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1. Introduction

1.1. Motivation
Hardware design could benefit greatly from a precise computation theory of hardware systems. Current design

and validation methods, such as simulation and testing are expensive and unreliable. The call forformal methods in
hardwa design is heard moII: and more in the hardware community, and not only among theoreticians, but also
among practitioners as in pussell-Kinniment-Chester-McLauchlan  85]@. 189):

As the designs get bigger this [validation] capability will not be provided by traditional sunulators.  Formal
verification of some other kind will need to be employed, which means that current languages will need to be
redesigned to encompass formal techniques.

Formal verification, such as mechanical proof of correctness or transformation-based (inferential) design systems
[Burstall-Darling-ton 771,  [Scherlis-Scott 831  , requires a formal underlying semantics, and this is what we mean by

a “precise computation theory of hardware systems”.

T’his is not an entirely new concept! Such a formal theory has been around for a long time for a small  class of
hardware systems: combinational circuits. Their semantics are given in terms of Boolean functions, and theoretical
applications include equivalences proofs using the Boolean calculus, minimization theorems, and many rno=
advanced theories such as fault-modeIling  and test-generation In fact, the Boolean Algebra semantics is ubiquitous
in the education of hardware engineers.

Our goal was therefore to find similarly natural and mathematically tractable semantics for more general hardware
systems, to serve as a basis for reasoning formally about hardware designs.

1.2. Solution proposed
Using functions on finite strings as a basic mathematical object, we have developed the core of a formal theory

for a wider class of hardware: synchronous systems/circuits.

The basic ideas and Elation to the Boolean function semantics are fairly simple and we have made a special effort
to include a detailed, motivated, informal explanation in section 3.1 . Technically we build Scott-style domains of
strings, and string-functions, and give the extensional semantics of a synchronous circuit in terms of monotonic
(with respect to less-defined-than and p&ix)  and length-preserving string-functions. Note however that in contrast
to other work in concurrency theory based on strings, we need only finite strings, and use as our primary ordering
the pointwise extension of the flat ordering on the base domain, not the prefix ordering. Correspondingly, we solve
our fixed point equations in the string-function domain, and not in the string domain. The beginning of a calculus

_ based on these functional extensional semantics is shown among the possible theoretical applications in section 4.1.

In order to nzason about synchronous systems in an even rno=  general and powerful manner, we have added a
recent idea of software computation theory: intensional  semantics . These give a mathematical handle on how an
algorigthm (or in our case, a circuit) computes its result, as opposed to just what  the result is, i.e. its extensional
semantics. These concepts are studied in great depth in r]ralcott 851 and woschovakis  831.  They provide a way to
compare precisely the objects we are txying to design, and hence provide the relations which will be at the core of
future “guaranteed conect” transformation-based design systems [Scherlis-Scott 831.  A very Iirnited taste of such
relations is given in section 4.2.

These constitute the main ideas presented in this report. In order to support them however, we have proved a few
additional results about our semantics:

l We have given a semantic characterization of synchronous circuits which obey the “Every Loop is
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Clocked” design rule, even though our semantics assign a meaning to all circuits (built arbitrarily from
primitive components: registers  and gates). We have not seen such characterization (in any form)
anywhere else in the hardware semantics literature.

l We have defined an operational semantics which is extremely simple, and basically a trivial circuit
simulation algorigthm,  and proved its equivalence to our extensional semantics. We also believe this
result to be new in the context of hardware systems, although related operational-denotational
equivalence proofs have appeared in the context of dataflow paustini  82a]  and more clearly
[Glasgow-MacEwen 871  within operator nets.

l We have shown how to apply these semantics to Sequential Machines (Mealy Machines [Booth 671,
mopcroft-Ullman  791)  which am at the core of synchronous circuit design in the engineering

community. This allows us to forma..Uy  state that a certain circuit correctly implements a certain
sequential machine.

Finally, since our denotational semantics is based on a new domain of string-functions, and since ultimately all
claims of design correctness rely on sound underlying mathematics, and since a precise and thorough understanding
of the theory is an essential prerequisite to its mechanization (in a theorem-prover), we have taken extreme care to
develop the foundktion.s  in complete detail.

In order to reach the full generality that we needed, such as combinations of functions with arbitrary (and
different) number of inputs, without any hand-waving, we found that we had to use some slightly technical tools,
such as Moschovakis’ induction algebras. Moreover, we isolated two mathematical structures which came up
during the process and seemed to present some interest:

l Finite Depth domains, which are generalizations of flat domains, and

l String domains, which are domains generated from a base domain with string operations.
To prevent confusion between these developments and their applications to hardware semantics, and spare less
mathematically inclined readers, we have placed them in a separate “Fou.&ttions”  chapter (chapter 2).

1.3. Relation to other work
Tbe original inspiration for this work came f?-om software concurrency theory and the work of Kahn 741  on

semantics of asynchronous communicating processes. The key idea there was to view each node as history- (or
string-)functional,  the system as a list of string equations, and define  the result to be the least solution (or fixed
point)-of the system, in a domain of infinite strings ordered by the prefix relation. Other people then tried to exhibit
operational models for which they could prove the appropriateness of the “Kahn-semantics” [Arnold 811,  [Faustini
82a],  Faustini  82b]  and references therein.

In our case, we have kept the basic idea of nodes being string-functional, but because of our synchronous context,
we were able to use a domain of finite strings, ordered by a pointwise extension of the flat ordering on the base
domain. Also, we made the abstraction to string-functiorrs for circuits, which was only implicit in pKahn 741.
Moreover we view the equations as defining string-functions instead of strings, and correspondingly solve our fixed
point system in a functional domain

Much of the work derived from &&I 741 in concurrency theory has gone into trace theory, keeping the history
idea, but tossing away the functional abstraction, mainly to deal with limitations of Kahn  741  in non-deterministic
contexts, as pointed out in [Brock-Ackerman  811. These have been successfully applied to VLSI in [van de
Snepscheut 851  and recently in [Dill  883 to asynchronous circuits. However synchronous  systems do not present any
of the difficulties necessitating trace theory. And fundamentally, we believe the functional abstraction to be natural
and crucial for the design of large systems, for a rich calculus  of synchronous circuits (analogous to the Boolean
cahlus),  and for the intuitive understanding of systems.
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Also inspired by the work of Kahn. and trying to apply these ideas to the semantics of hardware, are the works of
prookes  841 and recently [Loos  87):

[Brookes 841 uses infinite strings (viewed as functions on integers) but is fairly informal and based only on one
example, which does not have any feedback. His remark concerning the handling of feedback is essentially wrong
(or extremely imprecise) since the original state of the registers seems not to be kept in the syntactic object, even
though in the presence of feedback, it can affect the final semantics immensely.

[Loos  871  in contrast is quite formal and thorough, and is very much based on Kahn’s idea of functions on
infinite strings, with a (slightly modified) prefix ordering due to Broy. This work is the most similar to ours that we
have found, and goes a long way towards achieving many of our goals, within a different mathematical environment
and for the extensional part only. It is however, much broader in its scope of hanvare systems it aims to model, and
correspondingly, the theory is weaker. Moreover, the algebra of finite snings  has many advantages for purposes of
mechanizing, such as induction. Also, no proof of equivalence with any operational model or other key property of
the semantics is given.

Much other work related to ours falls under the category of “new hardware languages”. These have evolved very
similarly to software languages: from ad-hoc (assembly) to clearer (high-level) to semantically cleaner (functional) .
Just like in software, very few of them really have formal underlying semantics. Two notable exceptions are
[Sheeran 831  and [Johnson 833:

[Sheeran  831  uses FP packus  781 as a semantic base, and hence functions on sequences. Aside from an
insistence on a variable-free (and hence hardly readable) style, there is a lot of emphasis on algebraic laws, so
“philosophically” our work is very related to hers.

[Johnson 83)  uses a more standard applicative notation but puts much more emphasis on the language issue than
on the semantics. Most of the emphasis is on (informally) transforming recursive descriptions of the algorithm
which axe not directly implementable in hardware, into other descriptions which am. The semantics only model a
special restricted “stylized” kind of circuit (with one “output” line and one “ready” line). The model-theoretic
semantics are sketched rapidly, are not very natural (signals are “infinite sequences of instantaneous operations”),
and are clearly not the main goal in his work.

Finally, work in mechanical correctness proofs of hardware shares some important goals with us, although we
believe that semantics should be thoroughly studied first. The most impressive such result we know so far is munt
851  whem two descriptions of a CPU (one of which was isomorphic to the actual hardware) were proved equivalent
in the Boyer-Moore system. The semantics however, while quite clear in the combinational logic case, are more
fuzzy in the sequential case, where a “stylized” description is used, with no formal justification. One price paid for
this is the lack of composition&y, i.e. the unability  to combine easily two separate (sequential) specifications into a
bigger one. Also along the verification lines, we share a lot “in spirit” with Gordon’s work in higher-order logic:
[Gordon 851  and related efforts. Technically however we differ significantly. Gordon’s semantics are axiomatic:

hardware objects am associated with predicates (on functions of time), and systems are “ANDed”  together. Besides
putting more emphasis on the model-theoretic aspects of our semantics, we have also defined our theory so that
hardware systems are describable in just a first-order language. This may simplify automatic derivations, and in any
case gives us a greater choice of theorem-provers. Moreover, by studying properties of the algebraic structure (i.e.
building a calculus) we can derive system-independent properties.



1.4. Notation
We have tried as much as possible to use standard mathematical/logical notation: A , v , => , <=> , v

and 3 are the usual logical symbols. w denotes the set of natural numbers (non-negative integers).

We’ve generalized slightly the tuple projection operator (denoted by subscripting): (xI,..~,)i  = xi , to take a tuple
of positions and return  the corresponding sub-tuple of values: (x1, .‘Jc,)  (i,,..,J = (xilV***x&) ’

For our “precise” proofs, we have a semi-formal notation: There are two columns: assertions on the left, and
justifications on the right, enclosed in double brackets, which can be mentally read as “because” or “by”. Successful
completion of the proof is indicated by:

[[II
often indexed by the name of the theorem it proved, For example:
We have I = V / R [I om b.m. 1 11
a n d  P = V * I [[ definition ]]
. . P=V2/R
and V = 5.0 volts I[ hypothesis  11
a n d  R - O o h m [ [ we’ve reversed Vcc and Gnd pins ] ]

mlThm. Chip-is-Hot
In general, these proofs are most easily followed by skipping the individzuzl  justifications, i.e. reading the left
column only! Occasionally, if a step appears unclear, then checking the justification is useful

Other notations for particular structures (such as strings) are defined as concepts are defined An index of major
definitions is given at the end for “random-access” readers. The report itself is “linearly” organized in definition-
theorem-proof form, each referring only to concepts previously defined or proved.



2. Mathematical Foundations of the Semantics

2.1. Basic Theory: CPOs, PCPOs, and Induction Algebras
The domains we consider are chain-complete partially ordered sets. However, since there are some terminology

variations across the various authors in the field, we specify here the structures we will use, as well as the main
results we’ll need about them.

Many of these definitions and results can be found in various places and forms in @Aanna  741 chapter 5, [de
Bakker 801  chapters 3 and 5, and [Schmidt 861  chapter 6 .

Often however, these concepts (lub, continuity, fixed points) are obscured in standard treatments because they are
defined in the specific context in which they are needed, which usually turns out to be a higher-order set where it is
hard to visualize things. We have tried to avoid that pitfall here, and have defined  each notion in the simplest
structure in which it is meaningful.

Definition 2.1: Partial Order [PO]
cP, c > is a Partial Order [PO] <=> P is a set A c is a binary relation on P which is

l r efle⌧ive:V⌧ E P,⌧  E ⌧

l a .ntisymmet⌧ic :V⌧,y E P,(⌧c  y A y c ⌧ => x=Y  1
l transitive:Vx,y,zE P,(XCy  A yC z => xCz)

Definition 2.2: Upper Bound
Let<P,c>beaPO,SbeasubsetofP,y  E PisanUpperBoundofS(inP)  <=> Vx E S,x c y

Definition 2.3: Least Upper Bound [LUB]
Let<P,c>beaPO,SbeasubsetofP,y  E PisaLeastUpperBoundofS(inP)  <=> yisanupper
BoundofS  A  Vz E P,zUpperBoundofS  => y  cz

Definition 2.4: Chain
Let<P,c>beaPO,SasubsetofP,Sisachain  <=> Vx,y E S,x E y  v  y  c x ( i . e .  G istotalins).

Note:weusually~fertochainsasindexedbyanordinalI:(xi)iE~  ] V i  E I,Xi E ?+I Jhisdoesnot
reduce the generality.

Definition 2.5: Complete Partial Order [CPO]
-<p,  E > is a Complete Partial Order [CPO] <=> dD, c > is a PO A every non-empty chain in P has a LUB.

Definition 2.6: Pointed Complete Partial Order [PCPO]
<p, c > is a Pointed CPO c=> Cp,  E > is a CPO A there is a least element, usually called I, for E in P
(i.e. the empty chain also has a lub).

The distinction between CPOs and PCPOs is often glossed over, because most domains used in practice are
PCPOs ( [Schmidt 861,  lJ4eltonSchmidt  861 make the distinction). In our case, we will deal with structures which
are CPOs but not PCPOs, and therefore, we need the more general definitions.

Note that any PCPO is a CPO, and therefore alI results true for CPOs apply to PCPOs. Also, an equivalent
definition of PCPOs not referring to CPOs can be given, simply by requiring that “every chain has a LUB”, but our
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definition makes the dependency on the empty chain explicit.

Definition 2.7: Monotonic function on POs
Let@,,q>,<P2,~2>bePOs.fafunction:P1  +P2,fismonotonic  <=> Vx,y E Pl,xcly -=>
f(x) E 2 f(Y) *

Definition 2.8: Continuous function on [P]CPOs
Let <P,,C ,>, <P,, E2> be PCPOs [resp. CPOs],  f a function: P, + P, , f is continuous c=>
V (xi);  E 1 [ES~.  non-empty] chain in Pt, (f(Xi)); E 1 has a lub A flub (Xi)i E 1) = lUb(f(Xi)),  E 1
where the lubs are taken in the appropriate domains .

By considering a chain of just two elements we immediately get:

Theorem 2.9: Continuous => Monotonic
Let <p,,  c 1> , <p,,  c 2> be CPOs,  and f a function: P, + P, , f continuous => f monotonic .

The next two properties are immediate, but ofen useful:

Theorem 2.10: Composition of monotonic functions
Let<P,,c,>,<P,,C2>,<P3,C3>bePOs.  Letfbeafunction:P1  + P2,gbeafunction:P2  + P,,fandg
are monotonic => gof:P, 1) P3,ismonotonic.

Theorem 2.11: Composition of continous functions
~t<P~,~,>,<P2’C2>,<P3,E3>beCPOs.  Letfbeafunction:P1  +P2,gbeafunction:P2  +P,,fand
g are continuous => g.f:P, + P3,i.scontinuous.

Definition 2.12: Fixed Point of a function
LetSbeanarbitrqset,faunaryfunctiononS,x  E SisaFixedPointoff  <=> f ( x ) = x  .

