
August 1988

,

Repoht No. STAWCS-88-1218

Square Meshes are not alwavs Optimal.

by

Amotz Bar-Noy and David Peleg

Department of Computer Science

Stanford University

Stanford, California 94305

Square Meshes are not always Optimal

Amotz Bar-Noy * David Peleg t

August 9, 1988

Abstract

In this paper we consider mesh connected computers with multiple buses,
providing broadcast facilities along rows and columns. A tight bound of O(76)
is established for the number of rounds required for semigroup computations on
n values distributed on a 2-dimensional rectangular mesh of size n with a bus on
every row and column. The upper bound is obtained for a s&wed rectangular
mesh of dimensions n3i8 x n518. This result is to be contrasted with the tight
bound of O(n%) for the same problem on the square (d2 x n1i2) mesh [PR].
This implies that in the presence of multiple buses, a skewed configuration may
perform better than a square configuration for certain computational tasks.
Our result can be extended to the d-dimensional mesh, giving a lower bound
of O(n&) and an upper bound of O(d2d+‘n5).

*Stanford University. Supported in part by a Weizmann fellowship and by contract ONR NOO014-
88-K-0166.

tstanford University. Supported in part by contract ONR N00014-88-K-0166 and a grant of
Stanford Center for Integrated Systems.

0

1 Introduction

The mesh organization is considered an attractive and practical architecture for par-
allel processing. The main desirable features of this organization are threefold: it
has a simple, modular interconnection pattern, which makes it easy to construct and
program; it naturally corresponds to the data format of many useful problems in ma-
trix computations and image processing; and it is amenable to VLSI implementation
[D, KLW, Kr, Re, TK, IJ]. A b asic example of this architecture is an arrangement
of the processors on integral points on the plane in a rectangular form where each
processor is connected by a bidirectional communication link to its immediate neigh-
bors on the vertical and horizontal axis. Information passes through these links in
unit time. Typical tasks assigned to a computer based on the mesh architecture (a
mesh-connected computer) involve an assignment of data items to each of the proces-
sors in the mesh and a global computational requirement involving all of the data
stored at the processors. This computational requirement may eutail the need to sort
the elements, find certain order-statistics on them (such as their maximum etc.) or
compute basic functions such as partial sums and products. Typical applications are
presented in, e.g., [C, CDL, G, Ko]

The main drawback of the mesh architecture is its large diameter. Since informa-
tion flow is one of the major factors affecting processing time on a parallel machine, a
large diameter implies long delays even when relatively low traffic loads are required,
since certain data items may need to be moved over long distances. For instance, in a
square mesh of size n as described above, a data item may travel a distance of 0(,/E)
in the worst case. This implies long processing time for various basic computational
tasks.

A possible approach for overcoming the problem of long-distance data movements
is to design a parallel machine based on the mesh configuration and extend it with
a‘ broadcast mechanism that will enable fast data transfers. Such a mechanism can
be implemented using a bus, or a collection of buses. This approach was proposed
in [B, G, JS, Sl], which consider the addition of a single global bus to the mesh.
It is assumed that the mesh operates synchronously using a central clock. At the
beginning of each time step a processor may send a message along any or all of its
links, and also send a broadcast message on the global bus. Processors receive all
messages sent to them within the same time unit, and may perform some internal
computation. We assume that at most one message can be broadcast on the bus at
any given time. While the assumption of immediate broadcast is unrealistic since it
assumes that the propagation time of messages on the bus is independent of the size

1

of the network, for practical situations the difference may be justifiably ignored.

While a global bus enables us to overcome sporadic instances in which a long-
distance data movement is required, it does not solve all data flow problems. In
particular, when “many,, data items need to be transferred over long distances, using
the single bus will create a bottleneck and result in increasing the processing time.
In view of this observation it was proposed in [PR, Ra, S2] to augment the mesh
computer by adding multiple buses. In particular, it was suggested to include a bus
for each row and column of the mesh. In a mesh with multiple buses, a processor
may locally communicate with its four neighbors or broadcast a message on the bus
connecting its row or column. Again we make the assumption that such a broadcast
takes unit time and that at most one message may be broadcast at any given time.

