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1. Introduction

1.1. Motivation

Hardware design could benefit greatly from a precise computation theory of hardware systems. Current design
and validation methods, such as simulation and testing are expensive and unreliable. The call for formal methods in
hardware design is heard more and more in the hardware community, and not only among theoreticians, but aso
among practitioners as in [Russell-Kinniment-Chester-McLauchlan 85} (p. 189):

As the designs get bigger this [validation] capability will not be provided by traditional simulators. Formal
verification of some other kind will need to be employed, which means that current languages will need to be
redesigned to encompass formal techniques.

Formal verification, such as mechanical proof of correctness or transformation-based (inferential) design systems
[Burstall-Darling-ton 77], [Scherlis-Scott 83] , requires a formal underlying semantics, and this is what we mean by
a “precise computation theory of hardware systems’.

This is not an entirely new concept! Such a forma theory has been around for a long time for a small class of
hardware systems: combinational circuits. Their semantics are given in terms of Boolean functions, and theoretical
applications include eguivalences proofs using the Boolean calculus, minimization theorems, and many more
advanced theories such as fault-modelling and test-generation In fact, the Boolean Algebra semantics is ubiquitous
in the education of hardware engineers.

Our goa was therefore to find similarly natural and mathematically tractable semantics for more genera hardware
systems, to serve as a basis for reasoning formally about hardware designs.

1.2. Solution proposed

Using functions on finite strings as a basic mathematical object, we have developed the core of a forma theory
for a wider class of hardware: synchronous systems/circuits.

The basic ideas and relation to the Boolean function semantics are fairly simple and we have made a specia effort
to include a detailed, motivated, informal explanation in section 3.1 . Technicaly we build Scott-style domains of
strings, and string-functions, and give the extensional semantics of a synchronous circuit in terms of monotonic
(with respect to less-defined-than and prefix) and length-preserving string-functions. Note however that in contrast
to other work in concurrency theory based on strings, we need only finite strings, and use as our primary ordering
the pointwise extension of the flat ordering on the base domain, not the prefix ordering. Correspondingly, we solve
our fixed point equations in the string-function domain, and not in the string domain. The beginning of a calculus
based on these functional extensional semantics is shown among the possible theoretical applications in section 4.1.

In order to reason about synchronous systems in an even more general and powerful manner, we have added a
recent idea of software computation theory: intensional semantics . These give a mathematical handle on how an
algorigthm (or in our case, a circuit) computes its result, as opposed to just what the result is, i.e. its extensional
semantics. These concepts are studied in great depth in [Talcott 85] and [Moschovakis 83]. They provide a way to
compare precisely the objects we are trying to design, and hence provide the relations which will be at the core of
future “guaranteed correct” transformation-based design systems [Scherlis-Scott 83]. A very limited taste of such
relations is given in section 4.2.

These constitute the main ideas presented in this report. In order to support them however, we have proved a few
additional results about our semantics:
« We have given a semantic characterization of synchronous circuits which obey the “Every Loop is



Clocked” design rule, even though our semantics assign a meaning to al circuits (built arbitrarily from

primitive components. registers and gates). We have not seen such characterization (in any form)
anywhere else in the hardware semantics literature.

« We have defined an operational semantics which is extremely simple, and basically a trivia circuit
simulation algorigthm, and proved its equivalence to our extensional semantics. We aso believe this
result to be new in the context of hardware systems, although related operational-denotational
equivalence proofs have appeared in the context of dataflow [Faustini 82a] and more clearly
[Glasgow-MacEwen 87] within operator nets.

« We have shown how to apply these semantics to Sequential Machines (Meadly Machines [Booth 67],
[Hopcroft-Ullman 79]) which are at the core of synchronous circuit design in the engineering
community. This alows us to formally state that a certain circuit correctly implements a certain
sequential machine.

Finally, since our denotational semantics is based on a new domain of string-functions, and since ultimately all
claims of design correctness rely on sound underlying mathematics, and since a precise and thorough understanding
of the theory is an essentia prerequisite to its mechanization (in a theorem-prover), we have taken extreme care to
develop the foundations in complete detail.

In order to reach the full generality that we needed, such as combinations of functions with arbitrary (and
different) number of inputs, without any hand-waving, we found that we had to use some dightly technica tools,
such as Moschovakis induction algebras. Moreover, we isolated two mathematical structures which came up
during the process and seemed to present some interest:

« Finite Depth domains, which are generalizations of flat domains, and

« String domains, which are domains generated from a base domain with string operations.
To prevent confusion between these developments and their applications to hardware semantics, and spare less
mathematically inclined readers, we have placed them in a separate "Foundations" chapter (chapter 2).

1.3. Relation to other work

Tbe origina inspiration for this work came from software concurrency theory and the work of [Kahn 74] on
semantics of asynchronous communicating processes. The key idea there was to view each node as history- (or
string-)functional, the system as a list of string equations, and define the result to be the least solution (or fixed
point)-of the system, in a domain of infinite strings ordered by the prefix relation. Other people then tried to exhibit
operational models for which they could prove the appropriateness of the “ Kahn-semantics’ [Arnold 81], [Faustini
82a], [Faustini 82b] and references therein.

In our case, we have kept the basic idea of nodes being string-functional, but because of our synchronous context,
we were able to use a domain of finite strings, ordered by a pointwise extension of the flat ordering on the base
domain. Also, we made the abstraction to string-functions for circuits, which was only implicit in [Kahn 74].
Moreover we view the equations as defining string-functions instead of strings, and correspondingly solve our fixed
point system in a functional domain

Much of the work derived from [Kahn 74] in concurrency theory has gone into trace theory, keeping the history
idea, but tossing away the functional abstraction, mainly to deal with limitations of [Kahn 74} in non-deterministic
contexts, as pointed out in [Brock-Ackerman 81]. These have been successfully applied to VLSl in [van de
Snepscheut 85] and recently in [Dill 883 to asynchronous circuits. However synchronous systems do not present any
of the difficulties necessitating trace theory. And fundamentally, we believe the functional abstraction to be natural
and crucia for the design of large systems, for a rich calculus of synchronous circuits (analogous to the Boolean
calculus), and for the intuitive understanding of systems.



Also inspired by the work of Kahn. and trying to apply these ideas to the semantics of hardware, are the works of
[Brookes 84] and recently [Kloos 87]:

[Brookes 84] uses infinite strings (viewed as functions on integers) but is fairly informa and based only on one
example, which does not have any feedback. His remark concerning the handling of feedback is essentially wrong
(or extremely imprecise) since the origina state of the registers seems not to be kept in the syntactic object, even
though in the presence of feedback, it can affect the fina semantics immensely.

[Kloos 87] in contrast is quite formal and thorough, and is very much based on Kahn's idea of functions on
infinite strings, with a (dightly modified) prefix ordering due to Broy. This work is the most similar to ours that we
have found, and goes a long way towards achieving many of our goas, within a different mathematical environment
and for the extensiona part only. It is however, much broader in its scope of hanvare systems it aims to model, and
correspondingly, the theory is weaker. Moreover, the algebra of finite strings has many advantages for purposes of
mechanizing, such as induction. Also, no proof of equivalence with any operational model or other key property of
the semantics is given.

Much other work related to ours fals under the category of “new hardware languages’. These have evolved very
similarly to software languages: from ad-hoc (assembly) to clearer (high-level) to semantically cleaner (functional) .
Just like in software, very few of them really have forma underlying semantics. Two notable exceptions are
[Sheeran 83] and [Johnson 833:

[Sheeran 83] uses FP [Backus 78] as a semantic base, and hence functions on sequences. Aside from an
insistence on a variable-free (and hence hardly readable) style, there is a lot of emphasis on agebraic laws, so
“philosophically” our work is very related to hers.

[Johnson 83] uses a more standard applicative notation but puts much more emphasis on the language issue than
on the semantics. Most of the emphasis is on (informaly) transforming recursive descriptions of the agorithm
which are not directly implementable in hardware, into other descriptions which are. The semantics only model a
specia restricted “stylized” kind of circuit (with one “output” line and one “ready” line). The model-theoretic
semantics are sketched rapidly, are not very natural (signas are “infinite sequences of instantaneous operations’),
and are clearly not the main goa in his work.

Finally, work in mechanical correctness proofs of hardware shares some important goals with us, athough we
believe that semantics should be thoroughly studied first. The most impressive such result we know so far is [Hunt
85] where two descriptions of a CPU (one of which was isomorphic to the actual hardware) were proved equivalent
in the Boyer-Moore system. The semantics however, while quite clear in the combinationa logic case, are more
fuzzy in the sequential case, where a “stylized” description is used, with no formal justification. One price paid for
this is the lack of composition&y, i.e. the unability to combine easily two separate (sequential) specifications into a
bigger one. Also aong the verification lines, we share a lot “in spirit” with Gordon’s work in higher-order logic:
[Gordon 85] and related efforts. Technically however we differ significantly. Gordon's semantics are axiomatic:
hardware objects are associated with predicates (on functions of time), and systems are "ANDed" together. Besides
putting more emphasis on the model-theoretic aspects of our semantics, we have aso defined our theory so that
hardware systems are describable in just a first-order language. This may simplify automatic derivations, and in any
case gives us a greater choice of theorem-provers. Moreover, by studying properties of the agebraic structure (i.e.
building a calculus) we can derive system-independent properties.



1.4. Notation
We have tried as much as possible to use standard mathematical/logical notation: A , v , => , <= |V
and 3 are the usua logical symbols. w denotes the set of natural numbers (non-negative integers).

We've generalized dlightly the tuple projection operator (denoted by subscripting): (x,,...X,); = X; , to take a tuple
of positions and return the corresponding sub-tuple of values: (xy,...x,) i) = (xh’"’xik)

For our “precise” proofs, we have a semi-forma notation: There are two columns: assertions on the left, and
justifications on the right, enclosed in double brackets, which can be mentally read as “because” or “by”. Successful
completion of the proof is indicated by:

[t
often indexed by the name of the theorem it proved, For example:
Wehave |=V /R [{Ohm, thm.111
and P=V~*I [ definition ]]
P=V2Z/R
and V =5.0volts [[hypothesis]1
and R-Oohm [ {we vereversed Vcc and Gnd pins]]

(Dhm cni peis- Hot
In genera, these proofs are most easily followed by skipping the individual justifications, i.e. reading the left
column only! Occasionally, if a step appears unclear, then checking the jutification is useful.

Other notations for particular structures (such as strings) are defined as concepts are defined. An index of major
definitions is given at the end for “random-access’ readers. The report itself is “linearly” organized in definition-
theorem-proof form, each referring only to concepts previously defined or proved.



2. Mathematical Foundations of the Semantics

2.1. Basic Theory: CPOs, PCPOs, and Induction Algebras

The domains we consider are chain-complete partially ordered sets. However, since there are some terminology
variations across the various authors in the field, we specify here the structures we will use, as well as the main
results we'll need about them.

Many of these definitions and results can be found in various places and forms in [Manna 74] chapter 5, [de
Bakker 80] chapters 3 and 5, and [Schmidt 86] chapter 6 .

Often however, these concepts (lub, continuity, fixed points) are obscured in standard treatments because they are
defined in the specific context in which they are needed, which usually turns out to be a higher-order set where it is
hard to visualize things. We have tried to avoid that pitfal here, and have defined each notion in the smplest
structure in which it is meaningful.

Definition 2.1: Partial Order [PO]
<P,c>isaPartia Order [PO] <=> Pisaset A ¢ isabinary relaion on P which is

0 20NN 2K e P, x C
0 SEABEQONIRKHNEIRSRe P, (x cAAB c x => x=y)
® transtiveVxyzE P,(x gy AygC z =>xCz)

Definition 2.2: Upper Bound
Let <P,c>be a PO, S be asubsetof P,y € PisanUpperBoundof S (inP) <=> Vx € §S,x C y

Definition 2.3: Least Upper Bound [LUB]
Let<P,c>be aPO,Sbe asubsetof P,y € Pisaleast Upper Bound of § (in P) <=> Yy is an Upper
Bound of S A Vz € P,zUpperBoundof § => y cz

Definition 2.4: Chain
Let<P,c>bea PO, Sasubsetof P,Sisachain <=> Vxye S,xcy vy ¢ x(i.e. ¢ istotalinS).

Note: we usually refer to chains as indexed by an ordinal I: (x;);; | V i € 1,x; € x,; . This does not
reduce the generdity.

Definition 2.5: Complete Partial Order [CPO]
<P, c > isaComplete Partial Order [CPO] <=> <P,c>isaPO a every non-empty chain in P has a LUB.

Definition 2.6: Pointed Complete Partial Order [PCPO]
<P,c>isaPointed CPO <=> <P,c>isaCPO a thereisaleast element, usualy caled L, forcin P
(i.e. the empty chain aso has a lub).

The distinction between CPOs and PCPOs is often glossed over, because most domains used in practice are
PCPOs ( [Schmidt 86], (Melton-Schmidt 86] make the distinction). In our case, we will deal with structures which
are CPOs but not PCPOs, and therefore, we need the more general definitions.

Note that any PCPO is a CPO, and therefore all results true for CPOs apply to PCPOs. Also, an equivalent
definition of PCPOs not referring to CPOs can be given, smply by requiring that “every chain has a LUB”, but our



definition makes the dependency on the empty chain explicit.

Definition 2.7: Monotonic function on POs
Let<P|,c >, <P,,C ,>be POs, f a function: P, — P,, fis monotonic <=> Vxy € P;.xc;y =>
f(x) < , f(y)

Definition 2.8: Continuous function on [PJCPOs

Let <P|,c >, <P,, ©,> be PCPOs [resp. CPOs], f afunction: P, — P, , f is continuous  <=>
V (x;); ¢ 1 [resp. non-empty] chain in P, (f(x)); el hasalub A  f(lub (x)); ¢ P = lub(f(x;))
where the lubs are taken in the appropriate domains .

iel

By considering a chain of just two elements we immediately get:

Theorem 2.9: Continuous => Monotonic
Let <P, ¢ >, <P,, ¢ ,> be CPOs, and f afunction: P, — P, , f continuous ~ => f monotonic .

The next two properties are immediate, but ofen useful:

Theorem 2.10: Composition of monotonic functions
Let <P, c >, <Py, S ,>, <Py, & 3> be POs. Let f be a function: P; — P, , g be a function: P, — P;,fand g
are monotonic => g.f:P; — P, is monotonic.