Note that the preceding definition is a common mathematical notion, and applicable to any structure, not just
CPOs. In Partially Ordered sets, we can additionally de& the notion of a Least Fixed Point:

Definition 2.13: Least Fixed Point [LFP] of a function
L;et<P,~>beaPO,fauna.ryfunctiononP,x  E PisaLeastFixedPointoff  c=> x i s a f i x e d p o i n t o f f

Gy E P,yfi.xedpointoff => xcy .

One of-the main reasons for using PCPOs as domains is that in these structures, a wide class of functions have least
fixed points, which moreover can be computed explicitely:

Theorem 2.14: Kieene
A CO~~~~IUOUS  function f, on a PCPO <p, c >, has a LFP in P : lub(f’(l ))i E a, .

Proof:
This is an extension of Kleene’s  1st Recursion theorem weene 671 . Many proofs of this result exist in the

literature, in various forms. One closest to our notation can be found in [Schmidt 861  p. 114.

[bha~ 2.14

A useful generalization in woschovakis  771  extends this result to families of PCPOs, and systems of continuous
functions on these CPOs. (Moschovakis’ results are actually more general and deal with arbitrary induction and big
ordinals. We restate them here in the simpler context of continuous induction, and consistently with our notations.)



Definition 2.15: Induction Algebra
‘C’j>j  E 19 t G j)j E I* F > is an induction algebra <=>
f: fjl x . . .

v'j E I,flj,~j>iSaP~o  A FkaS&OffUnCtiOl.IS
x pjf -+ Pjo  , containing the identity maps, and closed under composition with projections.

By projection we mean a function of the form: (xl,+,)  + Xi for some i E { l..n) .

By “closed under composition with projections” we mean that if g E F and f satisfies: f(xJ,..,x,)  =
g(x,(xl  ,.., xn) ,.., n,(xl,..@)  with x1 ,.., x, given projections, then f E F .

Theorem 2.16: Kleene-Moschovakis
lkt ‘(pJ>j E I* ( C j>j E I* F > be an induction algebra. Let (f,...,f,) be a system of continuous functions in F ,
where V k E { l..n]  , fk: Pj x . . . X

lUb[(fl,**,fn)‘(l  j,***-L  jnlJi E L *

fj
D

+ fj~ , then that system has a LFT in pj, X . . . X P. :
J,

Proof:
See Fl[oschovakis  771,  Lemmas 2.4 and 2.5 . These actually apply to monotone functions, and conclude that the
system has a fixed point:
lUb[(fl,**,f~)‘(’ jlv**l j )I; E K with K some “big enough” ordinal

n

Since in our case we are restricting ourselves to continuous functions, it is clear that o is big enough:
We have f [ lub(f’(l ))i E oD ] = lub(f’+‘(l  ))i  E (o [ [ continuity of f ] ]
an’ (r”‘(‘>)iE0l=(fi(‘))iECO-I’  1

. .. . lUb(f'f'(l))i,  ,=lUb(f'(l))i.  u)
.. . f 1 lUb(f’(’ ))i E 0 I= lub(f’(’ ))i E a

. . lub(f’(l ))in [D is a fixed point. And the same proof obviously carries through to a tuple of functions.

[hhm. 2.16

A few other results which help us build CPOs  and PCPOs are enumerated below.

Theorem 2.17: Product of CPOs
The Cartesian product of CPOs is a CPO (under the induced coordinate-wise ordering), and the lub of a chain of
tuples is the tuple of the lubs of the coordinates (i.e. the tupl-ing operation is continuous).

This generalizes immediately to finite product.

Theorem 2.18: Product of PCFQs
The Cartesian product of PCPOs is a PCPO (under the induced coordinate-wise ordering).

This also generalizes immediately to finite product.

Theorem 2.19: Disjoint union of CPOs
The disjoint union of CPOs  is a CPO (under the union of the ordering relations).

This generalizes to arbitrary unions with the following definition: u (P ‘)iE I = { x 1 3 i E I ] x E P i } ,
where the P i’s axe all disjoint.

Note however that the disjoint union of PCPOs is not a PCPO (we need to add a new least element in order to
obtain a PCPO). It is common in Scott-style semantics to add that extra element without even mentioning it when
dealing with PCPOs. We will not do that. We still clearly have that the disjoint union of PCPOs is a CPO, which
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will be enough for our purposes.

As for Kleene’s theorem, proofs for the preceding constructions can be found in [Schmidt 861.

Definition 2.20: Sub-CPO
Let -3,  G > be a CPO, P, is a subset of P , P, is a sub-cpo of P c=> <P,, c,,.~~ top > is a CPO.1

Note the following two subtleties about sub-cpos:
l In general, subsets of CPOs  are not sub-CPOs (counter-example: ~1, with subset: 0).

l In general, LUBs (of a single chain) in a CPO and a sub-CPO are not necessarily the same
(counterexample: ~2, sub-cpo: ~2 - {w}, chain: { O,l,...  }).

The following notion is not as “standard” but very useful in building “nice” sub-CPOs, and we will use it
extensively in the rest of this work:

Definition 2.21: Strongly Admissible predicate on a CPO
Let <P, c > be a CPO. Let o be a predicate on elements of P . 4 is Strongly Admissible on P <=> V (Xi); E I
non-empty chain in P , ( V i E I ,0(x;)  ) => @(lub  (Xi); E 1) .

In other words,“6 canies to the lub”. Note that this property is closely related
notion of “admissible” predicate in computational induction lJ%n.na  741.

to, but slightly

Theorem 2.22: “Nice” Sub-CPOs
~t<P,~>beaCPO,let~beastronglyadmissiblepredicateonP,thenPn~={  x E P 1 e(x)}  ,isa
sub-CPO of P, and the LUBs of chains in both domains are the same.

Proof:
Immediate by def. 2.21. I.e. we’ve defined “Strongly Admissible” to be exactly what we needed for this theorem to
be true; the work will be in proving that specific properties we’re interested in are in fact strongly admissible.

m-hm.  2.22

We now move on to function domains. We can easily extend the ordering of a Partially Ordered set to an
ordering on its functions:

Definition 2.23: Point-wise function ordering
Let<P,,c,>,<P2*E2>bePOs,f,gfunctions:P1  +P,,f E,h*g <=> vx E P,,Yx)  c2g(x).

It is immediate that cpointwisc is renexive,  antisymmetric  and transitive. The subscript “pointisc”  is usually
dropped since the correct relation can be inferred  hm context.

Note that this definition immediately applies to functions of arbitrary arity,  by considering them as unary
functions from the product PO.

Function domains on CPO: In the literature, one usua.lIy finds a proof that the set of monotonic functions on a
CPO is a CPO, or that the set of continuous functions on a CPO is a CPO. However, many more function domains
on a CPO can be usefully built, as the next few theorems show.

Theorem 2.24: PIP2 is a CPO.
Let <P,,  c 1> , @,, E 2> be CPOs, the set of all functions from P, to P,: Ppl , under the pointwise ordering, is
a CPO.
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The proof is fairly standard However, we give it because we will need to refer explicitely  to the contruction  of
the lub of a function-chain in many other occasions.

Proof:
Assume [hl] <P,, c I~ 0’0,  [h2]  <p2,  c 2> CPO, and [h3]  (fi)i E 1 non-empty chain in P2’1  .

Define (and this is the essence of the proof) f = hx.lUb(fi(X))i.  I , we prove that 1) f E P2’1  and 2) f is lub (fi)i E 1.

1)Letx  E P,,arbitrary.
Wehave  V i  E I,fi C fi+l
. . v i E 1 7 fi(x>  C2 fi+l(x)
. . t fi(x)  7 i E 1 ] is a non-empty chain in P,
. . { fi(x),iEI)  hasalubinP2
and this was done for arbitrary x,
. . f is a (well-defined) function from P, to P, .

[El11

[[ h3 II
[[ def. 2.23 ]]
[[ def. 2.4 ]]
[I h2 11

2)Leti  E 1,arbitrary.
We have V x E Pt , fi(X)  E 2 lub(fi(X))i~  I
. . ” ’ ‘2qfi(‘)  Czf(‘)
. . fi E f
and this was done for arbitrary i,
. . f is an upper bound of (fi)i E I .

Assume F4] g E Ppl 1 V i E I, fi C g
L e t  x  E P,,arbitraq.
We have V i E I , fi(x)  c 2 g(x)
. . lU’(fi(x))i  E 1 c 2 g(X)
. . f(x) E 2 g(x)
and this was done for arbitrary x,
. . kg

, . f = lub (fi); E I

[[I12
uhn. 2.24

[[ def. 2.3, LUB => Upper Bound ]]
[[ construction of f ]J
[[ def. 2.23 ]]

[[ def. 2.2 ]]

[[ h4, def. 2.23 ]]
[[ def. 2.3 ]]
[ [ construction of f ]]

[[ def. 2.23 ]]

As an immediate corolky  we get:

Theorem 2.25: Pp’ is a CPO.
Let <p, s > be a CPO , the set of ail functions (of arity n) on P: pPa, under the pointwise ordering, is a CPO.

As an immediate application of the preceding theorem (thm. 2.24) and our notion of strongly admissible
predicates (thm. 2.22),  we get a whole class of function CPOs:

Theorem 2.26: Function domains on CPOs
Let <P,,  E t> , <P,, c 2> be CPOs. Let 6 be a strongly admissible predicate on P2p~ , then P,Pln $I = { f E
Ppl 1 4(f) } , under the pointwise ordering, is a CPO. And, the LUB of a function-chain in Pp,n  4 is the
same as the LUB in P2p~ .
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Theorem 2.27: Corollary Monotonic functions CPO, Continuous functions CPO
Let cf,, c 1> , <P,, G 2> be CPOs.  The following sets of functions, under the pointwise ordering, are CPOs:

l set of all monotonic functions: [ P, + P, ] ,

l set of all continuous functions: ( P, 4 P, ) .

Proof:
b(f) = “f is monotonic” is strongly admissible on Pzpl:
Assume [hl] (fJiE I non-empty chain of monotonic functions from P, to P, .
We have f = hx.lUb(fi(X))i E I= 1Ub (fi)ie  1 [[ construction of lub of function-chains ]]
Let ~Y~p1IxclY

We have V i E I , f;(X)  G 2 fior) [[ hl, fi is monotonic ]]
and Vi E Ilfi(y) E2f(y) [[ construction of f ]]
. . V i E 1 9 fi(x)  C 2 f(Y) [[ z transitive ]]
. . lUb(f;(x))i  E 1 c 2 f(Y) [[ def. 2.3 ]]
. . f(x) c 2 f(Y) [[ construction of f ]]
. . f is monotonic.

HI1 monotonic strongly admissible

@(f) = “f is continuous” is strongly admissible on P2’1:
bume IWI Cfi>iE  1 non-empty chain of continuous functions from P, to P, .
We have f = ~.lub(fi(x))i  E l= lub (fi)i E 1 [[ construction of lub of function-chains ]]
and we already know that f is monotonic [[ by above proof ]]
Let <Xj>j E I Chain in P,
Wehave  Vj E I,xj ~tlub(xj)j,r [[ def. 2.3, LUB => Upper Bound ]]
. . V j E 1 v f(Xj)  c 2 f(lub <Xj  )j E 1) [[ f monotonic ]]
... Ll : lUb(f(Xj))j  E I E 2 f(lUb <Xj)j  E I) [[ def.  2.3 ]]

Let i E I, arbitrary.
Wehave  fief [[ f = lub (fi)i~  17 LUB => Upper Bound ]]

[[ def. 2.23 ]]
[[ def. 2.3, LUB => Upper Bound ]]
[[ c transitive ]]
[[ def. 2.3 ]]
[[ h2, fi COntinUOuS  ]]

u kf. 2.3 11
[[ conshuction of f ]]

. . fOUb <Xj>j  E 1) = lUbCf(Xj))j  E 1 [[linesLl  and=]]
. . f is continuous.

EIII continuous strongly admissible

[[bun.  2.27
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Other strongly admissible functional predicates will appear in the next sections.

This completes our list of (slightly extended) standard notions. We now concentrate on particular classes of
domains which will be of essential use later.

2.2. Finite Depth domains

Definition 2.28: Flat domain
Let S be an arbitrary set, S, (read “S lifted”, or “S bottom”) is the PCPO obtained by adding an extra element:
I,andthebinaryrelation:  c d e f i n e d b y :  Vx,y E S,x c y  <=> x=1 v  x=y.

It is immediate that c is reflexive, antisymmetric and transitive, and that all E -chains have a lub.

A picture of S, is most convincing:

Figure 2-l: Fiat domain

s: . . . . . .

Syntactic note about i : the character “1” has no magical properties ! In a different context (such as chapter 3),
we will fke to use a different “least element” character more appropriate for that context.

An essential property of flat domains is that all chains of distinct elements are finite, in fact they are at most of
length 2. Many properties of flat domains (such as can be found in m 741,  chapter 5) generalize, often more
clearly, to arbitrary CPOs which have this “fmite depth” property.

Definition 2.29: Finite Depth domain FD-CPO]
Let<P,E>beaCPO,<P,~>isofFiniteDepth  <=> anychaininPisafkiteset.

rl
An equivalent way of characterizing FD-CPOs  is the “AccumuIation” property:

Theorem 2.30: Accumulation
LetcP,c>beaCPO,<P,c>FD-CPO  <=> v(Xi)iEI non-emptychaininP,3io E w ] V i  2 io,xi=x;o
(and theEfOE  alSO: lUb(Xi)=Xio  ).

In other words, there is a finite index. &er which the chain is constant. We refer to i. as the “accumulation
point” and Xi, as the “accumulation value” (or “lub”).
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Proof:
(Should be intuitively clear, @en  for completeness.)

=>
Assume [hl] Q, c > FDCPO, lb21  (xi)i E I arbitrary non-empty chain in P, we prove the Accumulation property
by contradiction:
Assume that it is false,  we have: V i E O, 3 ji 2 i 1 xi E xj

1
A xi # xj

then we extract X= (xj >i E o, which is a chain [[ h2,land subset of a chain is a chain ]]
and X contains an in&k  number of (distinct) elements [[ by construction ]]
. . X is an infinite chain in P, contradicting hl.

[[II =>

<=

Assume ml] Accumulation property holds, [hz] (xi);  E 1 arbitrary chain.
We have if (xi)iE  1 is empty, then it is finite ii hviW 11
and if (xi); E 1 is not empty
t h e n  3io E 0 ] Vi2i,,xi=- I[ hl 9 k~ 11
. . (xi)i E I = { (Xi), i = 0 . . ie } [[ set extension! ]]
. . (‘i)i E I is a finite set.
and this was done for an arbitrary chain, so P is a FD-CPO,

HI1 <=
ml¶m. 2.30

A few pictorial examples may help:

Figure 2-2: Finite depth CPOS

aa ab ba bb

arbitrary FD-CPO

Examples of FD-CPOs abound: It is obvious that any finite CPO is a FD-CPO (and any finite PO is a CPO). It is
also clear that FD-CPOs can be obtained as follows.



