November 1988 Report No. STAN-CS-88-1230

Specification and Verification of Concurrent Programs by
V~-automata

by

Zohar Manna and Amir Pnueli

Department of Computer Science

Stanford University
Stanford, Califo «ia 94305

SPECIFICATION AND VERIFICATION
OF CONCURRENT PROGRAMS
BY V-AUTOMATA

Computer Science Department N\
Weizmann Institute of Science

fComputer Science Departmenf
Stanford University

T

ZOHAR
MANNA

ABSTRACT

V-automata are non-deterministic finite-state automata over infinite sequences. They differ from
conventional automata in that a sequence is accepted if all runs of the automaton over the sequence are
accepting. These automata are suggested as a formalism for the specification and verification of temporal
‘roperties of concurrent programs. It is shown that they are as expressive as extended temporal logic
(ETL), and. in some cases, provide a more compact representation of properties than temporal logic. A
structured diagram notation is suggested for the graphical representation of these automata. A single
sound and complete proof rule is presented for proving that all computations of a program have the
property specified by a V-automaton.

1. INTRODUCTION

As the field of formal specification and verification of concurrent systems grows imore mature,
increasing attention should be directed to making the suggested techniques convenient and natural.
In earlier stages of the research in this field, the emphasis was put on maximal expressibility of the
specification language and universal applicability (completeness) of the verification method.

One approach that was developed during these earlier stages consists of the specification language
of temporal logic and its associated verification system. It gave a satisfactory answer to the requirements
of expressibility and relative completeness of the proof system. However, it soon became apparent rhat

An abbreviated version of this paper appeared in the Proceedings of the 14th Syinp. on Principles
of Programming Languages (January 198i).

This research was supported by the National Science Foundation under Grant DCR-84-13230 and
by the Defense -Advanced Research Projects Agency under Contract N00039-84-C-021 1.

Toa . o . o, . . .
ppear in the Proceedings of Colloguium on Temporal Logic and Specification, Lecture

. ‘the . Notes in Computer
Science (B. Baniegbz! and H. Barringer, eds.), Springer-Verlag, 1939. |

detailed proofs of programn properties, using temporal logic, arc sometimes tecdious to read and follow.
Several suggestions were made in order to remove some of the tedious detail and give a more compact
representa tion of such proofs, highlighting the creative elements. which usually are the invarian t s and
the convergence functions used. Notable among these suggestions are several high-level rules, such as
the chain rule discussed in [MP2]. and the representation of proofs by diagrams ([OL]. {MP2]}).

Anotlier somewhat unsatisfactory point about temporal proof systems is that so far they have not
provided a. general and direct reduction of the proof of a temporal property into a set of non-temporal
verification conditions (also known as preof obligations). Traditionally, all the proposed proof systems
for sequential programs (e.g.. [F1}, [Ho], [D]) can be summarily described as a reduction of a program
property, such as partial or total correctness, into a set of first-order verification conditions expressible
in the underlying assertion language. For special temporal-logic formulas that are boolean combinations
of the four basic forms [p, & p, O O p, and O O p, where p is a stake-formula (i.e., a non-temporal
formula), a direct reduction to verification conditions over the underlying assertion language is provided
by the proof rules presented in [MP2]. However, for more genera.l formulas ¢, we have to use temporal
reasoning, i.c., general theorem-proving methods within temporal logic, to obtain the validity of ;> from

the validity of simpler formulas of the four basic forms.

One of the often suggested alternatives to the verification of concurrent systems by temporal logic is
the use of finite-state automata. Since one of the unique features offered by temporal logic is its ability to
deal with infinite computations, the appropriate version to consider is automata over infinite words. As
was proved by Wolper ([W]), the expressive power of such automata exceeds that of common temporal
logic, and corresponds to a stronger temporal logic called ETL. He also provided a transformation from
a propositional temporal formula into an equivalent automaton over infinite inputs. Further research
on verification by automata (see [W], [WVS], [VW]) concentrated on the cases of finite-state programs,
in which the verification problem is decidable. The approach recommended in those papers is to use
temporal logic for specification and then, in order to verify a program property, translate the temporal
formula into the equivalent automaton and apply automata-theoretic methods to solve the translated
verification problem.

A significant improvement in the utilization of automata for the specification and verification of
concurrent systems has been recently suggested by Alpern and Schneider ([AS]). They recommend using
automata also for specification. Then, they suggest an approach to verification that applies to the
general case of programs with possibly infinitely many states. The actual verification method is based
on the introduction of invariants and convergence functions, and is very similar to the general verification
methods suggested in [OL] and [MP2] for a restricted set of temporal formulas.

The approach of [AS] is basedon deterministic Bichi Automata. The expressive power of a single
deterministic Biichi automaton (DBA) is rather limited, and there are interesting program properties
which cannot be expressed by such an automaton. Consequently [AS] consider a specification to be
presented as a boolean combination of deterministic Biichi automata. For the verification of a property
presented in this way, over a given program, they provide several proof rules; one rule handles a single
DBA. and the other rule handles the complement of a DBA. Since such a combination is known to express
any property specifiable by automata over infinite inputs, the approach attains maximal expressibility.

In this paper we present an alternative uniform approach to the specification and verification of
concurrent programs. using finite-state automata. over infinite inputs. The approach is based on a new

o

type of non-determninistic antomata. called V-eutomata. Such an automaton accepts a given input if all
its possible runs over this input are accepting. We will show that V-automata are maximally expressive.
i.e., as expressive as ETL. Our automata also lead to a very natural verification method based on
invariants and convergence functions. in a style similar to [OL], [MP2], and [AS].

We would also like to promote in this paper a wider use of graphical representation of automata
and proof diagrams. It has been our experience, which we would like to share with the readers. that
a well-structured diagram often represents the major ideas in a proof in a more concise and lucid for
than a string of textual lemmas. A common objection against graphical representation by transition
diagrams is that, beyond a very modest size, they become so entangled as to be unreadable. YWe counter
this objection by using a structured-diagram notation as used in the proof lattices of [OL] and Statecharts
of [Hall].

2. VARIABLES AND ASSERTIONS

The following elements will be used both in the programs and in the specification formalism:

V = {uj. uz, ... } — a countable set of variables. Some of these variables represent data variables
which can be modified by assignments of the program. Other variables are control variables and
may represent, for exaimnple, the location of the next statement to be executed by the program.
We assume that each variable ranges over an appropriate domain, e.g., a data variable may
range over the non-negative integers. a control variable may range over a finite set of locations.

_ L — A language of assertions. The language includes all the first-order formulas over the variables
in V. We assume a fixed interpretation of the predicate, function, and constant symbols over
the appropriate domains. (To achieve completeness. it is not sufficient to consider a first-order
language, and a stronger assertion language is needed. For that purpose, we will introduce
fixpoint operators into our language.)

3. PROGRAMS AND COMPUTATIONS

With no commitment to a syntax of a particular programming language, we <associate with each
program P the following elements:

T — A set of program states. Each program state s€T is a mapping from the variables in V" to their
domains. We use the notation s[u] to denote the value that s assigns to u € V. More generally,
for an expression e over the variables in V, we denote by s[e] the value of e in s. Similarly, for an
assertion ¢ and a program state s. we say that s satisfies ¢, and write s k ¢, if s[¢] = T, that is,
evaluating ¢ over s yields the truth value 7. In this case we refer to s as a p-state.

T — A finite set of transitions. In our model, each transition teT is represented by an enabling condition
p:, Which is a quantifier-free assertion, and a transformation u; = €, assigning to a finite list. of
variables i a finite list of expressions €. If s and s”are two program states such that s E p, and
s” = (s; Us:s[€y]), thatis, s satisfies p, and s’ is obtained from s by reassigning the values s[e;] to

the variables ;. then we say that, ' is the t-successor of s and write s = t(J). If s E py, we say
that t is enabled otherwise t is disabled on s. and then #(s) is undefined.

© A precondition. This is an assertion specifying initial values for some variables, and conditions that
other variables satisfy in the first program state.

F -- A finite set of farrness requirements. Each requirement is a pair {2, v*) of two quantifier-free as-
sertions. The intended meaning of the fairness requirement {». ¢) is that a computation that has
infinitely many ;-states should also have infinitely many $-states. In a typical application, > may
state that a transition t is enabled, while ¢ states that it. is activated. In this case. the requirement
(p,9) states that if ¢ is enabled infinitely many times. it must, also be activated infinitely many

times.

A program state s, such that t(s) is disabled for all t € T is callecl termanal for P.

A computation of a. program P specified by the above elements is a finite or infinite sequence of states
g 8y, 51, S2,

such that the following requirements are met:

(1) Initialzty: 3o k O.

(2) Consecution: For each 7, 0 <7 <|o|, there exists a transition ¢ € T such that s;41 = t(s;).

(3) - Termination: Either cT is infinite, or it terminates in a state s that is terminal for P.

(4) Fairness: For each fairness requirement {g, ¢') € F. either 1.7 contains only finitely many v-states,

or ¢ contains infinitely many $-states.

For a finite computation ¢ = s¢, s1, . . . , Sk, We denote by |o] the index of the last state in o. We write
|o| = w to denote the fact that ¢ is infinite.

4. V-AUTOMATA

A V-automaton A is specified by the following elements:

@) — A finite set of automaton states.

R C Q — A set of recurrent states. These are states that some good runs are expected to visit
infinitely many times.

S C Q — A set of stable states. These are states that some good runs visit exclusively. from a. certain
point on.

E — A finite set of entry conditiona. With each ¢€Q), we associate an assertion e{(q)€E that charac-

terizes the condition under which the automaton may start its activity in q.

C — A finite set of transition conditions. With each pair q, ¢'€Q, we associate an assertion (¢, ¢')eC
that characterizes the condition under which the automaton may move from g to ¢'.

<t

Any automaton states ge@. such that e(q) = F, can never appeat ax the first automaton state i n
arun. To those states q€Q whose entry condition €(q) is different from ¥ we refer a8 wnatial states.
mnplying that thev can appear as the fist automaton state in a run.