Theorem 2.11: Composition of continous functions
Let<P,c >, <P,,C >, <P3,C 3> be CPOs. Let f be a function: P; - P, , g be a function: P, — P;, fand
g are continuous => g.f:P; - P,,iscontinuous.

Definition 2.12: Fixed Point of a function
Let S be an arbitrary set, f a unary functionon S, x € Sis a Fixed Point of f <=> f ( x ) = x

Note that the preceding definition is a common mathematical notion, and applicable to any structure, not just
CPO:s. In Partidly Ordered sets, we can additionally define the notion of a Least Fixed Point:

Definition 2.13: Least Fixed Point [LFP] of a function
Lzt <P,c > be a PO, f a unary function on P, x € P is a Least Fixed Point of f <=> xisafixedpointoff

A

Vy e P,yfixedpointoff => xCvy

One of the main reasons for using PCPOs as domains is that in these structures, a wide class of functions have least
fixed points, which moreover can be computed explicitely:

Theorem 2.14: Kleene )

A continuous function f, on aPCPO <P, ¢ >, hasaLFPin P : lub(f(1 )); cw
Proof:

This is an extension of Kleene's 1st Recursion theorem [Kleene 67} . Many proofs of this result exist in the

literature, in various forms. One closest to our notation can be found in [Schmidt 86] p. 114.
(2. 14
A useful generalization in [Moschovakis 77] extends this result to families of PCPOs, and systems of continuous

functions on these CPOs. (Moschovakis’ results are actually more general and deal with arbitrary induction and big
ordinals. We restate them here in the simpler context of continuous induction, and consistently with our notations.)



Definition 2.15: Induction Algebra

<Py (S j)je p F>isaninduction algebra <=> Vj € I,<P,c.>isaPCPO A F is a set of functions
f: Pj X...X Pj - Pj , containing the identity maps, and closed under” composition with projections.
1 f 0

By projection we mean a function of the form: (x,,...x ) — x, for some i € { 1..n} .

By “ closed under composition with projections’ we mean that if g € F and f satisfies: f(x,....x)) =
BT (X gy X)) geos B (XX )) With 7, 1 given projections, thenfe F .

Theorem 2.16: Kleene-Moschovakis
Let <(PJ-))- el,(gj)j ep F > be an induction agebra Let (f,...,f,) be asystem of continuous functionsin F,

where V k € { 1.0}, fi: le X ... xPj —an , then that system hasaLFPinPj X ... X 1}1
. n k 1 n
lub[(f,,..f )'(L j],..,.L J'n)]i cw

Proof:
See [Moschovakis 77], Lemmas 2.4 and 2.5 . These actualy apply to monotone functions, and conclude that the

system has a fixed point:
lub((f,,...f )i(L ik ()i ¢  With x some “big enough” ordinal
1 n

Since in our case we are restricting ourselves to continuous functions, it is clear that ® is big enough:
Wehave f[lub(fi(L)); e ]1=lub(f*}(L)); ¢ o [ [ continuity of f 1]
and (F*Y(L))g = (F(L )i -1 L }

lub(F*1(L)),; ¢ o = Tub(F(L)); .

£ [Iub(f(L)); ¢ 1= b(E(L)); ¢

lub(f(L )ie o iS afixed point. And the same proof obviously carries through to a tuple of functions.

(Dhm2. 16

A few other results which belp us build CPOs and PCPOs are enumerated below.

Theorem 2.17: Product of CPOs
The Cartesian product of CPOs is a CPO (under the induced coordinate-wise ordering), and the lub of a chain of
tuples is the tuple of the lubs of the coordinates (i.e. the tupl-ing operation is continuous).

This generadizes immediately to finite product.

Theorem 2.18: Product of PCPOs
The Cartesian product of PCPOs is a PCPO (under the induced coordinate-wise ordering).

This also generalizes immediately to finite product.

Theorem 2.19: Disjoint union of CPOs
The digoint union of CPOs is a CPO (under the union of the ordering relations).

This generalizes to arbitrary unions with the following definition: w (P i)iE (={x|3iel|xeP i),
where the P ’s axe all digoint.

Note however that the digoint union of PCPOs is not a PCPO (we need to add a new least element in order to
obtain a PCPO). It is common in Scott-style semantics to add that extra element without even mentioning it when
dealing with PCPOs. We will not do that. We 4ill clearly have that the digoint union of PCPOs is a CPO, which



will be enough for our purposes.
As for Kleene's theorem, proofs for the preceding constructions can be found in [Schmidt 86].

Definition 2.20: Sub-CPO
Let <P,c>beaCPO, P isasubset of P, P isasub-cpoof P <=> <P, C restricted wP1> isa CPO.

Note the following two subtleties about sub-cpos:
« Ingeneral, subsets of CPOs are not sub-CPOs (counter-example: @w+1, with subset: ©).

« In general, LUBs (of a single chain) in a CPO and a sub-CPO are not necessarily the same
(counterexample: w+2, sub-cpo: w+2 - {w}, chain: { 0,1,... }).

The following notion is not as “standard” but very useful in building “nice’” sub-CPOs, and we will use it
extensively in the rest of this work:

Definition 2.21: Strongly Admissible predicate on a CPO
Let <P, ¢ > be a CPO. Let ¢ be a predicate on elements of P . ¢ is Strongly Admissibleon P <=> V (x,)

non-empty chanin P, (Viel,o(x)) => o(ub(x),

iel

In other words,"¢ carries to the lub”. Note that this property is closely related to, but dightly stronger than, the
notion of “admissible’ predicate in computational induction [Manna 74).

Theorem 2.22: ““Nice’” Sub-CPOs
Let <P, > be a CPO, let ¢ be a strongly admissible predicate on P, then PN é={ x € P | (x) } ,isa
sub-CPO of P, and the LUBSs of chains in both domains are the same.

Proof:
Immediate by def. 2.21. I.e. we've defined “Strongly Admissible” to be exactly what we needed for this theorem to
be true; the work will be in proving that specific properties we' re interested in are in fact strongly admissible.

(Dhma. 22

We now move on to function domains. We can easily extend the ordering of a Partially Ordered set to an
ordering on its functions:

Definition 2.23: Point-wise function ordering

Let <P,,c >, <P,,C,>be POs, f,g functions: P, = P,,f ¢ g <=> Vx e P ,f(x) c,8(x).

pointwise
It is immediate that © ;- rwise |S reflexive, antisymmetric and transitive. The subscript "
dropped since the correct relation can be inferred from context.

pointwise 1S sually

Note that this definition immediately applies to functions of arbitrary arity, by considering them as unary
functions from the product PO.

Function domains on CPO: In the literature, one usually finds a proof that the set of monotonic functions on a
CPO is a CPO, or that the set of continuous functions on a CPO is a CPO. However, many more function domains
on a CPO can be usefully built, as the next few theorems show.

Theorem 2.24: P,z is a CPO.

Let <P, c >, <P,, € ;> be CPOs, the set of al functions from P, to P,: P_P1, under the pointwise ordering, is
a CPO.



The proof is fairly standard However, we give it because we will need to refer explicitely to the contruction of

the lub of a function-chain in many other occasions.

Proof:

Assume  [hl] <P, € > CPO, [h2] <P,, € ;> CPO, and [h3] (f); . ; non-empty chain in X4

Define (and this is the essence of the proof) f = kx.lub(fi(x))

1) Letx € P, arbitrary.
Wehave V i el.f cf,
Viel, f(x) g, f (%)
{£,x),,; el } is a non-empty chain in P,
{£(x).,c; ]} basalubin P,
and this was done for arbitrary X,
f is a (well-defined) function from P, to P,

N

2) Leti € 1, arbitrary.
We have V x € P, fi(x) ¢ , lub(fi(x))
Vx e P, fi(x) c,f(x)
fcf
and this was done for arbitrary i,
f is an upper bound of (f,)

iel

iel"”

Asume [hdlgePli|Viel, fcg
Let x € P,,arbitrary.
We have Vi€l , f(x) €, 9(X)
lub(f(x)); . | € &(X)

f(x) < , g(x)
and this was done for arbitrary X,
fceg
. f=1lub(f), ¢y
(,
(2. 24

As an immediate corollary we get:

Theorem 2.25: PP* is a CPO.

we prove that 1) f € P,P1and 2) f is lub (f))

iel”

iel”

([h3]]
[ def. 2.23 ]
[[ def. 2.4 1]

((b211

[[ def. 2.3, LUB => Upper Bound 1]
{[ congtruction of f ]]
[[ def. 2.23 7]

[[ def. 2.2 1]

[[ h4, def. 2.23]]
[[ def. 2.3 1]
[ [ construction of 1]

[ def. 2.23 1]

Let <P, < > beaCPO , the set of all functions (of arity n) on P: PP" | under the pointwise ordering, is a CPO.

As an immediate application of the preceding theorem (thm. 2.24) and our notion of strongly admissible

predicates (thm. 2.22), we get a whole class of function CPOs:

Theorem 2.26: Function domains on CPOs

Let <P,, c >, <P,, < ,> be CPOs. Let ¢ be a strongly admissible predicate on P,P1, then P,Pin o= (fe
PP | e(f)}, under the pointwise ordering, is a CPO. And, the LUB of a function-chain in P,P1n ¢ is the

same as the LUB in PPy
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Theorem 2.27: Corollary Monotonic functions CPO, Continuous functions CPO
Let <P, c >, <P, C ;> be CPOs. The following sets of functions, under the pointwise ordering, are CPOs:

« set of al monotonic functions. [ P, — P, ],

« et of dl continuous functions: (P, — P, ) .

Proof:
&(f) = "f is monotonic” is strongly admissible on Pz” 1
Assume [hl] (f);¢ {non-empty chain of monotonic functions from P, to P,

We have f = Ax.lub(f(x)), e1=lub(£), [[ construction of lub of function-chains ]}
Let xye P |xcy
Wehave Viel, f(x)c,fy) [[ hl, f; is monotonic ]]
and Vi € I,f(y) c,f(y) [[ construction of f ]]
Viel, f(x)c, f(y) [[ ¢ transitive 1]
Wb(£(x)); ¢ 1 € 5 £¥) [[ def. 2.3 1]
f(x) c , f(y) [[ construction of f ]]

f is monotonic.

(0 monotonic strongly admissible

o(f) = "f is continuous’ is strongly admissible on PZP 1
Assume [h2] (f);. ;non-empty chain of continuous functions from P, to P,

We have f= A.x.lub(fi(x))i e1=Iub (), el [[ construction of lub of function-chains ]]

and we aready know that f is monctonic {{ by above proof 1]
Let (xj)j ¢ 1 Chain in P
We have Vj € I.xj < lub ("j)jel [[ def. 2.3, LUB => Upper Bound ]]
Vijel, f(xj) c , f(lub (xj )j e? [[ f monotonic 1]
- L1: lub(f(xj))j c1S2 f(lub (xj)j el [[ def. 2.3 1]
Let i € I, arbitrary.
Wehave f, cf [[f=lub(f);cy,LUB => Upper Bound ]]
.. Vje I.fi(xj) ng(xj) [[ def. 2.23 7]
ahd Vj e I.f(xj) &;2lub(f(xj))jeI {[ def. 2.3, LUB => Upper Bound ]]
: Vije I,fi(xj) gzlub(f(xj))j el [[ € transitive 1]
- lub(f,.(xj))j c1S2 lub(f(xj))j el [[ def. 2.3]]
and f(lub (xj)j eD= lub(fi(xj))j el [[ b2, f; continuous ]]

o f(lub (xj)j eD S2 lub(f(xj))j el
and this was done for arbitrary i,

: Vie I, flub (xj)j el S2 lub(f(xj))j el

o lub(f(ub (x); ¢ )i 1 2 10DEX)); ¢ 1 ([ def. 2.3 1]

and f(lub (xj)j e D = lub(f;(lub (xj)j e Diel [[ construction of f ]]
~ L2: f(lub (xj)jE D ESs lub(f(xj))jE I

f(ub (Xj)j eD = lub(f(:s))j el [[ lines L1 and 1.2 ]]
f is continuous.

[[]]continuous strongly admissible

(Olmmm. 2.27
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Other strongly admissible functional predicates will appear in the next sections.

This completes our list of (dightly extended) standard notions. We now concentrate on particular classes of
domains which will be of essentia use later.

2.2. Finite Depth domains

Definition 2.28: Flat domain
Let S be an arbitrary set, S, (read "S lifted”, or "S bottom”) is the PCPO obtained by adding an extra element:

1, and the binary relation: ¢ definedby: VxyeS.xgy <=>x=1v x=y.

It is immediate that ¢ is reflexive, antisymmetric and transitive, and that all ¢ -chains have a lub.

A picture of S, is most convincing:

Figure 2-1: Flat domain

L

Syntactic note about L : the character "L " has no magical properties! In a different context (such as chapter 3),
we will free to use a different “least element” character more appropriate for that context.

An essential property of flat domains is that all chains of distinct elements are finite, in fact they are at most of
length 2. Many properties of flat domains (such as can be found in [Manna 74], chapter 5) generalize, often more
clearly, to arbitrary CPOs which have this "finite depth” property.

Moreover, the domain on which we will base our semantics for synchronous circuits is a finite depth domain. We
have therefore isolated this property here, as well as its consequences, so as to distinguish the abstract properties of

- these domains from the idiosynchrasies of their application to the semantics of synchronous circuits.

Definition 2.29: Finite Depth domain [FD-CPO]
Let <P,c > be a CPO, <P, > is of Finite Depth <=> any chain in P is a finite set.

An equivalent way of characterizing FD-CPOs is the "Accumulation” property:

Theorem 2.30: Accumulation
Let <P,c>be a CPO, <P,c>FD-CPO <=> V (x;);.Don-empty chaininP,3iz € @ | Vi 2 iy, x=x%;

o
(and therefore also: lub(x;) = X ).

In other words, there is afinite index. after which the chain is constant. We refer to i as the “accumulation
point” and Xi, as the “accumulation value” (or "lub™).
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Proof:
(Should be intuitively clear, given for completeness.)

