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Abstract

Many problems of great practical importance are hard to solve computationally, at
least if exact solutions are required. We survey a number of (NP- or P-complete)
problems for which fast parallel approximation algorithms are known: The O-l
knapsack problem, binpacking, the minimal makeshift problem, the list scheduling
problem, greedy scheduling, and the high density subgraph  problem. Algorithms for
these problems are presented highlighting the underlying techniques and principles,
and several types of parallel approximation schemes axe exhibited.
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1 Introduction
Many problems of great practical importance are computationally very difficult and seem
to require ever larger computing power. Advances in modern circuit technology have made
parallel computation an intriguing possibility, pushing the limits of what can practically
be computed. Also, the theory of computational complexity has established that the
complexity of a large number of practically relevant problems, including many combinatorial
optimization problems, is intrinsically related (in the sense that if one of them can be solved
in polynomial time, so can all). Since so far, despite of immense efforts, no efficient algorithm
has been found for any of these so-called NP-complete  problems, many people take NP-
completeness as evidence that no practically feasible solutions exist.

In a similar vein, the fact that a certain problem is P-complete (i.e., complete under
logspace reductions for the class P of problems solvable in polynomial time) is commonly
interpreted to mean that the problem cannot be solved by efficient parallel algorithms. Quite
often, however, even though it may not be possible to solve h/P- or P-complete problems
efficiently in practice (by sequential respectively parallel algorithms), good approximations
to the exact or optimal solution can indeed be found.

Thus, there are at least two motivations to study parallel approximation algorithms.
The first is to speed up sequential, polynomial time approximation schemes for some
NP-hard optimization problems of practical importance. The other is to find good

_ approximate solutions fast in parallel for problems that most likely cannot be solved exactly
by efficient parallel algorithms since they are P-complete. In this paper, we discuss parallel
approximation schemes for both types of problems.

We shall base most of our discussions onto a theoretical machine model for parallel
computation called the Parallel Random Access Machine, or PRAM (Fortune and Wyllie
1978). In this model, there is an unbounded number of identical Random Access Machines
(or RAM’s), and an unbounded number of global, shared memory cells. The processors work
synchronously, controlled by a global clock. Each processor can access any memory cell in one
step. The concurrent read exclusive write variant of the model (CREW-PRAM) allows that
more than one processor read the same memory cell in one step, but it disallows concurrent
writes to the same memory cell. The exclusive read exclusive write variant (EREW-PRAM),
on the other hand, forbids concurrent access completely. Most of the algorithms discussed
in this paper run on the second, weaker model.

- The shared memory feature of the PRAM model is somewhat idealistic. A more realistic
machine model consists of a network of (identical) processors with memory modules attached
to them. The processors are connected via point-to-point communication channels. Each
processor can directly access only cells in its own memory module, and it has to send messages
to other processors in order to access data in their modules. To respect technological
constraints, the number of channels per processor is usually bounded or a very slowly
growing function of the number of processors. Examples for such networks of processors are
the Hypercube (Seitz 1985),  the Cube-Connected-Cycles network (Preparata and Vuillemin
1979),  or the Ultracomputer (RP3) (Pfister 1985, Schwartz 1980).

The parallel complexity class A& of problems that can be solved in time polylogarithmic
in the problem size on a PRAM using a polynomial number of processors is commonly
thought to characterize the class of efficient  parallel algorithms (Pippenger 1979). The
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class NC is robust in the sense that it doesn’t change when we replace the PRAM by one
of the more realistic models mentioned above. It is also quite easy to see that A&Z is a
subset of P. Since NC computations can be simulated by sequential Turing machines using
only polylogarithmic space, membership of a P-complete problem in NC would imply that
P is contained in POLYLOGSPACE which is considered very unlikely. This is why P-
completeness of a problem is usually considered as evidence that the problem cannot be
efficiently parallelized.

Many of the algorithms and results in this paper have appeared elsewhere, as given
in the reference section. We have tried to present different types of parallel approximation
schemes, with the amount of resources depending in different ways from the problem size and
the required accuracy. Similar to the notion of (fully) polynomial a*pproximation schemes. in
sequential computation, we define an NC approximation scheme to be a family of algorithms
parametrized by 6, the required accuracy, such that, for 6 fixed to any value > 0, the resulting
algorithm is in A&.. Such a family of algorithms is called a full NC approximation scheme
if the running time of every algorithm in the family is bounded by a polynomial in the
logarithms of the input size and 6-i) and the number of processors each algorithm uses is
bounded by a polynomial in the input size and e-l.