The two sets R and S are the geuncralization of the notion of accepting states to the case of infinite
inputs. For convenience, we denote by B = Q — R — S the sct of non accepting (bad) states. The sets R
and S may have a nonempty intersection.

V-automata are intended to specify computations of programs. Therefore, we define the notion of a
“-automaton A accepting a computation.

Let # be a computation. 4 run of A over ¢ is a sequence of automaton stakes

r. qo, q1, 92,

such that:
« The first program state sq satisfies the entry condition associated with qq, i.e., sg F €(go).

o For each i. such that 0 £ ¢ <|r| = 1, si+1 F c{qi, qis1)-

Either |r| = |o|, i.e., the run and the computation have equal lengths, or |r| = i < |o|, but then
siv1 Fclqi, q) for every ¢ € Q, which means that the run cannot be extended beyond g;,4 to an
automaton state consistent with the program state s;41.

We refer to runs for which |r| = ¢ as complete runs, and to runs for which |r| < |o] as incomplete.

We can describe the behavior of the automaton A, when generating a run r over a computation
o, as follows. Initially, it chooses an automaton state go€@ such that sy, the first program state in o,
satisfies e(qo). The automaton state qq is the first state in the run. Everafter, let the automaton be at
automaton state ¢;, at position i = 0,1, ... in the run. It then reads the next program state s;4+; from
o and non-deterministically chooses to move to a next automaton state ¢+, provided s;+; F ¢(¢i, gi+1)-

In the case that there is no g4+ such that s,+; F ¢(gi, gi+1), the run cannot be extended, and we
obtain an incomplete run.

We define now the notion of a run r of A over a computation ¢ being accepting.
« An incomplete run is never accepting.

« A finite complete run r of A is defined to be accepting if its last (automaton) state belongs to
Ru S.

« For an infinite complete run 7, let Inf(r)C@Q denote the set of (automaton) states that appear
infinitely many times in r. The infinite run r is defined to be accepting if:

o Inf(r)NR # 0, i.e, some of the states appearing infinitely many times in 1 belong to
R, or

® Inf(r) C S, i.e., all the states appearing infinitely many times in 1” belong to S
(equivalently, from a certain point on, only states belonging to S appear in r).

Sote that if we detine Inf(1) for a finite run r to be a singleton set consisting of the last. state of 1.
then the definition of acceptance given above applies to both finite and infinite complete runs.

A V-automaton A accepts a computation ¢ if all the possible runs of A over ¢ are accepting. This
definition embodies the main difference between V-automata and conventional finite automata (which
can be called 3-automata) in the way they treat. non-determinism.

A run which is not accepting is called rejecting. If a computation ¢ has at least one rejecting run
r, then the automaton A does not accept the computation ¢. In this case, we say that A rejects the
computation o.

Two V-automata A and A are defined to be equivalent if they accept precisely the same set of
computations.

If a V-automaton A accepts all computations of the program P, we say that A is valid over P.
Clearly, the automaton A is valid over a program P, if for each computation ¢ of P,

(a) All complete runs of A over ¢ are accepting.
(b) A has no incomplete runs over o.

We define A to be weakly valid over P, if clause (a) above holds for every computation of P. Thus, weal;
validity allows some rejecting runs over computations of P, provided they are incomplete.

5. REPRESENTATION BY DIAGRAMS

It is useful and illuminating to represent V-automata by diagrams. The basic conventions for such
representations are the following:

e The automaton states are represented by nodes in a directed graph.

e Each initial state is marked by a small arrow, called the entry edge, pointing to it O/.

Directed edges, drawn as arrows, connect some of the states.
e Each state belonging to R is represented by a diamond shape inscribed within a circle @
e Each state belonging to S is represented by a square inscribed within a circle @

The diagram contains assertions that label both nodes and edges (i.e., entry edges and edges between
nodes). Unlabeled nodes and edges are implicitly labeled with the assertion T.

The assertions labeling nodes and edges in the diagram define the set of entry conditions and
transition conditions of the associated automaton as follows:

e Let g € Q be a node in the diagram corresponding to an initial automaton state. Let v be the

i

assertion labeling the node ¢, and ; be the assertion labeling the entry edge.

Then, the entry condition e{g) is given by:
e = ¢ A ¢
e Let ¢, ¢' be two nodes in the diagram corresponding to automaton states. Let ¢ be the assertion

labeling node ¢’ and ¢y, . . . , ¥n the assertions labeling all the edges connecting g to (1”

Y1

@n

Then, the transition condition c(qg, q) is given by:

cg,q') - (p1VerV. . . Vea)A.

Note that this convention allows putting into the label of ¢' any conjunctive factor that is
common to the labels of the edges entering q”. Note also that if there is no edge connecting q
to q7 then ¢(q, q) = F.

Since V-automata and their diagram representations are suggested as a specification language, we list
below several examples of simple temporal-logic formulas and their representation by diagrams.

Example 1: The following automaton specifies the temporal property
OOy,

i.e., u holds continuously from a certain point on:

'

This automaton is actually deterministic. It accepts a computation iff from a certain point on all
program states satisfy u. This is obvious since such a computation leads to a (unique) run that stays in

¢1 from a certain point on. Clearly, for this automaton R =0, S = {q; }. 4

Example 2. As our next example, consider an automaton specifying the temporal property

DOuv

i.e.. u holds infinitely many times:

SRR S

This automaton is similar to the previous one, but differs in its acceptance sets R and S. For the

present automaton R = {q }, S = 0, and hence a computation is accepted iff it has infinitely many
‘U-states, causing the automaton to visit ¢; infinitely many times.

Actually, from a theoretical point of view, the set R of recurrent states is redundant. This is stated
in the following proposition.

Proposition: For every V-automaton A, there exists an equivalent V-automaton], effectively
derivable from A, such that R = §.

Example 3: We first illustrate the proposition by presenting an R-less automaton for the temporal
property of Example 2, (0 © u, which seems to use the set R in an essential way (having S =0).

Qo QT q2

This automaton is non-deterministic.

Consider first a computation ¢ that contains infinitely many u-states. One possible run over o stays
forever in go and is accepting. Any run over ¢ that enters g will eventually reach a later u-state in o,
which will force it to proceed to ¢ and remain there forever. Hence all runs over o are accepting, and
therefore the automaton accepts o.

Consider next an infinite computation ¢’ which has only finitely many u-states. For such a compu-
tation we can devise a run r that stays in go until the last u-state is passed. It then proceeds to ¢; and

stays there forever. This run is obviously rejecting, and hence the automaton rejects the computation

o'.

J

Proof of the Proposition: Let A consist of the components Q, R, S, E, and C. Without loss of
generality we may assume that the acceptance sets R and S are disjoint, i.e., R NS = 0. If they are

not disjoint, it can be shown that the automaton A ' which is identical to A in all components except
for the acceptance sets that are given by R”= R and §' = S — R. is equivalent to A. Trivially. for the

antomaton 4'. r-12 S7 ={.

Let. Q' ={¢'|l¢ € Q},.Q" = {¢"|q € Q} be two disjoint copies of the set Q. In general for any subsct
L C Q. we denote by K’ and K" the subsets {¢'|¢ € A’} and {q"|¢ € li}. respectively, referring to the
corresponding copies of 17in Q”and Q.

The general idea of the construction is to let A consist of two copies of the automaton A. whose
sets of states are denoted, respectively, by Q”and Q. The first copy has similar entry and transition
conditions as A. In addition, for each pair of states ¢;, g2€Q, we allow a transition between ¢ and ¢/
whose transition condition is c(¢1, g5) = ¢(q1, g2). This allows a run to proceed for awhile in the first
copy, and then. non-deterministically, to switch and continue within the second copy. The second copy
has a structure which is essentially similar to that of A, except that we set all transition conditions
clqt,gy). for ¢1€R, to F. This causes the R”-states to become traps, i.e., once a run enters such a sta te
it cannot continue.

As acceptance sets for the automaton Z, we take R to be empty and S to consist of Q'UR"US". The
intention of the construction is that for an infinite run 7 over A to be rejecting, it must eventually switch
to the second copy, where it never visits an R"-state and visits infinitely many times some non-S"-states.

We define the following components of A
(5 = Q”u Q", thatis, Q consists of the two disjoint copies of Q.
R = {. as stated by the proposition.

S ="Q' U R" U S”. Thus the stable states in A are all the states in Q~and all the accepting states
of both types in Q.

The set E of entry conditions is defined as follows: For each ¢€@,
elg') = €(q") = e(a).

The set C of transition conditions is defined by the following cases: For each ¢1,¢2:€@Q,
c(q1,92) = clq1.92)
dai,q7) = cla1,q2)

clgr,q2) ifq ¢ R
T ifag=¢@eR
F otherwise

n

clays47)

gt) = F.
Thus, transitions within Q~ or from Q”to Q, have conditions identical to the corresponding transitions
in A. The same holds for all transitions within Q” that do not depart from R”-states. All the R"-states
are trap states, in the sense that once a run reaches such a state, it remains there forever. No transitions
are allowed from Q*” back to Q~.

We claim that a computation is rejected by A iff it is rejected by 4. This will establish that A and
A are equivalent.

10

We will show ouly the case of infinite computations. Assume that a computation o is rejected by
A. This means that there exists a rejecting computation r which, from a certain point on (say after
step k2 0). never visits an R-state and Visits infinitely many times a non-s-state. We caun construct a
run r of A that simulates r in the first copy Q”up to step k. where it switches to @" and coutinues the
simulation therc. It is easy to see that r visits infinitely many non-S”-states and does not get trapped
in an R”-state. Consequently. 7 is a rejecting run of A, causing A to reject o.

Similarly. given a rejecting run 7 of A itis easy to simulate it by a run r of A. that moves to
g; whenever # moves to ¢; or to ¢'. Since a rejecting run of A4 must eventually move to Q". it. will
visit infinitely many non-S"-states and only finitely many R'- and R"-states. Consequently r is also

rejecting.

