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Abstract

(%lh,l  is a simulator for parallel Lisp, based on a continuation passing interpreter. It
models a shared-memory multiprocessor executing programs written in Common Lisp,
extended with several primitives for creating a.nd  controlling processes. This paper
describes the structure of the simulator, measures its performance, and gives an example
of its use with a parallel Lisp pr0gra.m.
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1 Introduction

This paqer describes  a simulator for pa,rallel Lisp, called CSIM. The “C” st.a.nds for con tin-
uation pa.ssing, which is the basic programming technique tha,t the simulat,or itses to model
multiprocessing. CSIM is written in Common  Lisp and runs on several  systems. It provides
the following fa.cilities:

l In the a.bsence of a.11  a,ctua.l multiprocessing system, CSIM can be llscc~ a.8 a, testbecl
for parallel  Lisp progra,ms.

l The user can investigate the effects of vaxying paxa,meters in a4 pasallel environment,
such a,s number of processors,  cost. of process c.reation, and contention for resources.
Using GIN, one ca,n modify  these parammeters  beyond the ranges  in currently available
ha.rdwa,re.

l CSI h/l allofvs metering and performance debuggin,c of programs without modifying
them or cha,nging  their execution environment. This is easier  t,o do with a simula.tor
tha,n on a. rea.l ma.chine.

CSIM was used extensively  by the Qlisp project at Stanford until an initial implementa.tion
of &lisp beca,me ava,ila,ble, and continues to be a. valua~ble tool in our study of pa’rallel Lisp
progra,niming.

2 The parallel machine model.
Our machine model is a, MIMD (multiple-inst,ruction, multiple-da,ta)  computer with iden-
tical processors  a,nd uniform xcess shared memory. In such a, system aJ1 data. objects are
stored in a, single a.ddress space? a.nd a.ccess to a?.ny loca.tion in the address spxe by any
processor  takes roughly the sa.me amount of time. These fea,tures combine  to ensure t1la.t
there is no benefit or pena.1t.y  for storing da,ta, in a.ny particular location or runuing code on
a.ny particula,r  processor.

Although it is currently difficult to build a, computer tlia,t is faithful to this model autl
has mode than a, few dozen processors, there is an emerging consensus  that shared memory
is an a,ppropria.te  model given the current st,ake of the programming art. Development. of
shared-memory multOiprocessors therefore continues, and our results should  be a.pplicable
to such machines with large numbers of processors  if they emerge, as well a,s the currently
a.va,ila,ble class of small- a.nd medium-scale multiprocessors.

Another major assumption we make is tlia,t control of parallelism is explicit:  progra.m-
mers ca,n indica,te what computa,tions  are to be performed in palrallel, while the defa$ult ise
sequential execution. This is not to preclude program-transformation  tools tha,t,  ma,y detect
parallelism in ordinaxy  (.sequential)  progrxns and produce parallel programs; our pa,rallel
Lisp cali  serve as the t,axget,  langua,ge for such tools.

In our programming model, processes  are created st run time, and the decision to create
a, process  ma,) be condit,ionaJ.  We will not say much here a,bout how such decisions ma,)r be
usefully nmde; this panper  is mainly a description of the implementakion of our simulakor.

Several  proposals  for cha,nges to Lisp to a,ccomodate  such a programming moclel have
been made, such ass Qlisp [s], Multilisp  [5], and MultiScheme [7]. While  t,hese dialect,s of
Lisp differ in syntax a,nd to some extent in the sema,ntic power of the featxres t#hey provide,



they all a.gree with the shaxed-memory  philosophy  t,ha,t.  we ha,ve described. In CSIM we
provide  support for several  of the Qlisp and Multilisp  forms tha,t we ha,ve found useful in
writing parallel  progranis.

The goa. of the Qlisp project at. Stanford is t’o produce a* compiler  and run-time system
for parallel  Lisp, that will be used on a.11  actua.1 multiprocessor for serious applica.tions.  CSIM,,
however,  is a,n interpreter runniiig on a single processor  and modeling  a* multiprocessor. In
this a,pproa.ch  there is a.11 inherent tra.deoff between  the speed of the simulation a.ncl its
degree of rea.lism. We ha.ve chosen a, middle ground that we believe will a,ccurately  model
the issues in paxallel progra,mming  t1ia.t.  we want to investiga.te.

3 A continuation passing Lisp interpreter

As an int.roduction  t.o the style in wllich C~IM is written.  we clescribe here a, simple con-
tinua,tion pa,ssing interpreter for a, subset  of Common Lisp. IXea.ders  fami1ia.r  with the
continua,tion  passing  style of programming ma.y wish to skip this section.

Writing  a Lisp interpreter in Lisp is easier tha,u the equivalent,  task in most other lan-
gua,ges, for several  reasons. First,  the representation of Lisp programs as Lisp (laxtao  greatly
simplifies  synta.ctic ana,lysis. More importa,nt81yY the interpret,er  ca.11 be “111eta,circ~lli~~r,” using
parts  of the environment in which it. runs to simulate the sa.me construct,s  in the la.ngua.ge
being interpreted. This lets us focus on the pa& of the eva,lua.tion process  t1ia.t a.re of
interest.  (See [l] for a. discussion  of meta.circula,r inlcrpreters  in Scheme, a5 simple dialect of
Lisp. Our examples  will all be ba.sed on Common Lisp.)

. - The ii&n function of the interpreter is eval, which ta.kes a. form (a0 Lisp espression
representing a, program) a.nd a,n environment (a. da.ta structure representing the values of
varia,bles), a.nd returns the value of the form in the environment,.  It usually looks something
like this:

. (defun eval (form env)
(cond ((symbolp form)

(lookup-variable form env))
((atom form)
form)

((special-form-p form)

(t (app1y :Z~ZTl~ZZrn~rest  f o r m ) ) )

+ ( d e f u n  e v a l - l i s t  ( f o r m l i s t  env)
( i f  ( n u l l  f o r m l i s t )

n i l
( cons  (eva l  ( f i rs t  form)  env)

( e v a l - l i s t  ( r e s t  f o r m )  env))) >

>>>

This program is not yet, complete. In pla,ce of the ‘. . . ’ must be inserted code to handle
all of Lisp’s specia3 forms.  We also need a, definition  of the representation  of environments,
and we need to clefine the funcbions  lookup-variable  azd apply. These involve details
tl1a.t are unimporta.nt act this point.



The above interpreter  is a filnctiona.1 progra,rn, and it,s runtinzc  behavior follows the
pat,t,ern of function ca.lls a,nd returns  in t,he program being inberpreted. For a, subset  of
Lisp r&ricted bo functional constructs, such an interpreter is fine. However,  it beconIes
increasingly  hard t.o nlaintain the sixnple  structure of the interpreter a.s we a,cld Con~non
Lisp’s specia.l  fornx for sequencing  ( progn), itera(tion (t agbody/go or do), a.nd non-local
return (catch/throw  a.nd block/return-from),  as well as the pa.rallel constructs  tlia,t we
will introduce.

Using corltilluations  a.llows us to expa.nd the ra,nge of constructs  t.ha,t  the interpreter ca.n
lla,nclle with a mana.gea.ble increa.se in the colnplesity of the prograan. Clontiilu;l,tions,  which
were originally  invented to define t-lie seinantics of sequential progra,iiiiiiing  constructs  (see
[4] and [lo]), were shown in [9] and rela,ted pa,pers to be a very convenient progralnnling
tool as well.

A continua.tion  is a. function tlia4 represents “the rest of the pr0gra.m” as the interpreter
progresses. The interpreter’s job changes  front “eva.lua.te  a fornl in a.11 environinent,  and
return the result” to “evaluate  a. form in an environinent and c.aJl a3 continuation  with the
result  .” Using continuation passing  style,l our esa.nlple becolues:

(defun eval (form env cant)
(cond ((symbolp  form>

(funcall  cant ( l ookup-var iab le  form env)))
((atom form)
(funcall cant form))

((special-form-p form)
. . . >

( t  ( eva l - l i s t  ( rest  form)  env
#‘(lambda  (args )

(apply (f irst form) args cant))))))

(defun eval-l ist  ( formlist env cant)
( i f  (nul l  f orml is t )

(funcall  cant n i l )
(eval ( f irst form) env

#’ (lambda (first-value)
(eva l - l i s t  ( rest  forml is t )  env

#’ (lambda (rest-values)
(funcall  cant ( c o n s  f i r s t - v a l u e

rest -va lues ) ) ) ) ) )>>

It. is inlportant  to notice tlla,t the functions defined above by lambda expressions  are clo-
sures; they contain free references t,o variables tlla,t axe lexically  bound outside the lambda
expressions.

