After the item of size u is packed into this bin, there is still an amount of space
larger than 2-(j+‘) left since the s-run is of type j. Hence, v > u + 2-(j+l). We conclude that

- every s-run of type j generated by filLin except the last one accounts for a drop of at least
2-(j+‘J in item size. Since all item sizes in phase i are in (2-(‘+‘I, 2-‘1 at most 2j-” s-runs of
type j can be created, causing an additional weight increase of 5 Cj>i 2-2j .2j-” = 2-2i.

Let w; be the total weight of the list of bins at the beginning of phase i. Then w;+~ <
2wi + 3 and ~0 = 1. From this, we obtain wi = O(2’). Since in the ith phase we are only
concerned with the i + l-projection of the list of bins, each s-run has weight at least 2-2i,
and there are at most 2 l 22iwi runs for the algorithm to pack into. The number of runs in
the last phase is therefore 0(1/c3). S ince the time requirement of the algorithm is clearly
0(log n) for every run generated, the claim follows. 0

5 Packing Fill-in Items
In this section, we present asymptotically optimal EREW-PRAM algorithms for the following

*two problems:

1. merge two sorted lists of n elements each into a sorted list;

2. in a string of length n of opening and closing parentheses, find the matching pairs.
This problem can also be phrased in terms of push and pop operations on a stack,
with the goal to match pop’s to pushes.

Since both problems can be solved sequentially in linear time, any optimal parallel al-
gorithm must run in time O(log n) on an EREW-PRAM with n/ log n processors. We first

9

describe the merge procedure. Note that for the fill-in packing we also require that the
merging is done in such a way that all elements of a given value in the first sequence precede
all elements of the same value from the second sequence. However, this can easily be taken
care of, and we leave the corresponding details to the reader. For simplicity, we assume
here that no element in the first sequence has the same value as an element in the second
sequence.

From the two input sequences, we first select every [log nl th element, and merge the
two selected subsequences. Viewing the first subsequence in increasing and the second in
decreasing order results in a bitonic sequence. It can be easily sorted in O(logn) steps
on n/ log n processors by emulating the last stage of Batcher’s bitonic sort [4][16]. Let
u(l), ?D), . . . be the elements selected from the first sequence, and v(l), ~(~1,. . . those from the
second. Also, let Uti) be the subsequence of the first sequence between u(‘) and &+l), and
let V(‘) be defined accordingly for the second sequence.

Assume first that two or more selected elements v(j), . . . , vtk) of the second sequence fall
within U(‘). We broadcast the elements in U(‘) that are greater than v(j) and less than
dk) to v(j), . . . , v(~-‘). To do so, we assign one processor to each of v(j), . . . , v(~-‘), and use
these processors to implement a balanced binary tree in such a way that each processor is
responsible for at most two nodes (one leaf and possibly one internal node) in that tree. The
elements in Uti) can be broadcast, along this tree, in a pipelined fashion, requiring O(log n)
time. We then merge each V(‘), for 1 = j, . . . , k - 1, with the sublist of U(‘) between v@)
and G+l), using the processor responsible for v (‘1 All Uti) of this type are handled in this.
manner in parallel.

For- the second phase of the merge procedure, let If(‘) be an interval unaffected above,
and let j and k be maximal such that u(j) < v(‘) and utk) < &+‘I. The elements in Vfi)
are broadcast, as above, to u(j), . . . , ~(~1, and the appropriate sublists are then merged with
[J(j), . . . , Utk). Again, this can be achieved in O(log n) time using one processor per selected
element. Since one U(j) may be affected by two adjacent V%, we divide this second phase
into two subphases, merging in each subphase only every other of the relevant Vfi).

Together, we have just established

Theorem 4 Two sorted lists of length n each can be merged on an EREW-PRAM with
n/ log n processors in time O(log n). This result is asymptotically optimal.

The second problem considered in this section concerns simulating a pushdown stack or
matching parentheses. We use the second picture. Let an arbitrary string of n opening and
closing parentheses be given. First, we employ an optimal parallel prefix routine to find and
remove all those (opening or closing) parentheses that are not matched. For the remaining
parentheses, we use parallel prefix once more to assign a level to each parenthesis, in the
standard manner. The first (opening) parenthesis is assumed to be assigned level 1. The
problem now becomes finding, for each opening parenthesis, the first closing parenthesis
following it in the string and having the same level.