The automaton presented in Example 3 is an improved version of the genera.1 construction. Literally
applying the construction, described in the proof, to the automaton of Example 2 vields the following

equivalent automaton:

[N
qy: u Q' u

' "o,
q : Qo -
all -~u

Following the syntax of State&arts [Hal], we introduce two additional conventions that lead to more
compact and structured representation of diagrams. We introduce the notion of super-states represented
as boxes containing other states. As a general rule we interpret any construct associated with a super-
state to be associated with every contained state. The two applications of this general rule are:

« An edge connecting super-states § to ¢' is equivalent to a set of edges connecting each ¢ € § to
each ¢’ € ¢'.

« An assertion v, labeling a super-state g, should be added as a conjunct to the label of each
contained state ¢ € .

Example 4; Consider the following diagram representation of the temporal propert}

S OuvOoe.

i.e., u holds continuously from a certain point on or v holds infinitely many times:

S

q1: u

728\
N

11

We show that this deterministic automaton accepts a computation iff it has the required property.

Obviously a run r over a computation ¢ is accepting iff either r visits ¢g infinitely many times or it
is restricted to ¢, from a certain point on. The first case is possible iff infinitely many program states in
o satisfy v. The second case is possible iff all program states in ¢ beyond a certain point satisfy « A —wv.

That is, r is accepting iff a satisfies the given property.

This structured representation is equivalent to the following flat representation (not using any of

the structured conventions):

0N
u A -

Qo: v

q2 :
-u A v

A t/-automaton is called complete if the following requirements are met:

(a) (Ve) =

9€Q

(h) For every ¢ € Q, (V clg,) =7.
7€Q

12

These two requirements guarantee tha t a 11 ruus are complete. since any partial run over ¢ can always
be extended to the full length of #. Clearly, a complete automaton is valid over a program P iff it is
weakly valid over P.

In many cases, we will restrict ourselves to complete automata. This is not a real restriction since
any automa ton A can be transformed to an equivalent complete antomaton A’

To see this, consider an incomplete automaton A. To construct A’ we add to Q. the set. of states
of 4, an additional error state ¢g, which is not included in either R”or S” Thus, we define

Q" = QU {¢r}
R =R, S =S
For every g. § € @, we define e1g) = ¢(¢) and c'{¢. @) =c(q,).
In addition, we define the entry condition for ¢g by

e'(qe) = ~(\ el9),

9€Q
and the transition conditions by

c'(gp,qE) = T.
c(qe,q) = F for each ¢ € Q.

C/(qqu) = —'(v C((I«,q’)) for each Q € Q

T'eQ
Thus, an incomplete run that has nowhere else to go can proceed to ¢g, but then must reject.

Example 5 (Resource Manager):

As a more extensive example consider a system consisting of a resource manager M and two cus-
tomers, C; and Cj.

™1 T2
C; 2} M g2 C2
The customers communicate with the manager by shared boolean variables r; and g;,: = 1.2. The

protocol of communication between the manager and customer C; can be expressed by the following
cycle:

r; := T — C; sets r; to T, signaling a request for the resource.

gi :=T — M sets g; to T, signaling C; that the resource is granted.

r; == F — C; resets r; to F, signaling a release of the resource.

gi = F — M resets g; to F. acknowledging the release.

13
Under the assumption that there is only oue resource, it is required that the resource is never
granted to more than one customer at a time.

We present a specification Of this system by a set of automata. The system satisfies the specification
if each of its computations is accepted v every automaton in the set,.

The first automaton specifies that the communication between the manager and the customer C;
(for ¢ = 1.3) precisely, follows the protocol described above.

Q!
%

7N
&/

(O

Note that this automaton is incomplete. Consequently, whenever the automaton observes a program
state satisfying ¢;, -r;, —g; or r;, while being at the automaton state ¢o. ¢1. g2 Or ¢s, respectively, it
generates an incomplete run. Such a computation is therefore rejected. In addition to the safety require-
ment, that the four events of setting and resetting the communication variables follow the periodical
sequence described above, this automaton also contains a liveness requirement. by which the state gq
should be visited infinitely many times. This implies that the computation cannot. stay forever in any
of q1, g2, ¢3, and forces the eventual occurrence of the next event in the protocol.

The other automaton specifies the integrity of the resource, expressed by the requirement that it is
always granted to at most one customer.

Note that in addition to the safety property (] —~(g1 A ¢2), this automaton specifies the liveness
property that no C; holds the resource forever.

For comparison, let us consider the temporal specification of the property expressed by the first

13

automaton. This property can also be cxpressed by the following temporal formula:
(=1 Ay) A

QB 50 - (-0 t(~ginra)n
O fre— (r U (r A gi)] 4
Bl — o ugin-r) 4
d [(=ri) = (=ri) U (= g -g:)]
where U is the unless operator (also called weak until). whose relation to the unt:l operator U is given
by:
alld = (Oav alp).

We consider this to be one of the examples where specification by automata appears to he more
lucid and concise than the equivalent temporal specification.

6. VERIFICATION

Let P be a program and A a complete V-automaton defining a temporal property. We would like to
verify that A is valid over P, i.e., all computations of P are accepted by A and hence satisfy the temporal
property. This requires showing, for each run r over every computation ¢ of P, that

~Inf(r}NR#0 or Inf (r) C S

We introduce a single proof rule by which the validity of complete automata over programs can be
established.

In the proof rule we use the notion of well-founded relations. A binary relation (IV, <) is called
well-founded if there does not exist an infinite descending sequence of elements w; of W, that is,

wp ™ Wy » W >

For a transition t € T, associated with the enabling condition p, and the transformation %, = €,
and assertions ¢, ¥, we write

{pht{v}

to denote the verification condition
(¢ A p) = Y[e /]

The formula ¥ [e,/% Jis obtained from by substituting the expressions &, for all the (free) occur-
rences of the variables %;. It obviously holds over a st ate s iff «» holds over the state s’ obtained by
applying the transformation @, := € to s. The validity of this verification condition implies that every
t-successor of a v-state satisfies ¥. We write

{e} P {¥}

to denote that {»}¢{¢} holds for all transitions t € T"in P.

V-rule (Validity of A over P)

To show that, a complete automaton 4 accepts all computations of a program P that lLas an
empty set of fairness requirements:

(I) Associate with each automaton state ¢ € Q an assertion ay, called the invariant at ¢. such
that the following requirements are satisfied:

(11) Instiality
[© A e@)] — a, for each ¢ € Q.
(12) Consecution
{ag} P {c(g,¢') = g} for each g,¢' € Q.

(13) Termination

a, — (\/p,) for each ¢ € B.
teT

(R) Find a well-founded relation (TV, <). Associate with each automaton state ¢ € @), a
(partial) ranking function p, : £ — W, mapping program states into elements of ¥, such
that the following requirements are satisfied:

(R1) Definedness
a, — (pg € TV) foreach g€ Q.
* (R2) Non-increase

{ag A (pg = w)} P {clq,q') = (pg < w)} for each ¢ € @, q°€ S.
(R3) Decrease

{ag A (Pq = w)} P {c(q,¢') = (py < w)} for each ¢ € Q, ¢ € B.

The intended meaning of the invariants a4 is that in any run : over a computation ¢, whenever r
visits the automaton state ¢ in response to reading the program state s, then s F a,.

The intended meaning of the ranking functions p, is that they measure the *“distance” either to
the next R-state or to the stability point of a run r over a computation o. The stability point of an
accepting run r, if it is defined, is the point beyond which r visits only S-states.

Premise (11) ensures that if, in response to seeing the initial program state sp, the automaton
chooses to start a run at the automaton state ¢ € Q, then a4 holds at sg.

Premise (12) ensures that if the run r has already progressed up to the automaton state ¢, and,
seeing the next program state s> the automaton has chosen to proceed to the automaton state g’ (which
is possible only if s~ satisfies ¢(q, ¢')), then ay holds at s’

Together, (11) and (12) guarantee that any run r over a computation ¢ that enters ¢ on seeing s, is
such that s F a4.

16

Premise (13) ensures that no finite run over a computation ¢ can terminate in a non accepting state.
This is done by requiring that if the automa ton enters ¢€B on reading s. and hence s E ay, then s
cannot be the last state in o.

Premise (Rl) requires tha t the invariant «,, associated with the automaton state ¢, implies that
the ranking function p, is defined.

Premise (R3) requires that if the automaton can move from the state ¢ to the stable state ¢' € S
in response to the progress of the computation from s (at ¢) to s” (at (1), and s satisfies a,, then
pq(s") < pg(s). This shows that in any stable automaton-transition the rauk does not increase.

Premise (R3) is similar to (R2). However, it considers a bud automaton transition, i.e., from the
state ¢ into a bad state ¢'€ B. It requires that such a transition causes a strict decrease in the rank, i.e..

Py (s') < pgls).

Note that on performing a recurrent automaton transition, i.e., ¢ — ¢' where q”€ R, the rank is
allowed to change arbitrarily.

Soundness

It is easy to argue that if we succeed in finding invariants a4, a well-founded relation (W, <), and
ranking functions p,, such that all the premises are satisfied, then this establishes the validity of A over
P.

Assume that all the premises are satisfied. Consider a computation
g Sg, 81, 82, . . .
and a run r over it.
r: q.q,q,....
We show that r is accepting for A.
If r is finite then, by (I3), its last automaton state must be in R U S and hence r is accepting.
If r is infinite, consider the sequence of ranks generated by applying pq, to s;,1=0,1,. ..,

k: qu(so), qu(sl), qu(SZ), e

The premises (11) and (12) ensure that s; & o, for each i = 0,1, The premise (R1) then
implies that all the expressions in Kk are defined and yield values taken from 11"

We consider now two cases. If r contains infinitely many occurrences of R-states, it is obviously
accepting. Otherwise, there is a position j such that for all m > j, q,, € BU S.