In this paper, we have also tried to categorize parallel approximation algorithms in the
literature by the underlying approach, thus extracting some commonality for some of them
and exhibiting some more widely usable techniques. Of course, we do not, and cannot, claim
any completeness since research into parallel approximation algorithms is quite active and a
certain selection had to be made. The remainder of the paper is organized as follows: Section
2 discusses approximation algorithms based mainly on discretization; we present a full NC
approximation scheme for the O-l knapsack problem, and NC approximation schemes for
binpacking and the makespan problem. In section 3, we discuss the parallel complexity of list
scheduling which has a full l\/C approximation scheme based on scaling the execution times
of the tasks. Section 4 presents parallel approximation algorithms based on combinatorial
properties. Here, we discuss cases where the achievable accuracy of approximation is bounded
away from 1 unless, say, P = NC. Section 5 contains some concluding remarks and open
problems.

2 Discretize to Approximate

Z.l* The O-1 Knapsack Problem
In this section, we study several parallel approximation algorithms where the principal
underlying paradigm is the reduction of many possible values to a few, depending on the
required quality of the approximation. The first problem we discuss is the O-l knapsack
problem: We are given n items of weight wi, . . . , w, > 0, with associated profits pl, . . . ,p, >
0, and a bound C. We are supposed to pack a subset of the items into a knapsack of capacity
C (i.e., the total weight of the packed items must not exceed C), in such a way that the
profit associated with the packed items is maximized. The knapsack problem is a well-known
combinatorial optimization problem. It is n/p-complete, and we therefore expect its exact
solution to be practically infeasible (Garey and Johnson 1974).
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Among the problems discussed in this section, the knapsack problem seems to have the
most structure and thus allow the most efficient scheme for finding an approximate solution.
A number of approximation’algorithms has been presented for it and the related subset sum
problem in the literature, many based on ideas in (Ibarra and Kim 1975). We also refer the
reader to (Lawler 1979), (Peters and Rudolph 1984)) and (Gopalakrishnan et al. 1986). All
these algorithms find, for a given e > 0, a feasible packing of the knapsack whose associated
profit is at least (1 - E) times the optimum.

We use the following notation. For S C { 1, . . . ,n}, w(S) = &SW; is the total weight of
the items given by S, and p(S) = Cics pi their total associated profit. A set S c { 1, . . . , n}
is called feasible if w(S) 5 C. P * is the optimal profit over all feasible solutions, and S* a
feasible set of items resulting in profit P*.

The most efficient approximation schemes for the O-l knapsack problem (whether
sequential or parallel) are based on three main ideas:

1. Let S be any subset of {l,..., n}, and let C’s be the sum of the weights of the items
from S in some optimal solution for the given instance of the knapsack problem. Then
the subset of items from S picked in an optimal solution maximizes the associated
profit subject to the condition that its total weight is at most Cs. Thus, assuming
that we know Cs, we can independently optimize on S.

2. The possible profits are discretized to a “small” grid of possible values. For all these
values, and for appropriate subsets of all the items, optimal solutions are computed
acccording  to 1.

3. Let S, S’ E {I,. . . , n} be such that

p(S) > p(S') and w(S) 2 w(S')-

Then, in any solution S’U S” with S” disjoint from S and S’, S’ can be replaced by S,
increasing the resulting profit without increasing the weight. We say that S dominates
S’.

We now discuss the arguments underlying the discretization approach. Assume without
loss of generality that the items are numbered in non-increasing order of profit density, i.e.

pl> Pnby..>-, .
Wl - 202 - Wn

and that all 20; < C. Find the maximal k < n such that

WI+... + wk 5 c.
By assumption, k > 1, and either k = 72 in which case the optimal profit P* is clearly Ey=, pi,
or k < n and

k k+l
i) = Cpi 5 P* < cpi < ai,-

i=l i=l

since the first k + 1 items maximize the profit density but exceed the capacity, and since
wk+i 5 C and thus pk+i  < p.
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Given an accuracy 6 > 0 we round all profits pi to the next lower integer multiple of $1

Theorem 1 Let p* be the optimal profit for the knapsack problem with weights wi and profits
j5i. Then