13

Theorem 2.31: Flat domains are FD-CPOs.

Proof:
Immediate.

[[h’kxn.  2.3 1

Theorem 2.32: Product of FD-CPOs
The Cartesian product of FD-CPOs is a FD-CPO.

Proof:
Immediate with the Accumulation property, by taking the max of the accumulation points for each coordinate.

[hlun.  2.32

Theorem 2.33: Disjoint union of FD-CPOs
The disjoint union of FD-CPOs is a FD-CPO.

Proof:
Immediate once you notice that any chain in the disjoint union is necessarily included in one of the original sets.

[hhm. 2.33

Finite Depth has interesting consequences regarding continuity issues, both for functions and functionals:

Theorem 2.34: Monotonic => Continuous in FD-CPOs
Let <PI, c 1>, cP,, c2> be FD-CPOs, f a function fkom P, to P, , f monotonic => f continuous .

Proof:
Should be intuitively clear. Given here for completeness.
Assume [hl] <p,, C ,> FD-CPO, [h2]  <P2,C2>  FD-CPO, @l3]  f a monotonic function: Pt + P2 , Ih41  (‘i)iE I
non-empty chain in P, .
Wehave  3io E o 1 V i  2 i.o~xi=x~=lub(~)iEI
We have f(xi)‘i E 1 non-empty chain in P,,
. . gi, E 0 I ViZi,, f(xi)  = f(xi,) = l”b(f(xi))i E 1
Let j  = max(Qt)
We have xj = 1Ub (Xi>i  E 1 A f(Xj) = lUb(f(Xi))i E 1

. . f(lub (Xi>i  E I) = lUb(f(xi))i  E 1

. . f is continuous.

[[ hl, thm. 2.30 ]]

[I M and h4 11
[[h2,thm.2.30]]

&un. 2.34

Our result about functionals is a generalization  of [Manna 741  theorem 5.1 , which states that functionals (on
monotonic functions, of arity n) on a flat domain, defined by composition of monotonic functions (of arity n) and a
function variable “F’, are continuous.

Besides separating what is true in any CPO from what depends essentially on the finite depth property, we
generalize the result in three ways:

l To apply to FD-CPOs instead of just flat domains,

l To allow functions of any arity in the construction of the functional, as long as arities match. This
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technicality corrects the fact that the theorem as stated by Manna does not even apply to the functional
defining “factorial”...

l To apply to functionals  on any sub-cpo of the set of monotonic functions (another technicality which we
will require in order to apply this result for our purposes in the next section).

The first theorem applies to any CPO, independently of finite depth considerations:

Theorem 2.35: Continuous fbnctionals on a CPO
Let -9,  c > be a CPO, if z is a functional, on continuous functions: ( P n -+ P ) defined by (arity-correct)
composition of continuous functions: ( P m + P ) for any m E w , and the function variable “F’, then ?: is
continuous.

Our proof is similar in structme  (induction cases) to wanna 741’s  (partial) proof in the flat domain case, but
different in detail since we do not mingle considerations of “finite-depth” (accumulation property).

Proof:
The proof is by structural induction on 7. There are 4 cases. In each case we have to check that
z is closed (i.e. yields continuous functions when fed a continuous function as input),
7 is monotonic,
7 preserves lubs of function-chains.

~ase]casel:~=AF.g,withgcontinuousfuoct.ion:Pn  + P.
7 closed: immediate.
‘I: monotonic: immediate [[ constant fun. (in any PO) is monotonic ]]
z preserves lubs of function-chains: immediate [[ constant fun. (in any CPO) is continuous ]]

Kll, 1

@3ase]case2:~=AF.F.
7 closed: immediate
z monotonic: immediate
‘t preserves lubs of function-chains: immediate

[[II,, 2

[[ Identity is always closed on any set! ]]
[[ Identity (in any PO) is monotonic ]]
[[ Identity (in any CPO) is continuous ]]

-duction]  case 3: 7 = ~.go(st(F),..,~,(F))  , with g continuous function: Pm + P .
?: closed: immediate [[ thm. 2.11, induction hyp. on T~..T~  ]]
‘t monotonic:
Let flI,f2 continuous functions: P n + P I f l E f2
We have V j E { l..m}  , Tj(ft)  c zj($) [[ Tj monotonic, induction hyp. ]]
. . v X E P n , v j E I l..m 1 , cTjcf 1 )Xx) C (Tj(f2)Xx) [[ def. 2.23 ]]
. . v x E p n, gl~~~~f~)x~),..,(~,(f~))(x>]  c g[(~*(f2>)(x),..*(‘lm(f2))(x)]

[[ g monotonic, thm. 2.9 ]]
. . %fl)  c W2) [[ def. 2.23, definition  of z ]]
7 preserves lubs of function-chains:

IAt tfi)i E 1 non-empty chain of continuous functions: Pn + P .
We have V j E ( l..m} , 7j<lUb  (fi); E 1) = lUb[Zj(fi)]i  E 1 [[ 7j COntinUOUS,  indUctiOn  hyp. ]]

:. Ll: V x E P” , V j E { l..m} , (zj(lub  (fi)iE  1))(x) = lUb[(Tj(fi))(x)li,  I
[[ construction of lub of function-chains ]]

L e t  XE P”,arbitrary.
we have (Wub  (fi)i  E 1)Xx) = g((TlOub  (fi)i  E I)Xx>,--~(~,Oub (fi)i  E $Xx))



. . . = g(lub[(~,(fi))(x)li  E I,..,‘ub[(~m(fi)~,~ 11,’

. . . = lub[gt(~~(fi))(X>,..,(~m(fi))tX~~~,~  c

. . . = lub[(~(f;)Xx)Ii E 1

. . . = tlUbI~(f,>li E I)(“)
and this was done for arbitraty  x,
. . z(lUb (fi)i E I) = rmlef~~~~]:  ~ I’

[[ definition of ‘I: ]]
[[line Ll ]]
[[ g continuous ]]
[[ definition of ‘t ]]
[[ construction of 1Ub of function-chains ]]

[[II, 3

Fduction]  case 4: T = AF.F&li~+,(F))  .
7 closed: immediate [[ thm. 2.11, induction hyp. on T*..T~  ]]
z monotonic:
Let f, ,f2 continuous functions on P n 1 f, E f2

We have V j E { l..n} ,7j(ft)  c ~j(f2) [E qj moxmtonic,  induction hyp. ]]
. . v X E P n , v j E {l-n1  3 tTjtf,)Xx)  C (zj<f2>Xx> [I def. 2.23 ]]

.. . v x E p n 9 f2[(s*(fl)Xx),..,(‘tn(fl>Xx)l  C f,C(~,Cf,,)4~~~~?n~f21Xx)l
[[ f2 monotonic, thm. 2.9 E

and v x E pn , ~~~~t~~f~~X~~‘..,~~,~f~~x~~1  c f2E~~~ef*lXxX-~~,(flIXx~~
E[ f, c f2 11

. . v x E p n 3 f~[(~~(f~))(X)*..*(t,(f,)xx)I  c f~~~‘~~f~~X~~“‘.~~~~~*~X~~l
[[ c_ transitive ]]

. . WI) E z(f2) [[ def. 2.23, detition of z ]]
‘t preserves lubs of function-chains:

IXt tfi>i E 1 non-empty chain of continuous functions on P n.
We have V j E { l..n} , 7j(lUb  (fi)i E 1) = lUb[~j(fi)]i  E 1 [[ ‘tj continuous, induction hyp. ]]
.*. L2: V X E P n 3 V j E { l..n} 9 (~j(lUb (fi)i E I))(X)  = lUb[(~j(fi))(X)]i  E 1

[[ construction of lub of function-chains ]]
L e t  xE P”,arbitrary.
We have (Nub  (fi>i E 1)Xx)  = Oub  (fi)i E IX(zlOub (fi>i  E I)XX)**-,(TnOUb  (fi>i E I>)(X))

[[ definition of ‘t f]
. . . = 1ubI fittz1  Club (fi)i E I>XX>,**~(~nOUb  (fi)i E 1)Xx))  I i E 1 [[ construction of lub of function-chains ]]
. . . = lub{ fitlU’[tT 1 (fi)XX)li E I***JUb[(7n(fi)XX)li E 1) 1 i E 1 [E be L2 11
. . . = lub{‘ub[fi((~~(fi)Xx),..*(~n(fi>Xx>)li  E Iii E 1 [[ fi continuous ]]
. . . = ‘ub[fi((tl(fi>)(x),..,(‘*(fi))(x))li  E 1 [[ lubi ,g dlubi E I(.)) = l&i E d.1 11
. . . = lub[(~(fi)Xx)li E 1 [[ defM.ion  of z ]]
. . . = (lub[7(fi)li E 1Xx) [[ construction of lub of function-chains ]]
and this was done for arbitrary x,
. . Ttlub (fi)i E 1) = lub[%fi)li E 1

[[II, 4
[[II Thm. 2.35

Combining thm. 2.34 and thm. 2.35, we immediately get the result for Finite Depth CPOs:

Theorem 2.36: Continuous functionals on a FD-CPO
Let <P, E > be a F’D-CPO,  if T is a functional, on monotonic functions: [ P n + P 1, defined by composition of
monotonic f!unctions:  [ Pm + P ] for any m E o , and the function variable “F’, then z is continuous.

And finally, noting that the proof of thm. 2.35 carries through to functionals  defined on a sub-cpo of the set of
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monotonic functions, as long as we assume that they are closed on that sub-cpo, we get our final result:

Theorem 2.37: Continuous functionals on a FD-CPO , general version
Let <p, c > be a FD-CPO. if r is a functional, on any sub-cpo of the set of monotonic functions: [ P n + P ] ,
closed on that sub-cpo, defined by composition of monotonic functions: [ P m + P ] for any m E o , and the
function variable “F’, then z is continuous.

KllGeneralization of [Manna 741 Thm 5.1

Note that this theorem (or thm. 2.36) are not true in arbitrary CPOs,  as the following simple counterexample
shows:
Counter-example:
Let P = ~1,  with the standard (ordinal order) I , P is a CPO.
Let g = hx.(if x = 0 then 1 else 0)
We have g monotonic [ [ immediate verification ]]
Let ‘I: = hF.gOF,  T is a functional defined by composition of monotonic functions and the function variable “F’.
Let fi = hx.i (i.e. the constant function: i), V i E w .
We have Vi E O, fi is monotonic [[ constant functions are monotonic ]]
a n d  V i  E W,fi I fi+l,i.e.(fi)i,,chain [[ immediate ]]
and lub (fi); E (D = hx.w [[ immediate vexification ]]
. . z(lub (fi)i E d = ~-1
We have V i E w , Z(fi) = Lx.0
. . lUb(Z(fi))i  E 0 = hx.0
. . Nub  tfi>i E 0) * lUb(T(f,)>i  E a

rr11countcrcxampk

2.3. Strings of a domain, and String Induction Algebra
A particular construction on domains which we have found useful in our semantics is the domain of (finite)

Strings on a domain. It is also from these domains that we noticed the generalizations from flat domain to finite
depth domain.

As in the previous section, we study the pqxxties  of String domains independently of their application to the
semantics of synchronous circuits so as to separate the general from the particular. (This also has the advantage of
keeping the overall notation, and hence proofs, simpler.)

Definition 2.38: Strings of a partial order
Let~,c>beaPO,P*=U(P’)i.,, with the induced ordering, is a PO (disjoint union of cartesian products
of a PO). We call it: Strings of P.

Recall that when forming the disjoint union we are not adding any new elements (cf thm. 2.19).

Once again, a picture helps.
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Figure 2-3: Strings on a flat domain

a b

P : v i
-L j k

I PO
I/

P’ :

a
b

v
L

P1

bbb
9

They key fact about the String construction is that it preserves the “niceness” of the underlying domain, to a great
extent:

Theorem 2.39: Strings on a CPO
<P,c>isaCPO => <P*,~>isaCPO.

Proof:
Immediate by thm. 2.17 and thm. 2.19.

whm. 2.39

and most importantly:

Theorem 2.40: Strings on a FD-CPO
<P,c_>isaFD-CPO => <P*,c>isaFD-CPO.

Proof:
Immediate by thm. 2.32 and thm. 2.33.

mllln. 2.40

Note however that the String construction does not preserve “pointedness” (i.e. PCPO). In fact, we have a stronger
statement to the contrary:

Theorem 2.41: Strings do not have a least element
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Let <P, c > be a PO, P nonempty => <P *, c > has no least element.

Proof:
Assume [hl] cP, c > PO, [h2]  P nonempty
L e t  Ebetheemptystring(E  P * )
Wehave  Vx E P*,[cl](x  c E => x==E) A [c~](E  ox => X=E)

[[G is induced coordinatewise ordering]]
L e t  aEP [[ h2 11
We have a E P * (string of length 1, containing the element a)
Assume I least element of P *
t h e n  IcEandIEa
. . I = & [[ cl and I c E ]]
. . EGa [I: I c a 11
. . E = a, which is a contradiction. u c2 11

m-hm.  2.41

This point was mostly made to bring out the fact that we are not studying the “usual” domain of strings under the
prefix ordering (for which E is a least element), instead we are constructing the String domain of an arbitrary PO,
under the induced ordering.

The junction with “usual” strings will now be made, but the preceding remark will still be valid for the rest of this
work.

We consider the usual (slightly extended) string structure on P *:
<P *, E,.,l  I,<Jast(),abl()*lst(),rst(),~,~,Q>

Definition 2.42: String structure
l &: -9 P* , (constructor) empty string.

..:Add:P*xP+P* , (constructor) add a character (to the right).

l I I : Length : P * + o , length of a string. (We assume the integers are included in P, or are en&able
in it, cf. &Ioschovakis  711.)
Defined  by: ( 1~1  = 0 ) A ( Ix.ul = 1x1 + 1 ) .

05 :Prefk:P* x P* + {T,F} ,prefixrelationonstri.ngs.
D e f i n e d b y :  (xle <=> XX)  A  (x5y.u <a x=y.u v  X<Y) .

l ..:Concatenate:P* x P* + P*, concatenate two strings. We overload the “,” symbol since we will
identify characters and strings of length 1. We will also sometimes omit the “.” all together, when no
confusion can result.
Defined by: ( x . E = x ) A ( x . (y.u) = (x . y).u , where the I’.” preceding “u” means “Add” ) .

l last0  : Last : P * + P (destructor, partial) , last character of a string.
Definedby: last(xu)=u  .

l abl()  : All-But-Last : P * + P * (destructor, partial), all characters of a string but the last one.
Defined by: abl(x.u) =x .

l lst() : First : P * + P (derived destructor, partial), first character of a string.
Defined by: lst(u.x) = u .

l rst() : Rest : P * + P * (derived destructor, partial), all characters of a string but the first one.
Defined  by: rst(u.x) = x .

l T : “To the power” : P x o + P * , make a string by Adding the same character a certain number of



1

19

time.
Defined by: u? = uu..u “n times”, or formally: ( uT” = E ) A (uTnfl  = uTn  .u ) .

l J : “At index/position” : P* x 0 + P,extractacharacterfromasning.
Defined by: Let n = 1x1 , x = xk,x~,...x-hn . We also use & with 2 arguments to extract-substrings:
xJi,ej denotes the corresponding substring of x if i 5 j I n , E otherwise. (x = xLl ,) . The formal. .
(recursive) definition is messy and uninteresting.

l 0 : 0 is to “.” (add) in string theory, what I: is to “+” and what II is to ” x ” in number theory,
i.e. 8jl,Ui = u1u2..un,  where Ui is any character expression.
Formaliy:  (Oi~lUi=') A (Oi~i' Ui=(OklUi). Un+l ) .