We may consider the addition of multiple buses to d-dimensional meshes for any
d 2 1. In such a mesh each processor has 2d links connecting it to its 2d immediate
neighbors. (A processor may have fewer than 2d neighbors if it is located on the
“edges” of the mesh.) In addition, each processor belongs to d buses, one for each
dimension.

Virtually all of the papers cited above assume a square configuration for the mesh.
That is, a mesh of 72 processors is assumed to have dimensions n1i2 x n1i2. This as-
sumption, (or rather, “design decision,“) is fully justified for meshes without buses.
This is because for such meshes the diameter is minimized by choosing the square
design. However, when multiple buses are added to the mesh, this consideration
becomes less important. At first glance, one may argue that since the architecture
remains symmetric with respect to its two dimensions, a square configuration should
still be preferable as far as time complexity goes. The results described in this pa-
per indicate that this is not the case. In fact, it turns out that in the presence of
multiple buses, a skewed rectangular configuration may perform better than a square

configuration for certain computational tasks.

We concentrate on the problem of semigroup computations, which is an important
representative for the types of problems suited for a mesh, and was considered in
several of the papers mentioned above. Assume that each processor p has a value
a(p) taken from an infinite domain d. An associative binary operation “-t-J’ is defined
on d .(for simplicity of terminology we refer to “+” as addition). The task is to
compute the sum A = C a(p), where the summation is over all the processors in the
mesh. Examples of such functions are addition, multiplication and maximum.

Semigroup computations were analyzed for meshes with a single global bus and
multiple buses. Bokhari [B] gives an O(n U3 log n) time algorithm for computing max-

2

imum on a 2-dimensional mesh with a single global bus. This result was extended
to higher dimensions and shown to be optimal by Aggarwal and Stout [A, Sl]. They
established that for the d-dimensional mesh with a single global bus, semigroup com-
putations require O(nd+l) time.

As for square 2-dimensional meshes with multiple buses, Prasanna Kumar and
Raghavendra [PR] give a tight bound of O(ni) for the problem.

Our main result is that for semigroup computations the square design is not
optimal. We give a tight bound of O(n8‘) on the number of rounds needed to compute
an n-valued semigroup function on a 2-dimensional rectangular mesh with row- and
column-buses. The upper bound is obtained for a skewed mesh of dimensions n3i8 x
n5j8 . We also generalize our result to meshes of any number of dimensions d > 1. For
d-dimensional meshes (with buses along each dimension) we present a lower bound
of n(n&) and an upper bound of O(d2d+1 ~2) on the time complexity of semigroup%
computations. These bounds are tight for fixed d with n tending to infinity. The
dimensions n = rr x . . . x rd for which the upper bound is obtained are defined
as follows. Let T = nd2-5 (for simplicity assume that r is an integer). For every i
(1 5 i ,< d) let si = 2’~‘d + 1 and define Y; = raa.

The results for d > 3 are merely of theoretical interest, since from a practical point
of view only 2 and 3-dimensional meshes will conceivably become feasible in future
technologies. Nonetheless, we feel that the observation conveyed by our bounds is of
general interest in its own right.

The rest of the paper is organized as follows. Section 2 presents some notation
and definitions needed for our algorithms. The algorithm for the 2-dimensional mesh

- and d-dimensional mesh are presented in Section 3 and 4, respectively. In Section 5
we present the lower bound for the d-dimensional mesh for every d > 2. Throughout
the rest of this paper we refer to the architecture of mesh with multiple buses simply
as a mesh, and say basic mesh when referring to a mesh without buses.

2 Preliminaries

The 2-dimensional mesh is a rectangular array of processors of dimensions x x y,
where n = xy is the number of processors on the mesh. Denote the processors by pij
for all 0 ,< i 5 y - 1 and 0 5 j 5 x - 1, and denote their values by a+ The rows and
the columns of the mesh are denoted by &, . . . , R,-i and Co,. . . , C,-i respectively.