Combining (R2) and (R3) together, we obtain that the sequence k, from position j on, forms a
non-increasing sequence:

Pei(s;) = Pq,-'+1(51'+1) = Pgya(sit2) =

In addition, (R3) ensures that for each gm+1€B there is a strict decrease in rank, i.e., p,, (sm) >
Pam41 (8m+1). It follows that r can contain only finitely many occurrences of B-states, because otherwise

17

't would have contained an infinitely decreasing subsequence of clements of 7. which is impossible clue
to the well-foundedness of (W, <), Hence all states that appear infinitely many times in r are from S,
ancl ris accepting also in this case.

We conclude that the V-rule is sound. 3

For simplicity, and with no loss of generality, we presented the rule for the restricted case of complete
“automata. When we consider arbitrary V-automata, the following can be observed:

In any case, the premises of the V-rule ensure that a.11 complete runs over computations of P are
accepting. Thus, for an arbitrary automaton, the V-rule establishes weak validity.

To establish validity of an arbitrary V-automaton over the program P we add another premise:

(14) P- Completeness
{ag} P { v c(q, ¢')} for each g € Q.
7€Q

Thus. while the automaton A may be incomplete. premise (14) ensures that it is complete over all
program states that can be generated by the program P, and hence guarantees that A has no incomplete
runs. over computations of P.

7. EXAMPLE

As an example of the use of the V-rule, consider the following program A;:

initially t =0,y =1
loop forever do
whenx=0doy:=y+1
or
when x=0doz:=1
or
when x =1doy =y -1

The property of this program that we wish to verify can be expressed by the formula
C(r =0) v Oy = 0).

It states that in any computation, either continuously x = 0 or eventually y = 0.

13

A {complete) automaton specifying this property is given hy A;:

(7 #0 N
/N

A ' —

This automaton switches to ¢2 and accepts (since ¢z is a trap R-state) as soon as it detects a
program state in which y = 0. This covers the disjunct ((y = 0). If however, no such occurrence is
detected. the automaton stays forever in gy or ¢;. In this case, the automaton moves to ¢; and rejects.
as soon as it detects an z # 0. Otherwise, i.e., if continuously y # 0 but also z = 0, the automaton stays
at qo and accepts, due to stability. This covers the disjunct Q (z = 0) of the temporal formula.

To apply the V-rule we choose as follows:

« Invariants. We associate the assertions c«g, a;, as With the automaton states gg, ¢ , g2, re-
spectively. They are given by:

@ (z=0) A (y>0),
ar: (2 =1)A(y > 0),
Qa9 T

o Well-founded relation. We use the set of ordinals w + 1, that is, all the natural numbers
(including 0) plus the ordinal . (the first infinite ordinal). An isomorphic domain can be
represented by the set of pairs { (1,0)} U{ (0, m)|0 < m} ordered lexicographically, i.e..

(0,m) < (1,0) for any m >0,
(0,772) < (0,772 iff 777 < 777"

« Ranking functions. We associate the ranking functions pg, p1,p2 Wwith the automaton states
9o, q1, g2, respectively. They are given by:

Po = w, P =Y, P2=0

To provide a graphical representation of the selected elements, we show an annotated version of
the automaton. In this version. the invariant «, (enclosed within braces) and the ranking function
(appearing in the form p, = ¢ for some expression e) annotate the node ¢. Consistently with our
previous conventions, any assertion annotating a super-state is interpreted as an additional conjunct in

19

the assertions annotating the contained states.

/y#O {y > 0} \

Let us consider the different premises of the v-rule under this choice.
(11) Here we have to verify
[© A c(g)] = a, foreachgeQ
In the present case © : (x = 0) A (y = 1). Therefore we have to verify the following:
O {z=0Alp=D] A [z=0Ay#0]] - [@=0 A (y>0),
1) [x=0Ay=1Al#OA#O)] = [z=1)A (y>0)],

DACy=AE=0]=T

~
N
~
—
—
jpy
~
1

All these formulas are obviously valid.
(I2) Here we have to verify. for each ¢, ¢' € Q, the validity of the requirement
{ag} Pr{cla.q) = ag}.

For each program transition t. we can identify its enabling condition p, and the values it reassigns
to the variables r and y, which we denote by =’ and y 7 respectively. The following table summarizes
these elements for the three transitions of the program 7;:

transition t Py x! y'
t T=0 X y+1
tg r = 0 1 Y
t3 r=1 X y -1

We observe that for all of these transitions y' >y —~ 1.

Let us denote by ¢’(¢.¢"}and aj, the expressions for ¢(¢, ¢} and « in which we substitute x”
and y~for x and y, respectively.

20

Therefore we have to show that for each transition t€{t;. t,, t3}, the following formula is valid:

[oq ANpeAhc(q ¢)] - a;,)

We show this by considering all automaton transitions ¢ — ¢, that is, all pairs g, q” € @ for
which ¢(g, ¢') is different from F.

o — Qo : [(I:O)A(y>O)Ap,A(J"=O)A(y';éO)] — [(.T':O)A(g’>0)].

The first conjunct of the consequent obviously holds. In view of y’>y — 1, y > 0 implies
y' > 0. Together with y”# 0 this yields y' > 0, establishing the second conjunct.

o= a: [(R=OAG>0)APAE A0 A ¢° # 0] — [= DAY >0

The only program transition ¢t allowing x = 0 and z’ # 0 is #; which leads to ' = 1. The
second conjunct y’ > 0 is established as before.

a=qa: [(T=DAE>0)ApAE #0]=[@ =1 Ay >0l

The possible values of 2’ are ' = x = 1 or ' = 1. Consequently, in both cases x” = 1. The
conjunct y”> 0 is established as before.

q — ¢ for q € {qo, ¢1,92} : [th A pe A C’(‘]»qz)]—*T-
These formulas are trivially valid.

(13) Here we have to verify, for each ¢ € B, the validity of the formula

ag — (\/p,).

teT

The only bad state in this automaton is ¢;, and the disjunction of the enabling conditions for al
three program transitions is (x = 0) V (x = 1). The resulting formula is

[(z=DAE>0] - [x=0V(z=1),
which is trivially valid.
(R1) Here we have to verify, for each ¢ € @, the validity of
ag = (pg €W).
The only ¢ € Q for which p, is not a constant from W is ¢;. For ¢;, we show that
[(x=1)A ¢y > 0)] — (v>0).
which obviously holds.
(R2) Here we have to verify, for each ¢ge@ and ¢'€S, the validity of the formula
{ag Alpg = w)} P {e(g.4) = (py <)},

This amounts to showing, for each program-transition ¢,

lag A o A €a.d)] = (o < py).

21
As before, we denote by ¢/(q.¢') and pj, the expressions for ¢(q.¢') and py in which we have
substituted ' and y' for + and y, respectively.
Since S = {¢o}. there is only one relevant automaton transition to be considered.
p=q0: [(t=0AQ>0Ap AL =0AWY#0)]—(w=w),
which is obviously valid.
(R3) Here we have to verify, for each g € Q and ¢' € B. the validity of the requirement:
{ag A (pg = w)} P {c(g.q") = (pg < w)}
which is equivalent to showing the validity of:
[ag Apt A g, ¢")] = (py < pg) forevery teT.
The only state ¢' € B is ¢q;. We therefore consider:
o—=q: [x=0AF>0ApA(#0)Ay #0)] = ¢ <w.
This is valid since y' is a finite integer, which is always smaller than w.
noa: [F-DAE>0AP AW #0)] = (¥ <y)
The only program transition enabled under x = 1 is t3, for whichy' =y -1 <.
Temporal Proof

For comparison, let us consider the proof of the same property using a temporal proof system similar
to the one presented in [MP2]. Such proof systems are usually based on three basic rules.

The first rule states that any temporal formula ¢ implied by the initial condition © is valid over all
computations of P. This rule can be stated as

INIT rule
0 - 9
@

The second rule establishes safety properties expressible by a formula of the form [J(a — « 4 3)
for assertions a, 3.

INV rule
{a} P {a v 3}
(a = all3)

The third rule is somewhat more involved, and uses well-founded induction to establish conditional
liveness properties expressible by a formula of the form a (Cl = & B) for assertions «, 8. We will refer
to this rule as the procress rule.

The property we wish to verify for the program P, is given by the formula

Oz = 0) v O(y = 0).

22
This formula is neither a safety formula nor a liveness formula. Hence no single rule can be used to
establish it. and some combination of the rules is called for.
Indeed. the major steps in the verification of this formula are the following:
Step 1: Verify
Oltr=0A@>0] - [x=0Ay>o0ld[r=1A>ol
This can be established by the INV rule, checking that the premise
{(z=0)A(y> 0} A{((r=0)V(z=1)A(y>0)
holds. This is equivalent to showing, for all transitions t€{t; , t,, t3}, the validity of the formula
le=0A@>0Aap] = [((z'=0)v(z'=1)) A (@ >0,
By the precondition = = 0 it is clear that only ?; and ¢, are enabled:
o For¢,wehaver' =2=0.y' =y+1>0.
o Fort,, wehave2' =1,y =y >0.
Step 2: Verify

WM DAy >0)] - O(yﬂO)]-

* This is established by the procress rule using the ordering over the natural numbers as the well-
founded relation. The ranking function used is p : y. Since, under « = 1, the only enabled transition is
t3, it is clear that each step of the program strictly decreases p.

step 3: Use temporal reasoning on the results of the two preceding steps to establish that
(e=0A¢¢=1]- [O@x=0 Vv OW=0).

Now apply the INIT rule, using the fact that © is (z = 0) A (y = 1) for the program P;. and obtain
Q0E 20 & Oy i 004

Even though the temporal-logic proof presented above is obviously more concise than the automaton
proof, it calls for more creativity and heuristic planning than the automaton proof. This planning involves
the decomposition of the proof into three steps and deciding which rules (including temporal reasoning)
to use in each of the steps. After making these decisions, the subsequent efforts are devoted to the
construction of appropriate invariants and ranking functions. Obviously, the invariants and the ranking
functions used in the two proof methods are closely related.