In a, continua,t,ion  passing  progranl such a.s this one, exh function that is called with a4
continuation as an argwnent  ends by calling another function? passing  it a new continua,tion.
If the interpreter  is run using an ordinary stack-ba#sed Lisp system, the stack  will grow quite

‘The reader familiar with continuation passing style will notice that some parts of this code do not, pass
continuations: for inst,ance the lookup-variable fnnction. We do this to improve the performance of the
interpreter by creating fewer unnecessaxy  closures.



.
la.rge, a,nd any pr0gra.m  doing a non-trivial amount of work will ca,use the system  to run
0~1~ of memory. To a,void t,his, the Lisp system  in which the interpreter  is ruu must detect
tail recursion and ca,use stack  space t,o be reused whenever such a. call is encounterecl.
While coding the interpreter, the progra,mmer  must ensure tha.t a.11 functions  ca.lled with
continuations  are tail-recursive.

Let us go through a. simple example to illustrate  how the continuation passing interpreter
works. Suppose  we wa.nt to evaluate the expression  (+ x 3) and print,  the result. Previously,
we would haOve said

(print (eval ‘(+ x  3 )  * top - leve l -env* ) )

where *top-level-env*  is used to hold the “top-level” environmentq  of values assigned to
global variables. Let, US assume tl1a.t it associates x with the vale 4. With the coIltinrlation
passing  interpret.er, we sa.y

(eval ‘(+ x  3 )  * top - leve l -env*  #‘pr int )

This call to eval esa.mines the form (+ x 3). It is not. a#n a,tom or a. snecial form, so it
results in a ca31 to

( e v a l - l i s t ‘(x 3 )  * top - leve l -env*
#‘(lambda (args) (apply #‘+ args #‘print>>)

The quoted expressions  in the a,bove call and t’he rest of this example  acre used to represent
the values that will actually be passed.  The original  continuation #‘print has become pa,rt
.of -a. new’continuation (the lambda expression above). Eval-list now ca.lls

(eval ‘x *top - leve l -env*
#‘(lambda (first-value)

( e v a l - l i s t ‘(3) * top - leve l -env*
#‘(lambda (rest-values)

(funcall  #‘(lambda  (args)
(apply #‘+ args

(cons  f i rs t -va lue
rest -va lues ) )

#‘print))

>>)>

which hams constructed  a. new cont,inuation  tha,t contains the old one buriecl inside two levels
of closures! But now we have called eval with an atom, a,nd it calls

(lookup-value ‘x *top - leve l -env* )

to_find the value associated with x in *top-level-env*. This will return 4. Then eval
will call

(funcall  #‘( lambda ( f i rs t -va lue)
( e v a l - l i s t ‘(3) * top - leve l -env*

#‘(lambda (rest-values)
(funcall  #‘(lambda (args)

(apply #I’+ args #‘print)>
(cons  f i rs t -va lue  rest -va lues ) ) ) ) )

4)
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This becomes

( e v a l - l i s t ’ (3) *top-level-env*
#‘(lambda (rest-values)

(funcall  #‘(lambda (args) (apply #‘+ args #‘print>)
(cons 4 rest-values))))

so we xe imking some progress. After  several more steps similar  to those a.bove, the
interpreter will call

(funcall  #‘( lambda (args) (apply  #‘+ args  #‘pr int ) )
( cons  4  ‘(3)))

a,nd finally

(apply #‘+ ‘( 4  3 )  #‘print)

The continuation passing version of apply (which we haven’t  yet defined)  will call the
continuakion #‘print  with the result of applying the function #’ + to the a,rgument  list
’ (4 3)) so we will finally call (print 7) and see our answer.

4 An interpreter for Common Lisp

We now ext,end t,he simple continuation passing  interpreter to one that accepts  almost, all of
Common Lisp. This will be the basis  of our pa.rallel Lisp simulator. To avoid discussing  var-
ious unimporta.nt.  deta,ils, the code described in the next few sections  is often  a simplification
of what, a&ually appears in CSIM.

4.1

Symbols  in Common Lisp programs refer to values based  on the rules of scope and extent
as described in [S], ch. 5. Vk’hile it would be possible to pass  in a single env varia,ble
all of t$he information needed to resolve any symbol  reference, CSIM divides the kinds of
references  into two classes, lexical and dynamic, and uses variables  lex-env and dyn-env
to store different  pazts of the environment. The pra,gmatic  reason for this separation  is tha,t
a call to a new function defined at “top level,” which is a frequent  occurrence, uses none
of the lexical informat8ion  present in its calling environment, but retains all of the dynamic
environment.

a Lexical environments a,re represented by structures  with four components:

l variables tha,t a,re lexically  bound, for exa,mple as function parameters  or by let.
Whak is actuallv stored is an associakion list (alist) of (variable . value)  pairs.  Since
lexica,l binding is the default in Common Lisp, most varia,ble references  will be found
here.

l functions defined by f let or labels. This slot contains an alist that associates each
name with a lexical closure  (see definition  below),  since lexically  bound  functions can
ha,ve free variable  references.

5



l blocks dcfnecl  I),v block. Also cent :Ii[l ;1 II ;r Ii\! _ wllich is described  in more dct ail in
section  4.4.

l tagbodies defined by tagbody (or implicitly by prog, do, etc.) This slot contains a
list each of whose members  is the entire body of a tagbody form.

Lexical closures a.re represented by structures with two components:

l . function,  represented by a, lambda expression.

0 environment, a lexical environment+.

Dynamic environments a,re represented by structures with three components:

l variables that, are “special,!’ and hence dynamica.lly  bound (an alist).

l catches, informaItion asbout  catch forms tha,t have been entered a,nd not yet exited.

l unwinds, representing unwind-protect forms that a.re pending.

A new environment is created whenever there is a. new piece of informa.tion to a,dd to an
existing  environment. For exa,mple,  to interpret a let form tha,t binds lesical va,ria’bles, we
crea.te a. new lexical environment structure, copy the slots that ha’ve not chalngcd from the
existing  environment (functions,  blocks, tagbodies), a,nd store in the variables slot a(n
alist that, begins with the varia.bles being bound and eventually shares  the list struct,ure
of the va&bles in the original  environment. We create a new environment, rat,her t,lia,n
&&lge  the slots in the existing environment structure, beca*use the extent of each binding
in Lisp is ftnite and the binding must at some point, be “undone;” the best. wa,y to do this
is to preserve  the environment existing before  the binding.

Sometimes  we modify the data structures contained in an environment.  without changing
. the environment itself. For exaImple, to interpret setq  we find a (varia.l>le  . va.lue) pair in

a.n environment and destructively modify the value pa,rt of this cons-cell.

4.2 The global environment

CSIM does not use the environment structures just described to implement Common  Lisp’s
- “global environment ??’ consisting  of values and functions a.ssigned to unbound special va.ri-

ables (symbol-value a,nd symbol-function).  When simulating a8 reference or assignment
to an unbound symbol’s value, we use symbol-value, which lets the simula.ted pr0gra.m
share the global  environment8  of the simulator.

-This makes using CSIM more convenient, beca,use assignments to global variables can be
made in the ordinary Lisp environment and then be seen by simulated code, or vice versa,.
Doing this for function definitions  would cause difficulties,  however  (since CSIM provides
interpreted  definitions  for many of the predefined Common Lisp functions), so these are
stored on the symbo1.s  property list,.

4.3 Function application

Let us now look furt,her into CSIM’S apply function, which has been mentioned several
times but, not, yet defined.  The role of apply is to take a function object,  a list of argument



va.lues, a, lexica.1 and dyna,mic environment, a,nd a, continuation,  and to call the continua,tion
with the result of the function applied  to the arguments.

The function objects that apply a3lows as its first argument fall into the following classes:

1. Symbols  naming primit*ive Common Lisp functions. These functions are called directly
by the simula,tor.2

‘2. Symbols  naming Common Lisp functions that must be treated speciaJly. For example,
an instance of eval in code being simulated should  result in a0 call to CSIM’S eval,
not the eval in the underlying Common Lisp.

3. Symbols  namin,0 functions whose definitions  should  be interpreted.  CSIM finds the
definition for such a0 function on the symbol’s property  list, where it will have been
stored as a0 lambda expression  by CSIM’S  version of defun? and a,pplies  it in a null
lexical environment and the current dynamic environment.

4. Explicit  lambda expressions. These are applied  in the current lexical and dynamic
environment.

5. Closures.  These are represented by structures containing both a0 lambda expression
and a lexical environment in which to a*pply it. The current dynamic environment is
used.