For every i and j where 0 < i < y - 1 and 0 < j < x - 1, the processor pij

3

is connected by communication links to its four neighbors p(i-i)j, P(;+~J~, p;(jll) and

Pi(j+l)* These links enable direct message transmissions between neighbors. Proces-
sors PO07 PO(y-1)) P(z-l)O, and P(z-1)(,-l) have two neighbors and the other-processors
on the buses Co, Cz-i, & and R,-i have three neighbors. (All of our results hold
for meshes with wrap-around, i.e., in which the processors in column Co and row
& are connected to their corresponding processors in column CY-i and row R,-1
respectively.) Where no confusion arises, we use R; and Cj to denote either the set of
processors they contain or the names of the appropriate row-buses and column-buses
that pass through them.

For the d-dimensional mesh we need more definitions. Let n = r1 x r2 x - - l x rd
be the size of the d-dimensional mesh, where 1 5 r1 5 r2 < l . l 5 rd. For simplicity
we select all the q’s to be of the form rsi for some parameter r, and therefore n is
also a power of r.

For every nonnegative integer z define 2, = (0,. . . , z - 1).

A processor in the d-dimensional mesh is represented by a d-vector (cl, ~2, . . . , cd),
where c; E Zri for 1 5 i < d. Its input value is denoted by a((cl, ~2, . . . , cd)).
The basic mesh connections are as follows. For every i (1 < i 5 d) if c; < r; - 1
(respectively, 0 < c;) then processor (cl, . . . , c;, . . . , cd) is connected by a link to
processor (cl,. . . , c; + 1,. . . , cd) (respectively, (cl,. . . , c; - 1,. . . , cd)).

Given subsets Ai s ZTi for every 1 ,< i < d, denote by (Al,. . . , Ad) the set of
processors { (51, . . . , zd) 1 x; f A;, 1 < i < d}. When A; is a singleton {a} we
sometimes replace it by its member, a, for clarity.

A bus is a l-dimensional submesh of the mesh. Every bus is defined by a dimension
i, 1 5 i 5 d, and d - 1 constants cj E &, for 1 < j 2 d, j # i. Such a bus connects
the processors of the set (cl,. . . , c-i-1, Zt,, ci+i, . . .d). The set Bi is the set of all buses
defined by the i’th dimension.

3 The algorithm for the 2-dimensional mesh

3.1 Outline

In this section we present our algorithm for the 2-dimensional mesh. We set a global
parameter r = n$ (for simplicity we assume that r is an integer) and select the
dimensions of the mesh to be x = r5 and y = r3. During the execution of the
algorithm the values get grouped and summed together into some specially designated

4

processors, called the active processors, and the values they hold are called active
values. The algorithm is defined in such a way that in any given stage, each input
value “occurs” in exactly one currently active value, so the sum of all the active values
gives the correct result. At the beginning all the processors are active and at the end
only processor p00 is active.

The algorithm is composed of eight stages, some of which are split into two sub-
stages. Each stage reduces the number of active processors by a factor of r. This is
done by partitioning the active values into disjoint sets of cardinality r, and summing
each into one active value. Each substage takes at most r rounds, and is performed in
its entirety using either the links or the buses, but not both. In case the summation
is done by the links, the r active values of each set must be at distance at most r
from the processor to which they need to be summed. In case the summation is done
by the buses, the r values of each set must be located on the same bus and must be
the only active values on this bus. To obtain these requirements for links or buses
the algorithm uses distribution operations on the active values, which take at most r
rounds. Again, if the distribution is done by links then every active value cannot be
sent to distances greater then r, while if the distribution is done by buses then each

* bus used for this operation contains no more then r active values.

3.2 The basic procedures

We now describe four basic procedures on meshes with buses, performing the four
operations discussed above. All four procedures use the global parameter r, which
equals ni in the 2-dimensional case.

Procedure SUMLINK

Input: The parameter B is a bus containing the processors ~0,. . . , ok-1, k = h.
It is assumed that all of the processors are active, and they hold the active values
ao,..., ak- l respectively.

We think of the bus as partitioned into consecutive segments of length r, with the
j’th segment consisting of Q,, . .

l J Qjr+r-1. For every j E Ze, the procedure sums the
values of the j’th segment and stores the result, Cizi aj,-+i, into qj,-. This operation
is performed using the links only, by sequentially accumulating the values along the
segment, starting from qjr+r-i and going towards qjT, and requires r - 1 rounds. (See
Figure la. Boldface dots represent active processors.)