We also allow ourselves to expand this structure with addinonal (derived) operations whenever needed.

Terminology notes:

There are a few basic string operations which are well-known in the literature: [Landin 651,  [Burge  751,
Friedman-Wise  761  and wanna-Waldinger  851  among many others. However, there are no consistent notations.

We have therefore used our own, which we have tried to keep simple, and meaningful relative to the use we will
have for them (describing synchronous system semantics).

The notation used for subscripting is taken from Mason 861  and [Talcott 851.  Even though it is “heavier” than
simple subscripting, it allows subscripted string variables by differentiating between x, x1 (strings) and xl,, x,4 1
(characters). FJote:  if no confusion can result, i.e. in a context where no subscripted string names are used, then it is
reasonable to omit the arrow.]

Theorem 2.43: Prefix
There is an equivalent definition of the Prefix relation which we will sometime use: V x,y E P * , x I y
<=> 3ZE P* jy=x.z  .

Proof:
Immediate induction.

[blm.  2.43

We now study various function domains on string-CPOs:

Let <PI*,  E 1> , <pz*, E 2> be string-CPOs,  it is immediate from thm. 2.24 and thm. 2.27 that:
. p,9,* :alltictionsfromP1*toP2*,

l [P,*  + P,* ] : all c-monotonic functions from P,* to P,* ,

l (Pi* + P,*):aU  E-continuousfunctionsfromP1*toPz*,
are CPOS.

There are however other classes of functions which are meaningful only in the string structure, and we are
interested in two such classes:

Definition 2.44: Length-Preserving [LPI function
Let f be a function: P,* + P,*,fisLength-Preserving[LP] <=> Vx E P1*,lf(x)l=lxl  .

Definition 2.45: S-monotonic function
Let f be a function: P,* + P,* , f is I-monotonic <=> v x,y E p,* , x I y => f(x) 5 f(y) .
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Pronunciation note: c -monotonic can be read “L-monotonic” (short for “less-defined-than-monotonic”). And
I -monotonic can be read “P-monotonic” (for “prefix-monotonic”).

Theorem 2.46: LP preserved by composition
Let<P,*,c,>,<P2*,C2>and<P3*,C3>besuing-CPOs.  Letf:P1*  + P,*andg:P2*  + P,*,fandg
are LP => g o f : P,* + P,* , is LP .

Proof:
Immediate verification.

~hhm. 2.46

Theorem 2.47: 5 -monotonic preserved by composition
Let<P1*,c_,>,<P2*,Et>and<P3*,C3>bestring-CPOs.  Letf:P1*  + P2*andg:P2*  + P,*,fandg
are 5 -Monotonic => g.f:P1*  + P,*,is  I -Monotonic  .

Proof:
Immediate verification.

u-hm.  2.47

Both LP and I-monotonic are in some semse  “natural” properties for string of Finite Depth-CPOs, as the
following theorems indicate

Theorem 2.48: LP is strongly admissible on FD-CPOs
Let c?‘,, E 1> , <P,, c 2> be FD-CPOs, ” f is LP ” is strongly admissible on P,*1*  .

Proof:
Assume [hl] <P,,c  1~ and <P,, c 2> are FD-CPOS,  [h2] (fi)ia 1 non-empty chain of LP functions from P,* to P,*

We have f = 3ur.lUb(fi(x))i  E I= lub (fi)i E 1
Lcet x E P,*, arbitrary.
We have P,* F’D-CPO
and (fi(X>>i E 1 non-emptychain in P,*
.5 3 ;O E o 1 V i 2 io , f-i(x) = fG(x) = lUb(fi(X))i  E 1

. . f(x) = f&(X)

. . If(x)1  = If&(X)1
and If&x)1  = 1x1

. . I-f(x)1 = 1x1
and this was done for arbitrary x,
. . fisLP .

[hbrn. 2.48

[[ construction of lub of function-chains ]]

[[ hl, and thm. 2.40 ]]
rs h2 II
[[ thm. 2.30 ]]

u fi, LP,  h2 II

Theorem 2.49: I-monotonic is strongly admissible on FD-CPOs
Let cP,, E 1> , cP,,  c 2> be FD-CPOs, ” f is I-monotonic ” is strongly admissible on P2*p~* .

Proof:
Assume [hl] 4’1, c 1~ and <P,, E 2~ a~ FD-CPOS,  ph2]  (fi)i E 1 non-empty chain of I -monotonic functions from

p,* toP2* .
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We have f = ~.lub(fi(X))i  E I= lub (fi)i E 1
Let x,y E p,* 1 [b3]  x I y ,
We have P,* F’D-CPO
and (f,(X))i  E I , (fi(y))i  E 1 non-empty chains in P,*
. . 3 i, E o ] V i 2 i.c , f-i(x) = f&(x) = lub(f,(x)>;  E 1

and 3 i 1 E o 1 V i 2 i, , f-i(y) = fin = lub(fi(y)); E 1
L e t  j=max(io,i,)
We have f(x) = Q(x)  and f(y) = fj(y)
and ~(X> I fj(y)
. . f(x) 5 fty)
. . f is 5 -monotonic .

[b-hm.  2.49

[[ construction of lub of function-chains ] J

[[ hl, and thm. 2.40 ]J

[[ h2 11
[[ thm. 2.30 ]]
[[ thm. 2.30 ]]

[[ h3, fj <-monotonic, h2 ]]

It is also obvious that if o1 is strongly admissible on P , and 41~ is strongly admissible on P , then o1 A 42 is
strongly admissible on P.

Therefore we get:

Theorem 2.50: Function domains on St ’rmgs of FD-CPOs
Let <P,,  E 1> , <P,, c 2> be FD-CPOs, P2#1 n 0, where 0 is any conjunction of

l c_ -monotonic

l LP

l I -monotonic
is a CPO, in which the lub of f-unction-chains is unchanged.

Proof:
Immediate by thm. 2.22 (sub-CPOs) and thm. 2.27 (for ~-monotonic) , thm. 2.48 (for LP) , and thm. 2.49 (for
5 -monotonic).

uhm. 2.50

When trying to extend the notion of Length-Preservation to functions of arity > 1 , we find that the standard
cartesian product of string domains is inappropriate. Instead it makes sense to &fine LP on functions with
arguments all of the same length. We therefore define the following product on string domains:

Definition 2.51: String Cartesian Product
Let <p, *, G 1> , <P2*,  E 2> be string-CPOs,  we define their string Cartesian product to be: PI* x P,* = { (x,y)

‘E p,* x p,* 1 lxl=lyl}, with the standard (induced) coordinate-wise ordering.

One way to think about this product is: P,* x P,* = (PI x P2)* , up to transformations from tuples of strings
to strings of tuples and vice-versa Also, our definition is meaningful in the category of stringdomains, as it
does not refer to the domains underlying the strings.

Notation: P” = P 1~ . . . _x P , n times. And if x denotes an element of P , then x will denote an element of P 2 ;
the underline, instead of the usual overline, is intended to recall that 5 is a tup6  of elements of equal length.

We can then immediately generalize the notions of Length-Preservation, I -monotonicity and E -monotonic&y to
functions: p,* x . . . x P,* + PO*. thm. 2.50 also immediately general&s  to such functions.

For our purposes in giving semantics to synchronous circuits, we are interested in functions (of various arities) on
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P * which are c -monotonic, I -monotonic and Length-Preserving and defined by recursive
functionals on them. We therefore develop here the String Induction Algebra of adomainP:

systems of continuous

Definition 2.52: MLPp,,
Let cP, c> be a FD-CPO , MLPp+, is the subset of the set of functions from P * f! to P * defined by: MLPp,n =
p*P'" n ( s -monotonic A I-monotonic A Length-Preserving)  , together with the standard (induced)
pointwise function ordering.

It is an immediate application of Thm. 2.50 that MLPp n is a CPO, and is a “nice” sub-cpo of the set of monotonic
functions. However, by combining all 3 properties, we now get an additional property: Even if P has a least
element, P *p l 9 does not have a least element (because no string is less than all others according to the pointwise
ordering). However, if P has a least element, then so does MLPpln,  as is shown below.

Theorem 2.53: MLPp n is a PCPO
Let <p, E > be a FD-PC’PO  , MLPP, is a PCPO with least element: Q = h x .I T’ X ’ , and is a sub-cpo of the
set of monotonic functions: [ P n 3 P 1, in which the lub of function-chains is unchanged.

Proof:
L e t  F E  MLpp,,z E P*~arbitrary,letk=I~I  .
We have F( x ) = y& 1-A
a n d  Q@)=L?”
. . Vi E {l..k} ,I E y~i

* -. . V i E { 1.-k)  9 Q( x )~i C_ F( 5 )~i
. . Q(x) c F(x)
and this was done for arbitrary 5 and F,

.. . Q is least element

~hhm.  2.53

U F is LP II
[[ definition of Q ]]
[[ definition  of I ! ]]

[[ definition of order on strings ]]

We can now construct our string induction algebra:

Theorem 2.54: MLPp Continuous String Induction Algebra
L+t <P, E > be a FD-PCPO, and let (Fi)i E 1 be fUIdOnS in MLPppi .
Let MLpp = < (MLPpp)nE Q) 9 F [(Fi>i, I] > WbeE F [(Fi)i  E I] is the least set Of functionals cuntkning:

l the functionals Fi. = h f. Fi 0 f , for i E I . (Or k f, ,.., f, . (h 5 . Fi(ft(~ ,-.(  f,(x_))  in the general case.)
1 1

l the identity functionals,
and closed under composition with projections, then:

MLPp is an induction algebra (cf. def. 2.15) and all functionals in F are continuous.

Proof:
Domain requirement:
We have V n E o , MLpp,,  is a PCPO. [[ thm. 2.53 ]]

mldomain ra+

We still have to prove that all the function& in F are closed (i.e. really yield a function in MLPp,, for some n) and
are continuous.

Closed:
Wehave  V i  E I,Fi E MLP,, - [[ hypothesis ]]

i



23

and c -monotonicity,  5 -monotonicity and LP are preserved by composition
[[ thm. 2.10. thm. 2.47 and thm. 2.46 ]]

. , V i E I, Fi. is CIOSd.
and the identities and projections are closed [[ immediate ]]
. . their compositions are closed.

ml closed

Continuous: (this is where we use our generalization of [Manna 741  Thm 5.1 : thm. 2.37)
We have P is a FD-PCPO [[ hypothesis ]J
and MLPP,. sub-cpo  of [ P “i + P ] [[ thm. 2.53 J]
and V i E I ‘, Fi c -monotonic EL Fi E MLJ’pfli  11
and Vi E I, F,. closed [I above  11
. . V i E I , F;, continuous! [[ thm. 2.37 ]]
and the identities and projections are continuous [[ immediate ]]
. . their compositions are continuous. [[ thm. 2.11 ]]

~b3ntinous

[&lun. 2.54
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3. Semantics of Synchronous Circuits

3.1. Informal view
The key to our work is to understand what a synchronous circuit is, as a mathematical object. The goal of this

section is to guide you through the evolution of thoughts which led to the final product, and informally convince you
of its appropriateness.

The final product itself is described in exacting precision in the rest of this chapter. In this first section, we have
tried to maximize simplicity, and minimize the use of mathematics... We are also assuming no prior knowledge of
history-functional semantics such as pahn 741,  [Johnson 841  and [Loos  871  . More advanced readers should bear
with me, or simply skip this informal section.

3.1.1. First basic intuition (circuit as a black box)
Consider as a start a combinutional  circuit, i.e. a circuit with no memory (no registers and no feedback loops).

Assume that the values which can appear on the wire are binary digits (True and False), then we can identify the
circuit with a booleanfunction.  This is commonly done in all circuit design textbooks. In fact we can easily move
from binary digits to natural numbers for example, and identify more general combinational circuits with functions
on these numbers.

Abstracting slightly, consider that the values on the wires belong to an arbitrary set: C , we can identify a
combinational circuit with a function from C to Z.

Figure 3-1: Running Sum Circuit

For this example, we have C = the set of natural numbers. Assume the first number we present is 3, the output is
3. The next number we present is 5, the output is now 8. The next number we present is 5 again, the output is now
13. Clearly, we can no longer identify this circuit as a function on the natural numbers, since it produced a different
answer on the same input number.

The solution to this problem is to consider the sequence of all inputs, and the sequence of outputs; in our case:
3.5.5 + 3.8.13 . If we ever replay the same sequence of inputs (from the start) then we will get the same sequence
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of outputs.

In other words, a sequential circuit can be identified with a function from sec’uences of values in C to sequences of
values in Z. These sequences being finite, we refer to them as “strings”, and the set of strings on C is called: X*  .

Note that a combinational circuit identified with a function f: E + E can be identified in this context as the
“memory-less” function: f* which to the input: ab.c assigns the output: f(a).f(b).f(c) . (In comparison, the
function which corresponds to our register: Ro, assigns: O.ab to the input string: a.b.c) .

Therefore our conclusion at this point is that any synchronous circuit can be identified with a function from Z* to
Z* which we will call a string-function.

However, the string-functions associated with synchronous circuits have two additional (and fundamental)
properties:

l Length-Preserving: the length of their output string is always equal to the length of their input string.
This is immediate since we find out what our string-function is by looking at all the wires  at the end of
each clock period say, and tacking these new values onto the history of previous ones for each wire.

l Monotonic: assume that on the input string x, the circuit returned the output string y . Now, assume that
we add one more value u to x, making it the string: xu , then the new output string will already start
with y, and the circuit will tack on a new value v to y, making the output: yv . The circuit can not “go
back in time”, change some of the results it had output on input x, and produce a string which does not
start with y . This property is exactly monotonicity with respect to the prefix relation: I on strings.

So, the essence of our semantics is: a synchronous circuit can be ident@ed with a I-Monotonic, Length-
Preserving string-function.

Abbreviation: we temporarily define MLP= ” 5 -Monotonic and Length-Preserving”.

There are two technicalities we have ignored so far, and which we mention for completeness  here:
l If the circuit has many input lines, then the corresponding  string-function takes as argument a tuple of

strings, all of the same length (for the same reason which led us to the conclusion that the string-
function was length-preserving) .

- l If the circuit has many output lines, then each output line is identified with an MLP string-function, and
the circuit as a whole is identified with a tuple of such functions.

3.1.2. Second basic intuition (circuit as a system/network)
We now take a look at how our circuits are built. As far as we arc concerned here, synchronous circuits are made

from two kinds of elements:
l Combinational elements: elements which do not have memory, or state, and which we have associated

above with F string-functions.

l Registers/clocked storage elements: elements which hold values for one clock period (after which they
latch in the input presented to them), and which we have associated above with the R, string-function.
(The parameter: a, is the initial value of the register, in the example above it was 0.)

