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Abstract

A number is secretly chosen from the interval [0, 1], and n players try in turn to
guess this number. When the secret number is reveaed, the player with the closest
guess wins. We describe an optimal strategy for a version of this game.

1. Introduction

The Toetjes Problem was posed at the Programming and Problem Solving Seminar [1] held
a Stanford University in the Winter of 1957. It was suggested by Sape Mullender, who
described it as follows:

In Amsterdam, where | grew up, dessert is usualy referred to as “toetje”
(Dutch for “afters”). The problem of alocating a left-over toetje to one of
the children in my family became the Toetjes Problem. The agorithm was
the following: First my mother would choose a secret number between one
and a hundred. Then the children, in turn, youngest to oldest, could try to
guess the number. After the last guess my mother would tell whose guess
was closest to her secret number and the winner would get the toetje.

Now that | have a degree in mathematics, the problem still puzzles me:
Given that the secret number is chosen randomly from the interval [0, 1],
what is the optimal strategy for choosing a number for the ith child in a
family of n children? The ith child knows what the first i — 1 children chose,
and knows that all the children choose optimally (i.e., choose to maximize
their own chance without consideration for the chances of any other child in
particular).

We will study Mullender’s “continuous’ version of the problem, in which the secret number
is chosen randomly from the interval [0, 1]. Notice that the description we have given so far
is in fact incomplete. A first ambiguity arises because the optima move for a player may

*This research was primarily supported by a Bell Laboratories Scholarship, and in part by the National
Science Foundation under grant CCR-86-10181, and by Office of Naval Research contract N00014-87-K-0502.
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not be unique. If this is the case, the criterion that the player uses to choose among equally
desirable moves can influence the strategy followed by earlier players. We will resolve this
ambiguity by assuming that there is a given tie-breaking rule that all players must follow
when choosing among several equally desirable moves.

The choice of the tie-breaking rule affects the play quite drasticaly. To illustrate this? let
r1,...,T, be the (distinct) numbers chosen by the players in the interval [0, 1]. Suppose
player n plays between two earlier players i and j such that no other player has aready
played between them. Then his payoff (i.e., his probability of winning) is the same no
matter where in the interval (z;, z;) he plays: it equals (z; — z;)/2, half the interval size.
However, his choice will affect the payoff (and hence the strategy) for players i and ;.

A second difficulty occurs because, in this continuous version of the problem, each player has
an infinite number of choices, so there may not be an optimal move. Instead, it can happen
that for each possible choice there is another choice that gives a dightly better payoff. For
example, in the two-player game, suppose the first player chooses 1/2; then the second player
will get a better payoff the closer he plays to the first player, so there is no “optimal” move,
but instead a family of moves arbitrarily close to optimal. We will later see that there are
situations where a player can obtain a better payoff the closer he plays to a certain number
€, while playing exactly at £ would give him a very low payoff. We handle this difficulty by
defining an optimal limiting play which is such that al players can obtain payoffs arbitrarily
close to optimal by playing sufficiently close to this limiting play.

" In this paper we characterize the optimal strategy under two simple tie-breaking rules. the

“closest to the first player” rule and the “rightmost” rule. In particular, we prove that under
the first of these tie-breaking rules, the payoff for the first and last players is exactly half the
payoff for each of the remaining players. Under the second tie-breaking rule, the last two
players get a payoff equal to haf the payoff of each of the other players.

The remainder of the paper is organized as follows. In section 2 we give a rigorous definition
of the game, which resolves the two ambiguities mentioned abvove. In section 3 we develop a
plausible optimal playing strategy by making some assumptions about the tie-breaking rule.
-Then in section 4 we prove that the strategy of section 3 is in fact optima under a ssimple
tie-breaking rule, the “closest to the first player” rule. Section 5 extends the results of the
previous section to the “rightmost” tie-breaking rule and explores the “random” tie-breaking
rule.