Imagine n/ log n processors of an EREW-PRAM arranged in form of a balanced binary
tree, with each leaf processor responsible for an interval of roughly 2 log n parentheses. For

10

convenience we refer to the nodes of the tree by their inorder number, and we assume that
every processor knows the inorder number of its node. First, the leaf processors find all
matching pairs of parentheses within their respective interval. The unmatched parentheses
at every leaf form a subsequence of closing parentheses followed by a subsequence of opening
parentheses. Next, each processor in the tree, from the leaves towards the root, computes a
triple (c, m, 0). Here, m is the number of matching pairs, with the opening parenthesis in the
left and the closing parenthesis in the right subtree of the node assigned to the processor; c
and o are the number of unmatched closing respectively opening parentheses in the subtree
rooted at the node. Each processor at an internal node of the tree can compute its triple
from those of its two children as follows:

(c, m, 0) = (Zc + max(0, fc - lo), lZ0 - rcl, 7‘0 + max(O, 10 - rc)),

where Zc and lo are the c- and o-value of the left child, and rc and ro corresponingly for
the right child. This computation proceeds level by level, and takes O(logn) time. Using
an optimal routine for parallel prefix computation, we also compute b(v) = &Vm(w) for
every node v in the tree.

Every pair of matching parentheses can now be assigned a uniquely determined index
(b, i). Consider a pair matched at node v. Then b = b(v), and i gives the nesting depth of the
pair in the subsequence of pairs matched at v. Thus, the outermost pair of parentheses being
matched at v has index (b(v), 0), the innermost (b(v), m(v) - 1) where m(v) is the m-value in
v’s triple computed above. Originally, the index of a matching pair of parentheses is known
at the node in the tree where the pair matches.

The goal of the next stage of the algorithm is to communicate its index to every paren-
thesis in the string that is left after the preprocessing. Consider node v in the tree. It
matches an interval of m(v) opening parentheses which it received from its left child with an
interval of m(v) closing parentheses received from its right child. The processor at v sends
the indices describing the endpoints of each part to the corresponding child, together with
a parameter describing the position of the interval in the sequence of parentheses originally
passed up from that child. Upon receiving this information from its parent, the processor
at a (non-leaf) descendant node can break the corresponding interval into two intervals,
one that came from its left child, and one from its right child, and send the appropriate
information on to its children. Leaf processors distribute index interval information to the
corresponding parentheses in their subinterval. With some care in the implementation, each
leaf processor requires only O(log n) time. Therefore, if all processors start out simultane-
ously to propagate the index information for the intervals of parentheses they match, the
whole stage obviously takes time O(log n).

Finally, all opening parentheses in parallel write their address to position b + i of some
global array of length n, where (b, i) is the index received by the parenthesis. In the following
step, all closing parentheses can read the cell of the array given in the same manner by their
index, and in this way find their matching opening parenthesis. Since all sums b + i are
distinct, no write or read conflicts will occur.

Theorem 5 All matching pairs in an arbitrary string of n parentheses can be found in time
O(log n) on an n processor EREW-PRAM. 0

11

We remark that a (completely different) CREW-PRAM algorithm for this problem obey-
ing the same asymptotic resource bounds has been given in [3].

6 Parallel Approximation by D iscret izat ion
It is natural to ask if it is possible to do better than FFD -with a parallel approximation
algorithm for bin packing. The answer is yes, since it is possible to implement the algorithm
in [6] as a fast parallel algorithm. This algorithm constructs a packing that is within a factor
of 1 + e of the optimum for any fixed c in O(n) time. The run time for the algorithm is
enormous, having a constant term which is exponential in 3.

The basic idea of the algorithm in [6] is to first consider a packing problem where the
number of item sizes is fixed and the size of the smallest item is bounded below by a constant.
They show that such a packing problem can be solved to within an additive constant in
constant’ time. The algorithm reduces the packing problem to the restricted version by
dividing elements into a number of groups and then rounding the size of the elements in a
group up to the same value. They also show that this packing gives a good approximation
to the original packing problem. There are no obstacles to implementing this as an n/C-
algorithm, using, among other things, some of the techniques presented in section 3. Further
details involved in the construction of the packing are left to the reader.