=>
Assume  [h1] <P, ¢ > FD-CPO, [h2] (x;); . | arbitrary non-empty chain in P, we prove the Accumulation property
by contradiction:
Assume that it is false, we have: View, 3 j; 21| x ¢ le A X # X;
then we extract X= (X )iecw: which is a chain [[ h2, and subset of achainisachain ]]
and X contains an infinite number of (distinct) elements {{ by congtruction 1]

X is an infinite chain in P, contradicting hl.
(m -

<=
Assume [h1] Accumulation property holds, (h2] (x;), el arbitrary chain.
We have if (x,), . | is empty, then it is finite [[trivially 11
and if (x;), el is not empty
then Jijew|Vi2i,x;=~ [[h1,h211
(X)je ={xii=0..1y} {[ set extension! 1]

(x;); ¢ 118 afinite set.
and thiswas done for an arbitrary chain, so P isa FD-CPO,

)]
(wm.2.30

A few pictoria examples may help:
Figure 2-2: Finite depth CPOs

2
({a,blL) arbitrary FD-CPO

Examples of FD-CPOs abound: It is obvious that any finite CPO is a FD-CPO (and any finite PO is a CPO). It is
also clear that FD-CPOs can be obtained as follows.
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Theorem 2.31: Flat domains are FD-CPOs.
Proof:
Immediate.

(Olthem. 2.31

Theorem 2.32: Product of FD-CPOs
The Cartesian product of FD-CPOs is a FD-CPO.

Proof:
Immediate with the Accumulation property, by taking the max of the accumulation points for each coordinate.

(Dm. 232

Theorem 2.33: Disjoint union of FD-CPOs
The digoint union of FD-CPOs is a FD-CPO.

Proof:
Immediate once you notice that any chain in the digoint union is necessarily included in one of the origina sets.

(Nrhem. 2.33

Finite Depth has interesting consequences regarding continuity issues, both for functions and functionals:

Theorem 2.34: Monotonic => Continuous in FD-CPOs
Let <P1. c >, <Pz, c,>be FD-CPOs, f afunction from Pl to I’2 , f monotonic => f continuous .

Proof:
Should be intuitively clear. Given here for completeness.
Assume  Thl] <P, ¢ ;> FD-CPO, [h2] <P,,c,> FD-CPO, [h3] f a monotonic function: P, — P, , [b4] (x;); .
non-empty chain in P, .

Wehave Jigew |V i 2 io,xi=xi°=lub(xi)iel [[ hI, thm. 2.30 1]
We have f(x,),; ¢ 1 Non-empty chain in P,, [[h3andh4 11
Jieo|Vi2i, fix)= f(xil) = lub(f(x;)); ¢ | {[ b2, thm. 2.30 ]]

Let j = max(iyi,)

We have x; = lub (x)); ¢ 1 A f(x)) = lub(f(x)); ¢ |
f(lub (x;); ¢ 1y = lub(f(x))); ¢ |
f is continuous.

(Mhm. 234

Our result about functionals is a generalization of [Manna 74] theorem 5.1 , which states that functionals (on
monotonic functions, of arity n) on a flat domain, defined by composition of monotonic functions (of arity n) and a
function variable "F", are continuous.

Besides separating what is true in any CPO from what depends essentially on the finite depth property, we
generalize the result in three ways.
« To apply to FD-CPOs instead of just flat domains,

« To dlow functions of any arity in the construction of the functional, as long as arities match. This
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technicality corrects the fact that the theorem as stated by Manna does not even apply to the functional
defining “ factorid” ...

» To apply to functionals on any sub-cpo of the set of monotonic functions (another technicality which we
will require in order to apply this result for our purposes in the next section).

The first theorem applies to any CPO, independently of finite depth considerations:

Theorem 2.35: Continuous fbnctionals on a CPO

Let <P, c > be a CPQ, if tisafunctiona, on continuous functions. ( P ™ — P ) defined by (arity-correct)
composition of continuous functions: (P ™ — P ) for any m € w , and the function variable "F", then T is
continuous.

Our proof is similar in structure (induction cases) to [Manna 74}’s (partial) proof in the flat domain case, but
different in detail since we do not mingle considerations of “ finite-depth” (accumulation property).

Proof:
The proof is by structural induction on 1. There are 4 cases. In each case we have to check that
T is closed (i.e. yields continuous functions when fed a continuous function as input),
T iS monotonic,
T preserves lubs of function-chains.

[Base] case 1: 1= AF.g, with g continuous function: P* — P.
T closed: immediate.

T monotonic: immediate [[ constant fun. (in any PO) is monotonic ]]
T preserves lubs of function-chains: immediate [[ constant fun. (in any CPO) is continuous ]
(Mlease |
[Base] case 2: t=AF.F.
7 closed: immediate [[ Identity is always closed on any set! ]]
T monotonic: immediate {{ Identity (in any PO) is monctonic ]]
T preserves lubs of function-chains: immediate [[ Identity (in any CPO) is continuous ]]
[pse 2
TInduction] case 3: T = AF.go(T(F),...t(F)) , with g continuous function: P™ — P
T closed: immediate [[ thm. 2.11, induction hyp. on 1,..7_ 1]
T monotonic:
Let f},f; continuous functions: P ™ — P | f 16
We have V j e {1l.m} , ':j(fl) c ‘tj(fz) i T monotonic, induction hyp. 1]

VxeP" Vje {L.Lm}, (‘tj(f 1IXX) ;(tj(fz))(x) [[ def. 2.23 1]
VxeP? gl(t(EDNx),..(t,(E)XX)] € 8l (ED)X),... (T, (£))(xX)]
{{ g monotonic, thm. 2.9 1]
uf)) < wfy) {{ def. 2.23, definition of 1 ]]
T preserves lubs of function-chains:
Let (f), ¢ non-empty chain of continuous functions: P — P
We have Vje{l.m}, 'tj(lub E)ep= 1ub[‘tj(fi)]i el
LV xeP" Vje(l.m}, (gub (£);¢ PXx) = lub{(7(E)Xx)]

[ T continuous, induction hyp. ]]

iel

[E[ construction of lub of function-chains 1]
Let xe P", arbitrary.

We have (t(lub (f;); ¢ PXx) = g((7;(ub (£); ¢ PHX),...(T,@Aub (£); ¢ PXX))



[[ definition of T ]]

= g(lub[(t (E))(X)]; ¢ p---lub{(T (E)L ¢ 1) [[line L1 1]

= b (T (E)NX)s (T (ENCN g 1 ([ g continuous ]]

= lub[(t(f)XX)]; ¢ 1 [[ definition of T 1]

= (lub[(f)]; ¢ P(X) [[ construction of lub of function-chains ]]

and thiswas done for arbitrary: X,
wlub (£); ¢ ) = Db u(E)); ¢ ¢

[Nease 3
(Induction] case 4: T = AF.Fu(1)(F)....T(F)) .
1 closed: immediate ([ thm. 2.11, induction hyp. on 7,..7 1]
T monotonic:
Let f,.f, continuous functionson P ™ | f, £,
We have V j € { 1.n} , ‘tj(fl) c Tj(fz) Lk Y monatonic, induction hyp. 11
VxeP" Vje{ln}, (tj(fl))(x) c (‘tj(fz))(x) If def. 2.23 1]

VxeP?, LIt (EINX), o (T,(EDXX)] € £[(T(F @M T (£)KX)]
[[ £, monotonic, thm. 2.9 I}
and VxeP? f[(t,(E))x),.(t,(E )R] € BN (T, (£)XX)]
f{f,cf11
VxeP", f[(t,(FXx)...(t, (£ DXX)] € £[(T(E)HX),... (T (E)XX)]
[[ ¢ transitive ]}
(f) € «fy) [[ def. 2.23, definition of 7 ]]
1 preserves lubs of function-chains:
Let (f,), . { non-empty chain of continuous functions on P ®.
We have Vje€{l.n}, ‘cj(lub £)ep= lub[‘x:j(fi)]i el ([ T continuous, induction hyp. 1]
~12:VXeP™", Vje{l.n}, (-cj(lub ()i e PX) = lub[(-cj(fi))(x)]i el
[[ construction of lub of function-chains 1]
Let xe P",arbitrary.
We have (t(lub (fi)i € I))(X) = (lub (fi)i € IX(tlan (fi)i € 1))(x)v--»('tn(1“b (fi)i € 1))(x))
[[ definition of T }}

= lub{ f;((t, (lub (f); ¢ PXX),...(T,(Aub (£); c NEN | ¢ 1 [[ construction of lub of function-chains 1}

= lub{ £(lub[(t ; (IR, ¢ - JubLTENX]; ¢ DV, 1 [[lineL211

= lub{lub[£;((T; (E)XX),-.(T(EXN]; ¢ 1}; e1 [[ f; continuous ]]

= lub{f,((T, XX, (TEDNXN]; ¢ 1 [ lub; ¢ [(lub,; . () =lub; () 11

= lub[(H(E)XX)]; ¢ 1 [[ definition of T ]]

= (lub[*(f)]; ¢ P(x) [[ construction of lub of function-chains ]}
and this was done for arbitrary X,

T(lub (£), . p = lub[t(£)]; ¢ ¢
[Mease 4
((Mhem, 2.35

Combining thm. 2.34 and thm. 2.35, we immediately get the result for Finite Depth CPOs:

Theorem 2.36: Continuous functionals on a FD-CPO
Let <P, c > be aFD-CPOQ, if 1 is afunctiond, on monotonic functions: [ P * = P ], defined by composition of
monotonic functions:[ P™ — P ] for any m € @ , and the function variable "F", then 7 is continuous.

And findly, noting that the proof of thm. 2.35 carries through to functionals defined on a sub-cpo of the set of
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monotonic functions, as long as we assume that they are closed on that sub-cpo, we get our final result:

Theorem 2.37: Continuous functionals on a FD-CPO , general version

Let <P, < > be aFD-CPO. if tisafunctiona, on any sub-cpo of the set of monotonic functions: [P*—> P ],
closed on that sub-cpo, defined by composition of monotonic functions: [ P ™ — P ] for any m € o , and the
function variable “F, then 1 is continuous.

[[HGeneralization of [Manna 74) Thm 5.1

Note that this theorem (or thm. 2.36) are not true in arbitrary CPOs, as the following ssimple counterexample
shows:
Counter-example:
Let P = w+l1, with the standard (ordinal order) <, P is a CPO.
Let g=Ax(if x=wthen1l€else0)
We have g monotonic [ [ immediate verification ]}
Let 1 =AF.g.F, tisafunctiona defined by composition of monotonic functions and the function variable “F .
Let f =Ax.i (i.e. the constant function: i), Vie o .

We have Vi € o, f; is monotonic {[ constant functions are monotonic ]]
and Vi € o,f <f_,,ie (f),. , chain {[ immediate 1]
and lub(f), . ,=Ax.0 [[ immediate verification ]]

7(lub (frii: o = Axl

Wehave View, 1(f)=Ax0
lub(®(£)); . , = Ax.0
b (£); ¢ ) # b((E)); ¢ o

[D]counlcr-examplc

2.3. Strings of a domain, and String Induction Algebra

A particular construction on domains which we have found useful in our semantics is the domain of (finite)
Strings on a domain. It is aso from these domains that we noticed the generalizations from flat domain to finite
depth domain.

As in the previous section, we study the properties of String domains independently of their application to the
semantics of synchronous circuits so as to separate the general from the particular. (This also has the advantage of
keeping the overall notation, and hence proofs, simpler.)

Definition 2.38: Strings of a partial order
Let<P,c>beaPO,P*=uU (P with the induced ordering, is a PO (digoint union of cartesian products

of aPO). We call it: Strings of P.

i€ o

Recall that when forming the digoint union we are not adding any new elements (cf thm. 2.19).

Once again, a picture helps.
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Figure 2-3: Strings on aflat domain

They key fact about the String construction is that it preserves the “niceness’ of the underlying domain, to a great
extent:

Theorem 2.39: Strings on a CPO
<P,c>isaCPO => <P* c>isaCPO.

Proof:
Immediate by thm. 2.17 and thm. 2.19.

(Dltnm. 2.30

and most importantly:

Theorem 2.40: Strings on a FD-CPO
<P,c>isaFD-CPO => <P* ,c>isaFD-CPO.

Proof:
Immediate by thm. 2.32 and thm. 2.33.

(U then. 2.40

Note however that the String construction does not preserve “pointedness’ (i.e. PCPO). In fact, we have a stronger
statement to the contrary:

Theorem 2.41: Strings do not have a least element
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Let <P,c>beaPO, Pnon-empty => <P *, > hasnoleast element.

Proof:
Assume [hl] <P, ¢ > PO, [h2] P non-empty
L et &be the empty string (€ P*)
Wehave Vx € P*,[cl)(x € € => x=£) A [c2)(e € x => x=g)

[[< is induced coordinatewise ordering]]

Let ae P ((h211
Wehave ae€ P* (string of length 1, containing the element Q)
Assume L least element of P *
then Lceandl c a

=& [[cdad Lce]]
€Eca ficall
€ = a which is a contradiction. ([c21

(Drhm, 2.4

This point was mostly made to bring out the fact that we are not studying the “usual” domain of strings under the
prefix ordering (for which € is a least element), instead we are constructing the String domain of an arbitrary PO,
under the induced ordering.

The junction with “usual” strings will now be made, but the preceding remark will still be valid for the rest of this
work.

We consider the usud (dlightly extended) string structure on P *:
<P *,¢,.l1,<, last(),abl(), 1st(),rst(), 7,4 ,.@>

Definition 2.42: String structure
o & —P*  (constructor) empty string.

e :Add:P* x P — P* , (constructor) add a character (to the right).

o Il:Length: P * > w, length of a string. (We assume the integers are included in P, or are encodable
in it, cf. [Moschovakis 71}.)
Defined by: (lel=0) A (Ixul=IxI+ 1)

o < :Prefix: P* x P* — {TJF}, prefix relation on strings.
Definedby: (x €€ <=> x=¢g¢) A (x<yu <=> x=yu v x<y)

® _Concatenate:P* x P * — P * , concatenate two strings. We overload the "." symbol since we will
identify characters and strings of length 1. We will also sometimes omit the "." al together, when no
confusion can result.
Definedby: (x.€=x) A (x.(yu)=(x.y)u, wherethe"." preceding "u" means “ Add’ )

o last(): Last: P * — P (destructor, partia) , last character of a string.
Definedby: last(xu)=u .