(1 - E) ’ P* < F* < p*.- -

Proof: Only the first inequality requires proof. Let S*, S* C { 1,. . . , n} be such that
$(S*)  = p* and p(S*) = P*. S ince there are at most n items in a solution, and since p* is
optimal, we have

p* = fi(&?*) > $(s*) L p(s*) - Is*1 - -e l p 2 (1 - e>p*.
n

cl
For the O-l knapsack problem with weights wi and profits p”i, all feasible solutions haveL

a profit value which is one of the first m = [$I integer multiples of 5. For all of these
m values, we compute (if they exist) feasible solutions on items 1,. . . , n by recursively
computing feasible solutions on items 1,. . . , l;J and on LsJ + 1,. . . , n, and combining these

‘solutions. According to the first fundamental property stated above, we only keep, for each
profit value that occurs, a feasible solution with minimal weight: This solution dominates all
other solutions with the same profit value, which therefore can safely be discarded. It is clear
how to compute the array of possible profit values, together with a minimal weight solution
set for a given profit, in the base case of one item. In the recursive step, two such arrays of
length m are easily combined forming their “cross-product” and eliminating solutions which
are dominated by other feasible solutions with the same weight.

Clearly, there are log n levels to the recursion. Every combining step (and the base step)
can be carried out using m2 processors of an EREW-PRAM, in time O(logm). Since at

-most s instantiations of the recursive procedure are ever carried out in parallel, we obtain

Theorem 2 Given 6 > 0 and an instance of the O-l knapsack problem, a solution with
a pfofit at least (1 - E) times optimal can be found in time O(log n(log n + log i,) on an
ERE W-PRAM with $ processors.

In (Gopalakrishnan  et al. 1986)) an interesting variation of the combining step is shown
that allows to trade a factor of IfT in the number of processors for a log n factor in time.

2.2 The Binpacking Problem
Another classical optimization problem is binpacking: Given n items of size 0 < sl, . . . , s, <
1, these items are to be packed into as few bins of unit size as possible. Again, this
problem is NP-complete  (Garey and Johnson 1974). The binpacking problem apparently
has less structure than the knapsack problem since it is not clear how to treat disjoint
sets of items independently. However, “efficient” parallel approximation schemes for the
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binpacking problem are also based on discretization. The algorithm presented here is a
rather straightforward parallelization of the algorithm given in (Fernandez de la Vega and
Lueker 1981).

Let e > 0 be given as the required accuracy, and let B(d) and B* denote the number of
bins used by algorithm d and in an optimal solution, respectively, for a given instance B of
the binpacking problem. We shall discuss a parallel approximation algorithm d that finds a
solution with

B(d) < (1 + c)B* for B* + 00.

First, we temporarily remove all items of size < c. Let n’ be the number of remaining
items, and assume without loss of generality that their sizes are sr 5 s2 5 . . . < s,‘. Also,
let m = [e-21) m’ = Lc-‘j, k = [n’/mJ, and r = n’mod k. We divide the n’ items into
(roughly) m sets, the first, So, consisting of the r smallest of the 3; (ties broken arbitrarily),
then Si, S’s,. . ., S,,, , each consisting of the k next larger elements. Note that So may be
empty. Using parallel selection (Vishkin 1987), the sets Si can easily be determined in time
O(logn) on an EREW-PRAM with neD2 processors.

Let ui be the maximum of the sizes in Si, and let Ui consist of ISi1 copies of ui, for
i = O,l,. . . , m. We approximate the original bin packing problem (without the items of size
< 6) by the one given by the items in the sets Ua, Ui,. . . , U,, and we solve this problem
exactly, as follows. Since the Ui together contain at most m + 1 distinct values, and since
each of these values is 2 6, each bin can only be packed in a limited number of ways: Call a

. packing of a unit size bin to be of type t = (to, tl, . . . , tm) if it contains ti items from Ui (of
size ui). Of course, C;“=, tiui 5 1 and C;“=, ti 2 m’. Thus, there are at most

(m-$+1) = (m+;,‘+l)

different types. We also define a partial packing to be any vector (p~,pl,  . . . ,pn) consisting
of nonnegative integers pi < k. The number of different partial packings is bounded by
(k + l)“+l.

We define an auxiliary digraph, which we call the structure graph associated with the
problem, in the following way. The nodes of the digraph are the partial packings. There
is an arc from a partial packing p to a partial packing p’ whenever p’ - p is the type of a
packing of a unit size bin. Note that, for fixed c, the size of the structure graph is polynomial
in- n. Also, it is quite easy to see that an optimal packing of the given items can be read
of a shortest path in the structure graph from node (O,O,. . . ,O) to node (T, k,. . . , k). On
an EREW-PRAM, and for fixed e > 0, this optimal packing can be determined in O(log2 n)
time, using a polynomial number of processors. The constants involved, however, are rather
big: for the time, there is an e-2 factor, and for the number of processors, the degree of the
polynomial also contains such a factor.