A4pplying  a lambda expression  is fairly  straightforward. We create new environments
to cont,a.in the bindings of the lambda expression’s  variables.  (Since some of them ma,y
6e special  varia.bles we ma,y create both a, new lexical environment and a new dynamic’
environment.)  In the new environments, we associate the variables  with the corresponding
values taken from the argument list to apply. Finally,  we evaluate the body of the lambda
expression  in the new environments. Since its value should  be passed to the continuation
tha,t was given to apply, we use this continuation  in t,he call to eval for the body. A
skeleton of the code for this is:

(let ((new-lex-env  . ..)
(new-dyn-env . ..))

(eval <body-of-lambda-expr>  new-lex-env new-dyn-env cant))

In the actual simula,tor,  the application of lambda expressions  is more complica.ted beca,use
we interpret Common Lisp’s &optional, &rest  and &aux parameters,  and atvoid creaking
new lexical  or dynamic environments when not necessary.

a 4.4 Special forms

As a,n exa,mple  of how continuations  simplify the simulation of Common  Lisp specia.1 forms,
let us look at the implementation  of block and return-from. In a$ program such as

(block bl
(foe (block b 2

(if p (return-from  bl 7) 3))))

2Tl~e dyna~nic environment in which these calls take place will not correspoud  to the simulaked dynamic
environment. The user of CSIM must expect dynamic binding of variables t.o a.ffect, only references that axe
interpreted by the simulator.



if the va,lue of p is nil, the inner block will return 3 a*nd the outer block will cbmpute
(f oo 3). But if p is not nil, the return-from  form will cause 7 to be immediately returned
from the outer block and foo will not be called. The symbol  bl in the return-from  matches
the name of the outer block because  it is lexically  conta8ined within tha,t block, but if the
inner block were also named bl then the return-from  would match the inner block’s name.

Each lesical environment includes  a blocks slot. To interpret a4 block form, we create
a new lexical environment; in the blocks slot of this environment we put a list whose first
element represents the block we are interpreting;  the rest of the list is the blocks slot from
the previous  environment. With the block name we associa’te the continuation  for the block,
because this represents what we want to do with the value returned by the block, whether
it comes from the last form in the block or is supplied  by a return-from.

The code to interpret a block form is therefore

(defun eval-block  (form lex-env dyn-env cant)
(let ((new-lex-env  (copy-lex-env  lex-env)))

(push  (cons (block-name form) cant)
(lex-env-blocks  new-lex-env))

(eval (block-body form) new-lex-env dyn-env cant)))

and t,he code to interpret a, return-from  form is3

(defun eval-return-from (form lex-env-dyn-env  cant)
(let ((find-block (assoc (return-block-name  form)

: (lex-env-blocks  lex-env))))-
(if find-block

(eval (return-expr form) lex-env dyn-env
(cdr find-block))

(error “No block for -St’ form))))

When return-from  is seen, the interpreter looks through the list of blocl;s in the current
lexical environment, which will have the innermost blocks listed first. It examines block
names (using  assoc)  until it finds one matching the name in the return-from. The contin-
uation tha,t is associated with this block name is the one to which we want to pass the return
value. Therefore we end wit*h a (tail-recursive) call to eval using this continuaAion. Note

- that the cant argument to eval-return-from is ignored. This is because return-from
never  returns a value to its caller; it always passes a value to some other continuation.

If no return-from  is encountered in the course  of evaluating the body of a8 block, then
the evaluation of (block-body block) will eventually call cant with a. va,lue, as expected.

-Catch and throw are simulated in a very similar  way. Catch sa*ves its tag and continu-
ation in a new dynamic environment, and throw looks for the appropria*te continuat,ion  by
matching its ta.g to those saved in its dynamic environment.

Unwind-protect is not hard to handle, although it must be codecl quite carefully.  The
main idea. is that every time an unwind-protect  form is evaluated, a new dyna,mic envi-
ronment is created; its unwinds slot contains a list with the cleanup  forms and the lexical
and dyna,mic environments in which they must be executed. Upon n0rma.l  return through

to
3The code as shown here is incomplete, because it doesn’t handle unwind-protect
be evaluated as a result of a return-from. CSIM does handle this case.

forms that may ha.ve



a.11  unwind-protect these  forms are evalua,t,ed in a straightforward  wa,y. ,4 non-local  exit
(caused by throw, go or return-from) causes a change from the current dynamic envi-
ronment to a previous  dynamic environment,. When this happens, we evalua,te all of the
cleanup  forms associated with environment,s  between the one we are leaving and the one we
are returning to, in the proper orcler.

Anot3her important special form is setq.  For the moment, the following code will suffice
to simulake (setq  \k3r valrre) :

(defun eval-setq  (form lex-env dyn-env cant)
(eval (third form) lex-env dyn-env

t’ (lambda (value)
(modify-binding (second form) value lex-env dyn-env)
(funcall cant value))))

Modif y-binding finds t,he association-list pair for the va,riable in the appropriate  environ-
ment and changes  the value. In section 6 we will make some addit,ions to this code.

r\!Iost  of Ohe remaining special forms of Common Lisp perform various operations on
environments; they are stra.ightforwa.rd to implement so we omit them from the description
here.

4.5 Multiple values

Common Lisp’s mult,iple values are support,ed  by C~IM. We have previously defined a
continuation  to be a function of one variable, and simulated returning a value from a,
function call by calling a, continrmtion with the value that is returned. To allow multiple
values to be returned, we let a continuation be callecl with any number of arguments.

1nstea.d of a funct,ion with one pa,rameter, we let each continuation  be a function with a0
&rest pa,ramet,er. When t,he continuation  is called,  the &rest parameter varia.ble is bound
to a list of the arguments  values. It, is t-hen straightforward  either to use just the first element,
of this list when only one value is expect’ed, or to use the whole list in the places that allow
multiple values.

The initial implementation  of CSIM wits done without supporting  multiple values. When
it came time to add this feature (because some programs that we wanted to simulate used
multiple values),  it took very little effort t,o do so.

We will not mention multiple values in the remainder of this paper since in general they
are not relevant to issues of pa.rallelism.

4.6 Timing-  statistics

Up to now, we ha,ve not ma.de CSI~~ do a,nything  more than the Lisp system that it is built on.
The first. feature t.1la.t  we will a.clcl is the a,bility to measure and record “simulated” execution
time. This meets one of our initial goals? which is to reflect the timing of computaltion  on
an actual or hypothetical machine.

We use a, global  variable  *time*, which is initialized to 0 at the start of ea,ch “top-level”
call to the interpreter. Whenever CSIA~~  performs an operation  tha,t reflects  work in the
sirnuked  ma,chine, it adds an a,ppropriate  amount to *time*. (Section 8.1 explains  how
the basic timings are chosen.)  When the computation is done, we can see how much work
our simula,tion corresponded to.

9



-4 benefit of the simulator is tha,t we ca.n gather some sta,tistics tl1a.t would be hard
I to obt2Gn in a rea.l machine without a.ffect,ing the t.imings. For esan~ple, WC keep tra,ck of

how much work is spent in each function, in a.ddition to the total work done. This ca.nnot
generally be done on sta.nda.rd ha1rdwa8re without,  for insta#nce.  having t.he compiler  generaate
at1ditiona.l code at each function entry and exit; this extra code will a.ffect the statistics.
Worse, from our point  of view? it will a*frect the rela,tive timing of activity in a, pa,ra.llel
processor  and possibly  change the amount of speedup  for the progra,m.

ClsIhCl keeps track of time spent,  in functions in three cliffereut ways. The first is the time
spent  in each function exclusive of the functions tSlmt it ~~11s. These timings  will a.dcl up to
the total time spent, in the prograni.

A more useful statistic  is obtainecl by counting a.11  of the computa.tion  clone in a. function,
including functions that it calls. When a function  recursively  calls itself (either directly or
with calls to ot,her functions intervening), WC must decide whetlher to cha,rge it only once? 01
once for ea.ch ca,ll. CsIhl a,ctuxlly does both? because  a, different  useful measure is obtained
each wa,y. These are the second a.nd third sets of function timings.-

The informa.tion  needed to compute these  timings  is stored in ext’ra,  slot,s in ea,ch dynamic
environment structure. One slot, contains the name of the current function being simulated;
it is used to cha.rge time t,o just. that function. The second slot cont,a.ins  a list of all function
calls currently in progress. The third slot. contains  such a, list, but with eaSch function
appeaSring only once.