5

Output: There are e active values on B, stored at the active processors qj,, j f &.

Procedure SUMBUS

Input: The parameter B is a bus containing the processors qo, . . . , qk-1, of which
exactly r processors Q&, . . . , Qirel are active, and hold the active values a;, , . . . , air-1
respectively.

This procedure sums all r active values in r rounds using only the bus. In the
j’th round, 1 5 j < r, processor q;, broadcasts the value ai, on the bus B.

Output: Processor qo is designated as the only active processor on B, setting its
active value to be C:iA ai,. (See Figure lb.) (Note that in fact, all processors on B
know this active value.)

Procedure DISTBUS(B)

Input:
(1) The parameter B is a bus containing the processors qo, . . . , q&l. On B there are
exactly m = & active processors qiO,. . . , qi,-l that hold the active values aiO,. . . , a;,-,
respectively.
(2) If B = Ri (respectively, B = Cj) then define Bo,. . . , Be-1 to be the A! buses
R i, - l 8 7 & +I--1

(respectively, Cj, . . . , Cj+e-1). The processors on the bus Bi are de-
noted by q& . . . , qiBl. The bus B is the only one among Bo, . . . , Bt-1 that has active
values.

This procedure distributes the m active values among the buses Bo, . . . , Be-1 such
that each bus will contain exactly r active values. In case B = Ri (respectively,
B = Cj) then the distribution is made by the buses CiO, . . . , Cim-l (respectively,
16 Rim-1).Ql”“?

- Output: The value aij is held by processor q!fl which belongs to the bus Biil. (Seer
Figure lc.)

Since this procedure is never used concurrently for parallel buses it follows that
each bus distributes at most one value. Hence this procedure requires only one round.

Procedure DISTLINK(B)

This procedure is essentially the same as DISTBUS(B). The only difference
is that the distribution is carried out using the links rather than the buses. Since

6

it takes e - 1 rounds for active values to reach Be-l, it follows that this procedure
requires e - 1 rounds. (See Figure Id.)

Note that one can reduce the number of rounds required by procedures SUM-
LINK and DISTLINK by a factor of roughly 2, i.e., it is possible to sum r values
(respectively, distribute e values) in about i (resp., $) rounds. However, for clearer
description of the algorithm we prefer the above formulation.

3.3 The algorithm

Before describing the algorithm for the 2-dimensional mesh we demonstrate the usage
of these procedures for the l-dimensional mesh. This mesh is equipped with a single
bus denoted B, and the procedures are defined setting r = nk

Algorithm l-DIM

1. SUMLINK(B);

2. SUMBUS(B);

It is easy to verify that algorithm l-DIM is correct and requires O(d) rounds
which is optimal by [Sl].

We now present the algorithm for the 2-dimensional mesh. Recall that for two
dimensions we have r = v-z:, x = r5 and y = r3. The algorithm is composed of a
sequence of twelve substages, each involving the parallel execution of one of the above
procedures on several buses. During the execution of the algorithm the set ACTIVE

- is the set of all active processors (i, j) (recall that this pair represents the processor
p;j). In order to clarify the flow of the algorithm we specify, for each of the stages,
the set of active processors after executing that stage and its cardinality #A. In
p&ticular, at the beginning of the run ACTIVE contains all the possible pairs and
#A = n, and at the end of the algorithm ACTIVE contains only the pair (0,O) and
#A = 1. Figure 2 depicts the flow of the algorithm for a 32 x 8 mesh (r = 2).

Algorithm 2-DIM

Stage

0.

1.

2.

3.1.

3.2.

4.

5.1.

5:2.

6.1.

for i E Z,, do SUMLINK(

for j E Z’$ do SUMLINK(

for j E .Z$ do DISTLINK(C&;

for j E Z+ do SUMBUS(

SUMLINK(&-,);

DISTBUS(&,);

for i f Z+ do SUMBUS(RJ;

DISTBUS(CO);

6.2. for j E Z,2 do SUMBUS(

7.1. DISTBUS(&);

7.2. for i E 2, do SUMBUS(

8. SUMBUS(

ACTIVE

{(ir" + jr,;) 1 i f &3, j E Zv}

(0,273)

{(&jr+;) 1 i E &,j E &2}

vr2 7 0)

{(ir +j,i) 1 i,j E ZT}

Observe that we can omit stages 6.1 and 7.1, since after summing on a bus all
the processors on the bus know the result, including, in particular, the processor
designated as active after these stages. Straightforward counting reveals that the
number of rounds required by Algorithm Z&DIM is 9r - 1 (or 9r - 3 if stages 6.1 and
7.1 are omitted), which is O(&). In Section 5 we give a matching lower bound.