To complete the packing, we still have to deal with the iterns  smaller than E, which were
discarded initially. They are s,‘+r, . . . , sn. Assume that the packing obtained so far uses q
bins, and that the space still available in these bins is Sl, . . . , 6,. The idea for the following
algorithm is to fill these bins, in order, to at least 1 - 6, using the small items, also in
order. In addition, we append n - q empty bins to the list of partially filled bins. Thus,
6q+l = . . . = 6, = 1. Note that n bins certainly suffice to pack all of the items.
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Using a parallel prefix routine (Ladner and Fischer 1980) we determine the partial sums
c ij=l Snr+j, for i = 1,. . . ,n - 12’. We then define another auxiliary graph, whose vertices
are labelled  by the pairs in (1,. . . , n} x (1,. . . , n - n’}. Consider a vertex labelled (12, j).
Assuming that .Snl+j is the first of the small items to be placed into bin h by the (sequential)
filling procedure alluded to above, we compute how many of the small items, starting at
sn’+j,  are needed to fill bin h to at least 1 - 6. Using binary search on the prefix sums, this
can be done in O(logn) time with n/ logn processors. We thus obtain the index n’ + j’ of
the first item that will go into bin h + 1, or we find that all items fit into the first h bins. In
the first case, we create, in the auxiliary graph, an arc from vertex (h, j) to vertex (h + 1,j’).
All such arcs can be computed in parallel, using n3/ log n processors. Since every vertex in
the auxiliary graph has outdegree at most one, we can then use tree traversal techniques
(requiring O(n2) processors and O(logn) time) to find the maximal path starting at vertex
(1,l). The second component of the label of each vertex on this path gives the start of the
segment of small items that are packed into the bin given by the first component.

Theorem 3 Let e > 0 be fixed. There is a parallel algorithm d that solves any binpacking
problem B such that

B(d) 5 (1 + e)B” for B* + 00.

Let n be the input size of B. Then the algorithm runs in time O(log2 n) on an EREW-PRAM
with a number of processors bounded by a polynomial in n.

Proof: Consider the algorithm d given above. We still need to establish the quality of the
approximation it computes. For this analysis, we distinguish two cases.

First, we assume that the routine filling in the small items ends up filling to at least 1 - e
all but possibly one partially filled bin. If B denotes the given instance of the binpacking
problem, we have

n

(B(d) - I)(1 - c) 5 Csi L B*,

and hence
i=l

B(d) < &B* + 1.-

a For the second case, the filling routine packs all small items into the first q bins. Let
B denote the problem instance given by the sets Uo, Ul, . . . , U,. Further, let Di consist of
ISil copies of the minimum size element in Si, again for i = 0, 1, . . . , m, and let B denote
the problem instance given by the Di. When run on B, algorithm d will also produce an
optimal solution, and we have

B“* = B(d) 5 B* < B(d) = B* = B(d).

Now, since the items in Ui, for i = 0,. . . , m - 1, can replace the items of Di+l in this packing
for B, the optimal packing for B uses as most k = l&.,.J bins more than B(d). Also, since
all items in B have size at least 6, we must have B* 1: en’. By the definition of k, we thus
conclude

B(d)=&d)<&d)+ _n/c2 < B(d) + eB* 2 (1 + e)B*.
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Thus, if we replace the required accuracy c by & in the algorithm, we get for both
cases

' B(d) 6 (1+ E)B* for B* -+ 00.

cl
In (Karmarkar and Karp 1982)) sequential approximation schemes are presented whose

complexity and/or performance is considerably improved. These algorithms rely on a
subroutine solving a linear programming (LP) problem. LP in general is P-complete (Dobkin
et al. 1979), and it is presently not clear whether sufficient restrictions apply in the above
case so that an NC algorithm can be found.

In section 4, we shall briefly discuss a different kind of approximation scheme for
binpacking problems, one that approximates the first fit decreasing heuristic for binpacking.

2.3 Minimizing the Makespan
A third class of problems with parallel approximation algorithms based on discretization is
given by the makespan problem: An instance of this problem consists of n tasks with positive
(integer) execution times tl, . . . , t,, and some number m of identical parallel processors. Each
task is to be assigned to one of the processors. The execution time for a processor is the sum
of the execution times of the tasks assigned to it. The goal is to minimize the makespan, the
maximum of the execution times of all the processors. Again, this problem is a well-known

. NP-complete  problem (Garey and Johnson 1974). Parallel approximation algorithms for
the problem have been given in (Mayr 1985) and (for the case m = 2) (Gopalakrishnan et
al. 1986), and sequential versions in (Hochbaum and Shmoys 1985).