When a. basic operation is simulated, C’SIM a,dds its simulated time to the time for the
current function, a,nd the t.imes for functions in the two lists. For each of the three statistics
there is a? hash t.able indexed by the function’s  name a,nd containing its accumulated time.. -

After  a top-level  form hams  been simula,ted, CSIM optionally prints the timings. The
timings  for functions in which recursive calls a,re connt,ed more tl1a.n once are not useful by
themselves  (some ma.y be more than 100%  of the t.0ta.l  sinlula,tecl time), but when divided
by the number of calls t.0 t.he function, they give the avera*ge t*inie spent  in that function.

. For example, suppose  we ha,ve the sequence  of calls

FOO - FOO --+ FOO - BAR,

in which each call t,o FOO takes 10 st,eps  before calling the next FOO or calling BAR, and the
call t,o BAR takes 40 steps.  Thus the total comput,aStion  ta,kes 70 steps.  The first sta.tistic

_ would show 30 steps spent in FOO and 40 steps spent in BAR.
The second statistic  \voulcl show 70 steps spent in FOO (since all the work is done within

the toplevel  call to FOO),  a.nd ~10  steps spent  in BAR. The third statistic  would show an
avera.ge of 60 steps spent  in FOO,  since 70 steps are chaJrged to the first call, 60 to the
second,  a.nd 50 to the third. It, would a.lso show 40 steps spent in BAR.

Section  9 will describe  how we use these sta.tist,ics.

5 Parallel Lisp constructs

Parallel Lisp progra.ms a,re executed on a sha#red memory multiprocessor by means of a
process  queue, a da,ta structure containing processes?  which represent computations  that
ma$y be performed in parallel by the processors  in the system. (Although we refer to it as
a “queue ,” aOnother data, structure ma*y prove to be a better choice.)
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Processors  that are idle will remove  processes  from the queue and execute them; a,
running process ma.y generate new processes a,nd put them on the queue.  When a. process
finishes, the processor  running it becomes idle a.ga.in and will look for a,nother  process  to
run. A process may also wa,it for a.11 event, causing  it to be suspended and making its
processor  idle.

There ha.ve been several proposed  extensions  to Lisp t,o support this model of compu-
ta.tion. CsIM provicles the following constructs:

1. Qlisp’s qlet (both rcgu1a.r a.nd eager forms)  and qlambda: described in [3].

2. Ik’Lultilisp’s future, dfuture  and touch, defined in [s].

3. Simple test and-set  locks (busy waiting).

FV’e do not yet, support the extensions to catch a.nd throw defined by &lisp. (Their meaning
is currently being revised.  )

Multilisp’s future a.nd df uture, and the eager form of &lisp’s qlet, use a8 special  kind of
da,ta.  object called a “future” (or sometimes  a “promise” or “placel~olcler”),  which represents
the undetermined value of an expression  that is being computed in another process.  Lisp
operations that do not, depend on the values of their operands (in aa well-defined  sense)
trea.t a future just a,s any other data object,. A future can be passed  as an argument  to a,
function, returned as a. value, assigned  to a, varia,ble, or stored in a, data\.  struct*ure;  none of
these  operations depend on its va.lue.

Most of the primitive operations of Common Lisp do depend on the values of their
oberands, however , so whenever one of these  primitives is called the future is said to be
touched.  This causes one of two things  to ha.ppen:  either the process computing the future’s
value 1la.s  finished, in which case the value is availa,ble to the process  touching the future,
or the process ha,s not. finished; then the touching process  will be suspended, and when the
value is avakble it ma:)I be resumed.

The use of futures is not without some cost,  especially on processor  architectures  not
designed  to support them. The primitives that need to touch their arguments  must all
perform a,ddit,ional work even when those  arguments are not futures (just to check whether
they are), and every reference  to a future costs more? often even a.fter its value has been
determined. CSIM, by assigning  varying  costs to these operations,  can indike how much
of a. performance penalty this is.

Locks are providecl a.s a, low-level synchronization primitive for two reasons:  first, they
are better suit,ed for certain parallel algorithms than futures (particularly  for “in-place”
algorithms tl1a.t destructively modify  data, structures);  and they are needed to write the
scheduler, as described  in section G.2.s

5.1 Scope and extent issues

The definitions  of scope and extent for varia,bles and other objects in Common Lisp require
some reinterpretation  in parallel Lisp. This was forseen in [S, p. 381,  where Steele writes:

Behind the assertion that dynamic extents nest properly is t;lle assumptiorl that
there is ody one program or process. Common  Lisp does not address the prob-
fems of m nltipro@Yk.mming‘ (timesharing) or m dtiprocessing  (more than one ac-
tive processor) wit bin a. sing-le  Lisp environment.
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We have chosen the following policies:
.

l Lexical variable  references  behave the same as in Clommon Lisp, even if the binding
of a variable is in a3 different  process from the reference.  Thus, in

(qlet t Ux (let Uv 5)) (foe v>>>
(y (let (h 4)) (bar v>>>>

. . ./

t,here is no relation between the binding of v in the two processes crea,t,ecl by qlet,
while in

(let NV 5))
(qlet t ((x (foo v))

(y (bar v>>>
. . . I>

the two references  to v are both to the binding esta,blished by the let. If one of the
processes  usecl setq to change the value of v, the new value would be seen in the other
process  (and in the body of the qlet ).

If the parameter t in qlet is changed to ’ eager? then the process computing the body
mai return from the qlet even though the processes  computing the bindings  are still
running. In this case? the variable  v must remain a.ccessible to these  processes.  (The
sa,me situakioii can occur if future is used.)

CSIM has no problem  implementing this, because  it uses list structure to store lexica,l
environments and never  explicitly deallocates them. (They a,re garbage collected  once
they are no longer  needed.) An efficient parallel Lisp implementa,tion  might avoid
allocating environments when possible,  but will have to use a lexical closure to allow
the passing  of bindings  from a parent process to a child in this manner.

l The dynamic environment of a process  cannot be changed  by other processes,  even
when a binding is undone in a3 process.  If we cha#nge our first example  to

(defvar v>
(qlet t Ux (let ((v 51) (foe v)>>

(y (let ((v 4)) (bar v>>)>
. . . >

then the two bindings  of v are independent,  even though they may occur concurrently.
The “shallow binding” technique used by many Lisp implementations does not, do the
right thing in this case; each process  would try to store its new value for v into a,
shared global  value cell. Deep binding, on the other hand, does work correctly if each
process  is provided with its own sta.ck for bindings,  and inherits the bindings of its
parent, process.  However,  in the case
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(defvar v)
( l e t  ( ( v  5))

( q l e t  ‘e a g e r  ( ( x  (foe v>>
(y (bar v)>>

. . . >I

we want the binding of v to be accessible to the processes created by the qlet even
after the qlet returns. This is a, problem,  since the process that established the
binding now will undo it. In a sta,ck-based implementa.tion  of dynamic binding, even
with deep binding, this will not work. CSIM uses list st,ructure  to implement its
dynamic environments, just as with lexical environments, and hence does what we
want..

6 Simulating the parallel machine

Our main concern in simula,ting a multiprocessor is t.ha,t  we a.ccuraltely model the order of
reads and writes to the shared memory.  Although parallel  programs that share da,ta gen-
erally use synchronization constructs  such as futures or locks, we want to produce realistic
results for programs t11a.t  mske unsynchronized memory references.  (Among other benefits?
this will help us find bugs in progra,ms tha,t do not use correct synchronization.)

In sections  3 and 4 we described  how our single-processor  interpreter keeps track of itsI
p?ogress using continua,tions.  This ta.kes  the pla,ce of the “control  stack” in aa ordina,ry
interpreter, and consequently it is very ea,sy to ca,pture the interpreter’s  sta,te. This design
lets us have a,n interpreter for each processor  in the simula.ted machine, a.ncl swit,ch between
them whenever we wa,nt.

We do this by introducin,0‘ a new kind of continua,tion,  which we call a process  corltirl-
ua.tion. Process continuations a#re closures with no para,nieters;  their purpose is solely to
capture the lexical environment of the interpreter at a point  where we wish to switch t,he
simulation to a new processor, so that we can later resume  the current processor’s  simula.-
tion. (In [ll], continuations created by catch in the t,hen-current  version of Scheme were
used for much the same purposes  as our process continuations.)