Note that we use the word “register” in a very narrow sense, which is common in the formal hardware specification
literature wiserson-Saxe  831, [Johnson 841  and wunt 851.

Circuits are then built by connecting inputs and outputs of the above components in an almost arbitrary manner.

We say “almost” because for a synchronous circuit, every loop in the connection graph should contain at least one
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register. Otherwise, we get problems of asynchronous latching, oscillations, etc.. i.e. not a correct synchronous
circuit; see wane 761  and [Mead-Conway 801  for more details. For our semantics, this restriction: “Every-Loopis-
Clocked” [ELC] is not necessary (and we will come back to it in section 3.4),  but at this point it is easier to keep
thinking in terms of such “good” circuits.

The question is, how do we give meaning (i.e. semantics) to the network, knowing what the individual elements
stand for?

If for each element in the circuit we write an equation relating the output to the input(s), then we obtain a new
view of our circuit as a system of equations, If there are loops in the circuit, then the system will be recursive.

There is a standard way in semantics to give meaning to a recursive definition, and that is to consider it as an
equation in a certain (appropriate) domain, and take a certain (appropriate) solution of this equation as the object
being defined by the recursive definition.

This is exactly what we shall do!

Our domain is basically the set strings on Xc, and the MLP functions on it. Each node is already identified with a
certain MLP function (f* or R,) . A circuit, or system of equations, will be identified with some MLP function
which solves that system.

A technicality which we have ignored so far, is that the “appropriate” domains we have mentioned above are
ordered domains, i.e. there is a notion of an object being “lessdefined-than” another. This relation will be denoted
by: c . In our case this notion of G is very simple: We add to Z one element: ? , which should be read as
“unknown”. In the c order, ? is G all elements of E , and that’s it. The new set is called: C, . We then simply
extend this order relation to strings (by comparing them one position at a time), and to functions on these strings
(also by comparing them point by point). One basic concept of computability in these domains is that the
computable functions respect the E order, i.e. are c -Monotonic.

Pronunciation note: ” E -monotonic” can be read “L-monotonic” (short for “less-defined-than-monotonic”); and
I -monotonic can be read “P-monotonic” (for “prefix-monotonic”).

We also define the following (permanent) abbreviations to ease everybody’s job:
Monotonic= ” c -monotonic and 5 -monotonic”; and
MLP= “Monotonic and Length-Preserving”.

So, in conclusion, a synchronous circuit will be iden@ed with an MLP  string-function, or a tuple of such
functions if there are many output lines.

3.1.3. Extensional versus Intensional view of the world
There is one last subtlety which comes into play in our semantics of synchronous circuits: so far we have always

said “a circuit is identiped  with a certain function”. What we have really argued however is that “a circuit computes
a certain function”.

So in other words, we have associated a circuit with what it computes (a certain function). In doing so, we have
abstracted away all information about how it computes that function. What we have done is to define an extensional
semantics of synchronous circuits.

In order to retain more information in our theory, we actually define an intensional semantics which identifies a



28

circuit with the functional defined by the system of equations, rather than simply its solution. We can still recover
the extensional semantics simply by taking the least fixed point of that functional, and so we end up defining both
the intensional and extensional semantics.

This concludes the vague view of things. The remaining sections of this chapter, together with the mathematical
preliminaries of chapter 2, am intended to dot all the i’s.

3.2. Formal Syntax
Formally, we have one basic syntactic object:

essentially recursive systems of equations, togethei
They correspond very closely to engineer’s “net
language: L, .

“SYnchronous System Description” or “SYSD”. These axe
with a list of which defined functions are the designated output.
lists”. We will define a set of such syntactic objects, i.e. a

Note that syntactic entities will be written in thi,c:  front-V.-w.

Definition 3.1: L,
l Lchar = countable alphabet with elements denoted by a, al, a2 . . .

l L char-fun = countable ranked alphabet (elements have arity) with elements denoted by f , f 1, f 2 . . .

l L string-fun ={ R, 1 a E L,hu}u{  f* ] f E L,l,,,r~,]withelementsdenotedbyF,F1,F2...

l L.Input-line-var = countable alphabet with elements denoted by x, x1, x2 . . .

‘eLnon-input-line-var = countable alphabet with elements denoted by Y , yl, Y, . . . 2, z~, ~a . . .

l LsD= { (in, sys, out) 1
in = tuple of input-line-vars: (xt,..,x,),  also denoted as x, for short.
sys=systemofequations: Yi(x) t F, (..,Ej,..)jE  II..tiVofF 1,fori  E (l..n}
with F, E Lstin -fun  and E,

B
= some input xk or non-input expression Y, (pi  .

out is a tuple 0 non-input-line-vars among Y1, - .I y,. 1
Elements of L,, are &noted by S, S,,  S, . . .

As syntactic sugar, we will sometimes omit the input variables (x1,  . . , xk) or X as arguments for Y i’s in the
sys_em, so that Ys +- f* (y~ry~rxq) will be a legal equation. Note that in this sugared form, our syntax is
almost identical to the one used in woos 873  in its “applicative” form. Our reason for not using the suganed form as
the primary syntax is that we can view our syntactic objects as restricted expressions in a more general string
expression language, and under that angle, we want our expressions to be well-typed.

One weakness of L, as defked  is that it is “flat”. It does not allow user-defined string-functions (sub-systems).
We did this because treating such objects formally brings semantic complications which are orthogonal to the
problem at hand: semantics of synchronous concurrent systems. Informally, we treat them as follows:

l Non-recursive string-function definitions, i.e. macros, are simply expanded out.

l Recursive string-function definitions are disallowed They correspond to non-directly implementable
specifications; they are studied in [Johnson 841.  Alternatively they define networks which reconfigure
themselves (expand and contract) during execution; see [Glasgow-MacEwen 871  for this view in the
context of operator nets.

L,, is a fine language for mathematical and computer treatment. For human interaction however, a graphical
language is more appropriate. We will therefore define a second language: Lsnp, , of sysd’s in graphical form.
LSmaph  is isomorphic to LSD and we will give a (trivial) translation function.
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Definition 3.2: LsDcra ,,
A sysd is a multi-graph V.E), where vertices are of 2 types:4

l VCombinational:  represented with a circle, and a char-function letter per out-edge. They have n
indepe,  and m out-degree, with n,m 1 1 .

l VRegister: represented with a square, and a character letter. They have in-degree 2, and out-degree 1.
and where edges have at most 1 From-node, and at least a From-node or a To-node (and usually both). Edges
with no From-node are called “Input edges”. Some non-input edges are designated as “Output edges”.

At this point, an example should help:

Figure 3-2: Example: Running SudAvg $4

y running-sum

y2
’ ck

Yl Yh I
O(

\ 1
running-avg

, \

Or in sugared L,, :

Y runnrng-sum t sum" (x,Y2)

Y2 + ROW running-sum' Xck 1
Yrunning-avg + div* (y~nn~ng-*unf Ycounter)
Ycounter + RI tylIx&)

Y, + ino* (Ycounter)

In the future, and as commonly done in synchronous circuit design we will often omit the 2nd input of Registers
(the clock input: x,k) from graphical or sugared sysd’s.

Note: As they stand., elements of Lsep, are not “classical” mathematical graphs, since an edge here is not just a
pair of vertices, but instead, a pair-z  (0 or 1 vertex,0  or 1 or many vertices). We could reduce these objects to
standard graphs simply by introducing additional (“duplicate”) vertices, but there is no point in doing so, since we
Ody intend Lsmp,, as a front-end (auxihary) language, and not as a tool for meta-proofs.

Definition 3.3: Translation: LSDGrapb + L,,
Let the input edges be: x1,  . . ,s, and the non-input edges be: Y,, . . , Y,. Define:
in = tuple of input edges.
sys =

l For each node in VCombinational,  for each out-going edge (out-edge: Yi, char-function letter: f i), add
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theequation: Y, C fl*(..,E,,..),where  ..,E.,.. aretheiwmingedges(either
J 3 x

q’s).
k’s or

l For each node in VRegisters (out-edge: Y,, character letter: a), add the equation: Y, c
where E, and Ed are the incoming edges.

R, (E, , E, ) ,

out = tuple of designated output edges.

3.3. Denotational Semantics
The mathematical foundation of our denotational semantics is a String Induction Algebra, of string-functions, and

string-functionals. A sysd will  be (compositionally) mapped, by [[ 13 , into a string-functional, or more precisely, a
system of functionals. This is in the spirit of flalcott  851  and [Moschovakis 831,  and preserves intensional
information about the sysd - how it computes - as well as its extensional denotation - what it computes.

Since however, for many of our purposes, we are interested in the extensional denotation of the system, we also
define an extensional denotation function, p, which maps a sysd into the tuple of string-functions which it computes,
and which is the least fixed point of the system of functionals.

Construction of the String Induction Algebra:

We have a countable alphabet: C , elements of which are denoted by: a, b, c, a,, b,, ct, . . . for constants, and u, v,
up Vl’ -*- for variables. Now we lift the alphabet Z:, with least element ‘I?“: C? , and get the corresponding c (flat)
order, and we take Strings of Z+ C,* , with the induced c order. Elements of &* are denoted by: x, y, z, . . . for
variables, and E: the empty string, as the only constant.

For reasons explained in 3.1, we are interested in functions on X3*  which are c -monotonic, I -monotonic and
Length-Preserving, and which we can define recursively from the following functions:

Definition 3.4: Primitive string-functions
l R, : (XT*)2  + CT* defined by: R,(e,&)  = E A R,(nu,x,k.v)  = ax, for a E X . We call R, a “register”

string-function.

l P : (Z,*)P + Z.,* defined by: P(E ,.., E) = E A P(xl.ul ,.., xn.un) = P(xt,..,x&  . f(ul,.., ur,)  , for f E
[XT” i ?+ ] . We call P a “combinational” string-function. It is simply the homomorphic extension of
a c-monotonic function on XT to strings (of equal length).

Note about Registers: infonna.Uy,  we had treated R, as a unary function. Formally, we’ve defined it as a binary
function, which ignores its 2nd argument ! This is only a semantic subtlety, the reason for it is clear when you
consider what happens if you fuse the output of a register with its “main” input. The results of this operation is a
perfectjy meaningful synchronous circuit, which keeps outputting the same character, at every clock tick! In other
words,.  the 2nd argument (the clock) is not entirely ignored. It’s just that a.lI its information (its length) is also given
by the main input, as long as it exists. Whenever the clock input remains the sole input to the circuit, then it
becomes semantically  significant.

Theorem 3.5: R, and fc are MLP
(Recall that MLP= ” E -monotonic and I -monotonic and Length-Preserving”.)

Proof:
Immediate verification.

m-hm. 3.5
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Therefore we can now instantiate the main results of chapter 2, and get the keystone of our denotational
semantics: the string induction algebra.

Theorem 3.6: MLP, Continuous Induction Algebra
The MLP functions on Z,*,
which we call: MLP=.  ’

and functionaIs defined from R,‘s and P’s , form a continuous induction algebra,

Froof:
We have & is a flat CPO [[ by construction ]]
. . C, is aFD-CPO [[ thm. 2.31 ]]
and C, has a least element [[ by construction ]]
. . Z; is a FD-PCPO
The result is now an immediate instantiation of thm. 3.5 and thm. 2.54 where we have slightly abused the
terminology in exchange for simplicity...

~h'hm. 3.6

We can now define our (intensional) denotational semantics:

Definition 3.7: Intensional Denotational Semantics: t[ a
Let S E LSD, S = (in, sys, out) withnon-input lines Yi, i E { l..n),  and illpUt l.iKRS Xj, j E { l..m):

l L, : II: s I= (in, [r SYS  I] , out) ; [ sys JJ will be called f, . rt, = (z,,..,~,) where
Zi = h(Yl,..,Y,).[  A( X ). [ Fi I] (..*Ej,..)  ] for equation: Yi t Fi ( . . , Ej, . . )

l Lsbg-fun: URaD=RgaD  =Wtf*D=Ufll*  .
l L&U-fun : [ f I= some operation on Z, natura.lIy extended to C.

l Lchrrr: [ra~=somecharacterinC  .
Formally, our semantics is parametrized by an algebra Z with some fixed set of constants and operations.

And the (derived) extensional semantics:

De!?nition 3.8: Extensional Denotational Semantics: p
Lets  E L,,,S=  (in,sys,out) and[rsysn=Ts = (-~~,..,m>  . We define the extensionA  semantics of S as
the least fixed point of its intensional  semantics, i.e. a tuple of string-functions, from which we keep only the
selected output lines: p(S) = LFP(71,..,7,),, .

To justify this definition: we have MLPz is a continuous induction algebra (thm. 3.6) therefore (thm. 2.16),  the

‘Ystem (‘i>i  E (l..n) has a Least Fined  Point in MLPz:  Iub[(zl*..,  ~,3(Q,..,Q)]j  E o . (Recall that Q = A 5 . ? T’ 5 ’ .)

- Just to add a touch of concreteness to these definitions, we continue with the example presented in section 3.2, in
figure 3-2.

Assuming we’ve selected the lines: Y,,,,~-~~ and yrunning-avg, then its extensional semantics is a pair of
string-functions (where the characters are numbers):

Its intensional semantics is the system of functionals  which would  be described exactly like the sysd in recursive
form (except for the font).
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3.4. Mathematical characterization of “Every-Loop-is-Clocked”
It is one of the most basic facts of synchronous circuit design that some “building rule” has to be observed: every

loop in the circuit should contain a clocked storage element, or more tersely: Every Loop is Clocked [ELC]  . Our
semantics gives a meaning (assigns suing-functions) to all circuits, including those with “illegal” connections.
Intuitively however, there is a distinction between “good” synchronous circuits and others.

The goal of this section is to formalize this intuition, i.e. find a mathematical property enjoyed by the “legal”
circuits, and prove that the extensional semantics of ELC sysds have that property.

In order to carry this out precisely, we need to define several simple concepts about synchronous circuits:

Definition 3.9: Predecessor
Let S be a sysd, With XlOU-klp,lt  km: Yi, i E { l..n} , Yk is a predecessor Of Yi <=>
i.e. Y, appears as one of the arguments for ‘i.

Yi t Fi (...,Yk9...)  ,

Definition 3.10: Path
Let S be a sysd. A path is a sequence P = (Z,,
predeU?SSOrOf  Zj+l , V j E { l..p-1} .

..,Z,) such that Z’S are non-input lines in S and Zj is a

We denote the set of Paths of a sysd s by: Paths(s) .

Definition 3.11: Loop
Let P = (Z1,..,ZJ  E Paths(S), Loop(P) c=> Z, = Z, .

Definition 3.12: Register-line, Combinational-line
Let S be a sysd, with non-input lines: Yi , and equations: Yi t F;(...)  i E

l Yi is a Register-line c=> F; = R,, for some a .

l Yi is a Combinational-line <=> Fi = ft, for some f .