Let 6 > 0 be given. We wish to find a number M such that

M*<M<(l+c)M*,

where M* is the optimal makespan. The optimal makespan problem can be related to the
binpacking problem in the following way: We want to find the minimal M such that the

_ tasks, considered as items, can be packed into m bins of size M (or unit size bins, after
scaling the execution times by M). We note that the optimal scaling factor M;, clearly
satisfies

%Mmin < [‘I . T with T = max{ti; i = 1,. . . ,n}.
m

Starting with these bounds, we perform a binary search, halving in each iteration the possible
interval for Mm;l. For each test value s (the midpoint of the current interval), we perform
the following steps:

1. scale the execution times ti by s;

2. temporarily discard all items < 6;

3. round off the size of all items to the next lower integer multiple of c2;

4. pack modified items optimaZZy  into unit size bins;

5. undo step 3;
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6. use the items smaller than E to fill up the bins in such a way that at most one item exceeds
the bin capacity of 1.

Step 4 in the above procedure can be carried out using a structure graph as with the
binpacking problem. Also, step 6 is quite analogous to the step in the binpacking algorithm
filling in the small items. We therefore leave the details to the reader.

If the above procedure succeeds in step 4 and, in step 6, manages to pack all small items,
we replace the upper bound of the search interval by s, otherwise the lower bound. In the
first case, we know that all tasks can be executed within time (1 + 6)s. In the second case,
every bin is filled above capacity, and thus s < M*. Let [L, U] be the search interval after
log n + log l/e iterations of the binary search. Then clearly

0 < U - L 5 CL and M* E [L, U].

This implies that
M*<UL(l+e)M*,

and we return M = U as our approximation to the optimal makespan. We conclude

Theorem 4 For any fixed c > 0, the optimal makespan problem can be solved within (1 + e)
of optimal by an NC algorithm.

Again, the constants involved depend on e and are rather big. They are of the same order
as for the binpacking approximation algorithm.

3 The Scaling Approach
Discretization, of course, is closely related to scaling which is successfully used in sequential
and parallel algorithms for quite a number of problems, e.g., by Edmonds and Karp (1972),
Karp e t  a l .  (1986), G ba ow and Tarjan (1987, 1988), Goldberg and Tarjan (1987),  and

‘Orlin (1988).
Here, we consider the list scheduling problem, a P-complete number problem (Helmbold

and Mayr 1987a). It involves scheduling independent jobs on two processors. Formally,
it is. given by a list of n jobs, with (integer) execution times tl, . . . , t, > 0. We are to
construct a two processor schedule such that the ith job is started no later than the i + lst,
for i = l,...,n- 1, and there is no idle time between jobs. Note that it is straightforward
to compute a list schedule by a sequential algorithm.

Lemma 3.1 Let the execution times in a list scheduling problem be bounded by L(n). Then
a list schedule can be computed in parallel in O(log L(n) log n) time using O(n*) processors.

Proof: An algorithm with the required properties is given in (Helmbold and Mayr 1987a).
We give a brief sketch. For definiteness, we assume that when both processors become idle
at the same time, the next job is assigned to the first processor. Let S;, for i = 1,. . . , n - 1,
be the difference between the start times of the ith and the i + 1st task in the list schedule.
Also assume that all ti are 2 n, and therefore all S; < n. We construct an auxiliary graph,
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whose vertices are labelled  with the pairs in { 1,. . . , n - 1) x (0,. . . , n}. Let (i, 6) be such
a pair. Assuming that 6; = 6, we compute 6’ = &+I (in constant time) and add an arc
from (i, 6) to (i + 1,s’) to the auxiliary graph. As in the binpacking algorithm, the resulting
digraph is an in-forest, and we find the path from vertex (1,0) to the root of its tree. The
labels of the vertices on this path can be used to determine, in a completely straightforward
manner, the list schedule.

If (some of) the ti are larger than n, we first divide them by a suitable power of 2 and
round the results to the next lower integer, in such a way that the resulting execution times
are bounded by n, and use the procedure outlined above. We then increase the number of
relevant bits, one bit per phase. This corresponds to first doubling the execution times and
then adding 1 to some of them. It turns out that, from phase to phase, the 6; also first
double, and then change (up or down) by an amount bounded by n. Therefore, there are at
most 2n possible values for the new Si, and they can be determined constructing an auxiliary
graph (in-forest) in quite the same way as described above.