For example, the code to handle setq that was presented in section 4.4 is modified  in
the para.llel simulator to

(de fun  eva l - se tq  (form lex-env dyn-env cant)
(eval (third form) lex-env dyn-env

#I’ (lambda (value)
(switch-processors

#’ (lambda (>
(modify-binding (second

lex-env
(funcall  cant value)>>)

form) value
dyn-env)

>>

where switch-processors is a. function that’ does what we have been describing. Its a.r-
gument is a, process continuation that ca.ptures the necessary  parts  of the simulator’s stat,e
in its free va,riables. Calling the process continua,tion  will resume the interpreta.tion of the
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setq form! but the switch-processors  function cm defer this call until the appropriate
time to do so.

Process  waiting is also simulated using process continua,tions. When a, process needs to
wait, for an event (such as a, future’s value being determined, or to call a, qlambda process
closure), the simulator stores a4 process  contCinua,tion representing the work to be done a.fter
that event, happens, in a, data, structure associated with the waiting process. Ca.lling the
process coutinuaCtion resumes  the suspended  pt‘o(‘~~~~.

6 .1  Processors

The va,ria,ble *number-of -processors*  is used at the beg;inning of each top-level evaluation
to determine how ma,ny processors  to simulake. Each processor  is alwa,ys running a. process,
possibly  a.n “idle” process. A processor  is represenkd by a, da,ta\. structure conta.ining its
current process and its current simula,ted time.

The simula,ted times are the key to deciding when to switch the simula.tion from one
procesSor to a~iiOtlier.  As long as CSIM performs opera,tions that can hVe 110 effect 011 pro-
cessors other t1ia.n the current one, it continues to si1nulate the same processor? incrementing
that processor’s time. 4 The only operations by which one processor  can a#ffect others are
t,hose that read or write data, in sha.red memory.  To make sure thak these  operakions  axe
done in t,he correct order, CSIM enforces  t!le following rule:

‘Td see why this works, consider  two processors,  PI and P2, that perform shaxed-memory
opera.tions  at times tl and t 2? with t1 5 t2. Without  following t,he rule above, we might run
the simulation of P2 beyond Cme 12 before we ha.ve simulaked PI at time tl. This would
be wrong:  for instance?  if PI’s operation  is a, write and P2’s is a rea,d of the sa.me memory

4 location, t.hen we would not read the correct, value. (We call this a write/read conflict.
Read/write or write/write conflicts  ca,use similar  problems.) However, beca)use of the above
rule this cannot happen. When we see tha.t P2 is about to perform a memory operation a.t
time t2, we stop it.s simulation. We do not restart it until has the lowest simula.tion time of
any processor  (or is equal  to others with the sa,me time). At t,hak point, PI must have been
simula,ted past time tl, becaxse if it hasn’t been, then’its time is less tha.11  tl and tl 5 t2?

- so P2’s time isn’t the lowest.
What t,his  does is seriake all of the shared-memory operations that ca,n cause one

processor  to a.ffect a,not.her. We do this for unsynchronized memory operations (i.e.,  ordinaxy
rea,ds and writes) as well as synchronous operat,ions such as acquiring locks. This ensures
thk our simula,tion corresponds to the order of operations tha.t would occur  in a read
multiprocessor. However,  we do not place a,ny restrictions  on sha.red-memory  operations
performed at the exact  same time by t,wo processors. The results of these  axe unpredicta,ble.

Seria.liza.tion is implemented by mea,ns of a priority queue (called the “run queue”) that
holds the structures  representing processors, sorted in increasing order of simulation time.
When the interpreter is a.bout to perform a, shared memory operakion  (for insta,nce, at the
call to switch-processors  a.bove), it updat’es  the data structures  for the current,  process

4Actually,  it. increments t,he global variable *time*, and will store its value back into the processor’s
strnctIlre  before switching to a new processor.
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a,nd processor  and inserts the processor into the run queue. Then, the processor  with the
lowest simulation time is removed from the run queue and its simulation  is resumed.

CSIM’S serialization method was chosen because it is easily to implement, and prove
correct. Since CSIM does not itself attempt  to do work in parallel,  this is a. rea.sona,ble
choice. Serialization would become a bottleneck if we were to try to speed up CSIM by
ha.ving it. simulate several processors  at the same time, and we would proba.bly  need to use
ax more sophisticated  mechanism, such as the “time warp” system described  in [S].

6.2 The scheduler

As described at the beginning of section 5, we assume there is a8 queue or some other data
st.ructure to hold processes  that are ready to run. We call the code that maintains this data
structure the &red&r, since it, decides in wha,t order the processes will run.

Scheduling  algorithms are one of our objects of st,udy, and we do not want to build one
into the design of our simulator. InsteaOd, we want to make it possible for a user of the

simulator to write a, scheduler in ordinary Lisp code (not in continuation passing  style).
CSIM models  the execution of the scheduler by simulating it in the same wa,y as other Lisp
code.

The scheduler  consists  of two functions:

l add-process  is called whenever a new process is created. It is given a process as its
a.rgument,  and inserts it into whatever queue or other data structure is being used to

: schedule  processes.

l get-process  is called whenever a processor  is idle. It finds a, process t-o run and
returns  it.

When a, processor  becomes  idle, the simulator creates a temporary “iclle” process in which
the call to get-process  takes place. (Since this call is interpreted,  there must’ be a, process
for it to run in.) Upon return from get-process,  the new process replaces  the idle process.

Currently, CSIM gives the user a choice of two schedulers:  FIFO and LIFO. These both
orga,nize the runnable processes  into a single list; their difference is in which process is
chosen by get-process.  The FIFO (‘if t-rrs in, first-out”)  scheduler  takes the process that
has been in the queue for the longest) time, while the LIFO (“last  in, first out”) scheduler
takes  the most recent, process.

LIFO scheduling, while perhaps counterintuitive  at. first, has been found to often perform
better than FIFO scheduling. Halsteacl [5] discusses this in some detail, and a#rgues  for an
“unfair” scheduling  policy as a way to reduce memory usage.a

LIFO scheduling a.lso allows some optimiza,tions  in process management.

1. When a process is about to create a chilcl process  and immediately wait for its result,
as in the (qlet t . . . > construct  of &lisp,  it can perform a.11 ordinary function call
instead, since there is no reason to put a3 process  on t,he queue, make the processor
become  idle, and have it then remove  the same process right a,way.

2. When a process  finishes and has a list of waiting processes to wake up, its processor
can put all but one of them on the process  queue and run the last one itself,  since it
otherwise would become idle and immediately choose the last process that it added.
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CSIM has a fla.g that is turned on by the LIFO scheduler, and turned off by the FIFO
scheduler, which enambles  these optimizations. This intera,ction  between the scheduler  a,nd
the simulator is needed because  creation and termination of processes  a,re simula,ted directly,
not interpreted  as the scheduler  is.

The FIFO and LIFO schedulers  just described both suffer from potential contention for
the va,rious locks on the process queue needed to ensure correct operation.  We are t.herefore
looking  int.0 the use of more sophisticated schedulers  that distribute  the runnable processes
among several  queues. In many cases a single-queue  scheduler is sufficient,  since our goal is
to create processes  of a large enough  granularity  so that scheduling does not happen very
often. As the number of processors  we simulate increases, however,  t-he process size must
also increase to avoid contention, and this may reduce the potential speedup of a program.

6 . 3  Processes

A process is represented by a structure containing its current process  continuation, a flag
to indicate whether it has terminated, and a list of other processes  that are waiting for it (if
it has not yet termina,ted). When int,erpreting  a* form that creat,es a process,  such as qlet
or future, the simulator calls a function create-process defined as follows:

(defun create-process (form lex-env dyn-env new-cant cant)
(let ((new-proc (make-proc

:pcont #‘(lambda (>
(eval form lex-env dyn-env

: new-cant>>>>>-
( ca l l -user - funct ion ‘add-process  ( l i s t  new-proc )
#’ (lambda (v)

(funcall  cant new-proc ) ) ) ) )

. The form argument is what the new process will evaluate, using lex-env and dyn-env
as its initial environment. New-cant is the continuation  that the new process will call
with the value of form. Cont is the continuation for the parent process.  The call to
call-user-function tells CSIM to interpret the definition  of add-process  with the new
process  as an argument, and pass the result to the specified continuation. This continuation
returns the new process to the parent,  which may have a8 need to refer to it. (For instance,

- qlet may wait for the new process to finish.)
The continuation  new-cant called by the new process  is always written to end with a1

call to the function finish-process,  which wa,l<es up any processes  that have decided  to
wait for the given process to terminate. It does this by calling add-process  on each of
these. After this, the process is done. Its processor  becomes  idle and will try to find a#
new process. If we are using the LIFO scheduler described in the previous  section,  then
if there were waiting processes we switch directly to one of them, avoiding  a call to both
add-process and get-process.