#A

r8 *

r7 *

r6

P

r5

r4

r4

r3

f3

r2

r2

r

1

8

It remains to prove correctness. Specifically, we need to show that at the end of
the run the only active processor is pm and its value, aoo, is indeed the desired value
ci,j a;j. This requires us to prove the following properties for each of the stages:

1. The distribution of active values on the mesh at the beginning of the stage is
compatible with the requirements of the procedure applied in this stage.

2. Whenever a procedure is activated in parallel on several buses, these activations
do not interfere with each other (i.e., each processor participates in at most one
activation of the procedure).

3.. The set of active processors in the end of each stage is as specified in the above
table.

All of these properties follow in a straightforward way from the definitions of the
procedures and are left for the reader to verify.

. 4 The algorithm for the d-dimensional mesh

4.1 Outline

In this section we present Algorithm d-DIM for the d-dimensional mesh for arbitrary
CE 2 2. This algorithm is a generalization of Algorithm 2-DIM of the previous section.

First let us define the dimensions rr, . . . ,7‘d of the mesh. Define r = na (again
for simplicity assume that r is an integer). For every i (1 < i 5 d) let s; = 2’~‘d + 1
and define r; = r’i. Note that Cf=, si = d2d, so the mesh is of size n.

As in Algorithm 2-DIM some of the processors are active in the sense that only
their values need to be summed. In each stage of the algorithm the number of active
processors is reduced by a factor of rs for some integer s. Each such stage requires at
most dsr rounds, and makes use of one of three operators SUMi, i = 1,2,3, defined
in the next section.

In order to describe our later constructions it is convenient to define some special
submeshes. For every i (1 < i < d) and for every j (1 < j 5 i) define the following
sets of processors:

� vj+ = (�?I) l l �) �,I_1) �7 * � �) �7 �Ti+l l � l) �Td)�

Thus 5,; is the submesh obtained by restricting the dimensions j through i

9

I

(j 5 i) to the point 0 and taking all points on all other dimensions. In particular,
vl,d= ,...((0 4>

2. w = &-1 = (0,. . . ,o, zri,. . * , ZTd).
3. Ui = (O,...,O,Z,:,...,Z,‘,).

Thus Ui is a “sparse” submesh of Wi containing every r’th point in dimensions i
through d. There is an implicit correspondence between each point in Ui and the
r x l . . x r “subcube” it belongs to, and we refer to this point as “representing”
its subcube.

Note that the set VVi is the set of all processors. Also observe that all the buses
in Bi intersect the set F,i in exactly one processor, and the set Bi is exactly the set
of all buses that are not contained in the set Vi,;,

4.2 The SUMi operations

The algorithm uses three operators of the form X = SUMi(Y), for i = 1,2,3. The
sets X and Y are the sets of all active processors before and after the operator is
applied, respectively, and are, .generally, submeshes in one of the forms Wi 7 Ui or Vj,;.
Let us now describe how the operators SUM; work.

1) Ui = SUMI

This operator sums the values in every r x . . . x r subcube (on the dimensions i
through d) of the submesh Wi into the point representing it in the sparse submesh
Ui. More formally, the processor (0,. . . , 0, x;, . . . , zd) where xj f 2: for i 5 j 5 d,
receives as its new active value the sum

c a((O,... 7 0, Xi + yiy -1. - 7 Xd + Yd))*
O~yi9.-.,yd<r-l .

The summation is performed using only the links, by d - i + 1 applications of the
procedure SUMLINK, starting with the i’th dimension and ending with the d’th
dimension. More precisely, the following code is executed.

forj= i to d do
for every bus B in Bj containing active values do

SUMLINK(B)

10

The operator requires (d - i + l)(r - 1) rounds and the number of active values
is reduced by a factor of rd+lDi.

