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Abstract

We propose a siml~le  parallel allgorit,hm  for finding a blocking flow in an acyclic rlc~l!vork.  011
an II-vertex,  m-arc ner.work, our algorit,llm  runs in O(n log 11)  time and O(r1.m)  space llsitig  an tI)-
processor EREW PRAM. A consequence  of our algorithm is an 0( n?(log  n) log( ?I( ‘))-t inlc’,  0( ~)jt))-
space, m-processor algorit.hm  for the mininnm-cost  circulation problem, 011  a. net work wi t,ll iut,qyl
arc capacities of magnitude at, most C’.

1 Terminology

In this paper we use the follo\ving definitions. Let G = (V, E) b e an acyclic directled gra 1111 \vitl\ L’crt PS
set I/ of size n and XC set, E of size m. For ea.se in stating time bounds, we assume that 111 >_ II - 1.
Define E-’ = {(w, v)l(z~.  ~7) E E} and E+ = E U E -l. For any vertex w we denote by /I( zc) the set ol

vertices adjacent out from IV, E(w) = {x1( 20,x) E E}, and by E-l(w)  the set of vertices cc.c!jcrcef?f irzto

‘w, E-‘(w)  = { I(v v, w) E E}. Graph G is layered if each vertex v can be assigned a.n integer In:qe~b L( (1)
such tha.t L(w) = L(v) + 1 for every arc (17,  w).

Graph G is a network if it 1la.s two distinguished vertices, a source s and a .si& t. and a, nonneg-
a.tive real-valued capacity U( n, w) on every arc (.u, w). A preflow on a network is a nonnega.tive  real-
va,lued function j on the arcs such that j(v, w) 5 u(v, 20)  for every arc (v, 20) and CI,EE-l(tv) j( ~1, w) 2

cz&E(w) f(% 4 for every vertes UI # s. The quantity e(w) = ‘&=E-.l  [WI j(zj, w) - CXEE((L,)  j( ~7, .c) ib

-called the excess at vertes w. A preflow j is a flow if e(w) = 0 for every vertex zu 4 {s? t}.

The residuul capacity of an arc (u, w) with respect to a preflow j is u~(v,  w) = ,u( 17, ~1) - j( U. ~7).
Arc (v, w) is saturated if ~f( ‘L’, w) = 0 and residual if u~(u,  w) > 0. A preflow is blockiny  if every pat,11
in G from s to t contains at least one saturated arc, i.e., there is no path of residual arcs from s to !.

Our model of parallel computation is the exclusive-read, exclusive-write parallel ra.ndom-access  ma-
chine (EREW PRAM) [T]. We shall also briefly consider distributed computation models [ 101.

2 Perspective

The problem of finding a, blocking flow in an acyclic network arises as a subproblem in computing
maximum flows and in computing minimum-cost circulations. Specifically, Dinic [.5] showed tha2t the
‘maximum flow problem can be solved by solving a sequence of O(n) blocking flow problems on la.yerttl
networks. We [l2, 13, 141 have shown that the minimum-cost circulation problem can be solved by soiv-
ing a sequence of O(12 log(nC)) blocking flow problems on acyclic but not necessa.rily la.yered networks.



.
The a,symptotically fa,stest known sequentia.1 algorithm is described in [14];  it runs in 0( 111  log( ?I’//)) ))
t.ime a.nd 0( II? ) space. for an arbitrary acyclic network.

Of the cited algorithms. only one is a8 parallel a.lgorithm.  that of Sl~iloacl~  and Vishkin [2 t]. which
runs in 0( 11 log n) time and O(?z*) space (U. Vishkin, private conllllunication. 19%) using /I processors.
The Shiloach-1.ishkin  algorithm is stated for layered networks. Although we previously claimed t6 ha t
t&heir  method est,ends t’o arbitrary acyclic networks without loss of asymptotic efficiency[ 12, 131. this
does not seem to be true; their running time analysis brea.ks down in the general ca.se. Thus their
algorithm cannot be used as an efficient subroutine in solving minimum-cost circulation problems.