2. Definitions

We now give a precise definition of the “optimal” playing strategy. Given the k distinct

numbers z,,. .. , xx chosen by the first £ players, we consider limiting plays, of the form
(Tht1s---5Tn, =< ), fOr the remaining n — k players. Intuitively, a limiting play of this form
indicates that the last n — k players play arbitrarily close to z4x4;,. . . , ¥, and in such a

way that the resulting ordering of the n players in the [0, 1] interval is given by the total
ordering <. While the numbers played are al distinct. some of the n — k limiting values can
in fact be equal to each other or to the numbers chosen by the first & players. In the case
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Figure 1: Payoff for player 1.

where two or more values are equal, the left-to-right order of the n moves in the [0, 1] interval
needs to be specified: only then can the payoff for each player corresponding to this limiting
play be evaluated. This is the reason for including in the limiting play (zx41,. . . ,Zn, <) an
ordering < that extends the partial ordering < on the numbers xi,. . ., z, to a total ordering.

The winning probability (or payoff) p(z, zy,. . . , Tn, <) for player : under such a limiting play
can now be easily computed [see Fig. 1}: (8) If the move z; is between z; and ry in the
< ordering, then the payoff is xi — z;)/2+ (zx — z;)/2 = (zx — z,;)/2. (b) If z; is the smallest
move and is followed by z, then the payoff is (z;—0)+(zr—z:)/2 = (zi+xx)/2. (¢) If z; is the
largest move and is preceded by z;, then the payoff is (z; — z;)/2+ (1 —z;) = 1 — (z; + z;)/2.

We use this payoff function to define the optimal limiting play opt(z;,. . . ,zx) =
(Tkt1,-..,2n, <) for the last n — k players, given the k distinct numbers z,,. . . , x; chosen
by the first k players. The definition is by induction on the number n — k of players left to
play. The base case k = n is smply opt(zy,. . ., z,) = (<), where < is the < ordering on
the distinct values xi,. . . , z,. Now we assume inductively that the function opt (zy, . . ., zx)
has been defined for a given k, and we define opt(z,. . . ,zk_1).

So fix the numbers z,,. . ., rx_; chosen by the first k — 1 players. We say that (zg,. . ., z,, <)
is a limiting play available to player k if for all ¢ > O there are numbers yi, . . . , y, with
lyi = zi] < e such that opt(zy, . . ., Zk-1, ¥k) = (Yk+1,- - - » Yn, <). IN Other words, the limiting

play is available to player k if player k can play close to z, so that the remaining players
will then play close to zx4y, . . ., Tn.

The optima limiting payoff « for player k is now defined to be the least upper bound of the
payoff p(k,xy,...,x,, <) over all limiting plays (zg,. . . ,z,, <) avalable to player k. We can
show that there exists a limiting play available to player k£ which achieves this maximum
payoff « by considering a sequence of limiting plays available vo player k that achieve payoff«
arbitrarily close to «, and then using the Bolzano-Weierstrass theorem to obtain a linnt
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point (z, . .., X,, <) for this sequence. We let S be the set of limiting plays (k. . - . . 2, <)
available to player k£ which give player k this maximum payoff «; thus S is the set of optimal
limiting plays for player k. It is not difficult to show that S is in fact a closed set !.

We can now apply any chosen tie-breaking rule to pick an optimal limiting play (z, . . ., Tn, <)
from S. We could, for example, aways pick a limiting play from S that has a largest =, value
(such a play exists because S is a closed set); this is in fact a particular case of the family of
“rightmost” tie-breaking rules that we will consider in section 5. The chosen (zy, . . ., ©,, <)
is then the value of opt(z;,. . ., zx-1), completing the inductive definition.

Now, if all players play optimally and follow the given tie-breaking rule to choose arnong
equally desirable moves, their numbers will be given in the limit by opt() = (z1,. . ., @, <).
with corresponding winning probabilities p(z, z1,. . . , Zn, <).

3. A candidate strategy

Finding a constructive characterization of the optima strategy opt(z;, . . . , zx) iS, under
many tie-breaking rules, a difficult task. It turns out that for the “closest to the first player”
tie-breaking'rule considered in the next section the optimal strategy is, surprisingly, farly
simple. However, instead of just giving the strategy and proving that it is optimal (we will
do this in the next section), we would like to describe here the properties of the tie-breaking
rule which can lead us to guess such a strategy. These properties might in turn be useful for
finding optimal strategies under other possible tie-breaking rules.