2) K,i = SUMz(Ui)

The summation is done in two phases. In the first phase the active values are
distributed in a way that on each bus in the set Bi there are exactly r active values.
The second phase involves applying procedure SUMBUS on the buses of Dim

For the distribution phase we need a generalized version of the procedures DIST-
BUS and DISTLINK. In the 2-dimensional case all the buses perpendicular to the
given bus B can distribute its active values. In the d-dimensional case the procedures
must get an additional parameter j indicating the dimension of the distribution. Thus
the distribution is done by applying the generalized procedure DISTBUS(B, j) in di-
mensions j = 1, . . . , i-l and then applying the generalized procedure DISTLINK(B, j)
in dimensions j = i+ l,..., d - 1. All the distributions are done on the buses of ad
that have active values. We omit the exact description of the generalized procedures,
which is straightforward, but present the description of the operator SUMZ.

forj=ltoi-ldo
for every bus B, B E &

DISTBUS(B, j)
forj= i+ltod-ldo

for every bus B, B E &
DISTLINK(B, j)

for every bus B, B E l3; do
SUMBUS(B)

and B has active values do

and B has active values do

The distribution on the buses takes i - 1 rounds, the distribution on the links
takes (d - i - 2)(r - 1) rounds and the summation on the buses of Bi takes r rounds.
Altogether, the operator requires (d - i - 1)’ + (2i - d + 1) rounds. The number of
active values is reduced by a factor of r.

3) 4,; = SUM3(4+1,i)

The operator consists of sj phases, each reducing the number of active values by
a factor of r. After an odd phase, e, the active processors are

(2r17***7 z
r ,-1 7 0, q ,-+ 0, l l �) 0, z;,, * - * 7 Z,) *

After an even phase, e, the active processors are

(2q?“‘? 85rj-1) &J-l, 0,. . -) 0, zT*+l . . .) &).

Each odd (respectively, even) phase is performed by first applying the generalized
procedure DISTBUS(B, j) on the buses of x3j in dimension j + 1 (respectively, on
the buses of B,+l in dimension j) and then applying procedure SUMBUS on the
buses of 23j (respectively, Bi+l). The exact description is as follows.

for 4’ = 1 to sj do
if e is odd then

for every bus B in Bj containing active values do
DISTBUS(B, j + 1)

for every bus B in Bj containing active values do
S U M B U S (B)

if! is even then
for every bus B in 23j+1 containing active values do

DISTBUS(B, j)
for every bus B in Bj+l containing active values do

SUMBUS(B)

As noted after the description of algorithm 2-DIM, the distribution part is not
needed. Therefore the operator SUM3 requires sjr rounds. The number of active
values is reduced by a factor of r+.

4.3 The algorithm

In order to illustrate the usage of the operators SUM; let us first provide a’-different,
equivalent formulation of Algorithms l-D1.M and 2-DIM, which makes use of these
operators. Recall that WI is always the set of all processors, and in the l-dimensional
(respectively, 2-dimensional) case Wz (resp., 1/V3) contains only the processor (0,O).

Algorithm l-DIM Algorithm 2-DIM

1. Ul = SUM1 (WI); 1. Ul = SUM1(WI);

2. wz = v-,1 = SUM2(U,); 2. w* = ViJ = SUM2(&);

3. u2 = SUM1(Wz);

4. V2,2 = SUM2(U2);

5. W3 = SUM@&);

The d-DIM algorithm is a generalization of the above presentation.

12

Algorithm d-DIM

1. Ul = SUM1(WI);

2. W2 = Vl,1 = SUM@,>;

3. for i = 2 to d do

(a) V; = SUMI(
(b) Ts:,i = SUM2(U;);

(c) for j = i - 1 down to 1 do

vj,i = SUM3(vj+l,i);

(d) W;+I = SUM3(v,,i>;

Let us calculate the number of rounds required by the algorithm. Except for
Stage 3a, whenever the number of active processors is reduced by ra for some s, the
reduction takes sr + O(d) rounds. Moreover, for every i (1 5 i 5 d), Stage 3a requires

(d - i - 2)r additional rounds. Altogether, algorithm d-DIM requires fewer than

&d+$ - &d+$$-

rounds.