« abl() : All-But-Last : P * — P * (destructor, partia), al characters of a string but the last one.
Defined by: abl(xu) =x .

o Ist() : First: P * > P (derived destructor, partia), first character of a string.
Defined by: 1st(u.x) = u

o 1st(): Rest: P * = P * (derived destructor, partial), all characters of a string but the first one.
Defined by: rst(u.x) = x

« T:“Tothe power” : P x @ — P *, make a string by Adding the same character a certain number of
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time.
Defined by: u™ =uu..u "n times’, or formaly: (uT® =€) A @™+ = uT u)

« 4 :“Atindex/position” : P* x @ —> P, extract a character from a string .
Defined by: Let n=ixl, x = x{ xd,..xd_ . Wealso use { with 2 arguments to extract-substrings.

xi,.__« denotes the corresponding substring of x if i £j < n, € otherwise. (x = xil ) - The formal
(recursive) definition is messy and uninteresting.

e ©:0isto"." (add) in string theory, what X isto "+" and what Il isto " x " in number theory,
i.e.©2,u, =uu,.u, whereu, isany character expression.
Formally: (02u;=¢) A (021! u;=(©2u). u

i=1 n+1 )

We aso alow ourselves to expand this structure with addinonal (derived) operations whenever needed.
Terminology notes:

There are a few basic string operations which are well-known in the literature: [Landin 65], [Burge 75],
[Friedman-Wise 76] and [Manna-Waldinger 85] among many others. However, there are no consistent notations.
We have therefore used our own, which we have tried to keep simple, and meaningful relative to the use we will
have for them (describing synchronous system semantics).

The notation used for subscripting is taken from [Mason 86] and [Talcott 85]. Even though it is “heavier” than
simple subscripting, it allows subscripted string variables by differentiating between x, x, (strings) and xJ,,, xli 1
(characters). [Note: if no confusion can result, i.e. in a context where no subscripted string names are used, then it is
reasonable to omit the arrow.]

Theorem 2.43: Prefix
There is an equivalent definition of the Prefix relation which we will sometime use: Vx,ye P * , x <y
<=> Jze P* |y=xz .

Proof:
Immediate induction.

(Dam, 2.43

We now study various function domains on string-CPOs:

Let <P\*, c >, <P,*, C ;> be string-CPOs, it isimmediate from thm. 2.24 and thm. 2.27 that:
. P,*P1* : all functions from P,* to P* ,
o [P;* > P,*]: dl c-monotonic functions from P* to P,* ,
L (Pi*—P,* ) : allc -continuous functions from P * to P,*,
are CPOs.

There are however other classes of functions which are meaningful only in the string structure, and we are
interested in two such classes:

Definition 2.44: Length-Preserving [LP] function
Let f be afunction: P,* — P,* , fis Length-Preserving [LP] <=> Vx € P*,If(x)i=Ix| .

Definition 2.45: S-monotonic function
Let f be afunction: P;* — P,* , f is I-monotonic <=> V x,y € P;* , x Sy => f(x) < f(y) .
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Pronunciation note: ¢ -monotonic can be read “L-monotonic” (short for “less-defined-than-monotonic”). And
< -monotonic can be read “P-monotonic” (for “prefix-monotonic”).

Theorem 2.46: LP preserved by composition
Let <P *,C >, <P,* C > and <P;*, C ;> be string-CPOs. Letf: P* - Py*and g: P,* — P3* ,fand g
aelP => g.f:P*— P* isLP

Proof’:
Immediate verification.

(i, 2.46

Theorem 2.47: < -monotonic preserved by composition
Let <P,*,c >, <P,*,C,> and <P;*,C ;> be string-CPOs. Letf: P\* - P,*and g: P,* — P;*,fandg
are < -Monotonic  => g.f: P* — Py*,is |-Monotonic .

Proof:
Immediate verification.
(Nhm. 247

Both LP and I-monctonic are in some sense “natura” properties for string of Finite Depth-CPOs, as the
following theorems indicate

Theorem 2.48: LP is strongly admissible on FD-CPOs
Let<P,,c >, <P,, C ;> be FD-CPOs, " f isLP " is strongly admissible on P,*F1* .

Proof:
Assume  [bl] <P, > and <P,, ¢ > are FD-CPOs, [b2] (f)); . ; non-empty chain of LP functions from P * to P,*

We have f=Ax.lub(f(x)),  ;=1ub (f); ¢ [[ construction of lub of function-chains ]]
Let x € P*, arbitrary.
We have P,* FD-CPO [[ hl, and thm. 2.40 ]]
and (f(x)), ¢ hon-emptychain in P,* (b2 |
= Bigew|Vi2ig, f-i(x) = fio(x) = lub(f(x)); ¢ | [[ thm. 2.30]]
f(x) = f&(X)
If(x)i = 'fio(")‘
and If.io(x)l = Ixl (Cf LP b2
f(x)l = IxI
and this was done for arbitrary x,
fis LP

(Dl rom. 2.48

Theorem 2.49: I-monotonic is strongly admissible on FD-CPOs
Let <P, c >, <P,, © ,> be FD-CPOs, " f is I-monotonic " is strongly admissible on Pz“Pt' .

Proof:
Assume [hl] <P, ¢ > and <P,, ¢ ,> are FD-CPOs, [h2] (f)); | hon-empty chain of £ -monotonic functions from
P.* toP*

1 2 -
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Wehave f=Ax.lub(f;(x)); c1=1ub(f) [[ construction of lub of function-chains ] ]

Let xyeP*|[M]x<y, !
We have P,* FD-CPO [[ hl, and thm. 2.40 ]]
and  (f(x)); ¢ 1, (£(¥)); ¢ { NON-empty chainsin P,* {{h21]
Ipew|Vizziy, f-i(x) = fio(x) = lub(f;(x)); ¢ | [[ thm. 2.30 1]
and 3i e |Vizi, FHE) = £ ()= b)) ¢ ({ thm. 2.30 ]]
Let j=max(iy,i;)
Wehave f(xX)= fj(x) and f(y) = fj(y)
and f(x) < f(y) [ h3, f; <-monotonic, h2 ])
f(x) < f(y)
f is £ -monatonic
(i, 2.49

It is also obvious that if ¢, is strongly admissible on P, and ¢, is strongly admissible on P, then 6, A 6, is
strongly admissible on P.

Therefore we get:

Theorem 2.50: Function domains on Strings of FD-CPOs
Let<P|,c >, <P, c ,>be FD-CPOs, PZ*Pl n ¢, where ¢ is any conjunction of

« C -monotonic

o LP

« < -monotonic
is a CPO, in which the lub of f-unction-chains is unchanged.

Proof:
Immediate by thm. 2.22 (sub-CPOs) and thm. 2.27 (for ~-monotonic) , thm. 2.48 (for LP) , and thm. 2.49 (for
< -monatonic).

(i, 250

When trying to extend the notion of Length-Preservation to functions of arity > 1 , we find that the standard
cartesian product of string domains is inappropriate. Instead it makes sense to &fine LP on functions with
arguments al of the same length. We therefore define the following product on string domains:

Definition 2.51: String Cartesian Product

Let <P, * c >, <P,* c ,> be string-CPOs, we define their string Cartesian product to be: P * X P,* = {(x,y)
‘€ P\* x Py* | Ixl=lyl}, with the standard (induced) coordinate-wise ordering.

One way to think about this product is: P * X P,* = (P x Pz)' , up to transformations from tuples of strings
to strings of tuples and vice-versa Also, our definition is meaningful in the category of stringdomains, as it
does not refer to the domains underlying the strings.

Notation: P2=P x ... x P, ntimes. And if x denotes an element of P , then x will denote an element of P 2;
the underline, instead of the usual overline, is intended to recall that x is a tuple of elements of equal length.

We can then immediately generalize the notions of Length-Preservation, € -monotonicity and ¢ -monotonic&y to
functions: P * X ... X P * — Py*. thm. 2.50 also immediately generalizes to such functions.

For our purposes in giving semantics to synchronous circuits, we are interested in functions (of various arities) on
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P * which are ¢ -monotonic, < -monotonic and Length-Preserving and defined by recursive systems of continuous
functionals on them. We therefore develop here the String Induction Algebra of a domain P :

Definition 2.52: MLPp ,
Let <P,c>beaFD-CPO , MLPp , isthe subset of the set of functions from P * 2 to P * defined by: MLPp , =

P*P**n (c-monotonic A |-monotonic A Length-Preserving) , together with the standard (induced)
pointwise function ordering.

It is an immediate application of Thm. 2.50 that MLPp, , isaCPO, and is a “nice” sub-cpo of the set of monotonic
functions. However, by combining al 3 properties, we now get an additional property: Even if P has a least
element, P *P . * does not have a least element (because no string is less than all others according to the pointwise
ordering). However, if P has aleast element, then so does MLPP,,,, as is shown below.

Theorem 2.53: MLP, ’,’is aPCPO
Let <P, c > be a FD-PCPO MLPP’,l is a PCPO with least element: Q=Ax I Tx! and is a sub-cpo of the
set of monotonic functions: [ P ® — P ], in which the lub of function-chains is unchanged.

Proof:
Let FE MLPp, . x € P*Carbitrary,letk=1x1l.
We have F(x)=yd, ({FisLP]|
and Q(x)=LTk [ definition of Q 1]
Vie{l.kl,Lc yJ«i {[ definition of L !]]
Vie{lk),Q(xN,cF(xN,
Q(x) c F(x) [ definition of order on strings ]

and this was done for arbitrary x and F,
Q is least element

(M ram. 253

We can now construct our string induction algebra:

Theorem 2.54: MLPp Continuous String Induction Algebra

Let <P, < >be aFD-PCPO, and let (F); ¢ | be functions in MLPP’,,'_ )

Let MLPp = < (MLI”P’”)ne o F [((F)); ¢ |} > where F [(F), c { is the least set Of functionals containing:
o thefunctionds Fe=Af. Fjof foriel. (Or Afy,.. 0 - O x. Ff;®,..f, (X)) inthe generdl case)
o the identity functionals,

and closed under composition with projections, then:

MLPp is an induction agebra (cf. def. 2.15) and al functionals in F are continuous.

Proof:
Domain requirement:
We have ¥V ne ® , MLPp , is a PCPO. [[ thm. 2,53 ]]

[mdomain req.

We il have to prove that al the function& in F are closed (i.e. redly yield a function in MLPp , for some n) and
are continuous.

Closed: _
Wehave V i €l,F € MLP,,Ml . [[ hypothesis 1]



and ¢ -monotonicity, £ -monotonicity and LP are preserved by composition
[[ thm. 2.10. thm. 2.47 and thm. 2.46 ]}
Viel, Fpisclosed
and the identities and projections are closed [[ immediate ]]
their compositions are closed.

[D]closed
Continuous: (this is where we use our generalization of [Manna 74] Thm 5.1 : thm. 2.37)

We have P is a FD-PCPO [[ hypothesis ]]
and MLPP’,,'_ sub-cpoof [P ™% — P ] {[ thm. 2,53 ]]
and Viel,F ¢ -monotonic i FieMLP,,’". 11
and Vi € I, F. closed {{above 1]l

Viel, F. continuous! {[ thm. 2.37 ]]
and the identities and projections are continuous ([ immediate 1]

their compositions are continuous. [[ thm. 2.11 1}

[[]]continous

(Duma. 54
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3. Semantics of Synchronous Circuits

3.1. Informal view

The key to our work is to understand what a synchronous circuit is, as a mathematical object. The goa of this
section is to guide you through the evolution of thoughts which led to the final product, and informally convince you
of its appropriateness.

The final product itself is described in exacting precision in the rest of this chapter. In this first section, we have
tried to maximize simplicity, and minimize the use of mathematics... We are aso assuming no prior knowledge of
history-functional semantics such as [Kahn 74], [Johnson 84] and [Kloos 87] . More advanced readers should bear
with me, or simply skip this informal section.

3.1.1. First basic intuition (circuit as a black box)

Consider as a start a combinational circuit, i.e. a circuit with no memory (no registers and no feedback loops).
Assume that the values which can appear on the wire are binary digits (True and False), then we can identify the
circuit with a boolean function. This is commonly done in al circuit design textbooks. In fact we can easily move
from binary digits to natural numbers for example, and identify more general combinational circuits with functions
on these numbers.

Abstracting dightly, consider that the values on the wires belong to an arbitrary set: £ , we can identify a
combinationa circuit with a function from X to .

Once we introduce memory (or state) in the forms of feedback loops, or registers, things are not so simple. For
example, consider a running sum sequential circuit (which accumulates the sum of all the inputs it has seen). It is
pictured below, with the square representing a register (initialized with 0) and the circle representing an adder.

Figure 3-1: Running Sum Circuit

sum >

e

For this example, we have X = the set of natura numbers. Assume the first number we present is 3, the output is
3. The next number we present is 5, the output is now 8. The next number we present is 5 again, the output is now
13. Clearly, we can no longer identify this circuit as a function on the natura numbers, since it produced a different
answer on the same input number.

The solution to this problem is to consider the sequence of al inputs, and the sequence of outputs; in our case:
3.5.5 — 3.8.13 . If we ever replay the same sequence of inputs (from the start) then we will get the same sequence
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of outputs.

In other words, a sequentia circuit can be identified with a function from se~uences of values in Z to sequences of
values in X, These sequences being finite, we refer to them as “strings’, and the set of stringson X is caled: Z* .

Note that a combinationa circuit identified with a function f: ¥ — X can be identified in this context as the
“memory-less’ function: £* which to the input: a.b.c assigns the output: f(a).f(b).f(c) . (In comparison, the
function which corresponds to our register: R, assigns: 0.a.b to the input string: a.b.c)

Therefore our conclusion at this point is that any synchronous circuit can be identified with a function from Z* to
Z* which we will call a string-function.

However, the string-functions associated with synchronous circuits have two additional (and fundamental)

properties:
« Length-Preserving: the length of their output string is always equal to the length of their input string.
This is immediate since we find out what our string-function is by looking at al the wires a the end of
each clock period say, and tacking these new vaues onto the history of previous ones for each wire.

« Monotonic: assume that on the input string X, the circuit returned the output string y . Now, assume that
we add one more value u to X, making it the string: xu , then the new output string will aready start
with y, and the circuit will tack on a new value v to y, making the output: yv . The circuit can not “go
back in time”’, change some of the results it had output on input x, and produce a string which does not
start with y . This property is exactly monotonicity with respect to the prefix relation: < on strings.

So, the essence of our semantics is. a synchronous CiI'CUit can be identified with a |-Monotonic, Length-

Preserving string-function.
Abbreviation: we temporarily define MLP=" < -Monotonic and Length-Preserving”.

There are two technicalities we have ignored so far, and which we mention for completeness here:

« If the circuit has many input lines, then the corresponding string-function takes as argument a tuple of
strings, al of the same length (for the same reason which led us to the conclusion that the string-

function was length-preserving) .

-« If the circuit has many output lines, then each output line is identified with an MLP string-function, and
the circuit as a whole is identified with a tuple of such functions.