After examining the problem for small values of n, one observes that many tie-breaking rules
seem to obey some form of the following optimality principle:

A player who does not play optimally for himself only increases the chances of winning for
the players that follow him.

We use restricted versions of this principle to obtain a plausible playing strategy. When
applied to the last player, this principle says that the chances for the last player are worst
when the players before him play optimally (since his chances only increase when those
players play suboptimally). We thus make the assumption that all players play so as to
make the payoff of the last player as small as possible.

The optimal payoff for the last player given the numbers chosen by the players before him is
easy to compute. Suppose the moves of the first n — 1 players have partitioned [0, 1] into n
intervals of respective lengths a,,. . . , a, from left to right. Then the optimal limiting move
for the last player gives him a payoff of max(ay, a2/2,. . ., a,-1/2, a,), since the payoff when
playing anywhere between two other players is half the distance between the two players,
while the payoff when playing in the leftmost (rightmost) interval can be made arbitrarily
close to the interval size by playing sufficiently close to the leftmost (resp. rightmost) player.

‘That is, if for al € > 0 there are y; with |y; —z; | < ¢ such that. (Yo oo, yn, <) € S, then(z, ..., z,, <) €S



Now suppose that the first k — 1 players have already played, for some & > 2, partitioning

[0, 1] into k intervals .Jy, . . ., J; of respective sizes cy, . . ., ¢k, from left to right. Given any

real B > 0, the payoff of the last player can be forced to be B/2 or less by the n — & players

before him that are left to play, provided that at least [p,] — 1 players move into the interval
J; for each 1 < < k. Here p; is the ratio

_f «/B if 1 <i<k |

pi = a/B+1/2 ifi=1lori=k (1)

This is so because in the case 1 < i < k the interval J; must be partitioned into subintervals
of size B or less, while in the casesi = 1 and i = k the subintervals at both ends of [0, 1]
must be of size B/2 or less, to ensure that the payoff for the last player is at most B/2. This
can be achieved if and only if
S (lal-1) <, (2)
1<i<k
where r = n-k+ 1 is the number of players Ieft to play. If, following the optimality principle,
the players before the last play so as to make the payoff B/2 of the last player as smal as
possible, then B must be the least value of B satisfying (2). An equivalent definition for this
key parameter is that B is the largest B satisfying

Yo el > (3)

1<k

in fact B is the only value of B which satisfies (2) and (3) simultaneously. Notice that the
summands in (2) and (3) are equal unless p; is an integer, in which case they differ by 1.
Since only r players are left to play, it is natural in view of (3) to alocate a most |p; |
players to the interval J;, including player n. Then if r; out of the last r players move into
the interval J;, we will have

[pi] =1 <ri < |pf foral 1 <o <k with i mi = (4)

Now we will try to determine more precisely where these r; players should play inside the
interval J;, for 1 < i < k. The first r; — 1 players to play in J; partition this interva into r,
subintervals. Furthermore, there must be a subinterval J;' among these of size at least E’,
since r; < Lc,-/BJ by (4). The last player p to play in J; should then be able to obtain a
payoff of at least B/Q by playing inside J;". Now the optimality principle applied to player
p says that the r; — 1 players that play in the interval J; before player p will play so as to
make the size of the subinterval J;' as small as possible. However, the other subintervals
of J; should not be made larger than B because otherwise player n could move into .J; and
obtain a payoff greater than B/Q. Thus the first r; — 1 players in J; should partition this
interval into r; — 1 subintervals of size B, and one subinterval .J;' of size at least B for playe:
p. Now if we assume that player p plays in J;' so as to create a subinterval of size B as well.
we obtain a simple playing strategy:

The r; players that play in J;, 1 < i < k, partition this interval into r; subintervals of sz
B and a leftover subinterval K; of size at most B.
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Figure 2: Optimal play (zk, . . . ,an, <) given (z;,. . ., x-1) for n = 17 and k = 5, under the
“closest to the first player” tie-breaking rule. Here z,, = z, with =, < ;.