6 . 4  Process closures

&lisp defines a new type of object called a process closure, which provides  both concurrency
and synchronization. A call to a process closure  may proceed without the caller waiting for
the result (but only when the call is in a. position where the result value is ignored). Calls



to ea,ch process closure are serialized;  if one happens while a. previous  cam11  is still in progress,
it is put on a queue.

At present, CSIh4 implemenk only the synchronization fea,tures of process closures.  To
do this. we represent a process closure  by a3 structure cont.aining  a) (first-in,  first-out)  queue
of waiting processes and a. closure. When a, process  closure  is called,  the calling process  is
a.dded to the queue. If it is the only one there, it, proceeds l>y calling the closure.  Otherwise,
its processor  becomes idle and calls get-process  as described above.

When the call to t,lie closure  returns, the simulator removes  the current process  from
the process closure’s queue. If there are now ot.her processes  waiting on the queue, it calls
add-process  t.o resume  the first one.

7 Miscellaneous details

In the previous  sections, we omitted certain details in order to simplify the presentation.
This section explains  several  of them.

7.1 Use of symbols

We find it convenient,  to have the interpreter share symbols  with its unclerlying  Co~nmoxl

Lisp environment. As mentioned in section 4.2, the values of unbound special variables  are
shared between the simulator and the’ program being simulated. Other informakion  about
symbols  is kept, on their property  lists,  using the following property na,mes:

l cexpr is the lambda expression  for an interpreted funct,ion definit,ion.  CSIM’S  version
of defun sets the value of this property.

l csubr is a function to handle a. special  form.  It is ca,lled by CSIM’S  eval t,o handle such
a. form,  with the form, the current lexical  a,nd dynamic environments, and the current
continua,tion  as arguments.  The def csubr macro defines such a function. This ma,lies
the code more modula,r,  since we do not need to enumerate all of the special  forms
inside  eval.

l esubr is a function to handle a primitive Lisp function that ca,nnot be called directly,
such as apply, because its operation  needs to be simulated. The arguments  to an
esubr are evaluat,ed normally before  the function is called.

l cinfo is a, list whose car is the number of time units tha,t the simulator should  charge
to interpret the function or special  form named by this symbol, and whose cdr indi-
ca,tes which arguments to the function may be passed without being touched. These
a,re both meant mainly for functions that are interpreted by calling the Common Lisp
funct,ions directly. Functions tha(t are simulated (using  either cexpr or csubr def-
initions) do not make use of the cdr part of this property. For interpreted cexpr
definit,ions, if this property  is present it overrides the normal time charged for a, func-
tion call.
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7.2 Preprocessing of definitions

(IkInd  has its own version of defun. which stores the function clefinition of a. synlbol  as its
cexpr property. I3efore doing so, it, preprocesses  the function definition  to perform the
follo\ving  t,ra,nsfornlat,ions.

1. Macros  arc cspa.i~ded wherever tliey are recognized. Tlkis a.voids having t,o espa.nd
them in the interpreter.

2. Pa.rallcl Lisp constructs  (qlet, future, etc.) a,re converted to a. form t1~a.t.  assigns a,
unique t,ag to each process crea,tion point. For esamplc, if a3 function f oo contains
several ca.lls to future a,nrl the second one is (future expr) then it is coilverteci  to
(future-tagged f oo2 expr). \Vhen  future-tagged is int,erpreted,  it, is treated  just
like future csccpt  t1~a.t  the ta,g is assigned to the new process tha.t,  is crea,ted. CSIM
keeps track of how much t,ime is spent  in each call to a. process with a, given ta*g. With
this informakion  the user can decide whether the processes  creat,ed at ea,ch point in
the progra~m a.re of a. rea.sol\a.ble size.

It is possil>le  for a, ma,cro to be encountered in interpret,ed  code even a.fter preprocessing;
if this occurs, CSIM expands it and then destruct,ivcly  repkes the origina. form by the
expansion. ‘I’his avoids the overhead of espa.nding  t,he sa.me expression  each time it is
encountered.

Many of the basic Common Lisp forms described  in [s] are macros. ‘CJnfortuna,tely,
*direrent inlplementa.t,ions  of Common Lisp expa$nd these forms in different  ways, causing
noticea,ble &nges in the times charged by the sinrula~tor.  Even more of a problem  is that the
espa.nsions  may use implen~enta.t.ion-specific  functions. Beca,usc of this, CSIM must include
timing information for functions tha,t are not pa#rt  of standard  Common Lisp, particularly
those resulting from espa,nsions of setf.

. CSIM also has a special  version of def struct,  so tha,t it can perform preprocessing to
define timi ng informa.tion  for the accessor, construct,or,  copier a,ncl predicate functions of
the structure being defined.

7.3 Interpreted primitives

- Ma,ny Common Lisp functions may be simulaked by ca.lling them directly with the values
of their argument expressions. CSIM must be careful not to pass futures to these functions,
beca.use they are not pa.rt of Common Lisp. Therefore in most cases it “touches” arguments
before caSlling a. Common Lisp funct~ion. This woulcl ha,ve to be done a,nywa,)r in a0 Lisp system
tha.t uses futures,  except for functions  such as cons tha,t do not depend on the values of their
arguments; for those cases we ha,ve included a mecha.nism (the cinf o property described
a.bove) to avoid unnecessary touches.

Some funct,ions ca.nnot be ca.llecl direcbly, however,  because  they reference objects other
than their direct arguments,  a,nd these may be futures. Consider, for instance, the cddr
function (cdr ampplied  twice). Even  if we eusure tha,t the a,rgument, to cddr is not a, future,
it may be a, cous cell whose cdr is a future, so ca,lling Common Lisp’s cddr would result
in an error. CSIM uses an interpreted definitSion of cddr a*nd most other such functions for
this reason.



Another cla,ss of functions t8haSt cannotj be called directly is those whose running time
depends  on the size (or some other properties) of their input. The equal a,nd length
functions  a.re examples  of this. CSIM uses interpreted definitions  of these functions also.

7.4 Top level

To interact, with the user, CSIM provides  a. rca.d-eval-print  loop, but the top-level  eva.luakor
does a. number of specia.1 things. It begins by initializing t,he processor  da,ta. structures
and clea.ring a.11 of the stat.istics counters. Then it crea.tes a*n initial process whose process
continuakion  is set to call 01~‘s eval with the form to be eva.luajtecl. This process  is
passed to initia.lization  code for the scheduler, which sets it up as ready to run, with no
other processes in the system.  One of the processors  is then chosen to begin the simulation.

\&$ile running, CSIM keeps track of the niiniher of running processes.  .A process is saicl
to be running between  the time it is created and the time it termktes, except when it
is suspended  to wait for a.11  event  (such as a. future being determined).  If the number of

running processes drops to zero, we halt the simulation and return to top level. T_Tsua.lly this
happens when the top-level  process returns  a value (which is then printed) a,nd terminates.
But there ma,y still be other running processes  at this point, because of fut,ures tha.t have
not yet been determined, or for other reasons. In this case, we continue siniula,tion until
the nuniber of running processes is zero.

7.5 Memory allocation and garbage collection

&lhd calls the underlying Common  Lisp functions (cons etc.) to simulate memory allocakion
by the progra.m we axe interpreting,  a.nd assumes  tha$ each such cad1 takes  a. constant  amount
of time in a pa,rallel machine. A real pasallel  Lisp can achieve this by giving each processor
a, private pool of free cells to alloca.te from,  so this is realistic.

CSIM does not model  garbage collection  at all, except to estimate its eventual cost. a,nd
include  t.his in the simulated times  for cons ancl other allocation functions. It assumes  tha*t
the garba,ge  collector  will achieve the satme amount of parallelism as the rest of the progra,m.

Pa,rallel garbage collection  is an important problem and there a.re many approaches
current.ly under investigation. However? we view this axea of reseaxch as orthogonal to our
main interests,  which are modelling  the execution of processes  a,nd investigaking  partitioning
a,ncl scheduling  algorithms.

8 Accuracy and performance
a To produce meaningful  results,  CSlM’s  timings must aapproximate those of an actual ma-

chine. And to be usable,  the simulakor must be fairly  fast.  This section clescribes the results
of some esperiment*s  done to see how well it meets these goals.