3.1.2. Second basic intuition (circuit as a system/networ k)
We now take a look a how our circuits are built. As far as we are concerned here, synchronous circuits are made

from two kinds of elements:
« Combinational elements. elements which do not have memory, or state, and which we have associated
above with f* string-functions.

« Registers/clocked storage elements: elements which hold values for one clock period (after which they
latch in the input presented to them), and which we have associated above with the R, string-function.

(The parameter: g, is the initid value of the register, in the example above it was 0.)
Note that we use the word “register” in a very narrow sense, which is common in the formal hardware specification

literature [Leiserson-Saxe 83], [Johnson 84] and [Hunt 85].
Circuits are then built by connecting inputs and outputs of the above components in an ailmost arbitrary manner.

We say “amost” because for a synchronous circuit, every loop in the connection graph should contain at least one
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register. Otherwise, we get problems of asynchronous latching, oscillations, etc.. i.e. not a correct synchronous
circuit; see [Mano 76] and [Mead-Conway 80] for more details. For our semantics, this restriction: "Every-Loop-is-
Clocked” [ELC] is not necessary (and we will come back to it in section 3.4), but at this point it is easier to keep
thinking in terms of such “good” circuits.

The question is, how do we give meaning (i.e. semantics) to the network, knowing what the individua elements
stand for?

If for each element in the circuit we write an equation relating the output to the input(s), then we obtain a new
view of our circuit as a system of equations, If there are loops in the circuit, then the system will be recursive.

There is a standard way in semantics to give meaning to a recursive definition, and that is to consider it as an
equation in a certain (appropriate) domain, and take a certain (appropriate) solution of this equation as the object
being defined by the recursive definition.

This is exactly what we shall do!

Our domain is basically the set strings on Z, and the MLP functions on it. Each node is aready identified with a
certain MLP function (f* or R,) . A circuit, or system of equations, will be identified with some MLP function
which solves that system.

A technicality which we have ignored so far, is that the “appropriate” domains we have mentioned above are
ordered domains, i.e. there is a notion of an object being “lessdefined-than” another. This relation will be denoted
by: € . In our case this notion of ¢ is very simplee We add to £ one element: ? , which should be read as
“unknown”. In the ¢ order, ? is ¢ al eements of £ , and that's it. The new set is caled: £, . We then smply
extend this order relation to strings (by comparing them one position a a time), and to functions on these strings
(also by comparing them point by point). One basic concept of computability in these domains is that the
computable functions respect the ¢ order, i.e. are € -Monotonic.

Pronunciation note: " ¢ -monotonic” can be read “L-monotonic” (short for “less-defined-than-monotonic”); and
< -monotonic can be read “P-monotonic” (for “ prefix-monotonic”).

We aso define the following (permanent) abbreviations to ease everybody’s job:
Monotonic= " ¢ -monoctonic and £ -monotonic”; and
MLP= “Monotonic and Length-Preserving”.

So, in conclusion, a synchronous circuit will be identified with an MLP string-function, or a tuple of such
functions if there are many output lines.

3.1.3. Extensional versus Intensional view of the world

There is one last subtlety which comes into play in our semantics of synchronous circuits. so far we have dways
said “acircuit is identified with acertain function”. What we have really argued however is that “acircuit computes
a certain function”.

So in other words, we have associated a circuit with what it computes (a certain function). In doing so, we have
abstracted away al information about how it computes that function. What we have done is to define an extensional
semantics of synchronous circuits.

In order to retain more information in our theory, we actudly define an intensional semantics which identifies a
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circuit with the functional defined by the system of equations, rather than simply its solution. We can till recover
the extensional semantics simply by taking the least fixed point of that functiona, and so we end up defining both
the intensional and extensional semantics.

This concludes the vague view of things. The remaining sections of this chapter, together with the mathematical
preliminaries of chapter 2, are intended to dot all thei’s.

3.2. Formal Syntax

Formally, we have one basic syntactic object: "SYnchronous System Description” or “SYSD”. These are
essentially recursive systems of equations, together with a list of which defined functions are the designated output.
They correspond very closdy to engineer's “net lists’. We will define a set of such syntactic objects, i.e. a

language: Lgp, .

Not e that syntactic entitieswi I | be writtenin this font.

Definition 3.1: Lgy,
¢ L. = Countable alphabet with elements denoted by a, a4, a, . . .

'l = countable ranked alphabet (elements have arity) with elementsdenoted by f , f ,, f , .

char-fun

' Lstring-fun ={R,|lae Ly, }v{f* |f €Ly, sn] withelementsdenotedbyF,F,,F, ..

char

¥ Linput-line-var = Countable alphabet with elements denoted by X, x,, %, . . .

) 'Lnon-input-line-var
® sD={(in, sys, out) |
i n =tupleof input-line-vars: (x,,..,X,,), also denoted as x for short.
sys =system of equations: Y, (x) « F, (.. rEgre) 5 e (LarityofF ) ,fori € {1..n}
1
with gi € Linofun qnd Ej.: some input x, Or non-input expression Y, (x) .
out isatuple Of non-input-line-vars among Y,, .., Y,. }
Elements of Lgp, are &noted by S, S,, 5, . ..

= countable alphabet with elementsdenoted by v , ¥, , ¥, ...2,24,2,...

As syntactic sugar, we will sometimes omit the input variables (x,, . . , %) or x asargumentsfor Y ;’s in the
system, so that Y5 « £* (Y,,Y,,x,) Will be alega equation. Note that in this sugared form, our syntax is
amost identical to the one used in [Kloos 87} in its “applicative” form. Our reason for not using the sugared form as
the primary syntax is that we can view our syntactic objects as restricted expressions in a more genera string
expression language, and under that angle, we want our expressions to be well-typed.

One wesakness of Lgy, as defined isthat it is “fla”. It does not allow user-defined string-functions (sub-systems).
We did this because treating such objects formally brings semantic complications which are orthogonal to the
problem a hand: semantics of synchronous concurrent systems. Informally, we treat them as follows:

« Non-recursive string-function definitions, i.e. macros, are simply expanded out.
« Recursive gring-function definitions are disallowed They correspond to non-directly implementable
specifications; they are studied in [Johnson 84]. Alternatively they define networks which reconfigure

themselves (expand and contract) during execution; see [Glasgow-MacEwen 87] for this view in the
context of operator nets.

Ly, is a fine language for mathematical and computer treatment. For human interaction however, a graphical
language is more appropriate. We will therefore define a second language: LSDanh , of sysd’'s in graphical form.
LSDG“I,h is isomorphic to Lgp, and we will give a (trivial) trandation function.
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Definition 3.2: LgpGea b
A sysd is a multi-graph M .E), where vertices are of 2 types:

« VCombinational: represented with a circle, and a char-function letter per out-edge. They have n
in-degree, and m out-degree, withnm > 1 .

« VRegister: represented with a square, and a character |etter. They have in-degree 2, and out-degree 1.

and where edges have at most 1 From-node, and at least a From-node or a To-node (and usually both). Edges
with no From-node are called “Input edges’. Some non-input edges are designated as “ Output edges’.

At this point, an example should help:
Figure 3-2: Example: Running Sum/Avg Sysd

Y running-sum

Y1 Y running-avg
0 D 1

Or insugared Lgy,

running-sum  sum* (x’Y2)
2 « RO(Yrunning—sum xck)

& div* (Yrunm‘.ng-sum’ Ycounter)
counter < Ry (Yl'xck)

Y, &« inc* (Y

running-avg

< <14 <

countor)

In the future, and as commonly done in synchronous circuit design we will often omit the 2nd input of Registers
(the clock input: x, ) from graphical or sugared sysd's.

Note: As they stand., elements of LSDanh are not “classical” mathematical graphs, since an edge here is not just a
pair of vertices, but instead, a pair: (0 or 1 vertex,0 or 1 or many vertices). We could reduce these objects to
standard graphs simply by introducing additional (“duplicate”) vertices, but there is no point in doing so, since we
only intend L_(,-Dc.n,aph as a front-end (auxihary) language, and not as a tool for meta-proofs.

Definition 3.3: Translation: Lgpgraon = Lsp

Let the input edges be: x, , . . , xg, and the non-input edges ber v,, .., Y_. Define:
i n =tuple of input edges.
sys =

« For each node in VCombinational, for each out-going edge (out-edge: Y, char-function letter: f , ), add
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theequation: ¥, « £,*(../Ey,..), where .., E
Y, ’s).

4y - are the inopming edges (either x,'s or

« For each nodein VRegisters (out-edge: v, . character letter: a) , add theequation: ¥, « R, (E ., E,),
where E, and E, are the incoming edges.

out = tuple of designated output edges.

3.3. Denotational Semantics

The mathematical foundation of our denotational semantics is a String Induction Algebra, of string-functions, and
string-functionals. A sysd will be (compositionally) mapped, by [[ ]} , into a string-functional, or more precisdy, a
system of functionals. This is in the spirit of [Talcott 85] and [Moschovakis 83], and preserves intensional
information about the sysd - how it computes - as well as its extensional denotation - what it computes.

Since however, for many of our purposes, we are interested in the extensional denotation of the system, we also
define an extensional denotation function, p, which maps a sysd into the tuple of string-functions which it computes,
and which is the least fixed point of the system of functionals.

Construction of the String Induction Algebra:

We have a countable alphabet: I , elements of which are denoted by: a b, ¢, a, b, ¢,, ... for constants, and u, v,
u, vy, .. for variables. Now we lift the alphabet Z, with least element "?": £, , and get the corresponding ¢ (flat)
order, and we take Strings of Z,: Z,* , with the induced ¢ order. Elements of Z,* are denoted by: X, y, z, . . . for
variables, and €: the empty string, as the only constant.

For reasons explained in 3.1, we are interested in functions on X,* which are ¢ -monotonic, £ -monotonic and
Length-Preserving, and which we can define recursively from the following functions:

Definition 3.4: Primitive string-functions
s R, : (27*)3 — I,* defined by: R,(e,€) =¢ A R,(xux,.v) = &, for ae £ . We cal R, a “register”
string-function.
o I (ZM)2 o L* defined by: f*(e...,e)=€ A P*(x, ..., xu ) = (x,..x ) . f(u,,..,u ), forfe
[Z," > L, ]. Wecall f* a“combinational” string-function. It is simply the homomorphic extension of
a c-monotonic function on Z, to strings (of equal length).

Note about Registers: informally, we had treated R, as a unary function. Formally, we ve defined it as a binary
function, which ignores its 2nd argument! This is only a semantic subtlety, the reason for it is clear when you
consider what happens if you fuse the output of a register with its “main” input. The results of this operation is a
perfectly meaningful synchronous circuit, which keeps outputting the same character, at every clock tick! In other
words, the 2nd argument (the clock) is not entirely ignored. It's just that all its information (its length) is also given
by the main input, as long as it exists. Whenever the clock input remains the sole input to the circuit, then it
becomes semantically significant.

Theorem 3.5: R, and f* are MLP
(Recall that MLP= " ¢ -monotonic and < -monotonic and Length-Preserving”.)

Proof:
Immediate verification.

(Dum3 s
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Therefore we can now ingtantiate the main results of chapter 2, and get the keystone of our denotational
semantics. the string induction algebra.

Theorem 3.6: MLPy Continuous Induction Algebra
The MLP functions on Z,*, and functionals defined from R_’s and P's , form a continuous induction algebra,

which we cal: MLPy.

Proof’
Wehave Z,isafla CPO [[ by construction ]]
Z,isa FD-CPO [[ thm. 2.31 1]
and I, has a least element [[ by construction 1]
Z,isaFD-PCPO

The result is now an immediate instantiation of thm. 3.5 and thm. 2.54 where we have dightly abused the
terminology in exchange for simplicity...

(D rhem3. 6

We can now define our (intensional) denotational semantics:

Definition 3.7: Intensional Denotational Semantics: f 1 _
Lets eLgy,s =(in, sys, out) withnon-inputlinesY,, ie{l..n}, andinput lines X;, J € { I..m):
o Lgpy:Isl=(n Isys],out);[sys ] wil becaled 15 . T5 = (T4,..,T,) where
T = MY Y ) LMX ). LR ]](..,Ej,..)]for equation: Y, &« F (.. Egr.)

' lering-fun: [[Ra]]=R|[;]] and[£x]=0£1* .
¥ Lparfun [ f ] = someoperationonZ, naturally extended to Z, .

¢ Lo [ 2] =somecharacterin X

Formally, our semantics is parametrized by an algebra £ with some fixed set of constants and operations.
And the (derived) extensional semantics:

Definition 3.8: Extensional Denotational Semantics: p

Letse Lg,,S=(in,sys,out) and [ sys ] =14 = (1,,..,7,) . We define the extensional semantics of S as
the least fixed point of its intensional semantics, i.e. a tuple of string-functions, from which we keep only the
selected output lines: u(S) = LFP(T},...T,) o

To justify this definition: we have MLPy is a continuous induction algebra (thm. 3.6) therefore (thm. 2.16), the
system (T,); ¢ (1) has aLeest Fixed Point in MLPg: lub{(t},.., 1n)l(Q,..,Q)]j co -(RecallthaQ=%ix.? NELE

Just to add a touch of concreteness to these definitions, we continue with the example presented in section 3.2, in
figure 3-2.

and Y then its extensional semantics is a pair of

Assuming we' ve selected the lines: Ymming_mm
string-functions (where the characters are numbers):

(Axxy . @i:'] (Eji=1 xij) yAX Xy - Gii‘{ ((Zji___l xi«j) /1)).

running-avg'

Its intensional semantics is the system of functionals which would be described exactly like the sysd in recursive
form (except for the font).
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3.4. Mathematical characterization of “ Every-L oop-is-Clocked”

It is one of the most basic facts of synchronous circuit design that some “building rule’ has to be observed: every
loop in the circuit should contain a clocked storage element, or more tersely: Every Loop is Clocked [ELC] . Our
semantics gives a meaning (assigns suing-functions) to al circuits, including those with “illegal” connections.
Intuitively however, there is a distinction between “good” synchronous circuits and others.

The god of this section is to formalize this intuition, i.e. find a mathematical property enjoyed by the “lega”
circuits, and prove that the extensional semantics of ELC sysds have that property.

In order to carry this out precisely, we need to define several simple concepts about synchronous circuits:

Definition 3.9: Predecessor
Let Sbe asysd, With non-input lines: Y;,i €{1..n}, Y, isapredecessor Of Y; <=> Y, « F, (...,Y,...),
i.e. Y, appears as one of the arguments for Y.