Our goal in this paper is to devise a fast parallel blocking flow algorithm for arbitrary acyclic
networks. In the next section we describe a. method based on the concept of (flow) atoms; we call t.his
method the ntoamic  method. In Section 4 we give a. parallel implementation of the atomic method.
This implementation runs in 0( n log n) time and O(nnl) spa.ce using m processors. As a corollary, we

obta.in an O(n*(log 17,) log(&))-time, 0( nT71.)-space,  m-processor parallel algorithm for the minimum-
cost circula,tion  problem. (See [12, 13, 141.)

3 The Atomic Method

In this section we describe a method for finding blocking flows in acyclic networks that is based on the
concept of atoms (defined below). Atoms have been used previously in the analysis of maximum flow
algorithms by Goldberg [ 1 I] and Cheriyan and Maheshwari [I].

Our general method is the same as that used by Karzarov [lG] and later by others, e.g. [2, 8, 14,
21, 241.  The algorithm begins with a blocking preflow and moves flow excess through the network while
ma.mtaining a blocking preflow, until eventually this flow movement produces a blocking flow. The
algorithm maintains a partition of the vertices into two states: blocked and unblocked. We call an arc
(0, w) admissible if it is residual and 20 is unblocked. The algorithm blocks a. vertes w when it discovers
that none of the arcs leaving v is admissible; once v is blocked, every path from v to t contains a
sa,turated arc. Excess on blocked vertices is returned from whence it came, by decreasing the flow on
a.ppropria  te incoming arcs.

To keep track of the detailed flow movements, the algorithm maintains a partition of the flow excess
into atoms. Consider a time during an execution of the algorithm. An atom is a maximal quantity of
escess that has moved in exactly the same way so far. An atom a at a vertex v consists of an amount
of escess denoted by size(u);  the vertex v is denoted by position(a). An atom loca’ted at a vertex other
than s or t is called active.

Associa.ted with an atom a at a vertex v is a path of arcs in E+ from s to z.7 that the atom followed
in arriving at v. This path is denoted by trace(a). Also associated with CL is a simple path from s to
I:, denoted by path(a),  of arcs in E through which the atom moved forward but not backward in the
course of reaching w from s. The relationship between truce(a) and p&(a)  is tha,t path(a) contains each
a.rc ( 17.  ~1) such that (21,  ~7) but not (w, V) is on tmce( a). The intuit,ion  behind the algorithm is that



procedure Process-Atom(n).
be&

II’ - posifion( a) ;

if w is unblocked then
if 3 ( W, c) : uf ( UI, z) > 0 and t is unblocked then begin

if ske( a) > UJ (w, 2) then begin
[split CL]
create a new atom 0’;
mw - path(u’);
size(u’) - size(u) - 14f(w,  .r);
me(a)  + uf(w, 2);

end;
posttion(u)  + 2;
append (w,.r) to path(u);
‘if  b, 4 - uf(zu,  x) - size(u);

e n d
else mark w as blocked;

if UI is blocked then begin
(u. w) - last arc on path(u);
position(u) + u;
delete (u, 20) from puth( a):
move a to v;
update path(u);
Ufb  4 + uf(v, w) + size(u);

end;
end.

Figure 1: The Process-Atom procedure. Note that the flow is maintained implicitly as a difference between
IL and ILJ.

each atom does a depth-first search from s in an attempt to reach t. The graph being searched changes
dynamically as arcs become saturated and vertices become blocked.

During initialization, the algorithm saturates every arc (s, V) leaving the source, creating a,t each
neighbor v of s an atom of size U( s, V) and trace (s, v). At each iteration, the algorithm selects an a,ctive
atom c1 and processes it as described in Figure 1. Let SW = position(n). If w is not blocked, the algorithm
tries to move a forward along an arc with positive residual capa.city. If no such arc exists, w becomes
blocked. If there is such an arc, the algorithm picks one, sa,y (20, CC).  If size(a) > U~(UJ,  x), atom CL is

Split into two parts. One part, of size equal to size(n)  - u~(w,x),  gets a new name a’. The other part.

of size equal to UJ(W,X), retains the name a. Atom ~1’ remains at vertex w to be processed later; atom
~1 moves to vertex x. Finally, if atom c1 hams  not moved (i.e., vertex w is blocked), atom a is returned to
the vertex, say o, from which it first reached w.