8.1 Accuracy of simulated times

To derive timings  for basic Lisp operations,  we compiled  ancl ran a, set of small test progra,ms.
Ea,ch consisted  of a3 loop performing a primitive Lisp operakion;  one of these was a, “no-0~”
to measure the overhead of the loop code. Subtracting  the time for the “no-0~” test from
the time of each other test,  atld dividing  by the number of iterations  of the loop, inclicated
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how much time was spent in each function being tested. These tests were performed on a.
single processor  of an Allia.nt FS/8 running Lucid Common  Lisp” and scaled to a, set of
small integer values. Here are some of these values:

Lexical va.r. ref. 1
CDR 1
+ 2
EQ 3
Function cad1 4
Special va#r.  ref. 5
CONS 15
* 17

We then ran several of the Gabriel  benchmaxks  [2], first as ordinary compiled  programs sncl
then using CSIM with the timings  derived  from the test programs. The ta.ble below shows,
for each program, the compiled  time in seconds,  the simulajted time in units of 10” steps,
and the ra.tio of simulated time to compiled  time. The compiled  times  are the a,vera.ge of
five runs of each program.

Compiled  Simulated
Time Time R.a,t io

boyer 22.06 27.74 1.3
l)rowse 19.63 41.02 2.1
Ckli 1.56 3.26 2.1
d deriv 6.99 7.72 1.1
deri v 5.96 7.15 1.2
destructive 2.18 7.89 3.6
div test-l 2.63 4.22 1.6
div test-2 3.44 3.62 1.1
s t ak G.09 2.39 0.4
t di 0.53 1.11 2.1
t Ail 2.04 s.39 4.1
t akr 0.72 1.11 1.5

The accuracy of our simulator is reflected by how close the ratios axe to each other. They
are not as close a,s we might like, but, they are all of the same genera.1 order of magnitude.
To c?.ccount for the differences,  we can provide  several expla.na.tions:

L l CSIM’S  interpreter sometimes  performs different  opera&ions t.1~a.n  the compiled  code.
For esa,mple, CSIM does not optimize the evaluation of common subexpressions,  a,nd
chaxges for each reference to a8 varia.ble?  whereas in compiled  cocle some of these  might
be eliminat,ed.  The most extreme ra.tios each ha,ve a.11 explanation of this sort:

- destructive contains do loops that the compiler  can optimize, while CSIM treats
them as ordinary loops performing index computakion  and conditional bra,nches.

5Actually,  we used a version of the Qliep  system in development on bhe Alliant, running on a single
processor. In this Lisp, memory allocation and special vaxiable references are somewhat slower than a Lisp
designed for only one processor would be.
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- sta.k uses special  variables,  which a.re quite slow on t.he version of Lisp that we
used. The compiled  code uses deep binding,  which takes a va(rying a*mount of
time per reference? while CSIM charges aa constant  a,mount of time.

- t&l does a. lot of tail-recursive function calling,  which is optimized by the com-
piler .

l CSIM pretends that garbage collection time is a, constaSnt  multiple of the time spent in
allocation functions, by including it in the cost of these functions. This is not aSccurste;
a, copying  garbage collector  takes time proportional to the amount of memory in use
when it is called,  which may be large or small depending on the program being tested.

8.2 Speed of the simulator

Next we will compare the speed of CSIM itself with t,he speed of compiled  code that it is
simulating. The computation  of function timing  statistics  (see section  4.6) was disa,bled
during these tests;  turning it on slows CSIM by a,n extra factor of 2 or more. We also ran
the programs through the Lucid Common  Lisp interpreter for comparison.

The times in the table below are all in seconds. The C S I M  runtimes are the a.vera*ge
of three runs, except  for ho”ver a,nd browse which were only run once. The runtimes  for
interpreted and compiled  code are the a,verage of five runs.

boyer
brorvse
ctak
dderiv
deriv
destructive
div test-l
div test-2
stak
tdi

takl
takr

CSIM

Runtime
9441.32

12125.03
488.61

1105.40
1192.60
2315.31
14OG.SG
999.59
475.61
433.87

323O.lG
456.09

lr Interpreted
Time - Ra,t io

1313.54 7.2
1142.G8 10.6

94.G.5 5.2
103.66 10.7
llG.G5 10.2
244.35 9.*5
207.71 G.8
llS.05 s.5
107.76 4.4
65.67 G.G

582.13 5.5
GG.G7 6.8

ll-

II- Con
Time
22.06
19.G3

1 .siG
6.99
5.96
2.18
2.63
3.44
6.09
0.53
2.04
0.72

Ra#tio
42s
Glls
313
158
200

lOG2
535
291

78
SlS

1583
633

During these tests there was some variaStion in running condit,ions. Running time on the
Alliant generally increases  when several programs are executing simultaneously. This is

L probably due to contention for the cache, which is shared between its processors.  This
factor makes  as much as a 10% difference, so the figures above should  be ta,ken as rough
aapproximations.

In some of the tests there was a, significanb ammount of ga.rba,ge  collection.  Enough
memory was allocated to limit the garba.ge  collection  to once every few seconds,  but not, so
much as to ca,use pa,ging of the Lisp process.

CSIM generally took 300 to 1000 times as long as the compiled  version of the code it
was interpreting, i.e., 5 to 15 minutes to sim&te a second of compiled  code.

The comparison with the Lucid interpreter  shows much less variation in the speed ratio,
reflecting the fact that CSIM and an ordinary interpreter do similar  things with a, program.
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In general, CSIM is a,bout .5 to 10 times slower than the interpreter, which is a, reasonable
price to pa,y for the extra work that CSIM does t,o handle parallel programs.

Both CSIM a,nd the Lucid interpreter spend a, lot of time doing stora,gc allocation and
garbage collection. The Lucid interpret,er dynamically allocates lesical environments just
a(s CSIM does [13], but it uses a stack for dynanlic binding  and function calls. CSIM spends
much of it,s time creating lexical closures  for use as continua4tions.  It runs best when given a.
lot of free storage, since this decreases  the frequency  of ga.rba,ge collection.  But the physical
memory of the machine provides  a limit to the a.mount  of useful stora.ge  we ca,n a.lloca,te;
once this is exceeded ancl we start pa,ging, performance drops tremendously.

Although these  tests simulated only one processor,  they are indica(tive  of the times  that
we get simulating parallel programs, since none of the code to ma#nage concurrency has been
removed. The time to simulate a1 parallel progranl is roughly proportional  to the product of
the number of processors  we are simulating and the parallel  runtime, with the same ratio as
a,bove? as long ass most of the processors  are doing useful work. Simulating idle processors
turns out to be more expensive  than simulating processors  running ordinary code, because
they are generally in a loop referencing memory (checking  a queue for work to do), and each
such reference must be serialized  a,s described in section 6.1. We could probably modify
CSIM to avoid this source  of illc~fflcivll!-y. but the difference does not seem worth the effort
it would require.

9 A Parallel example

.As a.n ex&lple of how CSIM is used,  we will try to a.pply parallelism  to the boyer benchma8rk.
-730.~~ [2, pp. llG-1351 is a. simple theorem prover  that works by rewriting a* formula into a,
canonical form (a. structure of nested if-expressions),  and then applying a8 tautology checker
t,o the result.

Converting hqver to a. parallel program is mainly an exercise; it is unlikely that, anyonea
will want to use the result. This is because there a,re better algorithms to do what ~O.JW
does? so it would pa,y to start from scratch and write a, good parallel theorem prover.  Still,
t,he case of pa,rallelizing an existing sequential program is an important one, and we expect
to see it come up fairly often.

We begin with little knowledge  of where the program spends  its time. The first step,
therefore, is to simulate it running as a sequential program on one processor  and look at the
function timing statistics  (section  4.G). Unfortuna.tely,  the benchmark as given takes  too
much time and memory for ea.sy experimentation;  a single run through CSIM with statistics
gathering turned on t,a.kes about 20 hours and causes a large amount of pa.ging. Therefore
we.will modify it to create a. fa,st*er test.