This is illustrated in Fig. 2. A subinterval of size B/2 (instead of B) is used at both ends
of [0, 1] to keep the potentia payoff for the last player bounded by B/2. Also notice that
we have placed the leftover subinterval K; in each J; as close as possible to the number z,
played by player 1; this will be justified by the tie-breaking rule of the next section.

4. Optimal strategy under the ‘“closest to the first
player” tie- breaking rule

In this section we characterize the optimal playing strategy under the “closest to the first
player” tie- breaking rule. This tie-breaking rule assumes that the optimal limiting play
(zk,..., X,, <) chosen by a player k > 2 is such that no other optimal limiting play that
has the first & players in the same relative order in the interval [0, 1] as the chosen play
- can have player k closer to the first player. Notice that we make no assumptions about
how the tie-breaking rule chooses among equivalent moves for the first player, or about how
it chooses the relative posit ion of a player k > 2 with respect to earlier players if severd
optimal alternatives are available: It turns out that the optimal strategy is essentially the
same regardless of how these choices are made. Hence our solution applies not just to a
single tie-breaking rule, but rather to a family of possible tie-breaking rules.

We recall some definitions from the previous section. Suppose for now that k > 2. The
numberszy, . . ., Tx-; chosen by the first k-l players partition [0, 1] into k intervals Ji, . . ., Jk,
from left to right? of respective lengths ¢y, . . . , ck. Let B be the unique value of B satisfying
both (2) and (3)where the p; are given as functions of B by (1), and r = n — k + 1; then
B is also the smallest B satisfying (2) and the largest B satisfying (3).

We define | p;| marked positions Ji( 1), . . ., Ji(|p:]) inside each J;. Let Ji( 0) and Ji( |p:] + 1)
he the endpoints of J; which are farthest from and closest to z;, respectively. Then the
marked positions inside J; are given, for j =1,2,.. ., |p:], by

. iB if1<i<k,
Ji(7) = Ji(0)] = . A .
i(3) = Ji(0) { (j—1/2)B ifi=1lori=k.
We associate with each marked position J;(j) the payoff that a player at j;(j) would get, if
each marked position was played by one player. Therefore the payoff of every marked position
equals B. except for the last marked position J; (| p;| ) ofeach interval J;; this last position has



a payoff of (B+l(z’))/2, where Z(i) is the size of the leftover interval K; = (J:(|p:]), Ji( |p:] $1))
and is given by )
l(i)_{c,-modB if1<i<k, (6)

(c,-+]§/‘2)mod1§ ifi=2lori=k
We can now state our main result:

Theorem 1 The optimal limiting play under the ““closest to the first player’ tie-breaking
rule is given for k > 2 by opt(zy,. . ., Zk=1) = (Tky- . . , Tn, <), Where Tg,...,coaren —k + 1
marked positions of highest associated payoff, in order of decreasing payoff.

Proof. Let us first determine which marked positions will be played according to this
theorem. Notice that the total number of marked positions is at least r, the number of
players left to play, by equation (3). Among these marked positions, those of least payoff
are the positions J;( |pi] ) with p; integer, which have I(i)) = 0 and a payoff of 3/2. The
other marked positions will thus be used first; however, there are only [p;] — 1 of these other
marked positions in each J;, and hence less than r in total by (2), so the theorem implies that
one or more of the marked positions of low payoff B/Q will have to be used as well. From
these remarks, it follows that the number of players that will end up in each J; (according
to the theorem) satisfies (4).