Note that an atom can move in two ways: forwa.rd from zu to x or backward from 20 to ‘u. In the
former case, 10 is unblocked and f( w, x) increases. In the latter case, SW is blocked and j( ZJ, w) decrea.ses.
.4n atom can move backward from w to v only if at a previous time it moved forward from u to w.
Thus the flow through an arc never becomes negative. During the course of the algorithm, for a,ny arc
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( 10, .!a), the flow on (N. X) first increases, until 1: becomes blocked, after which the flow dccrc~~~s~~s.

Note that, we have not specified the way in which we select an a.tom to be processed uclst . Iu the
parallel implementation of the algorithm, a.11 active atoms, and atoms arising from t,heln 1)~ it,erat.ecl
splitting, are processed concurrently. In the sequential implementation, any coustant-time sc’loct ion rule
lea.ds to an O( ??nj)  time bound. For example, one can maintain the set of active atoms as a claeue or
a stack. Alterna.tively,  a.t ca.ch vertex one can maintain a list of the atoms locatecl a,t the \*ert.cs, and
keep a queile  or a sta.ck of vertices with nonempty lists of atoms.

We begin our ana,lvsis of the algorithm by bounding the number of atoms..

Lemma 3.1 The total number of atoms created during an execution of the atomic algorithm is at most HI.

Proof: We claim that each increase in the number of atoms corresponds to an arc sa*tura.tion. ,i2t.oms
created during initializaOtion are charged to the saturation of the corresponding arcs. An atom created by
splitting in procedure Pwwess-Atom is charged to the saturation of the arc (w, X) in the sa.me esecution
of the procedure. Thus the claim is true. Since each arc becomes saturated only once, the lemma is
true. 1

The next lemma gives the key property of the algorithm. Intuitively, the lemma holds because the
trace of an a.tom is a, pa.rtial traversal of a tree rooted at s.

Lemma 3.2 Consider an atom CL at some time during execution of the algorithm. Then the length of the

trace of a is at most 212 - :3.

Proof: An atom (1 only moves backward from a vertex w 4 {s, t} once w is blocked. .Just, after CI.  moves
backward from 20, zu is not on puth(a),  and a never visits w again. It follows tha.t, for each vertes 20 # t,

E n’tmce(a  j contains at most one arc of the form (v, w); and, for each vertex 10 4 {,c, t}, E-l n tmce(u)
contains at most one arc of the form (20, v). This gives a bound of 272 - 3 on the length of twc.re(  n). 1

We define phases of the algorithm as follows. Initialization is phase 1. Phase i for i > 1 begins
at the end of phase i - 1 and ends as soon as every atom that existed at the end of the phase i - 1,
and e-very atom created by splitting since the end of phase i - 1, has moved at least one step. Since
every atom moves (either forwasd of backward) at least once during each phase, we llave the following
corollary, which is crucial for the analysis of parallel versions of the atomic method.

Corollarjr 3.3 The number of phases during an execution of the algorithm is at most ‘272 - :3.

To obtain an efficient implementation of the algorithm, we maintain the path of each atom as a.
stack of arcs .l. When an atom moves forward along an arc, the arc is pushed on top of the stack. To
move an atom backward, we move it to the tail vertex of the top-of-stack arc and pop the stack.

Using stacks allows the algorithm to move atoms forward and backward in constant time. Splitting
an astom,  however, requires copying a stack. For ordinary stacks, this requires linea#r time. A very simple

‘If the network has no mult,iple  arcs, it is sufficient to maintain stacks of vertices on the kxdhs.
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inlpleillet~ta.tion of persisterzt  stf~k.5 [19]  (see also [cj]) 11a ows the cop!’ operation, a,s well as tl\e push autl
pop opelxtions,  to be done in constant time. In combination with Lemn1a.s 13.1 and 13.2, this fart givt+
t 11~ foIlo\ving  result.