Definition 3.13: Path is Clocked

11 ..n

L e t  P=(ZI’..,Zt,,)  E P a t h s ( S )  ,CIocked(P)  <=> 3j E {l..p} 1 ZjisaReg&er-line.

- Note: the set of all non-clocked paths is the set of all combinational paths through the sysd. It could be totally
ordered by appropriately defined weights (delays) on combinational nodes. Its max weight element would then be
the “critical path”.

Definition 3.14: Every-Loop-is-Clocked [ELC]
Let s be a sysd. ELC( S) <=> V P E Paths(S) , Loop(P) => Clocked(P) .

The fact which is informally known in the engineering community, but which I have never seen foxmally
mentioned in any form in the “theoretical” literature is then:

Theorem 3.15: ELC => Total onX*
Let S be a sysd, ELC(S) => p(S) is total on X* .
And more generally: ELC(s) => LFP(7,)  is total on X:*  , i.e. the results applies to all the lines of the circuit,
not just the ones selected for output.

Important note: all functions we’ve dealt with so far were “totaI” functions, but on X.,*  . The additional property
of being total on C* means that if the input is in C* (i.e. has no ? in it) then so does the output. This is not enjoyed in



33

general by arbitrary functions on Z,* .

The proof msts  on two obsemations  about iterations of Kleene’s algorithm in MLPz  . “Kleene’s algorithm” is
simply the constructive method used to reach the Least Fixed Point of a continuous functional in Kleene’s theorem
(thm. 2.14). as the least upper bound of a chain built by iterating the functional starting with the least element of the
PCPO.

Informally the proof goes as follows. On any sysd, for an input E Z* (i.e. with no ? in it):
l At each KIeene iteration (applied to the input), alI values (on alI lines) have a particular shape: some

“real” (non-?) characters, followed by some ?‘s , and each iteration “pushes” the ?‘s a little further to the
right (or leaves the value unchanged).

l If the algorithm stabilizes with some line still having .3’s in it, then we can “climb back” from that line
and extract a loop of combinational-lines (i.e. a non-clocked loop).

More  precisely:

Definition 3.16: K-view
Let S = (in, sys, out) be an arbitrary Sysd, 5 an arbitrary input. Let T’,  = [r sys I] = T1  ,.., Tn.

Define Kj = (T,, ..,z,)i(Q ,.., Q)($  = (Kj ,,..,Kj,) . Figuratively, a is the “view” of the values on a.lI the lines of S,
after the j’tb iteration of Kleene’s algorithm. For example, K” = ( ?‘!‘I$ ,.., ??g ) .

The first observation is expressed in the following lemma:

Theorem 3.17: K-view shape
Lets E Lso,WithnOn-i.npUtli.neSYi,i E {l..n} andminputlines. IAt5 E (X*)2,Vj E 0,Vi E {1.-n},
3 Pj i E {O..l~_l}  1 Idi = C-L-1  p . ?WPj.i  With  CL1 p

Prok
” JJ Se ja

E C* , i.e. hlfOIIIldY:  Kji  = C1..Cp,,,??..?  with  C’S # ? .
JS

Assume [hl] 5 E @*)I!. We induct on j (i.e. on Kleene  iterations) with predicate:

Base case: immediate

HI1 base case

[[ Uke PO,i =O,Vi]]

Induction step: (assume ok for j). Let i arbitrary E { l..n}

If Yi is a register-line: Y; t R,(Yk) , then:
We have Kj+li  = a. KjkJl b,-l [[def. KIeene’s  algorithm]]

-. . Kj+l. -a

hav:
- . CL l..p.

+-p*- 1
* * [[ induction hyp., instantiating general i to k ]]

i.e. we added a n&-?  character on the left, and chopped off a ? (if any) Tom the right.
. . Kj+l. is “of the right shape” A1 pj+l,i’ = if Pj,k = b&t then 1x1  else I+Pj,k

If Y; t R,(Xk),  then:
We have Kj+’ i = a . s‘ll ,x,-1

tl3x-e  are no ? in Kj+*‘-
[[def. KIeene’s  algorithm]]

. . [[ 3 E X* by hl, a # ? by definition, 3.7 ]]

. . Kj+li  is “of the right Shape” A Pj+t,i = Id

If ‘i is a combinational-line: Yi t p(..,Yk  or Xk,..)  , then:
We have ..&,.. axI “Of the right shape”
and ah $‘s have no ? in them

[[ induction hyp. ]]
[[hypothesis hl ]]



[ [def. Kleene ‘s algorithm]]
[[ by definition, 3.7 ]]

[[def. f* , 3.413
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and Kj+li = f* (..,Kj, or ?+)
and f is a naturally extended function : (C*)E  + C
. . Consider any position: pos E { l..l$ ) :
we have Kj+liipOs  = f (..Kjk+,os  Or sLpoa,..)

and 5k$ls f ? therefore:
if for all predecessors, Kjkkpo6  f ? then Kj+‘,J s
if for some predecessor, KjkJpos = ? then Kj+lif

# ?
pas = ?

. . Kj+‘. is “of the right shape”
input-lines. *

A Pj*l,i = min{ pj,k  , Yk predecessors of Yi } or Id if ah the arguments m

[[llinduction  step

m-hm. 3.17

The second observation becomes the proof (by contradiction) of the ELC theorem:
Proof:
Let S E L,, , with non-input lines Yi, i E ( l..n) and m input lines.
Assume :
Ihll~  E @*I=
[h2]3j E o 1 Kj+l = Kj , i.e. the algorithm is stable at the j’th iteration.

WI 3 i. E I 1-n) I Pj,i, < &I , i.e. there is still at least one ? in Kj. .‘0

We now extract a predecessor of Yio which also has some ? left in it:

if YB is a register-line, then its argument can not be an input line because inputs are assumed to have no ? in them

and hence Kj& would have no ? in it, V j > 0 .
. . Yh + RaCYi,)
We have pj+l,i,  = if pj i = 1x1 then 1x1 eke ‘+pj,i,

’ 1
md Pj+l,i,  = Pj,i,
and Pj,i,  < 1x1

[[ proof of Shape lemma 11
[[ hypothesis h2 I]
[[ hypothesis h3 ]]

. . pj i < 1x1 mainly, and alSO: Pj i > Pj,;, .
’ 1 ‘1

if Yio is a combinational-line: Yk t fc (..,Yk  or xk,..)  . Again, because inputs have no ? in them and a*‘0

Contains some ? , at least some arguments must he non-input lines.
. .
Let
then
and

Pj+l,i,  = ti ( pj~ , Yk predect%son  of Y’10)
i, be some predecessor yielding the minimum p,

Pj,i, = Pj+l,i,

’ Pj+l,i, = Pj,$
c 1x1Pj,i, -

pj i < 1x1 mainly, and also: Pj i = Pji *
’ 1 ‘1 ‘0

[[ proof of Shape lemma ]]

[[ hypothesis h2 I]
[[ hypothesis h3 ]]

By this process we’ve extracted a predecessor of Yio : Yip such that Pj i c 1x1 , which was the hypothesis we had
’ 1

on i. therefore we can reiterate this process.

Remark: From the construction above we also get:
[rl] in either CaSe, Pj i 2 Pj,io

Lr21  Pj,i, = Pj,$ <=; ’ Yio  is a combinational-line.

We now build a path by starting with P = (Y,), and:
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l If Yi, does not already appear in P, we add it to P, and reiterate. Since there are finitely many lines in S,
we must eventually hit the other case:

l If Yi, does appear in P, we add it to P and stop: we have now obtained a path which contains a loop!
More precisely, at the end of this (finite) process we have: P = (Y&,Y,  ,..,Y,  ,Yi

1 9 q+’
,..,Y;  ) for some q. Extract the

loop L = (Yi ,Yi
9

9 q+’
,..,Yi  ).

9

From [rl], we know that the p’s are weakly increasing along L. And they must be equal at both ends (because L is
a loop), therefore they are constant along L. From [r2],  the p’s can only be constant if the lines are combinational-
lines.
. . L is a loop of combinational-lines in the sysd S

Therefore, the contrapositive is that if S has no combinational loops, i.e. ELC(S), and if the input 5 has no ? in it,
and if Kleene’s algorithm terminates at the j’th iteration then:
V i  E {l..n]  pj,i= 1x1 , i.e. Kji E C*
and ti = LFP(Q@) [[ by def. of K-view, and Kleene’s thrn. ]]
. . LWQ@)  E e*)1.

uhm. 3.15

3.5. Operational semantics and Equivalence with (extensional) Denotational
semantics

An operational semantics is a different way to assign meaning to a circuit with a more “dynamic” or algorithmic
flavor than the denotational semantics. It usually refers to concepts such as state and transition steps, and iterative1
computes the outputs from the inputs and the circuit. This is in contrast to the (extensional) denotational semantics
which are considered more “static”, just stating what the outputs should be (least fixed points of a system of
equations) without explicitely  constructing them. This however, is only a question of taste since Kleene’s theorem
for reaching the LFP is constructive and easily implementable.

In this work, our goal is the first angle. We therefore have to pick an operational semantics which is as
*“intuitively right” as possible to people who would be skeptical of our denotational semantics. To that end, we will
give two operational semantics, both based on states, and character by character operation, but with a slight
distinction:

l The 1st one uses a “big” state: the history of all values seen on all lines, and is therefore a little
“abstract”. We will refer to it as our “operational semantics”.

l The 2nd one uses a more practical state: the current value held in all registers, and is essentially the
simplest simulation algorithm for synchronous circuits [pussell-Kinniment-Chester-McLauchlan  851,
and hence, quite “concrete”. We will refer to it as our “simulation  semantics”.

And we will prove equivalence with the (extensional) denotational semantics for both of them.

Definition 3.18: Informal Operational !knantics
For a given ELC circuit S with non-input lines Yi, i E { l..n}, and input lines 3, j E { l..m}, we define the
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state s = (s+,)  to be the history of all characters seen on each line.

We define a “next-output” function 6, which takes the state (s+)  and an input character (for each input line)
and returns an output character (for each non-input line) as follows:

l Case: Register-line Yi c R,(YJ  : Return the LAST character which appeared on Y, so far, because
that’s the character which is currently being held in the register. We can get that character from the
state: sy . If there was none, i.e. we are in the initial condition, then return “a”.
If the argument is an input line, lookup the value in s, instead of +.

l Case: Combinational-line Y; t P(..,Y,,..)  : Recursively compute the next-output for the predecessor
lines and apply f to them.
If some argument is an input line, then take the current input character for that line.

We also define a “next-state” function ys which simply tacks on the new character produced by 6, to the
current state. (And for the input part of the state, tacks on the new input values.)

Then we extend both of these functions to handle strings of inputs by iterating the character by character
functions, while starting in the initial, empty, state. This yields the “complete-output” function As and the
“final-state” function Ts .

Pictorially, the set-up looks like this:

Figure 3-3: Operational Semantics

*I 1

sY l

0

n

-I

1

SX
0
0

-m

Notes:

. . .

. . .

. . .

\

1

0 0 0

0 0 0

r

s=(sy,s,)

El char.

l The function 6, is recursive in an unusual way in the combinational case: it calls itself on all the
predecessors of the current line. But since we assume that all loops are clocked (ELC circuit) then these
recursive calls will eventually hit a Register-line or an input-line and terminate. We will justify this
folmally below.

l The 2nd input to “Rat’ equations was not mentioned because the operational semantics ignores it. (The
clock beat is in some sense hardwired in the string recursion.) More precisely, the equivalence theorem
is true no matter what line is plugged into the 2nd argument of Registers. However the operational
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model matches the reulity  of physical registers only if xck is indeed connected to their clock pin (and if
other physical considerations such as timing, electrical issues, etc... are also correct).

l To lighten up our notations the S subscript will be omitted from here on. Also, we will make use of an
“or respectively” notation, to express definitions which are very similar in two symmetric cases
(argument is a non-input-line, or input-line). This will be clear with the examples below.

Definition 3.19: Formal Operational Semantics
Let S E LSD, with non-input lines Yi, i E { l..n} and input lines Xj, j E { l..m}, and ELC(S)  .

Define &sy,s,,~) E (Z?)” by: for i E {1.-n},
l if Yi t R,(Y,  or xk) then G(SylSxlv)i  = if sy orZ = E then a else last(syt or s\)

l if Yi t P(..,Y,  or xk,..)  then G(Sy*Sx,v)i  = f~..,G(Sy,Sx,$k  or s,..)

Define y tsy9s,,$  = t s~.~(s,,s,,~)  , sx.x  )

And the string-extended functions are defined by recursion on the input string:

A@) = 5 and A(x.u) = A@) . ~(I-(Y$,L$--

l-(g) = E,E and T(x.u) = y (l-(x),u)- - - - - -

It should be obvious from the state set-up (or the defining equations) that the “complete output” and the ‘%nal
state” are essentially the same, and that therefore the defining equation for A can be simplified, by replacing r by A .
More precisely:

Theorem 3.20: A simplification
v 5 in G?‘)” 7 g E G?P, r($ = ( A& ) and therefore A@.$ = A($ . G(A(ll),y$

The first equality is proved by a simple stxuctural  induction on 1,* the second is then a trivial substitution into the
definition of A.
Proof:
case E :
We have A(g) = 5 [[ def. 3.19 ]]
and I-@ = E,E [[ def. 3.19 ]]
. . r(g = Ta(g,g  )

case x.u:
- We hail r(x.9  = y (r(x),;)
a n d  r(xJ=(A@),z)
. . rt5.g = y tAO&$
. . r(x.u)  = ( A@)&A(~),~,uJ , x.11)
. . r(i.3  = ( A(gi(r(g,g  , ~.g
and A(x.u)  = A(+(r(xJ,g)--
. . r(X.LJ)  = ( A(&$  , X.U )- -

[[ def. 3.19 , expanding l? ]]
[[ induction hypothesis ]]

[[ def. 3.19 , expanding y ]]
[[ simplifying A(& w/ induction hyp. ]]
[[ def. 3.19 , expanding A ]]

wu--
mhn. 3.20



38

Remark: Totality of the functions 6, y, 4 r
. A, F and y are primitive recursive in 6; i.e. assuming 6 is total, their totality is simply a structural

induction on 5 (i.e. well-founded induction on the 5 (prefix) relation in Z.,* .

l 6 is more unusual: it recurses on its “line” argument (noted as a subscript) in the Combinational line
case. I.e. it calls itself back on the predecessor lines of the current combinational line.
This corresponds to well-founded induction on the predecessor ordering of the circuit “cut” at each
Register, i.e. where all Register-lines are considered as sources together with the input lines. Clearly if
the ctrruit  is ELC, then all loops have at least a Register-line, and when these loops are “cut” at the
Register, the resulting directed graph is acyclic, and hence the “R-cut-predecessor” relation is well-
founded.
Therefore the proof of totality for 6 is simply a well-founded induction with the R-cut-predecessor
relation on its line argument.

The main reason for all this set-up is of course:

Theorem 3.21: Operational-Denotational Equivalence
Lets= (in, sys, out ) be an ELC sysd (with m inputs), we have: V 5 E (C*\m , As($out  = p.(S)(x)  .