We will prove the theorem by induction on the number n — k + 1 of players left to play.
For the base case k = n, the marked positions are endpoints J;( |p:] + 1) of highest payoff,
and these are also the optimal moves for the last player under the “closest to the first
player” tie- breaking rule. For the inductive step, suppose without loss of generality that
player k < n plays in an interva J; with the endpoint J;(0) to the left and the endpoint
Ji( |pi] + 1) to the right. Then J; is split into a left interval L = (Ji(0), zx) and a right
interval R = (zx, Ji([pi]+1)). The new set of k + 1 intervals will then have a new parameter
B’ satisfying (2) and (3), and we can assume inductively that the last n — k players will play
as indicated by the theorem for this new parameter B' Notice that B’ > B since B is still
a solution to (3) for this new set of intervals, while B is by definition the largest solution to

(3).

Lemma 1 (Low payoff for unmarked positions) If player k plays between J;(j — 1) and J(j)
(or at Ji(3)), his payoff will be no greater than the payoff associated with marked position
(7), for 13 J <lpi], and smaller than B2 for j = lpi] + 1.

Proof. We claim that if player k plays at zx, between J;( j — 1) and J;() (or at J;(j)),
then for j > 1 some player will play in L a J;(j — 1) or higher, and for j < |p:| some player
will play in R a J;(j + 1) or lower. This claim implies the lemma: For 1 < j < |p;], the
payoff associated with marked position J;(j) is at least as high, since this payoff corresponds
to a situation where z; = J(j) and no player plays between J;(j — 1) and Ji(j +1). For
j = Lp,J + 1, either j > 1, in which case the payoff is less than B/2 because I(i) < B, or
j = 1, in which case the payoff is less than B/2 because [p;| = 0 so that J; is a small interval.

To prove the claim, we consider two cases. If B” = B, then some player after player & will
play at J;( j — 1), for j > 1. Also, some player will play at distance B from z; in R, and hence
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a J; (j + 1) or lower, for j <|p;| . The remaining case is B’ > B. Since the new parameter
B is greater than B, the number of players that can play in each interval is now a most
j — 1for L, a most [p;] —j for R, and a most [p;] — 1 for each of the other intervals .J,
with i’ # i. By equation (2), these numbers can only add up to r — 1, the number of players
left to play after player k, if exactly j — 1 players play in L, exactly [p;] -j in R, and exactly
[pir] — 1 in the remaining Ji:. Then, for j > 1, the (j — 1)th player in L (from left to right)
is above J;(j — 1). Also, for j <|p;], if the leftmost player in R were at Ji(J + 1) or above,
then there could be no more than [p;] — j — 1 players in R, since B’ > B, so the leftmost
player in R must in fact be below J;( j + 1). This proves the claim and completes the proof
of the lemma. []

Lemma 2 (Preservation of marked positions) Let J;(j) be a marked position of highest
associated payoff. Then among the limiting moves (¢, . . ., z,, <) available to player k there
is one in which zx = J(j). and zk,. . ., T, are n— k4 1 marked positions of highest associated
payoff, in order of decreasing payoff.

Proof. If player k plays a a marked position J(j) (this is feasible unless I(i) = 0), then
B also satisfies (2) for the new set of k + 1 intervals, so B’ = B. The new set of k£ + 1
intervals therefore has a new marked position L(j) at J;(j), with L(j) < J(). If none of
the remaining players plays at L(j), then they will all play at the old marked positions in
order of decreasing payoff, as desired. On the other hand, if one of them plays at L(j), then
the condition of the lemma is not satisfied and in fact nlaver k obtains a low payoff of 13’/‘2
or less.

However, it is still possible for player k to obtain the limiting play described in the lemma
by playing just below J(j), a J;(j) — €, where € < B - I(i). Now if B’ = B, then the marked
positions remain the same after player k has played, except for the marked positions @  Ji(j?)
with j* > j, which change to R( j”— j) = Ji(3') — €. Letting € go to zero gives a limiting play
as stated in the lemma. The remaining case is B’ > B. Then, as in the proof of Lemma 1,
we must have j — 1 playersin L, [p;] — j players in R, and fp,] — 1 players in the remaining
Jir. As before, the leftmost player in R must be below J;(j + 1) (provided that [p;] — j > 0 so
that R has at least one player), so B’ < B +¢; if we let € go to zero then B’ approaches B and
the positions of the players approach the marked positions of highest payoff. If [p;] — ] = 0,
then J;(j) is a marked position with payoff B/2 and can only be a position of highest payoff
if [pi] — 1 equals zero for al intervals J;. But[p;]— 1isthe number of playersineach @  Ji/,
so player k would be the last player, cont rary to the assumption that k < n. ]