Theorenl  3.4 The atomic algorithm, implemented using persistent stacks, runs in O(nm)  time.

4 ’ A Parallel Implementation

In this section we describe a parallel implementation of the atomic method. The parallel implementation
works ill pulses; at each pulse, every atom, including those a.rising by splitting, moves either forwa,rd 01
bacl;\vard  or both. Thus each pulse completes at least one phase, where a. phase is as defined in Sect,ioll
3

The parallel implementation consists of the following four steps:

Stq, 1 (initialize). For each arc (s, v), set f(s, V) = U(S, v). Create an atom at v of size f(s, V) and having st,ack
containing only (s, u). For each arc (21,  w) with 21 # s, set f(v, W) = 0. Block vertex s and unblock all other
vertices.

Step 2 (push flow forward). For each unblocked vertex w 4 {s,2}, in parallel, do t,he following.

Arl,itra.rily  order the atoms at w, say al, a?, . . . , ak, and the admissible arcs (w, x), say (w, XI),  (w-  x2), . . .,

(L, w,).  For 1 5 j 5 Ic, compute a czlm&tive  size S(j) = & sl=e(ai). For each 1 5 j 5 1, compute a

cnmdntiue  residual  capacity R(j) = Ci=l u~(w,  xi). Assign the atoms ai to the admissible arcs (w, ~j) as
fol lows:

.
1. If S(i) - size(ai) > R(j) - u~(w,  zj) and S(i) 5 R(j), assign a.11 of atom CL~ to (ZU,  ~j).

2. If S(i)  - size@;) 2 R(j)  - UJ (w, ~j) and S(i) > R(j), assign an amount R(j) - S(i) + site(ui)  of atom
cl, to (w, Xj).

3. If S(i) - size(ui) < R(j) - uf(w,xj) and S(i) > R(j), assign an amount elf (tu, zj)  of atom clj to

(UI,  Xj).

-1.  If S(i)  - sz,-e(ai)  < R(j) - UJ(W,X~)  and S(i) 5 R(j), assign an amount S(i) - R(j) + uj( II), xj) of
a t o m  U, t0 (?.U,Zj).

(This assignment associates with each admissible arc a total amount of excess less than or equal to its

L residual capacity. At most one such arc receives an amount that is positive but less than its residual
capacity. The total amount assigned to admissible arcs equals the minimum of the escess  at w and the
sum of the residual capacities of the admissible arcs (zu,  Xj ) .)

Split any atom assigned to more than one arc into two or more atoms, one per assigned arc, each of size
equal to the amount of the original atom assigned to the arc. Each  of the new atoms inherits the assignment,
ot’ the corresponding amount of the old atom, as well as the a copy of the stack of the old atom.

For each admissible arc (TN,  zj), increase f(zu,  xj) by the sum of the sizes of the atoms assigned to (w, xj),

and move each such atom to xj, pushing (SW, xj) to its stack. If all arcs (w, xj) are now sat,urated,  mark ~1
t(o be blocked. (Do not block w yet .)
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Step 3 (block vertices). Block every vert.ex  marked t,o IW I~locked  in St,ep  2.

Step 4 (return flow). For each blocked vert,es ((1  4 {s,  t}. iIr parallel, do the following:

For each aA0t-n  CI at’ W, let, (u, , w) be the top arc on slnck(n).  Pop sfnck(a).  Decrease f( I)~, W) by s/:~(u)
and move a to 11.

Step 5 (loop). If every atom is at’ s or f, st$op.  Otherwise, go t,o St’ep  2.

By using standard techniques of parallel computa.tion [ 1.53, including fast sorting [3], para,llel prefix
computations [17], and computations based on complete binary trees [25], one can implement each step
of the algorithm to run in O(logTj) time on an ‘/1L-processor PRAM. (Lemma 3.1 implies that only ~1
processors are necessary.) The details a,re routine and we omit them; the reader can refer to [12, 211 foi
more details on how to use these techniques to implement flow algorithms.

The running time of the entire a.lgorit,hm is then 0( n log n) by Corollary 3.3. The space required is
dominated by the space for the paths of atoms. which is O(lzm).