In order to prove the correctness of the algorithm, one needs to check that all three
operators SUM; are correct according to their specifications; it follows immediately

- that the whole algorithm works properly. Correctness of the SUM; operators follows
from the special way we selected the sizes of the mesh in each dimension. Formal
verification is tedious but straightforward, and is omitted from the paper.

5 The lower bounds

The main result of this section is a proof that every algorithm for semigroup com-
putation on a rectangular mesh with buses takes at least T = IR(ni) steps, where n
is the number of processors in the mesh. The proof technique is a generalization of
similar lower bounds for the l-dimensional mesh and the square 2-dimensional mesh
[Sl]. At the end of this section we extend this result to d-dimensional meshes for
d > 2.-

13

3

The proof is based on bounding from above the maximum number of distinct
input values that an active value may “cover” in each step of the algorithm. Since
our semigroup functions are “globally sensitive,” in the sense that any single input
may be changed so as to affect the final result, we sometimes say that a processor p
“knows” some subset of the inputs, meaning that it has their sum.

The basic idea is best demonstrated by reviewing the proof in [Sl] for the l-
dimensional case. In this case all n processors are on the same bus. By the end of
round t, for 0 2 t 5 T, every processor has received at most 1 + 2t distinct values
through the links. Only one processor can use the bus at each round t, and by doing
so it can tell all other processors about at most 1 + 2(t - 1) = 2t - 1 new values
(unknown to them up until now). Thus at time T a processor may have received
at most 2T + 1 values through the links and ~fIJ2t - 1) values through the bus.
Altogether it knows at most

(2T + 1) + &2t - 1) = (T + 1)”
t=1

input values. This number must exceed n, hence T = Sl(ni).

For the 2-dimensional case assume that the mesh size is it: x y where n = sy.
Without loss of generality let ZE < y.

Straightforward counting reveals that by the end of round t, for 0 < t < T, a- -
processor has received at most 4 til(> + 1 distinct input values through the links
(including its own input value). For the derivation of our first inequality we make the
over-permissive assumption that every value sent on a bus arrives at all n processors
(for “free”). Therefore, in round t a processor may receive, through the 2 + y buses,
at most (5 + y) (1 +4(i)) distinct new values. Consequently, at the end of round T
a processor may know at most

t = (l+qTy)) +$(1+4(;))
input values, where the first term accounts for values received through the links and
the second for those received through the buses. This sum, which is O(T3(x + y)) =
O(T3y) = O(T”n/x), must exceed n, hence

T3 = n(x). (1)

If the mesh is square, i.e., x = y = n112, the last equation implies that T = O(d).
However, one can choose a small value for x and’then the bound on T is not enough.

14

Therefore we need to derive a second inequality. For that purpose we may again make
a permissive assumption, asserting that a value known to a processor is also known to
all other processors on the same row (for free). This implies that we do not need the
row-buses. Moreover, assume that the goal function is to sum only the input values
of one column, say, Co, so there are only y input values. Similar arguments as for the
l-dimensional case show that after round t, for 0 5 t < T, at most 2t - 1 new values
can be sent on each column-bus. There are x such buses, so necessarily

(1 + 2T) + xg(2t - 1) 2 y,
t=1

which implies that
T2=$-) !! .

0 2

Combining Equations (1) and (2) we get

(2)

(T3)2 l T2 = 0(x2 l 5, = O(n)

or
T = fl (n”) .

Before reading the derivation for the general case, the reader may find it instru-
mental to consider the 3-dimensional case. Assume that n = xyz and that x 5 y < z.
By arguments similar to the 2 dimensional case we derive three inequalities. The first
iS

k +6(31 +(xy+Yz+x~)~ 1+6t:l((7’)) Lxyz,
- which implies that

T* = O(x).

The second inequality is

(l +4(a)) +(xz+xy)~ 1+4t--I ((I)) 2 yz,
which implies that T3 = 0 ($) . Multiplying this by equation (3) we get

T7 = St(y).