We use these two lemmas to prove the theorem. If « is the payoff associated with a marked
position J;(j) of highest payoff, then player k£ can obtain a payoff of « in the limit by playing
a J;(j) or just below J;(j) as in Lemma 2. On the other hand, by Lemma 1, the only plays
that could possibly give the same payoff « to player k involve playing between J;(; — 1) and
J;(), where J;(j) is a marked position of payoff «, but then position Ji(y) is closer to x,
and hence should be preferred by player k under the “closest to the first player” tie-breaking
rule. Thus the optimal limiting play is the one given in Lemma 2, completing the induction
and proving the theorem. ]
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Figure 3: Optima play (z1,. . . ,Zs, <) for n = 10 under the “closest to the first player”
tie-breaking rule. Here ¢, = z; with z; < z,.

To complete the analysis, we must examine the optimal strategy for the first player. Consider
the n — 1 positions p; = (2i — 1)/2(n — 1) for 1 < i < n — 1. The above theorem implies
that if player 1 plays at one of these positions, then the remaining n — 1 players will play
in the limit at these n — 1 positions (one of them coinciding with player 1), giving player 1
a payoff of 1/2(n — 1) [see Fig. 3]. If on the other hand player 1 does not play at one of
these positions, the remaining n — 1 players will play near these n — 1 positions but closer
to player 1, giving him a payoff smaller than 1/2(n — 1). This gives:

Corollary 1 In the optimal limiting play opt() = (21, . . . , Zn, <) under the “closest to the
first player” tie-breaking rule, the limiting moves zq,. . . , Tp.y Of the first n — 1 players are
the numbers 1/2(n —1),3/2(n —1), ..., (2n — 3)/2(n — 1), in some order, and the limiting

move z, of the last player equals x,. This gives a limiting payoff of 1/2(n — 1) for the first
and last players, and 1 /(n — 1) for the remaining players.

Thus the youngest and the oldest children will be less likely to get the left-over toetje.

The preceding analysis can in fact be carried through even if the choice among equally
desirable intervals is made at random or nondeterministically (i.e., chosen arbitrarily by
each player when it is his turn to play), and even if only the last players — those that are
left to play once each interval has at most one marked position — use the “closest to the
first player” tie-breaking rule to select a position inside the chosen interval.

5. The “rightmost” and “random” tie-breaking rules

We first consider the “rightmost” tie-breaking rule. This tie-breaking rule assumes that the
optimal limiting play (zk, . . ., Za, <) chosen by a player k is such that no other optimal
limiting play that has the first k players in the same relative order in the interval [0, 1] as
the chosen play can have player k further to the right. Again, we make no assumptions
about how the tie-breaking rule chooses the relative position of a player with respect to
earlier players if several optimal aternatives are available, so our solution actually applies
to a family of tie-breaking rules.

It turns out that the solution for the “rightmost” tie-breaking rule is very similar to the
solution for the “closest to the first player” rule, provided that we make a few changes to the
marked positions. We again consider the intervals Ji,. . . , Ji, and define marked positions
as follows. Let J;( 0) and Ji( |pi] + 1) be the left and the right endpoints of J; respectively.

9



If + < k, the | p;] marked positions for J; and their associated payoffs are defined as before.
For Ji, on the other hand, we define | px | marked positions by letting Ji(j) = Jk(0) + jB if
1 < j < |px)and Ji( |pi]) = Jk( |pi) + 1) = B/2. Therefore the associated payoff of every
marked position in J, equals B, except for the last two marked positions Ji( |px] — 1) and
® k(| px]); these two positions have a payoff of (B+1(k))/2, where [ (k) is the size of the leftover
interval I; = (Ji(|px] — 1), Jk(|pk]))) and is given by I(k) = (cx + B/2) mod B. In particular,
if px is an integer with px > 2, then we have a double marked position Ji( |px] = 1) = Ji( |pk])
with Ji([pe] = 1) < Ji(|pe)), and each of these two positions has an associated payoff of
B/2. For the particular case p, = 2, we will also need to consider a special position Ji()
just to the right of Ji(0), that is, Je() = Jk(0) with Jx(0) < Ji(); this special position is not
considered a marked position.