5 Distributed Implementation

The atomic method has a natural implementation in a distributed model of computation, due to the
robustness of the order in which a.ctive atoms are processed. By Lemma 3.2, a straightforward im-
plementation of the atomic algorithm on either a synchronous or an asynchronous distributed model
of computation [lo] works in O(n) message- passing rounds using 0( nm) messages. We can threa.d the
persistent stacks representing the paths through the vertices to obtain an O(m) space bound per vertex

Recall that we would like to use the blocking flow algorithm as a subroutine in our minimum-cost cir-
culation method [12, 13, 141. In order to do this, we need to add termination detection to our distributed
algorithm (so that the processors know when to start the next stage of the minimum-cost circulation
algorithm). The termination detection can be obtained without increasing the asymptotic time bounds
by using the technique of Dijkstra and Scholten [4] for detecting termination of diffusing computations
(a simpler termination detection technique specific to minimum-cost circulation algorithms is discussed
in [12]).  The Dijkstra-Scholten technique works for algorithms with a single initiator. This is not a
problem for the blocking flow algorithm described in this paper, since the algorithm is initiated by the
source processor. The version of the problem that comes up in the execution of the minimum-cost
circulatron algorithm, however, has several capacitated sources instead of a single uncapacitated source.
Therefore, we need to construct a spanning tree in the network and select a leader before running
the minimum-cost circulation algorithm. Even in the asynchronous model, this preprocessing can be

done in O(n log n) time, which is dominated by the 0( 7~~ log( &)) running time of the minimum-cost
circulation algorithm.

Note that the above bounds for distributed computation are not very good from the theoretical
viewpoint, We do just as well by sending all the information about the network to a single vertex
and letting it do all the computation. In practice. however, our distributed algorithm should be more



. efficient than such a.centralizecl cotnputation.

6 Concluding Remarks

In .conclusion.  we ~voulcl like to discuss
patper.

some open questions rela#ted to the problems studied in t.his

I The parallel complexity of the block’mg flow problem (in layered, acyclic, and genera.1 networks) is
wide open. This problem is not, known t.o be in NC; nor is it known to be P-comp1et.e. Resolving either
of these questions seems to be hard. A possibly simpler question is whether an 0( r?E)-time  blocking
flow algorithm for 0 < E < 1 exists.

Orlin’s minimum-cost circulation algorithm [20], implemented using the best pazallel  shortest path

algorithm currently known, solves the minimum-cost circulation problem in O(m log3 II) time using

,z3/ log n processors. Although for most possible values of n, rn, and c’, t.his time bound is better
then the time bound achieved by our minimum-cost circulation algorithm discussed in Section 2, our
algorithm is more practical since it uses only m processors.

There are some obvious inefficiencies in our algorithm. Though the running time is faster than
that of .our sequential algorithm [14] by a factor of mlog(n2/m)/(n  logn), the total work done by the

algorithm (the product of the running time and the number of processors) is 0( n2,n?  log n.), a factor of
n log n/ log(n”/m) worse than that of our sequential algorithm. The sequentia$l a.lgorithm  uses much
more complicated data. structures, however. If only simple data structures are used, the running time
bound of our sequentiad algorithm increases by a factor of m/(nlog(n2/m)).  Even then, the total work
done by the parallel algorithm is greater by a factor of (m log n)/r~. Tlle atomic method ca.n be improved
by combining atoms that are at the same vertex at the same time and moving them forward together,
thereby reducing the number of forward flow pushes. Also, if some of the escess  a.t a vertex u is t.o
be returned from U, it does not matter which part of the excess is selected for returning, since there is
only one kind of commodity involved. It is easy to design an improved algorithm based on these ideas,

- but we have been una.ble to obtain any improvement in our asymptotic resource bounds by doing so.
The Shiloach-Vishkin result [21] suggests the possible existence of a, blocking flow a.lgorithm  for acyclic

networks running in b(n log 12) time and O(n2) space using n processors.
or disproving its esistence, is a challenging open problem.

Finding such an algorithm,
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