7 Conclusion. -
We have seen that some very simple sequential bin packing heuristics are P-complete, and
hence in all likelihood not efficiently parallelizable. With FFD, we have established one of
the first number problems (other than LP) known to be P-complete in the strong sense.
Interestingly enough, however, we have also been able to present an NC-algorithm that can
be viewed as a parallel approximation scheme for FFD.

While there exist polynomial time and NC approximation schemes for the Np-complete
problem of bin packing, the constants involved in these algorithms are prohibitively large. An
interesting open problem is whether more efficient sequential approximation schemes can be
parallelized. More generally, one might ask whether there are natural paraZZeZ approximation
schemes for bin packing, i.e., schemes not derived from sequential ones.

Another interesting question is to study the application of parallel approximation tech-
niques to scheduling problems, some of which are very closely related to bin packing. For
instance, there are many sequential heuristics based on list schedules, the parallel complexity
of these methods, however, is largely unknown.

‘The number of arithmetic operations in this algorithm is constant. The numbers involved are not
large, so the number of bit operations used is polynomial in n. Using parallel algorithms for the arithmetic
operations, this can safely be considered an O(logn) time parallel algorithm.

12

References
[l] R. Anderson and E. Mayr. Parallelism and greedy algorithms. In F. P. Preparata, editor,

Advances in Computing Research; Parallel and Distributed Computing, pages 17-38, JAI
Press, 1987.

[2] B. Baker. A new proof for the first-fit decreasing bin-packing algorithm. Journal of
. Algorithms, 6(1):49-70, 1985.

[3] I. Bar-On and U. Vishkin. Optimal parallel generation of a computation tree form.
ACM Transactions on Programming Languages and Systems, 7(2):348-357, 1985.

[4] K. Batcher. Sorting networks and their applications. In Proceedings of AFIPS Spring
Joint Comp. Conf., pages 307-314, 1968.

[5] D. Dobkin, R. Lipton, and S. Reiss. Linear programming is log-space hard for P.
Information Processing Letters, 8(2):96-97, 1979.

[6] W. Fernandez de la Vega and G. Lueker. Bin packing can be solved within 1 + E in
linear time. Combinatorics, 1(4):349-355, 1981.

[71 S. Fortune and J. Wyllie. Parallelism in random access machines. In Proceedings of the
10th Ann. ACM Symposium on Theory of Computing (San Diego, CA), pages 114-118,
ACM, 1978.

[8] L. G Id hl go SC a er, R. Shaw, and J. Staples. The maximum flow problem is log space
complete for P. Theoretical Computer Science, 21(1):105-111, 1982.

[9] D. Helmbold and E. Mayr. Fast scheduling algorithms on parallel computers. In
F. P. Preparata, editor, Advances in Computing Research; Parallel and Distributed
Computing, pages 39-68, JAI Press, 1987.

[lo] D. Johnson, A. Demers, J. Ullman, M. Garey, and R. Graham. Worst-case performance
bounds for simple one-dimensional packing algorithms. SIAM J. on Comput., 3:299--326,
1974.

[ll] N. Karmarkar and R. Karp. An efficient approximation scheme for the one-dimensional
bin-packing problem. In Proceedings of the 23rd Ann. IEEE Symposium on Foundations

L of Computer Science (Chicago, IL), pages 312-320, IEEE, 1982.

[12] R. Karp, E. Upfal, and A. Wigderson. Constructing a perfect matching is in randomJZ/C.
In Proceedings of the 17th Ann. ACM Symposium on Theory of Computing (Providence,
RI), pages 22-32, ACM, 1985.

[13] R. Ladner. The circuit value problem is log-space complete for P. SIGACT News,
7(1):583-590, 1975.

[14] R. Ladner and M. Fischer. Parallel prefix computation. J.ACM, 27(4):831-838, 1980.

13

[15] N. Pippenger. On simultaneous resource bounds. In Proceedings of the 20th Ann. IEEE
Symposium on Foundations of Computer Science (San Juan, PR), pages 307-311, IEEE,
1979.

[16] H. Stone. Parallel processing with the perfect shuffle. IEEE Trans. on Computers,
C-20(2):163-271, 1971.

14