Definition 3.10: Path
Let Sbe asysd. A path is a sequence P = (Zl,..,ZP) such that Z% are non-input linesin S and Zj isa

predecessor of Zj Vije{l.p-1}.

+1

We denote the set of Paths of a sysd s by: Paths(s) .

Definition 3.11: Loop
Let P = (Z,,..Z) € Pathg(S), Loop(P) <=> Z, = Z,

Definition 3.12: Register-line, Combinational-line
Let S be asysd, with non-input lines: Y; , and equations: Y; « F,(...)i € {1.n},

« Y,isaRegister-line <=> F,=R,, for somea.

R £ isa Combinationa-line <=> Fi=t"‘, for somef .

Definition 3.13: Path is Clocked
Let P=(Zl....ZP) € Paths(S) , Clocked(P) <=> 3j € {1..p} | ZjisaRegister-l'me.

- Note: the set of al non-clocked paths is the set of all combinationa paths through the sysd. It could be totally
ordered by appropriately defined weights (delays) on combinational nodes. Its max weight element would then be
the “critical path”.

Definition 3.14: Every-Loop-is-Clocked [ELC]
Let s be a sysd. ELC( S) <=> V P € Paths(S) , Loop(P) => Clocked(P) .

The fact which is informaly known in the engineering community, but which | have never seen formally
mentioned in any form in the “theoretical” literature is then:

Theorem 3.15: ELC => Total on X*
Let Sheasysd, ELC(s) => p(S)istota on I*.
And more generally: ELC(s) => LFP(tg)istotal on I£*, i.e. the results applies to all the lines of the circuit,

not just the ones selected for output.

Important note: all functions we've dealt with so far were "total" functions, but on £,* . The additional property
of being total on Z* means that if the input isin Z* (i.e. has no ? in it) then so does the output. This is not enjoyed in
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genera by arbitrary functions on Z,* .

The proof rests on two observations about iterations of Kleene's agorithm in MLPy . “Kleen€'s agorithm” is
simply the constructive method used to reach the Least Fixed Point of a continuous functiona in Kleene's theorem
(thm. 2.14). as the least upper bound of a chain built by iterating the functional starting with the least element of the
PCPO.

Informally the proof goes as follows. On any sysd, for an input € Z* (i.e. with no ?in it):

« At each Kleene iteration (applied to the input), all values (on all lines) have a particular shape: some
“real” (non-?) characters, followed by some ?’s , and each iteration “pushes’ the ?’s a little further to the
right (or leaves the value unchanged).

« If the agorithm stabilizes with some line still having ?’s in it, then we can “climb back” from that line
and extract a loop of combinational-lines (i.e. a non-clocked loop).

More precisely:

Definition 3.16: K-view
LetS = (in, sys, out) be an arbitrary Sysd, x an arbitrary input. Let T = sys1 =Ty, T, -

Define KJ = (1,,..1, ¥(Q,...Q)x) = (K!,,..KJ ). Figuratively, Ki is the “view” of the values on all the lines of s,
after the j'tb iteration of Kleene's algorithm. For example, KO = (7T, 2Ty |

The first observation is expressed in the following lemma:

Theorem 3.17: K-view shape
Let s € Ly, , with non-input lines Y,, i € {1..n} andminputlines. Letx € Z*)2,Vj € ©,Vi € {1.n},

3pi € (0.1} | K = ¢l g 7Ty with el o€ I*  ie informally: KJ, = Cl-.cp;’;"??..? with cs # 2 .
Proof:

Assume [h1] x € (Z*)™. We induct on j (i.e. on Kleene iterations) with predicate:

Vie {l.n},3 pj.i € {0.ixl} | Kji = Cil'-PjJ . ?’T‘Iy-p)_.i

Base case: immediate [[take py;=0,Vill]
((Mhase case

Induction step: (assume ok for j). Let i arbitrary € {1..n}

If Y, is aregister-line: Y, «~ R ,(Y,) , then:
We have Ki*!, = a Ki|d, ., [[def. Kleene’s algorithm]]
K+ =a. Cil.‘%- TP, 1 ([ induction hyp., ingtantiating general i to k 1]
i.e. we have added a non-? character on the left, and chopped off a ? (if any) from the right.
Ki*1, is “of the right shape’ A Pje1,i = If Py = Ixl then Ixl else L4p; ¢

If Y, « R,(x,), then:
Wehave Ki*!' =a.xd [[def. Kleene's agorithm]]
there are no ?in Ki+l.- [[ x, € Z* by hl, a# ? by definition, 3.7 1]
Ki*1,is “of the right shape” A p,; = Ix

If Y; is a combinational-line: Y, « £*(.,Y, or x,,..), then:
We have ..Ki,,..are “ Of the right shape” ([ induction hyp. 1]
and all x,'s have no ?in them [[hypothesis hl 1]
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and  KI*! = (K or x,,..) [ [def. Kleene ’s agorithm]]

and f isanaturally extended function ; (Z*)2 —» Z [[ by definition, 3.7 ]]
Consider any position: pose { 1..Ixl) :

We have Ki*ly  =f (LKL orxed o) [[def. f*, 3.4])

and xd,,, # ? therefore:
if for all predecessors, Kikipos 2 ?2then KIPLL =2
if for some predecessor, Kikipos = ? then Kj”ii;s =?
Ki*l is “of the right shape’ A pj,; = min{ p; , Y, predecessors of Y; } or Ix! if all the arguments are
input-lines.
(] induction Step
(3. 17

The second observation becomes the proof (by contradiction) of the ELC theorem:
Proof:

Let s e Lgp , with non-input lines Y;, i € { I..n) and m input lines.
Assume :

(bl]x € (%)=

M2]3j € o | KI*' =KJ, i.e the dgorithm is stable at the 'th iteration.
h3] 3 iy € { 1.0} | Py, <'xl, i.e thereis sill a least one ?in Kjl-o.

We now extract a predecessor of Yio which aso has some ? l€ft in it:

if Yio is a register-ling, then its argument can not be an input line because inputs are assumed to have no ? in them
and hence Ko would have no ?in it, V j >0 .

Y. «R(Y)
) By
W have Pieti, =if p”=|§| then Ix! else l+pi'i1 [[ proof of Shape lemmal]
and p..;: = P, [[ hypothesis h2 1]
j+1Lig Jol _
and pj; < [{ hypothesis h3 1]

pj.j < 'xl mainly, and also: p; ; > p;

if Y. is a combinational-line: Yio «— f* (..,Yk or xk,..) . Again, because inputs have no ? in them and Ko

Contains some ? , a least some arguments must be non-input lines.

Pjeri, = min { p;; , Y, predecessors of Y;_ } [[ proof of Shape lemma ]]
Let i, be some predecessor yielding the minimum p,
then Pii, = Pjslig _
and pj, L =Pii [[ hypothesis h2 1]

, Ao )
and p;; C Ixl ([ hypothesis h3 1]
0
pj’.1< IxI mainly, and also: pj,i1= Pidy

By this process we've extracted a predecessor of Y; :'Y; such that p; ;, < Ixl, which was the hypothesis we had
1
on i, therefore we can reiterate this process.

Remark: From the construction above we also get:
[r]] in either case, 94 ; 2 pj'io
(12 p;; =pj;, <=> Y, is a combinationd-line.

We now build a path by starting with P = (Y,), and:
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o If Yil does not aready appear in P, we add it to P, and reiterate. Since there are finitely many linesin S,
we must eventually hit the other case:

« If'Y, does appear in P, we add it to P and stop: we have now obtained a path which contains a loop!
1
More precisely, at the end of this (finite) process we have: P = (YiO.Yi . YLY LY ) for some g Extract the
1 +1
loop L = (Y,.Y, .Y,). e
q gl q

From [rl], we know that the p's are weakly increasing along L. And they must be equal at both ends (because L is
a loop), therefore they are constant along L. From [r2], the p’s can only be constant if the lines are combinational-
lines.
L isaloop of combinationa-lines in the sysd S

Therefore, the contrapositive is that if S has no combinational loops, i.e. ELC(S), and if the input x has no ?in i,
and if Kleen€'s agorithm terminates at the j’th iteration then:
Vi e{l.n}p=Ixl, ieKjeI*
and KJ = LFP(15)(X) [[ by def. of K-view, and Kleene's thm. ]]
LFP(t )(x) € (E*)3

(Dhma. 15

3.5. Operational semantics and Equivalence with (extensional) Denotational
semantics

An operational semantics is a different way to assign meaning to a circuit with a more “dynamic” or algorithmic
flavor than the denotational semantics. It usually refers to concepts such as state and transition steps, and iterativel
computes the outputs from the inputs and the circuit. This is in contrast to the (extensional) denotationa semantics
which are considered more “static”, just stating what the outputs should be (least fixed points of a system of
equations) without explicitely constructing them. This however, is only a question of taste since Kleene's theorem
for reaching the LFP is constructive and easily implementable.

Proving the equivalence of an operational semantics/algorithm and the (extensional) denotational semantics can
be seen under two angles:
e as an additional justification for the denotational semantics, if the operational semantics is "intuitively
right”,
e or as a proof of correctness of the algorithm, if one believes first in the denotational aspect of the
computation.

In this work, our goal is the first angle. We therefore have to pick an operational semantics which is as
*“intuitively right” as possible to people who would be skeptical of our denotational semantics. To that end, we will
give two operational semantics, both based on states, and character by character operation, but with a dlight
distinction:
o The 1st one uses a “big” state: the history of al values seen on all lines, and is therefore a little
“abstract”. We will refer to it as our “operational semantics’.

« The 2nd one uses a more practical state; the current value held in al registers, and is essentialy the
simplest simulation algorithm for synchronous circuits [Russell-Kinniment-Chester-McLauchlan 85],
and hence, quite “concrete”. We will refer to it as our "simulation semantics’.

And we will prove equivaence with the (extensional) denotational semantics for both of them.

Definition 3.18: Informal Operational Semantics
For a given ELC circuit S with non-input lines Y, i € {1..n}, and input lines xj,j € {1.m}, we define the
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state s = (sy.s, ) to be the history of all characters seen on each line.

We define a “next-output” function 85 which takes the state ( $y»S,) and an input character (for each input line)
and returns an output character (for each non-input line) as follows:
 Casel Register-line Y, «- R (Y,) : Return the LAST character which appeared on Y, so far, because
that's the character which is currently being held in the register. We can get that character from the
state: sy . If there was none, i.e. we are in the initial condition, then return “a’.

If the argument is an input line, lookup the value in s, instead of sy.

» Case: Combinational-line Y; « f*(..,Y,,..) : Recursively compute the next-output for the predecessor

lines and apply f to them.
If some argument is an input line, then take the current input character for that line.

We aso define a “next-state” function yg which simply tacks on the new character produced by 8 to the
current state. (And for the input part of the state, tacks on the new input values.)

Then we extend both of these functions to handle strings of inputs by iterating the character by character
functions, while starting in the initial, empty, state. This yields the “complete-output” function As and the

“final-state” function Iy

Pictorialy, the set-up looks like this:
Figure 3-3: Operational Semantics

RN M H : || Blw =Gy
n ..
(1 ..
R HHE : |
-m . :: [ cher.
Notes:

« The function 8, is recursive in an unusual way in the combinational case: it calls itself on al the
predecessors of the current line. But since we assume that all loops are clocked (ELC circuit) then these
recursive cals will eventually hit a Register-line or an input-line and terminate. We will justify this
formally below.

« The 2nd input to "R," equations was not mentioned because the operational semantics ignores it. (The
clock beat is in some sense hardwired in the string recursion.) More precisely, the equivalence theorem
is true no matter what line is plugged into the 2nd argument of Registers. However the operational
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model matches the reality of physical registers only if x, is indeed connected to their clock pin (and if
other physical considerations such as timing, electrical issues, etc... are also correct).

« To lighten up our notations the S subscript will be omitted from here on. Also, we will make use of an
“or respectively” notation, to express definitions which are very similar in two symmetric cases
(argument is a non-input-line, or input-line). This will be clear with the examples below.

Definition 3.19: Formal Operational Semantics
Let S€ Lgp, . with non-input lines Y;, i € { l..n} and input lines xj,j € { l.m}, and ELC(S) .
Letsy € (Z,*)2,s, € (Z,*)2,x € (T,")R,ue (T)2,ve Z)=.

Define &(sy.s,.v) € (Z,)2 by: for i € {1.n},
o ifY; & R (Y, or x,) then &(sy,s,.v), = if SY crx, = € then aese last(sYk or S"x)

o ifY, e £*(Y, o x,,..) then 8(sy,s,.v); = f(..8(sy.S,, V), OF Vy...)
Define vy (sy.s,.v) = ( Sy-O(sy.s,.¥), S,-V)
And the string-extended functions are defined by recursion on the input string:
A(g) = £ and A(x.u) = A(x) . §(I'(x),u)
I-(g) = £.€ and I'(x.u) =y (T(x).u)

It should be obvious from the state set-up (or the defining equations) that the “complete output” and the "final
state” are essentially the same, and that therefore the defining equation for A can be simplified, by replacing I" by A .
More precisaly:

Theorem 3.20: A simplification
Vxin(Z,*)2,ue (Z)®, I(x)=(A®.x) andtherefore A(x.u) = Ax) . 5(A(x),x,u)

The first equality is proved by a simple structural induction on x ; the second is then a trivial substitution into the
definition of A.

Proof:
Case g:
We have A(g) = ¢ [[ def. 3.19 1]
and I'(e) = ¢ [[ def. 3.19 7]
I'(e) = (Ae).)
[0
Case x.u:
-Wehave I'(x.u)=7v(I(x)u) [[ def. 3.19, expanding T ]}
and I'(x)=(Ax).x) [[ induction hypothesis ]]
I(xw) =y (A(x).x,0)
I(x.u) = ( A(x).8(A(x),x.u) , x.u) ([ def. 3.19 , expanding y ]]
I(x.w) = (AX).83(T(x).u) , x.u) ([ smplifying A(x).x w/ induction hyp. ]]
and A(x.u) = A(x).0(T(x),u) [[ def. 3.19, expanding A 1]
Mx.u) = (A(x.w), xu)
[0,

(Mam.3.20
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Remark: Totality of the functions 8,y, 4 I'

. A, T and y are primitive recursive in 6; i.e. assuming & is total, their totality is simply a structural
induction on x (i.e. well-founded induction on the < (prefix) relation in Z,* .