The number of phases required is log L(n) - logn, the time per phase is O(log n), and
the number of processors is n* on an EREW-PRAM. 0

For list scheduling, we define an approximate solution to be a schedule that has the same
first come, first served property as a list schedule, but we allow idle time between the jobs.
The smaller the total idle time, the better the approximation. Using an NC algorithm to
compute a list schedule for problems with small job times, we can construct an NC algorithm
to approximate list scheduling with the idle time an arbitrarily small fraction of the schedule

* length.

Theorem 5 For all 6 > 0, list scheduling can be approximated by an NC algorithm such
that the total idle time is bounded by 6 times the length of the schedule.

Proof: Let T = $ C;“=r t;. If T < 11 we solve the problem exactly, as described in the above
Lemma. Otherwise, we first rouidkach execution time up to the next integral multiple of
2” where m is determined by

2” <
e-T

- y < 2m+1.

The modified execution times have at most O(log(n/c)) significant bits, and the modified
problem can again be solved exactly, using the above algorithm. In the list schedule obtained
for: the modified problem, we then restore the original execution times, but keep the start
times for the jobs. The idle time caused by restoring the execution time of the ith job is less
than 2”, and thus the total idle time is at most

Since the length of the list schedule is at least T the claim of the Theorem follows. 0
It should be noted that the list scheduling problem as desribed here is quite interesting

because of this extremely close relationship between the size of the numbers in an instance,
and its parallel complexity.
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4 Combinatorial Approaches
In this section, we study approximation algorithms based on more combinatorial approaches.
We also encounter the phenomenon that in some cases the (historically or, under certain
assumptions, theoretically) best achievable accuracy is strictly bounded away from 1.

4.1 Greedy Scheduling
A unit execution time task system (UET task system) is given by (i) a set T of n tasks
t1, * . . , t,, each requiring unit time for execution, (ii) a partial order + over T reflecting
the precedence constraints among the tasks, and (iii) some number m of (identical) parallel
processors. A schedule for a UET task system (T, -x) on m processors is a mapping of the
tasks in T to unit length time intervals (with integral boundaries) such that, if t + t’ then t’s
time interval precedes that of t’, and at most m tasks are mapped to any one interval. The
length of a schedule is the number of distinct time intervals it uses. The UET scheduling
problem is to find a schedule of minimal length. The problem is NP-complete (Ullman 197’S),
as are some restricted versions (Mayr 1981). If m = 2, optimal schedules can be found in
linear time (Gabow and Tarjan 1983), and in NC (Helmbold and Mayr 198713).

A schedule is greedy if, whenever a timestep  has less than m tasks mapped to it, that
timestep  contains all tasks available for execution, i.e., a greedy schedule leaves no processor
.unnecessarily  idle. It is known that the length of any greedy schedule is at most 2 - 5 times
optimal, and that this bound is tight (Grah am 1969). We show how to compute a greedy
schedule fast in parallel.

We first determine for every task t its level, defined as the length of a longest path
from a source (in-degree zero vertex) to t in the digraph P given by (T, 4). We then
omit from P all arcs not between adjacent levels. Next, the tasks within every level are
numbered arbitrarily. Every (directed) path in P starting at the first level (i.e., with a
source) is thus uniquely associated with a sequence of numbers. Any two such sequences can
be compared lexicographically. We compute, for every vertex t in P, the lexicographically

-maximal sequence over all paths starting at a source and ending at t. This computation is
performed using a transitive closure routine based on iterated matrix multiplication, with
scalar multiplication replaced by path composition and scalar addition replaced by taking the
lexicographic maximum. Let p(t) denote the lexicographically maximal sequence computed
for t. We sort the tasks, first by ascending level, and then within every level in order of
increasing p( -). T he resulting list, L, determines a list schedule for (T, 4): at every step, as
many executable tasks as possible (up to m) are scheduled, in the order given by L.

A simple induction shows that every timestep  in the list schedule determined by L
contains tasks from at most two distinct levels. We claim that the list schedule actually
schedules the tasks in list order:

Lemma 4.1 Let t and t’ be two tasks, t’ occurring later in L than t. Assume that in some
timestep of the list schedule for L, task t is not yet executable. Then n$ither is t’.