Or in other words: for all “true” synchronous circuits and inputs, the operational and denotational semantics
agree.

The key idea of the proof is that the “complete-output” function A is a fixed point of ‘5s (the functional system
denoted by S) , and also of course that it is in the right domain: MU’:. The inequality p(..) c A(..) is then an
immediate consequence of the fact that any fixed point is at least as defined as the leas? fixed point. The
EL&characterization of the previous section gives us that for an ELC circuit and input with no ? in it, the
denotational semantics returns strings with no ? in them, i.e. maximal strings under E , and this yields the equality.

Proof:
IRt SbeanELCsysdwithlinesYi,i  E {l..n} andinputlinesxj,j  E {l..m}.

We want to prove: MLP(A) A z, (A) = A , which is equivalent to the conjunction of:
[LPI:  V x E (I;?*p , I A&c)  I = Ix I
[ I-Mon]: V x,x,’ E (IE?*)E  , x I x’ => A(xJ  5 A@‘)
[ c=Mon]:  V x,x’ E (C,*)E ,z E 5’ => A@) c A@‘)
[Fixed-Point]-\d  5 E (I;*p  , V i E { l..n}  , [ 7i(A)  ] (x)  = A~)i  , where the left-hand-side is simply the expansion

of the Yi definition, substituting: A(& for Y,(X)  .

p] is clear from the definition of A, since for empty input we return the empty string, and for each additional
input character, we concatenate one extra character. Formally,  [LPI is a trivial (and hence skipped) structural

induction on x.

KllLp

[I -Man] is similarly easy, since to compute A@.$ we take A@)  and append “something” (a character). Therefore
A(xJ  5 A@). Andsincex5~’  <=> 3~ 1 $I=,.-,x z a trivial structural induction on z yields [I -Man] as

oliginally stated.

RI1 5 -Man

For [c-Mon]  we first prove that 6 is c-Monotonic (in its string arguments), which requires a well-founded
induction on the R-cut-predecessor relation on the line argument, corresponding to 6’s recursive definition. Once
this is done we can prove that A is c -Monotonic by a simple structural induction on x_ .
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6 1s c-Monotonic:
Let y,y’ E G?*)c, x-x_’ E (z?*p  * y’ E (Z?)rn .
&me y~y’ A  5~5 A  4[~v’.
Let i E { l..n} arbitrary,

If Yi is a register-line: Yi t R,(Yk)  then:
We have S(~,X,$~  = if & = E then a else last&)
and G(y’,X’,v’)i  = if Y’~ = E then a else last(y’k)
a n d  yk =E <=> y’k=~
a n d  aca
a n d  last(yJ  E last(y’,)
. . G(y,X*v)i  C Q’*‘*l’)i

If Yi is a register-line: Yi t Ra(xk)  then:
exactly the same reasoning as above with x instead of y yields:
. . 6Q*x  v)’ c wX_‘*v’)i-‘- , -

If Yi is a combinational-line: Yi t f*(..,Yk  or x~,..) then:
We have 6(4I,Xlv)i  = f(..,&yz,vJk or 3,. .)
and ~,lf’,~‘)i = f(..,Q’$,v’&  or l’k,..)
anti s<y,sx& E &y’&flk
ant! Ik E x’k
and f ~-Monotonic
. . f(..&y’$$)k  or y’&..>  c f(..&&x’??k or y’kV..)- -

.. . 6Q,x*v)’  c sQ’~‘7~‘>iB--l -

ml 6 t -Monotonic
Now we prove [ c -Mon ] by structural induction on 5 :

[[ def. 6, 3.19 ]]
[[ def. 6,3.19  ]]
[[ y c y’ hyp. and def. c (2.38 ]]
[[ def. E (2.38 ]J
[[ y c y’ hyp. and last0 E -Monotonic ]]

[[ def. 6, 3.19 J]
[[ def. 6,3.19  ]]
[[induction hyp.: k < R-cut-predecessor i 11
U v c 1’ hyP.  11
[[ def. of the meaning of a Sysd, 3.7 ]]

CaseE:Letz’arbitraiy  1 ~GI’,
Wehave  g~z’ => 5=X) [[ def. c ,2.38  ]]
a n d  E=X’- - => A(g)  = A@‘) => A@ E A@‘)

[[II E -Moq

Case @.uJ:  Let x’.u’ arbitrary 1 x.u E x’.u’ ,- - -- --
note: x.u c y => Iy,j = lyl => 3 X’,U’ 1 y= X’d A 5 G 5’ A U c g’- - - -

[I def.  E, 2.38 II 31
-We have A&L.@  = A@)  .6(A(x)z,uJ [[ simplified A, thrn.  3.20 ]]
and A@‘.$) = A&‘) . G(A(&‘,t’) [[ simpl.i&d  A, thm. 3.20 ]]
and A@ c @‘I [ [ induction hypothesis, x c z’ ]]
. . &A@,x&  E ~~(11’l~‘~~‘l [[ 6 c_ -Monotonic, 5 E 5’ , u c_ 11’ ]]
. . A&) c A(x’.u’)- -

[ [ I I s -Mon,x.u

HII --s -Man

We finally prove the main rtzsult:  Fixed-Point] , by structural induction on 5, combined with much equation
pushing.. .
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Case (5): let i E { l..n) arbitrary,
We have A(E),  = E
and f*(c)=&  A R,( E) = E
. . [ Ti(Aj ] (5) = E = A(E)

[[ def. A, 3.19 ]J
[[ def. P, R,, 3.4 I]

[[]]Fixcd-Points

Case (x.u):  let i E { l..n} arbitrary,- -
We have A(x.u)--I = A( . G(A(X),X.u)i- - [[ simplified A, thm. 3.20 ]]

If Y1  is a register-line: Yi t R,(Y,  or s) then:
We have &A(x).?y), = [ if A(& or sk = E then a else last(A($,  or J&)  ]

[[ def. 6,3.19  ]]
:. Ll: A(x.u)~ = A(z);  . [ if A($,  or 3 = E then a else last(A($,  or Y&)  ]
and AC;,’ [ ‘i(A) I (5) [[induction hypothesis ]]
. . A(r>i = R,(A(x)k  or 3) [[ expanding def. Zi ]]
. . A(x);  = [ if A($,  or 5 = E then E else a . abl(A(&  or 5) ] U exp=bz  R, II
. . A(x.u).  = [ if A(& or 3 -- -  1 - E then E . a else a . abl(A(&  or 3) . last(A(&  or 5)  ]

[ [ replacing A( in line L 1 ]]
. . A(x.u).  = [ if A(&--I =Ethenaekea.(A(~kor~)] [I sin@fYh3  Quito  II
. . . L2: AcxU)i  = a . (A(&  or JL~) [[ simplifying if expression J]
We have [ r;(A)  ] (TJ.$  = R,(A@.&  or sk.tQ [[ expanding def. Zi ]]
. .. . [ ri@) 1 (_X-g)  = R,[ wk . S(A(?!)+dk  Or xkzk 1 [[ expanding A&u)  , thm. 3.20 ]]
. . II ‘i(A) I (“*‘J) = a . (A(xjk or zk) [[ expanding R,, 6(..)  and 3 am characters. ]]
. . [ pi ] e-9)  = A~.~i [[ matching with line L2 ]]

mlFixed-Poin&x.u&gisttr- -

If Yi is a combinational-line: Yi + f*(..,Y, or +.)  then:
We have G(A(@,u), = f (..,kt(A@t& Or X,.u&)
.*. L3: A(X.U)~  = A( . f (..last(A(&&  Or &.t&)~.)
and A(I>,’ [ zi(A)  ] (x)
. . A~; = f*(..,A(&  Or s,..)
.-. . A~.U)i  = f*(..,A(gk Of s,..)  . f (..&t(A@t&  Or &sr)~.)

. . A(X.U)i  = f*(..,A(~k.last(A(~.~k)  or ~.‘~&&),-)

.‘. I-4: A~~u)i  = f*(..,A(&.last(A(&t&)  or &t&.-)
and A$-, = A(& . &Q)~r,u)k
. . L$(&  = A&. last(A(&&
. . A~.U)i  = P(..,A@.&  or &.s,-.)
and [ zi(A)  ] @.Ll) = P(..J@.$k  or J&.t&,.*)
. . [ ri(A) I (x*u) = A(x*$i

[[ def. 6,3.19  J]

[[ induction hypothesis ]]
[[ expanding def. Zi ]]
[[ combining with line L3 ]J
[[ def. P 11
[[ simplifying &.‘=t&&)  11
[[thm.  3.20 ]]
[[ 6(...)  is a character! ]]
[[ substituting into L4 ]]
[[ expanding def. pi ]]

[[IIFixed-Point,x.u.,Combinational

[[11Fixcd-Poinfr.u

[~11F~~-&  -

FromaIlthisweknowthatAisafixedpointof~sandA  E MU,,
. . LWQ c A [[ LFP is Least! , def. 2.13 ]]

. . v x E Cc,*)“,  LWr,)@)  E A@) [[ def. pointwise order, 2.23 ]]
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From the previous section (section 3.4) and ELC(S) hypothesis :
We have LFP(z,) total on Z* [[ ELC thm., 3.15 ]]

. . v z E a*)=,  LFP(T,)(xJ  E (z*):
and strings with no ? in them are maximal under E [[ def. c coordinatewise ]]
. . V x E (Z*)E , LFP(T,)(x)  is maximal under c-

Combining those 2 results, we get:
. . V 5 E (X*)11  , LFP(z&) = A($
and of course the equality still holds if we project some lines (out) from the tuple:
and CL(S)  = IJ=K~s)out [[ def. 3.8 ]]
. . V 5 E G*F,  Ngout  = p(S)@.

[hhm.  3.21

We now move on to our simulation semantics. We will define it both informally  and formally, and then prove its
equivalence with the operational semantics (and therefore also to the extensional denotational semantics).

Definition 3.22: Informal Simulation Semantics
The main difference with the operational semantics is that now the state simply contains the current value
stored in each register. We call it sR and it is indexed by the (Register) line number.

The new “next-output” function 6’s differs from the old one in the Register case only and simply returns the
character in sR for Register-line Y;.

*
new “next-state” function y’S updates by storing in it the character just output by 6’s for itsThe

line (or the input character if the argument -an input-line).
predecessor

The extensions of these fnnctions  to handle strings of inputs are done just as in the previous case, by iterating
the character by character functions. One detail is different however: the initial state is taken from S, i.e. if S
COnta.i.nStheequatiOn  Yi t R,(Yk)thenttEididstate  hasGtid,=a.t

Pictorially, the set-up looks like this:



Figure 3-4: Simulation Semantics

1

0

0

n

1

m

W,g) s= s R

“unused”

c l char.

. As before, the S subscript will be omitted. Note also that we define so to be an array of length n, indexed by the
line number i, when in fact we only use array slots corresponding to Register-lines. This is just for ease of notation.
The other entries can be thought of as “unspecified” or containing an “unused” character, and are irrelevant to the
proof.

Defhition 3.23: Formal Simulation Semantics
IAS E LsD,withnon-inputlinesYi,i  E {l..n)andinputlinesxj,j  E {l..m),andELC(s).

Define sl(*,vJ E (Z?p  1 Vi E { l..n)
- l if Yi t R,(Yk Or $) then 61(sR*~i  = SR

l if Yi t P(..,Y, or XL,..)  t&n 6*(sR*~i  1 f(..,v(*,v),  or s...)

Definey’(sR,vJ  1 Vi E { l..n}
l if Yi t R.(Y,  or \) then ~‘(%~!)i = 6’(~,~>1,  or >

And the stringactcndcd  functions are Mined by recursion on the input string:

A’@)  = 5 and A’(x.uJ  = A’($  . s’(I- ‘($,uJ

r ‘~)i = SRiniti~ = if Yi t R,(Y,  Or xk) then a and r ‘(x.9  = y ‘(r ‘(@)
I

The justification for the totality of these functions is the same as for the operational semantics. The key result is:

Theorem 3.24: Simulation-Operational  Jhpivalena?
Let S be an ELC sysd (with m inputs), we have: V 1 E (X?*p,  A’& = A,(xJ .

Or in other words: the two operational semantics agree.
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The proof proceeds in two steps:
1. A “small state is appropriate” lemma, which makes explicit the fact that the value currently kept in the

register is the same as the last character seen on the predecessor line, and which is proved by structural
induction on the input string .

2. An inductive proof of equality between A and A’. The main subtlety here is to find an induction which
proceeds in the same manner as A or A’ recurses, i.e. a combination of structura.l  recursion on the input,
and R-cut-predecessor recursion on the lines. To achieve that we define cItx : the lexicographic
combination of the prefix ordering on strings, and the R-cut-predecessor ordering on the lines of an
ELC circuit, and use well-founded induction on cIcx.

Once these steps have been identified, what remains is tedious equation pushing...

[State-Lemma]: V 5 E (q*F, V i E { l..n} , if Yi t R,(Y, or xk)  then
r ‘(lr)i = if (A’(x),  Or 5) = E then a else last(A’(xJ, or 5)

This is proved by a simple structural induction on 5 :

Cases:
Let i E { l..n} ] if Yi t R,(Y,  or xk)
t h e n  r’(&Ji=a
a n d  A’(E)  =E

.. . r’@)i=ifE=Etbenaelse...

[[ def. r ‘, 3.23 ]]
[[ def. A’, 3.23 ]]

[[II StJWb4f

case x.u:- -
Let i E { l..n} 1 if y, t R,(Y,  or xk)
then r ‘<I.~i = y ‘(r ‘(I>& [[ def. 3.23, expanding r ’ ]]
.*. Ll: r ‘~.~i = 6’(r ‘($9g)k or ik [[ def. 3.23, expanding y’ ]]
and A’@.& = A’@$(r  ‘(?&& [ [ def. 3.23, expanding A’ ]]
. . last(A’@t&)  = r(r ‘@,t&  A A’&.& # E

. . r ‘(X.U).  = li6t(Li’(X.U)k)  clr t&
- -  1 - - [ [ replacing in Ll ]]

a n d  5=  kiSt(X&&)  A s.I.& # E

. . r ‘cll.U)i  = laSt(A’@.g&  or 3.~)

. . r ‘~.u>i  = if (A’@.& or 3.5) = E then . . . else last(A’@t&  or YC&)

K-II state-LcmmaJ.u
[[II --Smc-Lemma

_ We now prove the final equivalence: V x E @?*)I!, V i E { l..n} , A’(l), = A(~; , by well-founded induction on

3 lex&i) :

Case @i):
We have A~)i  = E = A’(~)i [[ def. A, 3.19 and def. A’, 3.23 ]]

case @L&i):
We have A~U)i = A@i.s(A($,z,u)i
and A’~.ll>i  = A’($,.S’(r  ‘olll>i
and A(l),  = A’(x)i
. . Only s(A&)*su>i = 6’(r ‘o,~i  remains to be proved.