« & is more unusuad: it recurses on its “ling’ argument (noted as a subscript) in the Combinationa line
case. |.e it cals itself back on the predecessor lines of the current combinationa line.
This corresponds to well-founded induction on the predecessor ordering of the circuit “cut” at each
Register, i.e. where all Register-lines are considered as sources together with the input lines. Clearly if
the circuit is ELC, then all loops have at least a Register-line, and when these loops are “cut” at the

Register, the resulting directed graph is acyclic, and hence the “ R-cut-predecessor” relation is well-
founded.

Therefore the proof of totality for & is simply a well-founded induction with the R-cut-predecessor
relation on its line argument.

The main reason for al this set-up is of course:

Theorem 3.21: Operational-Denotational Equivalence
Lets=(in, sys, out ) be an ELCsysd(withminputs), wehave: V x € (¥, A(X),,, = H(S)X).

Or in other words: for al “true’” synchronous circuits and inputs, the operational and denotational semantics
agree.

The key idea of the proof is that the “complete-output” function A is a fixed point of T4 (the functional system
denoted by S) , and also of course that it is in the right domain: MLPy. The inequality p(.) < A(..) is then an
immediate consequence of the fact that any fixed point is at least as defined as the least fixed point. The
EL & characterization of the previous section gives us that for an ELC circuit and input with no ? in it, the
denotational semantics returns strings with no ? in them, i.e. maximal strings under < , and this yields the equality.

Proof:
Let s bean ELC sysd with lines Y;,i € {l..n} andinputlinesxj,j € {l.m}.

We want to prove: MLP(A) A 1tg (A) = A, which is equivalent to the conjunction of:
[LPEVxe (@2 1 AX) I =Ix1
[ 1-Mon]: V xx € ()2, x <x => A®® £ ARX)
[c:Monl: Vxx' € E"Z,xcx’ = A®R) ¢ AKX)
[Fixed-Point]: V x € (£,*)2 , Vi € (1.0}, [ 7,(A) ] (x) = A(x), , Where the left-hand-side is smply the expansion
of the Y; definition, substituting: A(x), for: Y, (x) .

{LP] is clear from the definition of A, since for empty input we return the empty string, and for each additional
input character, we concatenate one extra character. Formally, [LP] is a trivial (and hence skipped) structural
induction on x .

(e

[I -Mon] is similarly easy, since to compute A(x.u) we take A(x) and append “something” (a character). Therefore
A(x) € A(x.u). Andsince x S X' <=> 3z | x'=X.z, atrivia structurd induction on z yields [I -Mon] as
oliginaly stated.

(0] <-Mon
For [c-Mon] we first prove that § is c-Monotonic (in its string arguments), which requires a well-founded

induction on the R-cut-predecessor relation on the line argument, corresponding to 6's recursive definition. Once
this is done we can prove that A is ¢ -Monotonic by a simple structural induction on X .
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& 1s c-Monotonic:
Let yy € (Z")2, xx" € (Z,M2, vv' e (T)T .
Assume y Cc y' A xcx A vy
Let i € { l..n} arhbitrary,

If Y, is a register-line: Y; « R (Y,) then:

Wehave 8(y.x.v), =if y, = € then aelse last(y, ) [[ def. §,3.19 1]

and  §(y’.x',v'); = if ¥, = € then aelse last(y’}) [[ def. 8,3.197]

and y =e<=>y, =¢ [[ycy hyp. and def. ¢, 2.38 }]

and aga [ def. ¢ ,2.381]]

and last(y,) c last(y’,) ({l ycy hyp. and last() ¢ -Monoctonic 1]

d(y.xv), € 8y XY,

If Y, is aregister-line: Y; « R, (x,) then:
exactly the same reasoning as above with x instead of y yields:

S.x.); € 3 XY
If Y, is a combinational-line: Y; ¢ f*(..,Y, or x,..) then:
We have 8(y.x,v), = f(...8(y.x,¥), Or Vy... ) [[ def. d,3.19]]
and &y x,v'); = f(..8Q X ¥ ) or Vy..) ([ def. 3,3.19]]
and 3(y.x,v) < O XV [linduction hyp.: K <pg ot predecessor 111
and v, ¢ v ([vecy hyp il
and f ~-Monotonic [[ def. of the meaning of a Sysd, 3.7 1]

(.83 X' V), o Vi) € f(.8(Q X ¥, or Vi)
S.x.v); € 8@ XY
(0l 6 < -Monotonic
Now we prove [ < -Mon ] by structural induction on x :

Case €: Let x’ arbitrary | x € x’,
Wehave ¢ cx’ => g=X [[ def. = ,2.38 1]
and e=x" => A(g) = A(Xx) = A(g) ¢ AX)

(0] ¢ Mong

Case (x.u): Let x".n" arbitrary | x.u € x' .’ ,
note: xucy =>lxu =yl =>3xu|y=xvaxcx arucyu
([ def. <,2.38 7111

We have A(x.u) = AX) . S(A(X)x,0) [[ smplified A, thm. 3.20 1]
and AX'.W) = AX') . HAX)Xu) [[ simplified A, thm. 3.20]]
and A(x) ¢ Ax) [ [ induction hypothesis, x ¢ x’]]
3(A(x)x.u) < SA(X).x"u") [[ 8 € -Monotonic, x € x",u cu’ J]
Ax.u) ¢ A(x'.0)
H” <-Monx.u
()5 Mon~

We finally prove the main result: Fixed-Point] , by structura induction on x, combined with much equation
pushing.. .
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Case (g): let i € { 1..n} arbitrary,
We have A(g), = € ([ def. A, 3.19]]
and fxe)=€ A R,(E) = € [{ def. £*,R,, 3.4 1]
[7(a))(e)=e=Ale)

(()Fixed-Pointe

Case (x.u): let i € { l..n} arbitrary,
We have A(x.u) = A(x); . HAZ).x.L); [{ simplified A, thm. 3.20 1]

If Y, is aregister-line: Y, «= R (Y, or x,) then:
Wehave &(A(x).x.wu), = [ if A(x), or x, =  then a else last(A(x), or x,) ]
[[ def. 8,3.19]]
o LIt Alxa), = A(x), . [ if A(x), or x, = e then aelse last(A(x), or x;) ]
and A(x); =[T,(8) | (x) [[induction hypothesis 1]
A(x), = R (A(x), or x;) [ expanding def. ;1]
A(x), = [ if A(x), or x, = e thene elsea. abl(A(x), or x,) ] [[ expanding R, ||
Ax). F[if A(x) or x, =ethene. aelsea. abl(A(x), or x,) . last(A(x), or x,) ]
[ [ replacing A(x); inlineL 1 1]

. A(x.u), = [ if A(x), = e thenaelse a. (A(x), OT Xy) ] {[ simplifying abl().last() 1]
.. L2:A(xu) = a. (A(x), or x;) [{ simplifying if expression 1]
Wehave [ 1,(4)](x.u) =R, (A(x.u), or x,.u) [[ expanding def. ;1]
[7,(8) ] (x.0) = R,[ A(X), . HA(X).xu), or X, .1, ] ([ expanding A(x.u) , thm. 3.20 ]}
[1(A) | (x.u) =2, (A(x), or X,) [[ expanding R,, &..) and u, are characters. ]}
[ 7,(0) ] (x.0) = A(x.w); [[ matching with line L2 ]
[[]]Fixed-Poinu_(.q.chistcr

If Y, is a combinational-line: Y; - £*(...Y, or x,...) then:

We have 8(A(x).x.u), = f (.. Jast(A(x.w), Or X, .u;)s..) [ def. §,3.191]

- L3: ACxu), = A(x); . f (.. Jast(A(x.u), Or X,.uy),..)

and A(x), =[ 1(4) ] (x) ([ induction hypothesis 1]
A); = P*(..AX), Or Xy...) [[ expanding def. T; 1]
A(x.u), = £*(AX), Of Xy,..) . f (.. last(A(x.u) or x,.u),..) [{ combining with line L3 ]]
A(x.), = P, A, JasAEW),) or X, last(x,.u,),..) [[ def. £* 11

- L4: A(xu), = £*(,A(x), Jast(A(x-w)y) or X,.u,,..) ([ simplifying x, .last(x,.u,) 1]

and  A(x.u), = AX), . SAX).XU) [{thm.3.20 ]]
A(x.u), = A(x), - last(A(xu)) ([ &...) is a character! 1]
Alx.u), = P AR OF X ly...) ([ substituting into L4 J]

and [ 7,(A) ] (x.u) = (. AX.L)y or X, -Uy,-) [[ expanding def. T; 1]

(1) | (xu) = A(x.W);
(1) Fixed-Point, x.u. Combinational
[[]]Fixed-PoinL)_&.g
[())Fixed-Point
From all this we know that A is a fixed point of T, and A € MLPy,

LFP(1) € A [[LFPisLeast! , def. 2.13 1]
V x € (£,%)2, LFP(1 X(x) € A(x) ([ def. pointwise order, 2.23 1]
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From the previous section (section 3.4) and ELC(S) hypothesis :

We have LFP(1,) total on Z* [[ ELC thm., 3.15]]
V x € (2%, LFP(1,)(x) € (Z*)2
and strings with no ? in them are maximal under [[ def. ¢ coordinatewise ]]

vV X € (Z*)2 , LFP(1,)(x) is maxima under ¢

Combining those 2 results, we get:
V x € (Z*)2, LFP(t )(x) = A(x)
and of course the equality still holds if we project some lines (out) from the tuple:
and u(s) = LFP(7g),, [[ def. 3.8 1]
¥ x € (BN, Ay = MEXD) .

([hen. 3.21

We now move on to our simulation semantics. We will define it both informally and formally, and then prove its
equivalence with the operational semantics (and therefore aso to the extensional denotational semantics).

Definition 3.22: Informal Simulation Semantics
The main difference with the operational semantics is that now the state simply contains the current value
stored in each register. We call it sp and it is indexed by the (Register) line number.

The new “next-output” function & ¢ differs from the old one in the Register case only and simply returns the
character in sp for Register-line Y.

The new “next-state” function ¥’ updates s by storing in it the character just output by &’ for its predecessor
line (or the input character if the argument is an input-line).

The extensions of these functions to handle strings of inputs are done just as in the previous case, by iterating
the character by character functions. One detail is different however: the initial state istaken from's, i.e if S
contains the equation Y; « R (Y,) then the initial state has SRinitial, = @ -

Pictorialy, the set-up looks like this:
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Figure 3-4: Simulation Semantics

1
[ ] s [} /
[ ] R ° 8 (S,E) N R
n
1
. i

“unused”
m

c | char.

. As before, the S subscript will be omitted. Note also that we define sg to be an array of length n, indexed by the
line number i, when in fact we only use array dots corresponding to Register-lines. This is just for ease of notation.
The other entries can be thought of as “unspecified” or containing an “unused” character, and are irrelevant to the
proof.

Definition 3.23: Formal Simulation Semantics
Lets € Lgp, with non-input lines Y;,i € {1..n} and input lines xj,j € {1.m}, and ELC(S).

Letsp € (T2, v e (T,)2.

Define &(sg.v) € (T2 | Vi € { 1.n}
T e if Y~ R(Y, Orx,)then &(sg.v); = SR

o if Y, e (.Y, or x,,..) then §(sg,v); = £(...8'(sg.v), OF ¥..)

Define y'(sg,v) | Vi € { |..n}
o if Y, « R (Y, or x,) then v (sg,v); = 8'(sg.v), or v,

And the string-extended functions are defined by recursion on the input string:
A'(e) = e and A’(x.u) = A'(x) . §'(T "(x).u0)
I'(e),= Smmml| =if Y, <R (Y, orx)thena and[‘(xw)=7"(T ‘®)w)
The justification for the totality of these functions is the same as for the operational semantics. The key result is:

Theorem 3.24: Simulation-Operational Equivalence
Let S be an ELC sysd (with m inputs), we have: V x € (Z,*)2, A’((x) = A4(X)

Or in other words: the two operational semantics agree.
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1. A “small state is appropriate” lemma, which makes explicit the fact that the value currently kept in the
register is the same as the last character seen on the predecessor line, and which is proved by structural

induction on the input string .

2. An inductive proof of equality between A and A’. The main subtlety here is to find an induction which
proceeds in the same manner as A or A’ recurses, i.e. a combination of structural recursion on the input,
and R-cut-predecessor recursion on the lines. To achieve that we define <., : the lexicographic
combination of the prefix ordering on strings, and the R-cut-predecessor ordering on the lines of an

ELC circuit, and use well-founded induction on <ex -

Once these steps have been identified, what remains is tedious equation pushing...

[State-Lemma]: V x € (Z,*)2, Vi e{l.n} ,if Y; & R (Y, or x,) then

I''(x);=if (A'(x), o x,) = e then aelse last(A"(x), or x,)
This is proved by a simple structural induction on x :

Casee:
Let ief{l.n}[ifY, < R(Y, orx)
then I'’(g),=2a
and A'(e) =¢
[’(e),=ife=¢cthenaelse ...

[[]]Smu:-Lcmmn,g

case x.u:

Let ie{l.n}]|ifY; & R(Y, orx)

then T ‘(xw), =Y (T ‘(X))

o LI T “(xw); = &(T “(x)m), or u,

and  A'(xu), = A®)8 (T (X)u)
last(A’(x.u)) = 8T ‘(O A A(xu) # e
T ‘(x.u); = last(A’(x.u),) or u,

and u.= last(x,.u) A XU #E
I' “(x.u), = last(A"(x.u), or x,.u,)

[ def. T'7,3.231]
[ def. A’, 323 ]]

[[ def. 3.23, expanding T * 1]
[[ def. 3.23, expanding y’ 1]
[ [ def. 3.23, expanding A’ 1]

[[replacinginL1]]

[ “(x.u), = if (A"(x.u), or x,.u) =ethen. .. else last(A’(x.u), or x,.u;)

[D]Sme-bemmu.u
1)) State-Lemma™

We now prove the final equivalence: V x € (Z,*)2, Vi e { l.n} , A’(x); = A(x); , by well-founded induction on

< lex@i) :

Case (g,i):
We have A(g); = e = A'(g),
(0

case (x.u,i):
We have A(x.u); = A(x),.8(A(x),x,u);
and  A'(xu), = A), (T "®).w);
and AR); = A'(x);
only &A(x),x,u); = §'(I" “(x),w); remains to be proved.