In contrast, the automaton proof is almost mechanical, in the sense that n-e did not have to de-
compose the proof into steps, and could proceed directly to the construction of invariants and ranking
functions.

The price we paid for this uniformity is that more verification conditions had to be checked than
in the case of the temporal logic proof. This can be esplained by the fact that the decomposition of the
proof into separate steps is equivalent to a decomposition of the automaton into several sub-automata.

23

Step 1 only considered the sub-automaton consisting of the automaton transitions gy — ¢y and ¢y — q.
Since Step 1 was identified as a. safety property. no ranking functions were required for its proof. Step 2
only considered the sub-automaton consisting of the automaton transitions ¢; — ¢, and ¢, — g¢,.

8. SAFETY AUTOMATA AND THEIR VERIFICATION

In our zeal for obtaining a single and uniform verification rule, we have lumped into the V-rule
premises (I11)-(13) which deal only with invariants (the safety part), and premises (R1)—(R3) which deal
with the ranking functions that establish the liveness part.

There are cases in which we may want to deal separately with the two parts.
We define a safety automaton (see also [AS]) to be an automaton with the following restrictions:
(1) R=90.
(2) Each bad state q, ie.,, g € B=Q — S, is a trap state, that is:
(g, q) =T,
c(g.q)= Fforall ¢ #q.

This definition corresponds to the intuition that a safety property is such that its violation can be
recognized over a finite prefix of the computation, and once it is recognized it cannot be remedied. Thus
a run is accepted by such an automaton iff it does not visit a bad state even once.

Example

Consider the program P, for mutual exclusion ([P]) presented by the following transition diagram:

initially (i = F) A(g2 = F) At =T)

-y V t)?
_P,-

(my1 v)?
P,

Its main safety property is that of mutual ezclusion, claiming that —(3 Ams) is continuously true.
We use locations as state predicates. For example, the assertion ¢3 asserts that currently the program

R

24

is at location ¢3. This safety property is specified by the automaton A» below.

4 3 Amg

i

V(U q
(’3/\m3

This automaton has two states, the good state g associated with the condition —(£3 A mj), and the
bad state ¢;, to which we switch on detection of a program state satisfying ¢3 A m3. Once we are in ¢,

we can never get out. Jd

It is easier to verify the validity of a safety automaton over a program than that of a general

automaton.

S-rule (Validity of a complete safety automaton)
Find for each state q € Q an assertion a4, such that:
(11) Instsalsty — as before
(12) Consecution — as before

(133 Impossibility

a, = F for each q € B.

Note that (13%) implies (I3), butalso ensures that no run over a computation of the program can

visit a bad state.
Returning to the example of the mutual exclusion algorithm, we can pick
@ (1 = €.3) A (Y2 = m13) A
[log V moa V (Las AmaA—t)V (g AmasAt)],
oy @ F
In the assertion ay we used, among others, the abbreviations
by = by v b and b3 = OV &, V €.

To check that this choice, which obviously satisfies (13'), also satisfies (11) and (I2), we consider
each premise in turn. Both of them can be simplified, due to the fact that oy = F. Thus, it only remains

to check:

(I1) ® 5 ag, © - (€3 A ms).

25

This is obvions due to the fact that
O lo Amg A(myr) A (mye) At

and to the implications (, — —¢3, etc.

(I2) This premise requires to verify the following three clauses:
(a) {ao} Py {T = a0}
(b) {ag} P> {(&sAm3)— F}
(c) {F} P {T — F}.

Clause (a) can be simplified to

{o} P2 {a0},

which claims that aq is preserved over all transitions. This has to be checked for each transition
separately, and is the major part of the verification effort.

Clause (b) simplifies to
{aw} P2 {=(03 A m3)},
which, due to the fact that ag implies —~(¢3 A mg3), follows from clause (a).
Clause (c) is trivially valid since it has the precondition F.

Similarly to the general case, to extend the S-rule to possibly incomplete automata, we require the
additional premise (14).

SIMULATION BETWEEN AUTOMATA

We observe that for any automaton A, there is a set of invariants to which we refer as the native
invariants. and which automatically satisfy the premises (11) and (12). These are the invariants defined
by

Ny = el v (\ da).

¢EQ
It is trivial to check that the native invariants .V, satisfy (11) and (12). In some cases they also

satisfy (13) and it is possible to choose ranking functions p, that together with the N,’s, also satisfy
(R1)-(R3).

This, unfortunately, has not been the case with the automaton £, considered for the program 7 in
the example of Section 7. The native invariants for this automaton are given by

Noi(e=O) A #0)
N y#0

4\"2 . T.

Note. for example. that even though two of the edges entering ¢ are labeled by y = 0, the third
edge. corresponding to ¢(g2, ¢2), IS labeled bv T. which makes N, = T.

It is casy to see that the invariants }\;, — N, do not satisfy (13). nor do they support the premises (R1)-
(R3) with the ranking functions we wish to use. Consequently. we could not use the native invariants
for proving the validity of A, over the program P;. and had to come up with stronger assertions oo — a».

On the other hand, let us consider the automaton A% presented below.

(y>0

-

This automaton is obtained from A ; by deleting the original labels from the edges and the nodes
and labeling each node ¢} by the assertion «;. By our encapsulation conventions, we factored out the
- conjunct, ¥y > 0 from a¢ and «; and used it to label the super-state containing both g and ¢q;. What is
the relation between the automata A; and A}? First, we observe that the two automata are structurally
similar. This means that there is a one-to-one correspondence between the states of A; and the states of
A”. which respects membership in the acceptance sets R and S. Thus, for 1 = 0,1,2, ¢; € R iff ¢ € R?,
and ¢; € S iff g, € S~

Secondly, we can show that any run r of A over a Pl-computation ¢ corresponds to a run 7' of A }
over o, such that r visits g; at step ¢ iff r' visits qg at that step. This is an immediate consequence of the
fact that ag — o satisfy the premises (I1), (12) and hence, whenever we visit g;, a; is known to hold.

We describe the relation, holding between A ; and A7 , by saying that A simulates 41, relative to
Pi. A precise and more general definition of this relation will be presented later.

Obviously if A | simulates Ay, and A7 is valid over the program Py, then so is A1. This is because
any run r of A jinduces a run r' of A}, which passes through R-states or S-states exactly at the same
steps that » does. Since ,4'1 is valid, ' is accepted, and therefore, so is r.

A similar conclusion holds for weak validity. Thus, if A ; and A7 are not necessarily complete. £
simulates A |, and A7 is weakly valid over P, then also A, is weakly valid over P . This shows that if A
(but not necessarily A 1) is complete, and A |, simulating A 1, is weakly valid over P, then A, is valid over
P. This is because for a complete automaton validity and weak validity coincide.

The graphical representation of the automaton A} has a special form, which we call a. node-labeled
automaton. This means that only nodes are labeled by assertions. but never any edges. In terms of

27

our original (non-graphical) definition of an automaton. a node-labeled automaton has an assertion
associated with each state ¢, such that

o For every ¢ € Q. e(q) is either F or o,.
o Forevery q.¢' €Q,¢c(q,q) is either F or ¢g.

It can be shown that every automaton is equivalent to a node-labeled automaton. For example, the
following automaton is the node-labeled equivalent of A ;:

"y #0 Y

A
=0 T#0 /\ /\
- ’ @ N\,

s

For node-labeled automata, it is very easy to compute the native invariants. They are simply given
by N, = ¢4 Thus, for the automaton A {, the native invariants are given by

Ny = ag = (2 =0)A(y >0)

Nt’=ul=(1=1)A(y>()),

.\’vé = ay = T

It is now easy to show that the native invariants of A’ satisfy {(I3), and together with the ranking
functions p;, as chosen above, satisfy {R1)-(R3).

We may therefore describe the verification process of A over P as being a two-stage process. The
first stage consists of finding invariants oy that satisfy the premises (11) and (12). This stage can be

described as finding an automaton A”which simulates the original automaton A, relative to P, such that
the native invariants of A”are the a's.

The second stage consists of finding ranking functions p, that, together with the invariants a,,

satisfy (13) and (R1)-(R3). This stage can be described as showing that p,, together with the native
invariants of A% .V,. satisfy (13) and (R1)~(R3).

The extension from A to A ', considered above, only involved strengthening the entry and transition

conditions. It is useful to consider more general extensions, in which single states of A are refined into
sets of states in A~ The general definition is given by:

Let A= (Q7R7S7E7C)and A = (Q, R, S, E, C) be two V-automata and P a program. We say
that A”simulates A relative to P, if there exists a function f : Q”— Q such that:

® g€ R’ S”& f(¢') € R, S, respectively.

28

o For any run r of A over a computation of P, there exists a run r' of A”over the same computation
such that r = f{r').

In this definition, if »' = qq, ¢}, then f(r)= f{qy), f(q1),. ... For amapping f: Q”— Q as above,
we denote:

U9 ={d' € Q" 1 f(d') = ¢}

Our previous observation also extends to this general definition: Obviously, if A”simulates A. and
A’is valid over P, then so is A.

The following proof rule provides a method for proving that A”simulates A, relative to P.

E-rule (A’ simulates A, relative to P)

To show that A”simulates A, relative to P:
Find a. mapping f : Q”— Q, such that
¢ €R’ S”& f(¢') € R, S, respectively.

Then, verify the following requirements:
(El) For each g € Q.

©Ae] = (€@

geftg)

(E2) Foreachq;,2€Q@ and ¢} € f'(q1),

{N;,l} P {C(ql,qz) - \/ C'(‘JinQ))}w

9,€f7(q2)

where N, is the native invariant of A”at q-
1

The purpose of the two premises is to ensure that each step in a run r of A over ¢, a computation
of P, can be emulated by A '.