[ [ expanding A, thm. 3.20 ]]
[[ def. A’, 3.23 ]J
[[ (Q) c lex @.u.i),  suction  bp. 11
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if Y, t R,(Y,  orxk) then
We have 6(A(gg$,  = if (A(& or $) = E then a else last(A($k  or 3)

[[ def. 6, 3.19 ]]
a n d  6’(I-  ‘($ll), = r ‘(x)~ = if (A’(x),  or xk)  = E then a else last(A’($k or $)

[[ def. 6’,  3.23 and State-Lemma ]]
and AC& = A’(Y$~ H @S) < lex (x.ukk),  hbtion hyp. II
. . ‘(A(11),~.u)i = r(r ‘(lI),11)i

[r1lx u i+Rcgister,‘w’

If Y, t fy(..,Yk  or xkT”) then
We have S(A(X),X,U)i = f(-&A(&g.$k or gk?)
and 6’(r  ‘(lr)*U)i  = f(...&‘(r  ‘(I$,$,  or I+.)
and A(X.$k  = A’(&~),
a n d  A(X.U),= A(&&A@)JL,u)k
and A’kix, = A’($,.F(I-  ‘(Jc),~),

[[ def. 6, 3.19 ]]
[[ def. 6’, 3.23 ]]
[I (x-u k)- -’ < lex (Il.g,i),  induction hyp. ]]
[[ expanding A, thm. 3.20 ]]
[[ def. A’, 3.23 ]]

. . &w,X.U)k  = 8’(r ‘@>J&

. . f(..,6~A&),yJk  or s,..):  f(..,6’(r  ‘@)&  or q,..)

. . ‘(A(x)x,U)i = 6’(r  ‘(X)*U)i

HII x.u,i,Combinationd

-- Kl1~~~~- -
mllm.  3.24



45

4. Theoretical Applications of the Semantics

4.1. The MLP-calculus
In this section we develop the theory of MLP string-functions, in order to provide some basic tools for the .

theoretical and practical manipulations of sysd’s. The following list of theorems only includes those which we have
found useful in our current investigations of mechanical SYSD equivalence proofs. It is only intended as the
beginning of a calculus.

Theorem 4.1: Composition off* ‘s
Let f,g be character-functions, (f O g)* = P O g* .
Proof:
Immediate

m-hm.4.1

The following property is an essential characteristic of combinational functions (which will often be used in
mechanical proofs of equivalence of sysd’s):

Theorem 4.2: Combinational-Concatenation Commutativitg [CCC]
Letr:(z?*)P  + q*,v4,y E (~*)l,fC(~.y)=r(x).f*(y)  *

Proof:
fc was defined as the homomorphic extension of a character-function f to strings (of same length), therefore this
property is immediate.

[&'hn.4.2

We now define the “extended register” function: R, . Intuitively, R, outputs z first, and then x, up to a total
number of characters equal to the number of characters in the input. The else clause consists of the (uninteresting)
case where the input is of smaller  length than z.

Definition 4.3: R,
Let ZL l..k E C*,  define R,: XT* + q* by: R,(x&,.J  = if n > k then z&, . . kx’l, n k else z’llwen. . -

It is immediate that R, is MLP.

Note that we are abusing the notation slightly in the case where z=a, since the extended R, is unary, and the
original R, is binary. The confusion is harmless, since the binary R, ignores its second input (x,k), so all algebraic

Iproperties  of one will carry to the other. In the rest of this section, we intend the unary RP .

Theorem 4.4: Composition of R, ‘s
V z,z’ E C,*  , R,, o R, = RLtZ .

Proof:
Let Z=ZLl i9Z’=Z’L1  j,X E Z?*9Ubib21Y,X=XJ* ns. . . .
Theproofhas3cases:n>i+j,n<i,i<n<,i+j. The most general one is n > i+j (i.e. steady state) and it is the
only one we show (the others am simpler):
we have Rzpz(x+LI n) = Z'L1 jZJl iX~l n-i-j I[ n > i+j II
and R,(x~,..~)= ~~I..iX~,..,i  '. " [[n > i+j => n > i ]]
Let x’ = R&XL le..)
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We have Ix7 = n , x’ = x’&, .
a n d  Vk E {l..n) ,x”lk=
and R~(x') = Z'~l..jX“1I n-j

x’~ 1 n-j = z?-~ ix-L1  ‘,.j.i = z*1  1 ix~ 1 n-i-jand
. . R,~R,(x))  = zig 1 jzi 1 ix~ 1 .:I, = R&(X). . . . . .

[[n > i+j => n > j]]
[[ n > i+j => n-j > i ]]

w-hrn.4.4

The next property is the essence of the “is-a-pipeline-of’ relation which we will define later, in section 4.2 .

Theorem 4.5: R, pipeline
V Z,Z’,X E CT* , if lz’l = lzl then RZ(xz’)  = zx .

Proof:
Immediate verification.

[[II Thm.4.5

Finally, this next property is an essential characteristic of MLP functions in general (which will be key in
mechanical proofs of equivalence of sysd’s):

Theorem 4.6: Register-MLP
Let F: (Z?*)C + E?*, MLP string-function, a E q, V x E (I+*>“,  V g E (X.$ ,
R,(F(z-gD=a.F(x)  .

* The proof relies on the following lemma, which is interesting in its own right:

Theorem 4.7: Is&order charactetition of MLP string-functions
Let F be a (unary)  function: &* + C,*,FisMLP  c=> F(E)=E A Vx E Z,*,Vu E Z,,3v E Z, 1.
F(x.u) = F(x).v .

Proof:

=>
Assume F : Z,* + Z7*,  MLP  string-function.
We have IF( = IE.I
. . IF(  = 0
. . F(E) = E

Asstjrne xE q*,uE Z?,
We nave F(x) I F(x.u)
, . 3 y E q* 1 F(U)  = F(x).y
. . IF(x).yl = IF(x.u)l = Ix.ul
. . IF(x)1  + lyl = 1x1 + 1
and IF(x)1  = 1x1
. . lyl = 1
. . Y E q

[[ F is length-preserving ]]
[I property  of length 11
[E property  of length  II

[[ F is monotonic ]]
[[ thm. 2.43,2nd  def. of prefix ]]
[[ F is length-preserving ]]
[[ properties of length ]]
[[ F is length-preserving ]]

Assume  F:q*  +B q* 1 [~~]F(E)=E  A [h2]Vx  E I;*,Vu  E )=7,3v  E x? 1 F(xu)=F(X).V  -
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La JLy E q* I x s y
then 3 z E q* 1 y = x-z
We prove by induction on z that ‘v’ z E X,*  , F(x) I F(x.z) :

[[ thm. 2.43,2nd  def. of prefix ]]

- Base case: z = E,
t h e n  x=x-z
. . F(x) = F(x.z)
. . F(x) I F(x.z)

[[ X.&  = x ( v x E q* ]]
[[ F function! ]]
[[ I reflexive ]]

- Induction step: assume that F(x) 5 F(x.z), consider x.(z.u) for some u E C, :
We have x.(z.u) = (x.z).u [[ definition  of concatenation ]]
. . [cl] F[(x.z).u] = F(x.z).v for some v E C? I[ h2 11
and F(x) I F(xz) [[ induction hypothesis ]]
and F(xz) I F(x.z).v [[ definition  of I ]]
. . F(x) I F(x.z).v [[ transitivity of I ]]
. . F(x) 5 F[x.(z.u)J [I cl 11

[[II F monotonic

We now prove by induction on x that V x E q * , IF(x)1 = 1x1 , i.e. F is length-pmserving.

-Basecase:x=&,
We have F(E) = E
. . IF( = kl

[E hl 11

- Induction step:
Assume IF(x)1  = 1x1, u E I;
We have F(x.u) = F(x).v for some v E ‘c, u h2 11
. . IF(x.u)l=  IF(x).vl  = IF(x)1 + Ivl = IF(x)1 + 1 [ [ properties of length ]]
and IF(x)1 = 1x1 [[ induction hypothesis I]

.. . IF(x.u)l  = 1x1  + 1 = Ixd [[ properties of length I]

[[IIF Length-Preserving

[[II <=
mhm.  4.7

It is clear that the => part of this lemma generalizes immediately to string-functions of any arity. (For the
other direction, there is a technicality in that we have to consider the restriction of F to G*p .) Therefore,  the proof
lof the Register-IV&P  theorem is now extremely simple:

Let a E q, FMLP string-function, 5 E q*)G.  11 E (Z$
We have 3 v E Z? 1 F( 5. uJ = F( 1 ).v [[ thm.  4.7, =’ PNI
. . R,(F(x.u))=R,(F(x).v)=aF(x)- -

&un. 4.6

[[ definition of R, ]]

This completes our current algebraic development of the theory of MLPz.
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4.2. Relations on Synchronous Circuits
A key concept in the transformational approach to design is (from palcott  861,  and in published form in [Mason

861):
Operations on programs need meanings to transform and meanings to preserve.

where we replace “program” by “synchronous system” for our purposes. The study of relations on sysd’s is the
study of the various meanings we want to transform or preserve.

The following preliminary investigations are just intended to give a taste of the possibilities...

Definition 4.8: Equivalence Relations on L,,
We can define 4 equivalence relations on sysd’s, which are progressively coarser: Let S,, S, E L,, ,

0s = s1 2 <=> S, and S, are syntacticly identical. (Not very interesting.)

l S155, <=> S, and S, are isomorphic (i.e. equal up to renaming of syntactic pieces).

0s = s1 2 c=> [I S, I= [ S, 1. (Intensional equivalence: they denote the same functional.)

0s ES1 2 <=> p( S 1) = p.( S 2) . (Extensional equivalence: they compute the same functions.)

Note: technically, for = , we are comparing tuples (of functions), and we compare coordinate-wise.

More generally, = is a particular case of the fact that for any relation on iUL+Pz  string-functions, we can define
the corresponding extensional relation on L, as follows:

Qefinition 4.9: Induced Extensional Relation from MY, to L,
Let o be a (n-ary) relation on functions of MUI. Define d on L,, with:
v s,,.., s, (5 L, , O(S,V.~ sn) <=’ O(cL(s~)~“~~(sn)) *

Again, we extend &comparison to tuples by comparing t&m coordinate-wise (and answering True if all
comparisons am True).

One such relation which is very relevant to current digital circuit design, is the notion of a string-function being a
“pipeline” of another:

Definition 410: Pipeline relation on string-functions
Let F, G be two string-functions: q* + q*,

OFazi G (read “F is-a-pipeline-of G with garbage z and purge z’ “) with z,z’ E Z?* <=> lzl = lz’l
A V’x E q* , F(xz’)  = zG(x) .

l F aG (mad “F is-a-pipeline-of G”) <=> 3 z,z’ E q* 1 F a.,, G .

Thisdefinition is extended in the obvious way to string-functions of same arity (> 1).

Intuitively, z is the garbage output during pipeline fill-up, and z’ is the (irrelevant) string fed in during pipeline

purging.

Pictorially:
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Figure 4-l: F is-a-pipeline-of G

G:
I

Theorem 4.11: a partial pre-order
a is a partial pm-order on string-functions (i.e. reflexive and transitive) and is not antisymmetric.

Proof:

reflexivity: immediate (take z and z’ to be E).

transitivity:
Assume Fa,,,GandGay),H
L e t  xarbitraryin~*.  ’
We have G(xy’)  = yH(x)
and F(xy’z’)  = zG(xy’)
. . F(xy’z’)  = zyH(x) , for arbitrary x
. . Fa HfZ’.Y
. . FaH

[[ G a H, instantiating x to x ]]
[[ F a H, instantiating x to xy’ ]]

a is not antisymmetric, even when restricted to MIP  String-funCti0nS:
Counter--example:
Let

. F(x) = OlOl... 1 IF(x)1 = 1x1

. G(x)  = lOlO...  ] IG(x)l = 1x1
t h e n  Fa,,G A  GalbF,foranya,bE  E
and yet F ‘+ G . ’

mhn. 4.11

Note: this counter-example brings up the fact that the purge string mentioned in the definition of a is absolutely
irrelevant. In fact, if there exists one such purge string, then any other sting of the same length will do. This brings
up an alternative definition of a which may be also be useful:

Definition 4.12: Alternate pipeline
Let F, G be two string-functions of arity 1, F a n G (read “F is-a-pipeline-of G with latency n”) <=>
3 z,z’ E C,*  1 lzl = lz’l = n A V x E XT* , F(xz’)  = zG(x) .
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4.3. Relations between Synchronous Circuits and (Mealy) Sequential
Machines

The key idea here is that sequential machines Booth 671,  [Hopcroft-Ullman 791  can be given string-functional
semantics (v) very naturally. Once this is done, then we can use our string-functional semantics for SYSD’s  (CL) to
compare formally both objects, as shown pictorially below. We base our definitions on Mealy machines. Since
Moore machines are trivially reducible to Mealy machines (without state explosion) this does not reduce the
generality.

Figure 4-2: Formal Comparison of Sequential Machines and Synchronous Circuits

Synchronous Circuits Mealy Machines

Note: the fact that sequential machines have associated string-functions is not new in any way! What is new is to
look at these functions as an extensional characterization of the machines, and to compare them to our extensional
chmcterization  of synchronous systems. Usually, the standard theoretical development on sequential machines
proceeds with an equivalence relation based on stole equivalence, i.e. an intensional  characterization.

A Mealy  machine M is given as a “next-state” function yM and a “next-output-character” function 6,, which both
depend on the current state and current  input character. We then extend these functions to take strings of inputs
exactly  as we did when defining the Operational semantics of SYSDs  in section 3.5, by iterating the next-output and
next-state functions. Precisely:

Definitjon 4.13: String-Functional Semantics of Mealy Machines
Let M = 4,Q,qo,y,6>  be a Mealy Machine, with the intended interpretation:

l c : alphabet (input and output)

.Q:setofstates

l QO : initial state

.y:Qx C+ Qnext-statefunction

l 6 : Q x X -+ X : next-output function
De&  v(M) = A : C* + Z* where:

. A(E)  = E A A(x.u) = A(x) . w(x),u)

. r(E) = qfJ A I-(x.u)  = y (r(x),ll)
The fact that A is MLP should be clear. Formally, the proof would be similar to the ones in section 3.5, and is
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not repeated.

We can now easily define extensional equivalence of a Synchronous Circuit and a Mealy Machine:

Definition 4.14: Extensional Equivalence of Mealy Machines and Synchronous Circuits
Let M be a Mealy Machine, and S be a SYSD, we define M I S c=> V x E Z* , v(M) (x) = p(S) (x) .

Note: there is an interesting duality to this jump from state machine to string function, in that we can easily define
“states” for an arbitrary string function, and trivially obtain a Mealy machine equivalent to an MLP string-function:

l To get the states of a function F on C* , take the equivalence classes for - in X*,  where:
x - y  <=> V z  E Z* F(xz)=F(yz).
(A “state” is simply a summary of the past good enough to account for the future.)

l To get a Mealy machine for an MLP F, take those states, and define:
y (x-(u) = (x.u)- and 6(x’,u) = last(F(x.u)) , where x- is the equivalence class of x under - .

Actually, we get the minimal  state machine extensionally equivalent to F; unfortunately however, this is far from
constructive!
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