[ def. A, 3.19 and def. A’, 3.23]]

[[ expanding A, thm. 3.20 ]]
[[def. A", 3.231]
([ (x,i) € |, (x.u,i), induction hyp. {{
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if Y, & R,(Y, orx,) then
Wehave &(A(x).x.u); = if (A(x), or x,) = e then a else last(A(x), or x;)
[[ def. 8, 3.19 ]]
and &(T "(x).u), = "(x), =if (A’(x), or x,) = e then a else last(A"(x), or x,)
[[ def. &, 3.23 and State-Lemma 1]
and A(x), = A'(x), ([ (xk) <., (x-u,k), induction hyp. ||
3(A(x),x.u); = &' (T "(x).u);

[[]]E.g‘i.chistcr

If Y, « £*(..Y, or x,,.) then

We have 8(A(x).x.u), = f(...8(A(x).x,u), or u,...) [[ def. 8,3.191]

and &(T" "(x).0); = f(...8'(T "(x),w), or u,,..) [{ def. 8", 3.23 1]

and A(x.u), = A'(x.u), ([ (x.uk) <, (x.u,i), induction hyp. ]]
and A(x.u) = A(X),-(A(X).x,u), [[ expanding A, thm. 3.20 ]]

and A'(x.u) = A'(x), .8 (T "(x)0), [ def. A’, 323 ]]

d(A(x).xu) = &'(T "(x),0),
f(...8(Ax).x.w), or u,,..) = f(...0(T "(x),u), or u,,..)
§(Ax).x.u); = §(T "(x).m);
[U]x.u,i,Combinaﬁonal
- [y

[[]]Thm 3.24
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4. Theoretical Applications of the Semantics

4.1. The MLP-calculus

In this section we develop the theory of MLP string-functions, in order to provide some basic tools for the .
theoretical and practical manipulations of sysd's. The following list of theorems only includes those which we have
found useful in our current investigations of mechanica SYSD equivalence proofs. It is only intended as the
beginning of a calculus.

Theorem 4.1: Composition of f* $
Let f,g be character-functions, (f « g)* = f*. g~ .

Proof:
Immediate

mhm4.1

The following property is an essential characteristic of combinational functions (which will often be used in
mechanical proofs of equivalence of sysd's):

Theorem 4.2: Combinational-Concatenation Commutativitg (ccc)
Let f*: (Z,%)2 - Z,* ,Vx,y € (. (x.y)=M(x).*(y).

Proof:
f* was defined as the homomorphic extension of a character-function f to strings (of same length), therefore this
property is immediate.

[l hm. 4.2

We now define the “extended register” function: R, . Intuitively, R, outputs z first, and then x, up to a tota
number of characters equa to the number of characters in the input. The else clause consists of the (uninteresting)
case where the input is of smaller length than z.

Definition 4.3: R,
Letzl, € 5,* defineR: Z,* - L* by: R,(xd, ) =if n>kthenzd, \xd) | dsezd |

It is immediate that R, is MLP.

Note that we are abusing the notation dightly in the case where z=a, since the extended R, is unary, and the
origind R, is binary. The confusion is harmless, since the binary R, ignores its second input (x ), so all algebraic
_properties of one will carry to the other. In the rest of this section, we intend the unary R, .

Theorem 4.4: Composition of R, ’s
Vzz €Z,* R,.R,=Ry,.

Proof:
Let z=zi1”i,z’=z’¢luj,x € L,*, arbitra.ry,x:xl«I o
The proof has 3 cases:n > i+j,n Si,i < n <i+j. The most general one is n > i+j (i.e. steady state) and it is the
only one we show (the others are simpler):
We haveR,,(xd, ) = 71, '\Z..}' 1 i?.d'l..n—i-j ([n>i+j]]
and Ryxl; )= zd) x| . [[n>i+ =>n>il
Let x =R (xd, )
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Wehaelx1=n,x =x4, .
and Vke({ln},x|, =fl <k<ithenzl elsexi,,
and R (X)) = z'ilnjx’l
and x,'l'.l.n-j = Z‘LJ..i.X‘LI...n-j-i =zdy xd

RAR,) =24 2l xi

[[Nn> i+ =>n > |]]
[[n>i+f =>nj>i]]

l.ny
La-i-g
L = Ryrg(X)

[Dnm, 4.4

The next property is the essence of the “is-a-pipeline-of’ relation which we will define later, in section 4.2 .

Theorem 4.5: R, pipeline
V 2,7’ x € L* , if I = |zl then R (xz) = zx

Proof:
Immediate verification.
([Thm4s

Finaly, this next property is an essentia characteristic of MLP functions in generd (which will be key in
mechanical proofs of equivalence of sysd's):

Theorem 4.6: Register-MLP
Let F: (£,*)2 = I,*, MLP string-function, a€ Z,, V x € (Z,*)2, V u € (L)%,
R,(F(x.u))=a.F(x)

" The proof relies on the following lemma, which is interesting in its own right:
Theorem 4.7: 1st-order characterization of MLP string-functions

Let F be a (unary) function: Z,* = Z,* ,FisMLP <=> F(e)=¢ A Vx € £*,Vu € L,,dv € L, |
F(x.u) = F(x).v

Proof:
=>
Assume F : Z,* = Z,*, MLP string-function.
We have IF(g)l = lel ([ F is length-preserving 1]
IF(e)l=0 [[ property of length {]
FE) =€ ([ property of length |
Assume x € I,*,u€ L,,
We nave F(x) € F(x.u) [[ Fis monotonic ]
. 3y € Xy | Fxu) = F(x).y {f thm. 2.43, 2nd def. of prefix 1]
IF(x).y! = IF(x.u)l = Ix.ul [[ Fis length-preserving 1]
IFx)l + lyl=Ixi+ 1 [{ properties of length 1]
and IF(x)l = Ix| [ Fis length-preserving 1]
lyl=1
Y € L,
i
<=

Assume F:E,* — L* | b1]FE)=¢ A [02]Vx € L,*,Vu € L,,3v € %, | Kxu)=Fx).v .
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Let xyeZX* x<y
then 3 z € L* |y = x2 i thm. 2.43, 2nd def. of prefix ]]
We prove by induction on z that V z € Z,* , F(x) < F(x.z) :

-Basecase z=¢,

then x=xz [ xe=x,VXx€eZ,*]]
F(x) = F(x.z) [{ F function! 1]
F(x) € F(x.z) [[ € reflexive 1]

- Induction step: assume that F(x) < F(x.z), consider x.(z.u) for someu € Z, :

We have x.(z.u) = (x.z).u [{ definiton of concatenation ]}
[cl] Fl(x.z).u] = F(x.z).v for some v € X, [[h211

and F(x) < F(x.z) [[ induction hypothesis 1]

and F(x.z) € F(x.z).v [[ definition of < ]]
F(x) € F(x.z).v [ trangtivity of < 1]
F(x) € Fx.(z.u)] f[cl11

[[]]F monotonic

We now prove by induction on x that V x € Z,* , IF(x)l = Ixl, i.e. F is length-preserving.

- Base case: x =€,

We have F() = € [fh111
[F(e)l = lel
- Induction step:
Assume IF(x)l = Ixl, u € Z,
We have F(x.u) = F(x).v for some v € Z, [[h211
F(x.u)l = IF(x).vi = IF(x)l + Ivl= IF(x)l + 1 [ [ properties of length ]]
and IF(x)l = IxI [[ induction hypothesis ]]
F(x.u) = Ixl+ 1= Ix.ul [[ properties of length ]
[(1)F Length-Preserving
M .
((hen. 2.7

It is clear that the => part of this lemma generalizes immediately to string-functions of any arity. (For the
other direction, there is a technicality in that we have to consider the restriction of F to (£,*)2 .) Therefore, the proof
-of the Register-MLP theorem is now extremely smple:

Let ae€ X, FMLP dring-function, x € (£,*)2, u € (Z,)¢
Wehave 3veZ,|F(x.u) = F(x)v {{ thm. 2.7, => part]]
R,(F(x.u))=R (F(x)v)=aF(x) ([ definition of R, 1]

(O oem. 4.6

This completes our current algebraic development of the theory of MLPy .
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4.2. Relations on Synchronous Circuits
A key concept in the transformational approach to design is (from [Talcott 86], and in published form in [Mason
86]):
Operations on programs need meanings to transform and meanings to preserve.
where we replace “program” by “synchronous system” for our purposes. The study of relations on sysd's is the
study of the various meanings we want to transform or preserve.

The following preliminary investigations are just intended to give a taste of the possibilities...

Definition 4.8: Equivalence Relations on Lg;,

We can define 4 equivalence relaions on sysd's, which are progressively coarser: Let S, S, € Lgp ,
*S= s <=> §; andS, are syntacticly identical. (Not very interesting.)
¢ 4, =5, <=> S, andS, areisomorphic (i.e. equal up to renaming of syntactic pieces).
es= s <=> [s; I=0S, 1. (Intensiona equivalence: they denote the same functiona.)

*Sy =85, <=> WS ,;)=KS ,).(Extensiona equivaence: they compute the same functions.)
Note: technicaly, for = , we are comparing tuples (of functions), and we compare coordinate-wise.

More generally, = is a paticular case of the fact that for any relation on MLPy string-functions, we can define
the corresponding extensiona relation on Lgy, as follows:

Definition 4.9: Induced Extensional Relation from MLPy to Lgy,
Let ¢ be a(n-ary) relation on functions of MLPy . Define ¢ on Lgy, with:

V Sy,..5, € Lgpy , 0(51,..8,)  <=> O(U(S1)-1(Sy)) .

Again, we extend & comparison to tuples by comparing them coordinate-wise (and answering True if all
comparisons are True).

One such relation which is very relevant to current digital circuit design, is the notion of a string-function being a
“pipeling” of another:

Definition 410: Pipeline relation on string-functions
Let F, G be two string-functions: Z,* — Z,*,

*Fa, G (read "F is-a-pipeline-of G with garbage z and purge Z ") with 2,2’ € Z,* <=> lzd=1z1
AVxeL*, F(xz') = zG(x)

« Fa G (mad "Fis-apipdine-of G") <=> 3zZ e L*|Fa,, G
Thisdefinition is extended in the obvious way to string-functions of same arity (> 1).

Intuitively, z is the garbage output during pipeline fill-up, and Z' is the (irrelevant) string fed in during pipeline
purging.

Pictorialy:
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Figure 4-1: F isapipeline-of G

X

z G(x) G(x)

Theorem 4.11: a partial pre-order
a is a partia pm-order on string-functions (i.e. reflexive and transitive) and is not antisymmetric.

Proof:
reflexivity: immediate (take z and Z' to be E).
trangitivity:

Assume Fau,GandGay'yI-'i
L e t x arbitrary in Z,*.

We have G(xy’) = yH(x) [[ G aH, instantiating x to x ]]
and F(xy'z") = zG(xy") [[ FaH, ingantiating x to xy’ 1]
F(xy’z") = zyH(x) , for arbitrary x
Fa y'z'.zy H
FaH

ais not antisymmetric, even when restricted to MLP string-functions:
Counter--example:
Let
. F(x) = 0101... | IF(x) = Ixl
. G(x) = 1010... | IG(x)l = Ixl
then Fa,,GA Ga,, F,foranyabe X
and yet F # G .

(0 am.4.11

Note: this counter-example brings up the fact that the purge string mentioned in the definition of a is absolutely
irrdlevant. In fact, if there exists one such purge string, then any other sting of the same length will do. This brings
up an aternative definition of a which may be aso be useful:

Definition 4.12: Alternate pipeline
Let F, G be two string-functions of arity 1, F a , G (reed "F is-a-pipeline-of G with latency n") <=>
3zzZ eL*|ld=1z271=n AV x € L,*, F(xz) = zG(x)
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4.3. Relations between Synchronous Circuits and (Mealy) Sequential
Machines

The key idea here is that sequentid machines [Booth 67], [Hopcroft-Ullman 79] can be given string-functional
semantics (v) very naturally. Once this is done, then we can use our string-functional semantics for SYSD's () to

compare formally both objects, as shown pictorially below. We base our definitions on Mealy machines. Since
Moore machines are trivialy reducible to Meay machines (without state explosion) this does not reduce the
generdlity.

Figure 4-2: Formal Comparison of Sequential Machines and Synchronous Circuits

MLP y

"equivalent” ?

Synchronous Circuits Mealy Machines

Note: the fact that sequential machines have associated string-functions is not new in any way! What is new is to
look at these functions as an extensiona characterization of the machines, and to compare them to our extensiona
characterization of synchronous systems. Usually, the standard theoretical development on sequential machines
proceeds with an equivalence relation based on state equivalence, i.e. an intensional characterization.

A Mealy machine M is given as a “next-state” function ¥,y and a “next-output-character” function 84, which both
depend on the current state and current input character. We then extend these functions to take strings of inputs
exactly as we did when defining the Operational semantics of SYSDs in section 3.5, by iterating the next-output and
next-state functions. Precisely:

Definition 4.13: String-Functional Semantics of Mealy Machines
Let M = <Z,0.9,.Y.8> be a Mealy Machine, with the intended interpretation:

« I : aphabet (input and output)

o Q : set of states

o Gp . initial state

ey:Q x L — Q:next-state function

« §:0 xX > Z: next-output function
Define vVOM) = A ;| Z* - I* where:

. A(E) = £ A A(x.u) = A(X) . &T(x),u)

. T(e) = gg A T'(xu)=y T(x),u)
The fact that A is MLP should be clear. Formally, the proof would be similar to the ones in section 3.5, and is
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not repeated.

We can now easily define extensiona equivalence of a Synchronous Circuit and a Mealy Machine:

Definition 4.14: Extensional Equivalence of Mealy Machines and Synchronous Circuits
Let M be a Mealy Machine, and Sbe aSYSD, we defineM =5 <=> V x € Z* | v(M) (x) = pS (X) .

Note: there is an interesting duality to this jump from state machine to string function, in that we can easily define
“states’ for an arbitrary string function, and trivially obtain a Mealy machine equivalent to an MLP string-function:

« To get the states of afunction F on Z* , take the equivaence classes for ~ in Z*, where:
X -y <=>Vz eZI*F(xz)=F(yz).
(A “state” is simply a summary of the past good enough to account for the future.)

« To get aMeay machine for an MLP F, take those states, and define:
y (x~,u) = (x.u)” and &(x~,u) = last(F(x.u)) , where x~ is the equivalence class of x under ~ .
Actually, we get the minimal state machine extensionally eguivalent to F; unfortunately however, this is far from

constructive!
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