Premise (El) ensures that if ¢€@ is the first automaton state in r, corresponding to the first program
state sq in a, then a corresponding initial state ¢'€ f ~!(g) can be found in A~

Premise (E2) ensures that if the run r of A has proceeded up to the automaton state g;, while the
simulating run r' of A”has proceeded up to ¢}€f~*(q1), then the next step of A can also be simulated
by A’ If the next step of A is from ¢; to g2 in response to the program state s, which must therefore
satisfy ¢(qi1, g2), then the premise guarantees some g€ f~*(g2) such that s F (g}, g3)-

The definition of simulation is a global concept, requiring the existence of a simulating run r' for
each original run r. The E-rule translates this into a local property, requiring that it will always be
possible to extend a finite segment of a simulating run one step further.

Example

Let us reconsider the safety property expressed by the automaton A,, and stating that mutual

29

exclusion is maintained for the program p,. Since this is a safety automaton. its validation requires
finding invariants that satisfy (11). (I2), and also (13?).

Following the discussion above. we suggest the automaton A, presented below.

“yi=403, y2 = my 3 \

'\ 0.1 ° 80,1 q(',_z: mo,1 .\

0.3 0.4 :
82,3 A 0, A ma 3
Ima A - At

e J

To identify the function f mapping the states of A, onto states of A3, we use the naming convention. by
which the names of states in A § are of the form i.j, such that f(¢; ;) = ¢i- In the special case that there
is only one state in A, corresponding to ¢; in A 5, we use the simpler name q..

We claim that A} simulates A;. This case illustrates the more general situation, that the mapping
between Q”and Q is not one-to-one. The native invariants of this automaton are:

Nyi: (mi=li3) Aya=mi3) A by

my.3) A my,

il

1\762 : (yl = f],,g) A (yz
Nia: i =b3)A(yz=mi3)A (a3 A maA ()
1V6_4Z (yl = f],,:}) A (y2 = Tlll“g) A (]~_) A mas At

It is trivial to see that (the incomplete automaton) A is weakly valid over P, since no run of it can
ever move to ¢;. whose entry condition is F. Thus, the main verification effort is to show that A3 indeed
simulates A5. This requires showing:

(E1) [O A (€ A ms)] = [Noa V Noa V Nys vV Nggy
[@ A ((’3 /\mg)] — F.

which are obvious, and

(E2) {(Noa} P {Ngy v NG, VNG

<0

{No2} P2 {Ngo vV NG VNG
{-\76.3} P {Né.r; v -V(I).x}
{-'\‘76.4} Py {N(')..a v ‘\'vt’),‘.)}~

In principle we also have to show that
{Noi} P {(€s Am3) = F}, fori=1,...4, and {r} P {F}

But this follows from the four clauses above, since each N, ; implies =(¢3 A m3).

We claim that these four clauses are easier to understand than the single verification condition

{ao} Pa{co},

where aq, is the invariant we used before to verify A2, and is equivalent, to Ny, V Ny, V Nj 3 V Ny,
The reason is that the four sub-assertions partition the state space covered by «g, in a way that makes
it easier to follow each transition in the program and convince ourselves that, indeed, it can only lead
from one Ny ; to another. as shown in the diagram.

A Liveness Property

The second property of this program is a liveness property, specified by A3 below. This automaton
states that whenever process P, is at {5, it will eventually get to /3, that is, Q @—=0G):

o : : q: 0 g2

A symmetric property holds for the process P,.

We present in the next page an automaton Aj simulating the automaton As. We annotate the states
by their common entry and transition conditions which are also identical to their native invariants. and
by their ranking functions.

It is not difficult to see that the simulating automata, presented by A% and Aj above, are very similar
to the proof diagrams recommended in [OL] and [MP2] for concise presentation of the main elements in
the proof of a temporal property. This provides a common framework for both specification automata
and proof diagrams.

Kyl = 03) A (y2 = my3)

I
9o -

1] -
Pry =

o,
W

my A Y2

32

10. EXPRESSIBILITY

In this short section we show that the specification power of V-automata is identical to that of the
logic ETL, which is an extended version of temporal logic, studied by Wolper in [W].

For this proof we need the notion of a Biichi automaton. A Buch: automaton B is an automaton
as defined in this paper with the restriction that S=@. A Biichi automaton B accepts a computation
o if there exists at least one run of B over ¢ that is accepting. Thus, while a V-automaton accepts
a computation ¢ if all runs over ¢ are accepting, a Biichi automaton accepts ¢ if some run over o is
accepting.

V-automata, in particular those with R=§, are dual to Biichi automata. To explain the duality
relation, we call a V-automaton A=(@,0, S.E, C) and a Biichi automaton B=(Q. R.$, E,C) dual. if
R=(Q — S. We denote this fact by writing B = A, or A = B. Dual automata are related by the following
proposition.

Proposition: A accepts a computation ¢ iff B rejects ¢

Proof: To prove the proposition, we observe that for a given &, r is a run of A over ¢ iff it is also a
run of B over ¢. Let run(o) be the set of all runs common to A and B over o.

With the above notations, we can establish the following list of equivalences:

A accepts ¢ & Vr € run(o) : Inf(r) C S
& Vr €run() : Inf(r)N R =0
& -3r € run(o) : Inf(r)y N R#0

B rejects o.
& ejecsa_l

We now use the results of {W], stating that Biichi automata have the same expressive power as
ETL. to show:

Proposition: V-automata have the same expressive power as ETL.

Proof: Let ¢ be an ETL-formula. Clearly, also -y is an ETL-formula. according to {W], there exists
a Biichi automaton B(-¢) expressing the same property, i.e., accepting all computations that satisfy
—¢. and rejecting all computations that satisfy ¢. Let A = E(—'«;)). Then A accepts precisely all the
computations that B{—¢) rejects, namely, all the computations that satisfy .

To show the other direction, denote by (B) the ETL-formula (whose existence is ensured by [W])
expressing the same property as 8. Then for the V-automaton A = B, the ETL-formula —~¢{ A) specifies

precisely the same property as A. a

33

11. COMPLETENESS

In this section we sketch a proof of completeness of the v-rule for proving the validity of a complete
automaton A over a program P. We consider only the case that P has no fairness requirements. The
general case will be discussed in the nest section that deals with fairness. e also assume that the
considered automaton A has an empty R.

The claim of completeness of the v-rule can be expressed by the following theorem.

Theorem: If A is valid over P, then there esist a well-founded set (W, <), invariants «,, and
ranking functions p,, expressible in the language L, that satisfy the premises of the v-rule.

We split the discussion into two parts. In the first part, called semantic completeness, we only show
the existence of (W, <), aq, and p, that satisfy the premises of the V-rule. In the second part. called
syntactic completeness, we consider the question of expressing a, and p, in the language L.

(A) Semantic Completeness

Let A be a complete automaton that is valid over P. We define a computation segment of the
program P to be a finite sequence of program states, that satisfies requirements (1) and (2) in the
definition of computations, but is not necessarily maximal. A run r over a computation segment o is
defined exactly in the same way as a run over a computation.

Invariants
We give a verbal definition for the invariant a, for each ¢ € Q:

s E ag & There exists a computation segment, whose last program state is =, and
a corresponding run, whose last automaton state is q.

Thus, s satisfies a iff there exists a computation segment of the form o s, and a corresponding run of
the form r * ¢, for some sequences ¢ and r.

In this definition we use * to denote concatenation of an element to a sequence. The sequences o
and r, can also be A (the empty sequence).

We show that these invariants satisfy the premises (I1)-(13) of the v-rule.

« Toshow (I1), let ¢ € Q be an automaton state and s€ X be a program state such that s E ©Ae(q).
We claim that, in this case, A x s is a computation-segment,, and A * ¢ is a run over it. Hence,
by the definition of ag4, s F 4. It follows that © A e(q) implies a,.

o To show (I2), let s k a4 and s” = t(s) for some transition ¢t € T of P. We have to show that
s' E (c(g,q") = ag). Assume that s' E ¢(q, q). By the definition of «,, s E a4 implies the
existence of a computation segment ¢ * s and a run r * q over it. Since s’ = t(s), 0' = o * s * 5’
is a computation segment of P, and since s' E c(q, q), * ¢ * qis a run over u” It follows that
s'Eag.

« To show (I3), let s E o, and ¢€B (ie, ¢ ¢ R U S). By the definition of ag, there exists a
computation segment ¢ * s and a. run r * ¢ over it. If s is terminal in P, i.e, t(s) is undefined
for all t € T, then o * s is a computation of P and r * ¢ a run over it, which is rejecting, due to

34

q € B. This contradicts the assumption that A is valid over P. Hence s cannot be terminal,
and must, therefore satisfy \/ Pr.
ter

Ranking Functions

We follow the techniques of [LPS], [GFMR], and [AP] in assigning ordinals to program states in
a computation. This assignment defines (for each automaton state ¢) a function p,, mapping program
states into the ordinals, which are taken as the domain of the well-founded relation (W, <) required in
the rule.

We start by constructing the run tree R of the automaton A over the program P. The root of the
run tree is a special node called ry. The immediate descendants of ry are nodes ny , na, . . . labeled by
pairs of the form (s;,¢,), where s; is a program state satisfying ©. and ¢;€@Q is an initial automaton
state such that s;Fe(g;). We assume that the program states are enumerable, and hence a sequence of
all the initial program states, i.e., those that satisfy @, can be constructed.

Except for the root node r, , which we may consider to be labeled by rq, all the nodes in R are
labeled by pairs (s, ¢). Let n # 4 be a node labeled by (s,). The direct descendants of n are defined as
follows: For each s' = t(s) and gq”such that s’ k ¢(g, 93, n has a direct descendant n~labeled by (s7 q).
Obviously, each node. except possibly rq, has only finitely many direct descendants, corresponding to
the finitely many transitions in T and states in Q. For a node n # r, we denote its immediate parent
by parg(n).

- It is not difficult to see that any rooted maximal path = in R (i.e., a path starting at ro) defines a
computation o and a run r over it. This also shows that for all pairs (s, g) labeling nodes in the tree,
s E ag holds for the invariants a, defined above, since (s, g) are reachable by a computation segment
and a run over it.