Proof: Assume to the contrary, and let t be the first task (in list order) that cannot
be executed while some successor t’ of t in L is executable. Also, let i be the immediate
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predecessor of t with the largest associated sequence that has not yet been executed, and let
? be the immediate predecessor of t’ in P, also with the largest associated sequence. Then
p(?) must be lexicographically at least as large as p(i), and hence t^ is scheduled no later
than ?. Hence, t must be executable; contradiction. [1

Given the list L, the corresponding list schedule can be computed fast in parallel:
Assuming we know the position in L of the first task scheduled in timestep  i, it is
straightforward to find the first task scheduled in step i + 1. Using a path finding technique
as in earlier algorithms, we obtain

Theorem 6 There is an NC-algorithm to find a greedy schedule for UET task systems. The
length of the greedy schedule is at most 2- + times optimal, where m is the number of parallel
processors for the schedule.

If we define the level of a task to be the maximal distance to a sink (a task with no
successor) instead of to a source, and schedule executable tasks on higher levels before those
on lower levels, we obtain a so-called highest level first (HLF) schedule (also a list schedule).
To compute an HLF schedule, however, is P-complete, even when the precedence constraints
are restricted to unions of an in-tree and an out-tree (Dolev et al. 1985).

4.2 Large Degree Induced Subgraphs
. We shall discuss a P-complete problem for which the best achievable approximation is more

than a factor of 2 unless P equals NC. For a more detailed presentation, the reader is
referred to (Anderson and Mayr 1984).

Given a graph G = (V, E) and an integer d > 0 the high degree subgraph problem (HDS)
is to find HD&(G), the maximum induced subgraph of G whose nodes all have degree at
least d. There is a simple linear time sequential algorithm for this problem. It discards nodes
of degree less than d until all remaining nodes have degree at least d, or the graph is empty.
The correctness of this algorithm is completely straightforward.

We shall make use below of the following

- Lemma 4.2 If a graph has n vertices and m edges then it has an induced subgraph with
minimum degree [:I.

Proof: For a proof, see (Erdos  1963). 0
- We reformulate the high degree subgraph problem as a decision problem HDS by asking

if a specific node v is in HDSd(G).  In (Anderson and Mayr 1984) it is shown that

Theorem 7 For d > 3, HDS is P-complete. It is also P-complete to decide whether
HDSd(G) is nonempty, for d in the same range. 0

On the other hand, it is quite easy to see that HD&(G) can be computed by an NC
algorithm. The algorithm has log n phases, where each phase removes all chains. A chain
is a path that starts with a vertex of degree 1 and contains no vertex of degree greater
than 2. The chains can easily be identified by path doubling techniques. When the chains
are deleted, more nodes of degree 1 might be created, however, each new node of degree 1
required the removal of at least two chains, so the number of chains decreases by at least
half at each phase. We thus have the following
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Theorem 8 It is possible to compute HDS2(G) by an NC algorithm. 0

Consider the following optimization problem: Given a graph G, find the largest d such
that HD&(G) is nonempty. We denote this value by D” = D*(G) . An approximate solution
for the problem is an integer D such that, for some positive constant c > 1,

D*(G) 2 D 5 D(G).

We call such a D a c-approximation for D*.

Theorem 9 Let c be a constant greater than 2. Then a c-approximation for D*(G) can be
found by an NC algorithm.

Proof: Let E = 1 - 3 > 0, and consider the following pruning procedure (with parameter
d):

1. let n’ be the number of vertices currently in G;

2. if at most en’ vertices have degree < d then stop;

3. remove all vertices from G that have degree < d;

. 4. got0 1.

This pruning procedure removes vertices from G until G is empty or at most a proportion
of e of the remaining vertices have degree < d. In the first case, G clearly has no induced
subgraph with degree at least d. In the second case, the remaining graph contains at least
9. dn’ edges, and hence, by the Lemma, D*(G) > y. d. Running the pruning procedure
for every d E [l,n- 11, let D be the largest such parameter for which the procedure returns
a nonempty graph. Then D* < D 5 CD*. 0

The next theorem shows that the previous result is essentially the best possible assuming
that P # NC. We s low1 that a circuit can be simulated by a graph G with D*(G) = 2d if
Fhe output of the circuit is 1 and D*(G) 2 d + 1 if the output is 0.

Theorem 10 Let c be a constant, 1 5 c < 2. Unless P = NC, there is no NC algorithm to
compute c-approximations for the high degree subgraph problem.