The t,op level of the program is a, function called test, which first constructs  a8 term by
calling

(apply-subst
(quote ((x f (plus (plus a b)

(plus c (zero)>>>
(y f (times (times a b)

(plus c d)))
(z f (reverse (append (append a b)
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(nil>>>>
(u equal (plus a b)

(d i f ference  x  y)>
(w lessp (remainder a b)

(member a (length b)))))
(quote ( implies (and (implies x y>

(and (implies y z>
(and (implies z u>

( impl ies  u w>>>>
(implies x WI>>)

and then calls tautp,  the main function of the theorem prover? with this berm. Our simpli-
fied test case uses instea,d the term

(apply-subst
(quote  ((x f  (p lus  (p lus  a  b)

(plus c (zero>>>)
(y f (times (times a b)

(plus c d)))
(z f (reverse (append (append a b)

(nil>)>)))
(quote ( implies (and (implies x y>

(implies y z))
: ( implies x z>>>>. -

Running this test through CSIM,  we get three sets of funct8ion  timing stakistics.  First,
for ea,ch function we have the amount of time spent  just in that function:

ONE-WAY-UNIFY1
REWRITE-WITH-LEMMAS
ONE-WAY-UNIFYl-LST
REWRITE
REWRITE-ARGS
ONE-WAY-UNIFY
ASSQ
APPLY-SUBST-LST
APPLY-SUBST

358379 36.5%
145404 14.8%
127357 13.0%
115362 11.7%
91899 9.3%
66324 6.7%
49480 5.0%
12504 1.3%
10442 1.1%

L Next, we have the time spent in each function including other functions that it calls:

TEST
TAUTP
REWRITE
REWRITE-WITH-LEMMAS
REWRITE-ARGS
ONE-WAY-UNIFY
ONE-WAY-UNIFY1
ONE-WAY-UNIFYl-LST

983065 100.0%
982079 99.9%
976180 99.3%
973337 99.0%
972961 99.0%
635750 64.7%
608115 61.9%
420197 42.7%
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ASSQ
APPLY-SUBST
APPLY-SUBST-LST
TAUTOLOGYP
. . .

179506 18.3%
38393 3.9%
37718 3.8%

5899 0.6%

Finally,  we have the a.vera.ge time per call to each function.

TEST 9 8 3 0 6 5 . 0  ( 1  c a l l )
TAUTP 9 8 2 0 7 9 . 0  ( 1  c a l l )
REWRITE 4083 .7  (2595  ca l l s )
TAUTOLOGYP 3 0 3 8 . 5  ( 1 3  c a l l s )
REWRITE-ARGS 2486 .4  (4626  ca l l s )
REWRITE-WITH-LEMMAS 907 .2  (7559  ca l l s )
APPLY-SUBST-LST 2 8 0 . 3  ( 4 9 4  c a l l s )
APPLY-SUBST 2 3 1 . 2  ( 3 9 4  c a l l s )
TRUEP 1 5 8 . 4  ( 2 4  c a l l s )
ONE-WAY-UNIFY 115 .0  (5527  ca l l s )
FALSEP 1 1 0 . 4  ( 1 9  c a l l s )
ASSQ 8 3 . 5  ( 2 7 9 8  c a l l s )
ONE-WAY-UNIFY1 73 .0  (12951  ca l l s )
ONE-WAY-UNIFYl-LST 7 2 . 0  ( 7 5 1 3  c a l l s )
. . .

From these statistics,  we see that most of the time is spent in rewrite and one-way-unify
‘and their subsidiary functions. But the calls to one-way-unify are, on the average?  much
smaller  than calls to rewrite. This suggests  that we should  try to parallelize  calls to
rewrite, since this will create processes  of larger size and thus reduce the process creation
overheaSd.  If this does not achieve enough speedup, we will look at calls to one-way-unify.

1 Notice  that the first set of statistics,  which is what ordinary “profiling” of the program
would produce, tells us that one-way-unif yl accounts for a large portion of the execution
time, but it does not tell us that calls to this function a#re parts  of higher-level  tasks.  Thus,
it does not tell us as much about the places to look for effective use of parallelism  as the
second set of statistics  does.

Before we investigate rewrite, we must notice that, boyer  contains some uses of global
- (special)  variables  that would cause improper sharing of data in parallel processes.  One of

these is easy to fix: the variable  temp-temp,  declared special with a defvar at the beginning
of the program, is used only as a local temporary variable in the functions apply-subst  and
one-way-unifyl. By removing the defvar and sdding &aux temp-temp  to the para,meter
listi of these functions, we avoid the use of the global  variable.

The other global variable,  unify-subst, is a. bit more difficult to deal with. It is used
in the following way:

(defun rewrite-with-lemmas (term 1st)
(cond  ( ( n u l l  1 s t )

term)
((one-way-unify  term (cadr (car 1st)))
(rewrite (apply-subst  unify-subst (caddr (car 1st)))))

(t  (rewrite-with-lemmas term (cdr 1st)))))
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l?a.cll  call to one-way-unify sets unif y-subst to NIL, and then incrementally modifies it (in
one-way-unif yl j. When one-way-unify returns, unif y-subst contains a list which is ref-
erenced by the code shown above,  and t’hen there are no further references.  Since we a.re go-
ing t.o parallelize  calls to rewrite, several  processes  ma,y be running rewrite-with-lemmas
at t,he same time and they should  not share tOhe same global  varia.ble.

CjSIM’s definition  of dynamic binding (see section 5.1) ma&kes it possible t.o estaMish  a*
separate  insta*nce of unify-subst for each call to one-way-unify, as follows:

(defun rewrite-with-lemmas (term 1st)
( let  ((unif  y-subst nil)  >

(cond ( ( n u l l  1 s t )
term)

((one-way-unify term (cadr (car 1st)))
( rewri te  (apply -subst  uni fy -subst  (caddr ( car  1st)))))

(t (rewrite-with-lemmas term (cdr 1st))))))

Recall that unify-subst is a special  variable because of the defvar at the beginning of the
program. If rewrite-with-lemmas is called concurrently in different processes, they will
each perform a, dynamic binding of unify-subst, which will be invisible  to other processes
because each establishes a new dynamic environment. Thus, the references  to unif y-subst
in one-way-unify will not interfere with each other.

Having ma.de these changes, we now proceed to examine rewrite and rewrite-args.

(defun rewrite (term):
(cond ((atom term)

term)
(t (rewrite-with-lemmas (cons (car term)

(rewrite-args  (cdr term>>>
(get (car term)

(quote lemmas>>>)>>

(defun rewrite-args (1st)
(cond ( ( n u l l  1 s t )

n i l )
(t (cons (rewrite (car 1st))

(rewrite-args  (cdr 1st))))))

The main pot,ential  for parallelism here is in rewrite-args,  which performs indepenclentL
computations  on each member of the list given as its argument.  We can crea,te a, sepa,ra.teL
process  for each one of these. We can also use futures to return a value from rewrite-args
before  these processes  finish, which may a,dd some more parallelism.

A single change to the function accomplishes  this:

(defun rewrite-args (1st)
(cond ( ( n u l l  1 s t )

n i l )
(t (cons (future (rewrite (car 1st)))

(rewrite-args  (cdr 1st))))))
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When WC run the resulting program through CSIM, we get the following results?

# of Running
Proc. Time

1 1367478
2 704366
3 491812
4 396999
:i 3467GS

10 310896
115 315602
20 299398

Speedup Speedup Useful Idle Other
vs. 1 proc. vs. serial War k Overhead Overhead

1.00 0.72 - 0.7’2 0.13 0.15
1.94 1.40 0.70 0.15 0.15
2.75 2.00 O.G7 0.19 0.15
3.44 2.48 0.62 0.22 0.16
3.94 2.84 0.57 0.27 0.17
4.40 3.16 0.32 0.50 0.18
4.33 3.12 0.21 0.63 0.17
4.57 3.28 0.16 0.68 0.15

CSIM provides  the “running time” and “idle overhead” data, and we have computed the
other numbers in the table from these. Speedup  versus one processor  is the time for the
pa.ra.llel program on one processor divided  by the time on n processors.  Speedup  versus the
serial program is a1 more meaningful measure? since it accounts for 0verhea.d  in the parallel
program that we must try to a.void. The serial progra,m’s  time is 983065  steps,  as computed
in the ea.rlier simula.tor run.

The last three columns  show the fractions of processor  time spent  doing useful work and
overhead of va,rious sorts.  Useful work is the speedup  vs. the serial time, divided  by the
number of processors.  This number stays well below 1.00  because of overhead in the parallel
program. For ea,ch fut,ure, the. parallel program does extra work to create the future, to add
a, proces$ t,o the queue,  to remove  it when a processor  becomes  idle, and to reference data
indirectly through the future. The costs of future creation and adding processes  are part
of the “other overheard” a.bove. The costs of finding processes  in the queue and removing
them are counted in “idle 0verhea.d.” Idle overhea,d  also counts time spent  waiting for the
lock on the queue,  and time when there is no work for a processor  to do.

a Beyond about 10 processors,  there is simply not enough work to keep all the processors
busy, and the idle 0verhea.d begins to climb rapidly, while the “other overhead’? fraction
drops beca,use the idle processors  are not doing the operantions that are charged to that
category.

This is just a first step;  with further work on the program, we can try to minimize  the
overhea,d of the paxa.llelism we have added, and also find more pa,rallel work as the number

- of processors  increa#ses. The results presented in [12] continue this investigation.
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