The third inequality is

(3)

(4)

which implies that T2 = R (5). Multiplying this by equations (3) and (4) we get

T13 = O(Z). (5)

Multiplying equations (3), (4) and (5) we get that T2* = O(n) and thus

T = iI(

We conclude this section by presenting the inequalities for any dimension d 2 2.
Assuming that n = rlr2 - l - ?-d and that r1 5 7‘2 < l = . 5 ?-d the following inequalities
can be derived.

i=j+* l-i t=l \

From these inequalities we get that for every j in the range 1 < j 5 d, the
following holds:

T&Z-j
=~(rl.~rj~l)* (6)

When j = 1 the denominator is 1. By appropriate multiplications of equations from
(6) we get that for every j in the range 1 < j < d-

(7)
Multiplying all the equations in (7) we conclude that Td2* = O(n) and thus

T = Cl@&).

1 6

References

[Al

PI

[Cl

[CDL1

PI

PI

[JSI

ww

[K I0

[K Ir

[PRI

[R Ia

A. Aggarwal, Optimal Bounds for Finding Maximum on Array of Proces-
sors with k Global Buses, IEEE Transactions on Computers, c-35, (1986),
62-64.

S. H. Bokhari, Finding Maximum on an Array Processor with a Global
Bus, IEEE Transactions on Computers, c-33, (1984), 133-139.

S.N. Cole, Real-Time Computation by n-dimensional Iterative Arrays of
Finite-State Machines, 1EEE Transactions on Computers, c-18, (1969),
349-365.

L.P. Cordella, M.J.B. Duff and S. Levialdi, An Analysis of Computational
Cost in Image Processing: A Case Study, I%EE Transactions on Comput-
ers, c-27, (1978), 904-910.

.
M.J.B. Duff, CLIP4: A Large Scale Integrated Circuit Array Parallel Pro-
cessor, in Proc. 3rd ht. Joint Conf. Pattern Recognition, 1976, 728-732.

W.M. Gentleman, Some Complexity Results for Matrix Computations on
Parallel Processors, J. ACM, 25, (1978), 112-115.

H.F. Jordan and P.L. Sawyer, A Multimicroprocessor System for Finite
Element Structural Analysis, Comput. Strut., 10, (1979), 21-29.

W.H. Kautz, K.N. Levitt and A. Waksman, Cellular Interconnection Ar-
rays, IEEE Transactions on Computers, c-17, (1968), 443-451.

S.R. Kosaraju, Fast Parallel Processing Array Algorithms for some Graph
Problems, proc. 27th ACM Symp. on Theory of Computing, pp. 231-236,
1979.

B. Kruse, A Parallel Processing Machine, IEEE Transactions OR Comput-
ers, c-23, (1973), 1057-1087.

V. K. Prasanna Kumar and C. S. Raghavendra, Array Processor with
Multiple Broadcasting, Journal of Parallel and Distributed Computing, 4,
(1987), 173-190.

C. S. Raghavendra, Hmesh: a VLSI Architecture for Parallel Processing,
CONPAR 86, LNCS 237, Springer-Verlag, ppa 76-83, 1986.

17

P Ie A.P. Reeves, A Systematically Designed Binary Array Processor, IEEE
Transactions on Computers, c-29, (1980), 278-287.

VI Q. F. Stout, Mesh-Connected Computers with Broadcasting, IEEE Trans.
on Computers, c-32, (1983), 826-830.

WI Q. F. Stout, Meshes with Multiple Buses, proc. 27th L!!XE Symp. on
Foundations of Computer Science, pp. 264-273, 1986.

PKI C.D. Thompson and H.T. Kung, Sorting on a Mesh Connected.Processor
Array, Comm. ACM, (1972), 263-271.

VI S.H. Unger, A Computer Oriented Toward Spatial Problems, proc. IIRE,
pp. 1744-1750, 1958.

18

a) SUMLINK

c) DISTBUS(B), (B = Ri)

R-t+3
R*t+2 *
R-t+l

d) DISTLINK(B), (B = R;)

Figure 1: The four procedures, (r = 4)

a) SUMLINK

b) SUMBUS

c) DISTBUS(B), (B = Ri)

R*t+3
i a+2

R*
*

t+l

d) DISTLINK(B), (B = R;)

Figure 1: The four procedures, (r = 4)