Proof: It is not hard to see that the monotone circuit value problem with OR gates
having just one output is still P-complete (just use an AND gate with one input tied to 1 to
achieve fanout). We shall give a logspace reduction that, given such a circuit and an integer
D > 1, constructs a graph G with D*(G) = 20 if th e output of the circuit is 1, and with
D*(G) < D + 1 tho erwise. In the reduction, first every gate of the circuit is replaced by a
corresponding gadget, as shown in Figures 1 and 2.

In these figures, the circles represent sets of D vertices each, .the bold edges denote the
edges of a complete bipartite graph on the two vertex sets they connect (i.e., a K&, and
the thin edges in Figure 2 denote a set of D edges giving some arbitrary bijection between
the two sets of D vertices each. Figure 2 shows the special case of an AND gate with two
outputs. Different fanout can easily be achieved repeating the pattern given in the figure,
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Figure 1: OR gate

n

Figure 2: AND gate

with D circles connected by bold edges to a line and each of them with a thin line to the
corresponding “output” circle. When a wire connects an output of one gate with an input of

- another gate, the corresponding “output” circle of the first gate is identified with the proper
“input” circle of the second. To complete the reduction, we add to the circuit an AND gate
one of whose inputs is the original output of the circuit, while the other is tied to 1. Each
I-input of the circuit becomes an output of this AND gate. Of course, this additional gate
th& is also replaced by the corresponding gadget.

Assume first that the output of the circuit, with the given assignment of input values, is
1. Then the subgraph induced by (the vertices in) the circles in gadgets for gates with value
I (omitting, in the case of OR gates, inputs with value 0) has degree at least 20 as one can
easily verify. It is also quite easy to see that, in this case, D* < 20 + 1, and thus D* = 20.

Consider now the case where the output of the circuit is 0. We remove, from the graph
constructed in the reduction, vertices of degree at most D + 2. Starting at O-inputs to the
circuit, it is clear that the gadget for the output gate, the added gadget feeding the outputs
back to the l-inputs, and finally the vertices in all gadgets get removed. Hence, as claimed,
D*<D+ 1.0

For a detailed discussion of another type of parallel approximations for the high degree
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subgraph problem (yielding algorithms not necessarily in NC),  we refer the reader to
(Anderson and Mayr 1984).

4.3 FFD Binpacking
The first-fit-decreasing (FFD) method is a simple heuristic for the n/p-complete (one-
dimensional) binpacking problem with a guaranteed performance bound of y times optimal.
Unfortunately, computing an FFD packing, given the size of the items, is P-complete in
the strong sense (i.e., even if numerical values are given in unary notation) as shown in
(Anderson et al. 1988). In this paper, it is also shown that an FFD packing can in fact
be computed by an n/C algorithm if all item sizes are bounded from below by some e > 0.
This routine can then be used to “approximate” an FFD packing for unrestricted problem
instances: First, items of size at least 6 are packed according to the FFD heuristic, using
the ,VC routine. The remaining, small items are then used to fill up these and, if necessary,
additional bins. This fill-in routine is similar to the ones discussed earlier, and is easily seen
to be in NC. For a detailed presentation of the algorithms and results, the reader is referred
to (Anderson et al. 1988).

5 Conclusion
We have presented (full) n/C approximation schemes for Ji\/P-hard  optimization problems like
the O-l knapsack problem, binpacking, and the makespan minimization problem. We have
also shown a full AR approximation scheme for the P-complete list scheduling problem.
Finally, we have discussed some problems for which the best achievable accuracy for
approximation schemes is, as far as we know, strictly bounded away from 0.

Of course, there are other parallel approximation algorithms. For example, we did
not touch on approximate string matching, nor on the use of the random NC routine in
(Karp et al. 1985) for maximum cardinality matching in graphs, which can be employed

-to build approximation algorithms for maximum weight matchings and maximum flow
problems, based on scaling.

We have shown that efficient parallel approximation schemes exist for some N?-complete
problems as well as for suitable P-complete problems. Finding an FFD packing and Linear
Programming (LP) are strongly p-complete. Nonetheless, FFD can be approximated by
n/C algorithms in a certain sense, while no such approach is known for LP. It is also an
interesting open problem to find other strongly P-complete problems, and to study whether,
and in which sense, exact solutions for them can be approximated efficiently in parallel.

Another challenging area for research is to develop approximation methods for problems
of practical interest (as some of those mentioned above) that can be implemented efficiently
on more realistic parallel architectures, like the Hypercube. Many of the results shown
here are asymptotic bounds and sometimes hide large constants (or, even worse. polynomial
degrees).
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