Conversely, for any computation 6=sg, s1, . . . and any run r=gqo, ¢1, - . . OVer g, there exists a maximal
path in R whose sequence of labels is rq, {30, o), {s1,q1)s - - - -

Nodes in the tree that are labeled by (s, q), for ¢ € S, are called stable nodes. All other nodes,
including ry, are called unstable. Since A accepts all computations of P (and R = @), all paths in R
contain only finitely many unstable nodes.

For any node » there exists a path = leading from ry to n. We define the lowest unstable ancestor
of n, denoted by lua(n), to be the last unstable node on the path =. Since rq itself is unstable, lua(n)
is always defined. If n is unstable then lua(n) = n.

Compressed Tree

From the tree R we construct another tree C, called the compressed tree, with a mapping from the
nodes in R onto the nodes of C. The nodes in C consist of a node n for each unstable node n in R. The
root of C is 7. For all other nodes 7, we define the parent of ii, parc{7). by the expression:

parc() = lua(parg(n)).

By this definition, to find the parent of a node 7 in C, go back to R. Locate n’. the parent of n in
R. Find n”, the lua of n? which must be unstable. Then take n” to be the parent of @ in C.

35

The mapping between nodes in R and nodes in C is given by f(n) =lua(n). It has the property
that, if n is the parent of n”in R, then either f(n) = f(n'), or f(n) is the parent of f(»') in C. This
shows that a path ii in R can be mapped to a path in C, which we denote by f(x). Conversely, for every
path 7 in C. there exists a path = in R such that f(#) = 7. Since all paths in R have only finitely many
unstable nodes, it follows that all paths in C are finite.

However, the price paid for achieving the finite-path property is that, in general, many nodes in
C may have infinite degree, while in R all nodes, except possibly ry, have a uniformly bounded finite
degree.

A generalization of this construction is presented in [Ha2], where it is described as a transformation
from ““thin” infinite-path trees, into ““fat”” but finite-path trees.

A tree with the finite-path property is also called a well-founded tree. If all the degrees are countable,
which is the case here, we can assign countable ordinal ranks é(7) to all the nodes 7 in such a tree. The
assignment is the following:

« Ifii is a leaf, then 6(7) = 0.

« Ifii is not a leaf, then §(7) = lub{é(n’) + 1| 7 = parc(n')},
where [ub is the least upper bound.

Definition of Ranking Functions

We are now ready to define the ranking function p,(s) for every automaton state ¢ and program
state s such that sk ag. As premise (R1) requires. these are the only program states for which p,(s) has
to be defined.

Let (s. ¢) be a pair such that sk ag. There exist one or more nodes n in R which are labeled by
(s, 9). Consider the tree R(n) which is the sub-tree of R rooted at n, i.e., R(n) consists of n and all of its
descendants. Note that in the case that R has more than one node n labeled by (s, q), all the trees R(n)
are isomorphic (which means that there is a one-to-one mapping between their nodes which preserves
the labels), so it does not matter which one we pick.

Construct C(n), the compressed version of R(n), in a way similar to the construction of ¢ from R.
The only difference is that for the computation of the lue in R(n), the root n is considered unstable,
regardless of whether n is unstable in R. Assign ordinals to the nodes of C(n). Let 6 be the ordinal
assigned to the root @ of C(n). Then we define p4(s) = 6.

This ranking has two important properties. Let n be the parent of n”in R, where n, n”are labeled
by (s. g) and (s? q), respectively. Then it can be shown that:

o Always pg(s) 2 pgr ().
o If ¢'¢S, ie, n”is unstable in R, then pg(s) > pgr(s').

These two properties lead to the fact that premises (R2) and (R3) are satisfied by the a, and pq
chosen above.

To see this, consider a state s satisfying @, and a successor state s~ satisfying c(qg,q'). Premise
(R2) requires showing that pg(s') <X pe(s), while (R3) requires that if q”¢ S, then pg(s') < p,(s). By

36

our construction both (s. ¢) and (s’, q) are nodes in the tree R, with (s,¢) being the parent of (s ¢").
Hence, by the two observations above, the two premises are satisfied.

(B) Syntactic Completeness

Next, we have to show that the a, and p, chosen above can be expressed in the assertion language

A small technical problem is that, formally, p, is not an assertion but a function. This can be
resolved by replacing the ranking function by a ranking assertion ¢4(w), parametrized by an element w
of the well-founded set W. The meaning of the assertion ¢4(w) is given by:

s F pg(w) & pos) = w.

After this modification, it remains to show that ag and ¢,{w) are expressible in L. We refer the
reader to {AP], [SRG], and [Fr] for arguments showing that if L contains the fixpoint operators of the
p-calculus, then the assertions ag and 4(w), verbally defined above, can be expressed in L.

Discussion

One of the points emerging when considering the V-rule is that the need for infinite ordinals is
essential in this process. In previous papers, the need for infinite ordinals was usually attributed to
concurrency, fairness, or unbounded non-determinism in the programming language or computational
model (see for example [LPS], [Fr], [AP]). As the present paper shows, the need for infinite ordinals
arises even in a simple non-deterministic program without concurrency, fairness, or unbounded non-
deterministic constructs, such as program P; in the example of Section 7. We advance the thesis that
the element responsible for the need for infinite ordinals is the specification language. As soon as we
deal with non-terminating programs, and have a specification language strong enough to espress liveness
properties more complex than unconditional eventualities, infinite ordinals are necessary.

12. FAIRNESS

In this section we sketch the extensions needed to the approach in order to accommodate fairness.
While fairness was included in the basic model of programs, represented by a set of fairness requirements
{p,%), all €h rpofruges, and claims of completeness, were discussed up to this point with the restrictive
assumption of an empty set of fairness requirements. Suppose we are presented with a program P that
contains fairness requirements {y;, ¢;) for i =1, ..., n, and we are asked to verify a property Y.

There are two basic approaches to solve this problem. The first is by extending the property to be
proven. The second is by extending the proof rules.

According to the first approach we use the V-rule, as presented above, to prove the extended property

X : \"/[Dosomo d (+2)] v x

=]

over the program P’ obtained from P by omitting all the fairness requirements.

37

The property \' is valid over the program P iff every computation of P' either violates one of the
fairness requirements, or satisfies y. In other words, y is satisfied by all the computations of P. i...
those computations of P' that also satisfy the fairness requirements of P.

Since the extension, expressed above by temporal logic, is readily expressed by automata, this
provides one way of dealing with fairness. Note that if y is one of the properties. such as [(J ¢ or 2,
for which the temporal proof system provides direct rules, the extended property \' does not have this
form any longer. Consequently the direct rules are no longer applicable without further changes. that
explicitly reflect the fairness requirements. As a result, temporal logic proof systems (see, e.g., [MP2]),
provide several versions of rules for establishing liveness properties such as ¢. A basic version (similar
to our v-rule) does not use any fairness assumption. Another version relies on the weak fairness properties
of the program, and still another one. utilizes also the strong fairness properties.

The second approach, considered here, follows precisely that route, and suggests a modified V-rule,
in which the modifications directly reflect the fairness requirements. We present here only the simpler

version of weak fairness. A fairness requirement of the form (¢, 1) is called a weak-fairness requirement
if o=T.

This requirement demands that if the computation is infinite, it should contain infinitely many

program states satisfying ¢. Furthermore, we illustrate in detail only the case of a single weak fairness
requirement.

The rule, modified for a single weak-fairness requirement, calls for two invariants, a}l and ag, to
he associated with each ¢ € Q. A well-founded relation and ranking functions are needed, as before.
Denoting aj v ag by a4, premises (I1)-(I3) and (R1) remain unchanged.

The premise (R2) is replaced by:

(R2.1) { ay A (pg = w)} P { 9, 4') = [g A (og < w)] v [a§ A (py = w)]] }
foreachge Q. ¢ € SUB,i=1,2

(R2.2) [ag A ¥] — o for each ¢ € @,

(R2.3) {O‘Z A (py = w} P {c(q,q') - (py < w)} for each ¢ € Q. ¢' € B.

We can explain this modification by observing that the invariant o, has been split into the two
invariants a}, and ag. The case of aﬁ records the fact that a state satisfying ¥ has been detected since
the last decrease in p. In the simpler case, where no fairness was assumed, we relied on the well-founded
ranking to ensure that we either visit infinitely many R-states, or that we visit only finitely many
bad states (states in B). Concentrating on a run that avoids R-states from a certain point on, the
original premise (R3) required that the rank decreases on any visit to a had state. Since the ranking is
well-founded, we can only visit finitely many bad states.

Here, we do not insist on finitely many bad states in general. Only runs that have infinitely many
$-states are required to have this property. Thus, we do not require a decrease on every visit to a bad
state. Instead, we require a decrease on each first visit to a bad state, following a visit to a ¥-state.

Consequently, infinitely many bad states contradict the well-foundedness of the ranking only if they are
coupled with infinitely many ¢ -states.

To see how this requirement is expressed by the premises (R2.1)-(R2.3), observe the following:

By (I2), each successor of a state satisfying a} v (\3 must also satisfy n}; Vv a‘;;.

Premise (R2.1) requires that as long as we do not. visit an R-state (and the interesting case is when
we visit only finitely many R-states), the rank cannot increase, which means that it either decreases or
remains the same. The premise also requires that if the rank has not decreased, then the identity of the
sub-assertion, i.e., a(ll or «?, is preserved over the transition. If the rank decreases, then we only know
that ag (ie. either o}, or a2) holds after the transition.

Premise (R2.2) forces any state satisfying a}l and i to also satisfy C“Z' The switch to ag records a
visit to a ¥-state.

Premise (R2.1) for 1 = 2 ensures that once we are in the o® mode of the assertions, we remain in
this mode as long as the rank does not decrease. This is because we wish to preserve the information
that, we have recently encountered a -state until the next visit to a B-state, which will force such a
decrease.