Using this new set of marked positions, the results of the previous section for the *closest
to the first player” tie-breaking rule can be extended to the “rightmost” tie-breaking rule as
well, provided that the somewhat subtle situations that arise when a double marked position
is present are properly treated.

Theorem 2 The optimal limiting play under the “rightmost™ tie-breaking rule is given for
k> 2byopt{zy,..., Tk-1)=(Tk,..., Tn, <), Where one of the following conditions holds:

1. There s no double marked position, and zx, . . . , T, are marked positions of highest
payoff, in order of decreasing payoff.

2. There is a double marked position, two z; among xx, . . . , , are at the double marked
position, and x4, . . . , , are marked positions of highest payoff, in order of decreasing

payoff.

3. There is a double marked position, only one x; among Tk, . . . ,Z,—; iS at the double
marked position, and zk, . . ., Xi-1, Tiy1,..., T, are marked positions of highest payoff,
in order of decreasing payoff.

4. There is a special position, z, is at the special position, no z; is at the double marked
position, and Tk, . . . , To—1 are marked positions of highest payoff, in order of decreasing

payoff.

If we now consider, for each possible move of the first player? the optima play for the
remaining players described by the four cases in the theorem, we obtain:

Corollary 2 In the optimal limiting play opt() = (z1,. . . , &n, <) under the “rightmost”
tic-breaking rule, the limiting moves z;, . . . , T,-; of the first n — 1 players are the numbers
1/2(n=1),3/2(n=1),..., (2n=3)/2(n=1), in some order, and the limiting move z, of the
last player equals z,_;. This gives a limiting payoff of 1/2(n — 1) for the last two players,
and 1/(n — 1) for the remaining players.

For other tie-breaking rules, the situation is more complicated. To simplify things and avoid
dealing with the special intervals J; and and Ji, let us assume that for al the intervas
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J;. both endpoints of .J; have been taken by earlier players. This will be the case if the
numbers O and 1 are taken at the beginning of the game (or, aternatively, if the game is
played on a circle).

Under this simplifying assumption, there is no difference between the “closest to the first
player” and the “rightmost” tie-breaking rules. We now examine the situation under the more
equitable tie-breaking rule in which the choice among equivalent moves is made uniformly
at random.

If we follow the heuristic argument of section 3, we would expect that the number of players
r; in each J; would still satisfy (4). Under the “random” tie-breaking rule, however. the
subintervals of size B would be taken by the first r; — 1 players in J; a random from either
the left end or the right end of J;, leaving a subinterval J;" of size greater than B somewhere
in between. Then the last player in .J; would play at random inside J;" but in such a way as
to partition J;' into two subintervals of size at most B.

This is indeed the optimal strategy when the total number of players in each interval is
small. The inductive step, however, fails when the number of players is large. Thus, in the
seven-player game with both endpoints taken, if al players follow the strategy we described,
the expected payoff for the first player will be (1/7)( 1 —(1/2)7) < 1/i. but if the first player
chooses the midpoint of the [O. 1] interval and the remaining six players follow the strategy
we described, playing three to each side of the first player, the expected payoff for the first
player will be 7/48 > 1/7 (see [1] for the details of these calculations).

" Nevertheless, since this strategy is optimal when the number of players is small, it may
provide a good base case from which to extend the solution for the “random” tie-breaking
rule to larger values of n.

6. Conclusion

We have shown that a simple zero-sum game in which all players play independently so as
to maximize their own payoff can be viewed, under certain conditions, as a game in which

. the players cooperate to minimize the payoff of the last player. Furthermore, this approach
is helpful in developing an optimal strategy for the game. An interesting question is whether
this principle can be applied to a broader family of zero-sum games.
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