Premise (R2.3) requires that a transition starting at 03 and entering a B-state, should decrease
p. Observe that this is weaker than the original (R3), which it replaces, since here the decrease is
required only if the transition started at a ag—state, while the original premise requires a decrease from
any ag4-state. Note that on entry to a B-state from a program state satisfying ag, which by (R2.3) is
accompanied by a rank decrease, we are allowed. by (R2.1) to switch back to a;, thus erasing the record
of a recent encounter of .

Hence, if 3 occurs on entry to any state, it causes aZ to become true (due to (R2.2)). If the next
transition enters a B-state it causes p to decrease and allows ag to change back to a}l. If the next
transition enters an S-state, the a?-mode is preserved until the first exit from S. If that exit moves to
a B-state, it causes a decrease in p. If the exit is to an R-state, then p may assume an arbitrary value.

This rule is sound and complete for the simple case of a single weak-fairness requirement. It is easy
to see how it can be generalized to the case of n > 1 weak-fairness requirements, associated with the
assertions 1, . . . ,%n. We split each a, into aj, . . . ,a7™!, where ag = aj V...V aj*!'. The three
premises assume then the form:

(R21) {aj A (pg = w)} P {clg.4) = [[A (o < w)] V [a}s A (pg =)] }
foreachqe @, ¢ € SUB,i=1,....n+1,

(R2.2) [af A %] — ai*! foreachqeQ,i=1,...,n
(R2.3) { a;‘“ A (Pq = ‘Lo)} P { clg, ¢') = (pg —<u,)} foreachg € Q, g € B.

In this representation a; fori=2,...,n+ 1 records the fact that we have already encountered
Py, ..., -1 since the last decrease in rank.

It can be shown that the two suggested extensions. extending the property and extending the rule.
are closely related. There exists a direct translation between a proof using ay,p, on the extended
property \' and a proof using ag, ..., a7*!, p, in the extended rule on the property \.

39

13. MODEL CHECKING

In this section we sketch an algorithm that checks the validity of a given V-automaton A over a
given finite-state program P. The finiteness restriction is obtained by restricting the set of variables, to
which the program and the automaton refer, to a finite subset V>C V', all of whose variables range over
finite domains. This restriction leads to a finite number of program states £ and to the fact that all
assertions, even the ones containing quantifiers or fixpoint operators, are decidable, i.e.. their validity
or inconsistency can be checked algorithmically. The latter is due to the fact that any formula in the
assertion language L is equivalent, under the restriction of finiteness, to a boolean combination of atomic
formulas of the form u = a, for some variable u € V and a constant a in the domain over which u ranges.

For simplicity, we assume that P has no fairness requirements. In case it has, they could be added
to A in the manner discussed in the section dealing with fairness. We also assume that the automaton
A is complete and has an empty R. As we have seen, these assumptions lead to no loss of generality.

A finite-state program P can be represented as a finite graph Gp, whose nodes Np are the states
T, and whose edges Ep connect s to s”iff s'=t(s) for some transition t€T. A subset of the states £,C%
is designated as the subset of the initial nodes in the graph. These are all the states s that satisfy ©,
the precondition of P.

The algorithm starts by constructing a graph G = (N, E) that can be viewed as the cross-product
of the program graph G p with the automaton A (viewed as a flat transition graph).

. The nodes NV in the graph G are pairs of the form (s, ¢) where s € ¥ is a program state and ¢ € Q
is an automaton state. Some nodes, No € N, are designated as initial in G. They are all the nodes
(s, q) such that

s€%y and sk e().
Edges in E are drawn between (s, ¢) and (s', ¢') iff
s’ =1t(s) forsomet €T and s’kc(q, q).

Note that in the construction of Ny and E, we used the fact that questions such as s F ¢ are
decidable for each s € £ and ¢ in L.

Consider a maximal path 7 in G, starting at some initial node n € Np. Clearly, such a path defines
a computation o of P and a run r of A over it. The algorithm presented here searches for a rejecting
run. If it fails to find such a run, we conclude that A is valid over P.

Aigorit hm: As a preliminary transformation, we eliminate from G all the nodes which are unreachable
from initial nodes. These can never participate in a rejecting run.

We now repeat the following sequence of steps until either success or failure are announced. Some
of the steps remove nodes and edges from the graph, so when we refer to G and its elements, we mean
the elements in the current version of G.

(1) If the graph G is empty, stop and announce failure (to find a rejecting run). This means that A is
valid over P.

(2) Decompose the graph into maximal strongly connected components, and let ' C G be such a
component which is terminal, i.e., there are no edges in the current version of G connecting nodes
in C' to nodes in G-C”~.

3) If C'is a singleton node (s, ¢), with no edges leaving it, consider the following subcases:

o If s is not terminal in P (ie. t(s) is defined for some t€T) or ¢€S, the node (s.¢) cannot
participate in a rejecting run. Proceed to step 5.

o Otherwise, we have identified a reachable node (s,g) such that s is terminal in P and ¢¢S.
This means that A is not valid over P. Stop and announce success.

4) Otherwise, C' is a component that has a cycle K going through all the nodes in C. If C has a node
(s.q) with ¢ ¢ S,stop and report success. The infinite path starting at some initial node. reaching
C, and then infinitely repeating K, passes infinitely many times through the automaton state ¢,
and hence generates a rejecting run.

5) The component C cannot participate in a rejecting run. Delete all nodes in C and all edges leading

to these nodes from G — C. Return to (1). J

The above algorithm is very similar to several previous model checking algorithms for linear and
branching temporal logics as well as automata-based algorithms, such as in [CES], [LP], [EL] and [VW].
The complexity of the algorithm is linear in the size of the initial graph G, i.e., in (A |x |Gp].

ACKNOWLEDGEMENT

The decision to introduce non-determinism into our automata was inspired, to some extent, by a
suggestion of Moshe Vardi to examine the Buchi automaton corresponding to the negation of a formula,
and show that it accepts no computations of the program. This suggestion and the related discussion
are gratefully acknowledged. His approach to verification by automata is presented in [V].

We thank Fred Schneider for helpful discussions concerning his work on the subject of automata
as specification devices. We also thank Martin Abadi, Marianne Baudinet, Tom Henzinger and Alur
Rajeev for critical reading of the manuscript.

REFERENCES
[AP] K. Apt, G.D. Plotkin — Countable Nondeterminism and Random Assignment, JACM 33.4
(1986), 724-767.

[AS] B. Alpern, F.B. Schneider — Verifying Temporal Properties without using Temporal Logic,
to appear in TOPLAS.

[CES] E.M. Clarke, E.A. Emerson, A.P. Sistla — Automatic Verification of Finite-State Concur-
rent Systems using Temporal Logic Specifications, TOPLAS 8,2 (April 1986). 244-263.

[D] E.W. Dijkstra — A Discipline of Pregramming. Prentice Hall (1976).

[EL] E.A. Emerson. C.L. Lei -- Modalities for Model Checking: Branching Time Strikes Back.
12th Symp. on Principles of Programming Languages (1985), $4-96.

[F1] R.W. Floyd — Assigning Meanings to Programs, in Mathematical Aspects of Computer Sci-
ence, 19th Symp. of Appl. Math., American Mathematical Society, Providence (1967). 19-32.

[Fr] N. Francez — Fairness, Springer-Verlag (1986).

. [GFMR] 0. Grumberg, N. Francez, J.A. Makowsky, W.P. deRoever — 4 Proof Rule for Fair
Termination of Guarded Commands, Information and Control 66 (1985), 83-102.

[Hal] D. Harel — Statecharts: A Visual Formalism for Complex Systems, Technical Report. Weiz-
mann Institute (1984).

[Ha2] D. Harel — Effective Transformations on Infinite Trees, with -Applications to High Unde-
cidability, Dominoes. and Fairness, JA CM 33.1 (1986}, 224-248.

[Ho] C.A.R. Hoare — An Axiomatic Approach to Computer Programming, CACM 12 (1969),
576-583.
[LP] 0. Lichtenstein. A. Pnueli — Checking that Finite-State Concurrent Programs Satisfy their

Linear Specifications. 12th Symp. on Principles of Programming Languages (1985). 97-107.

[LPS] D. Lehmann, A. Pnueli. J. Stavi — Impartiality, Justice and Fairness: The Ethics of Con-
current Termination. LNCS 115. Springer-Verlag (1981).

[MP1] Z.Manna, A. Pnueli — Verification of Concurrent Programs: The Temporal Framework, in
“The Correctness Problem :n Computer Science {R.S. Bover, J.S. Moore, eds.), Academic Press
{1981), 215-274.

(MP2] Z.Manna, A. Pnueli — Adequate Proof Principles for Invariance and Liveness Properties
of Concurrent Programs, Science of Computer Programming 4 (1984), 257-289.

[OL] S. Owicki. L. Lamport — Proving Liveness Properties of Concurrent Programs, TOPLAS
4.3 (1982), 455-495.

{P] G.L. Peterson — Myths about the Mutual-Esclusion Problem, Information Processing Letters
12,3 (1981), 115-116.

[SRG] F.A. Stomp. W.P. deRoever, R.T. Gerth — The P-Calculus as an Assertion Language for
Fairness Arguments. Technical Report 84-12. Utrecht (1984).

[V] M.Y. Vardi — Verification of Concurrent Programs: The Automata-Theoretic Framework,
2nd Symp. on Logic in Computer Science. Ithaca (1987), 167-176.

(VW] M.Y. vardi, P. Wolper — An -Automata-Theoretic Approach to Automatic Program Verifi-
cation, IEEE Symp. on Logic in Computer Science, Cambridge (1986), 332-344.

[W] P. Woolpr — Temporal Logic can be More Expressive, 22nd Symp. on Foundations of Com-
puter Science (1981), 340-34S.

[WVS] P. V6 lpr, M.Y. Vardi. A.P. Sistla — Reasoning about Infinite Computation Paths. 24th
Symp. on Foundations of Computer Science. Tucson (1983), 185-194.

41

