
c “. 3 a C
.

w

SPE CIF ICATION A,1;D VERI~;~ICATIO!~
O F CO NCURRENT PROGRA~WS

B Y V - A U T O M A T A

Conlputer Science Department
Weizmann Institute of Science

1
fiomputer Science Department

Stanford University

ABSTRACT

V-automata are non-deterministic finite-state automata over infinite sequences. Thtsy differ from
conventional automata in that a sequence is accepted if all runs of the automatou o\-er th(B sequence are
accepting. These automata are suggested as a formalism for the specification and verification of temporal

‘properties of concurrent programs. It is shown that they are as expressive as extentled temporal logic
(ETL), and. in some cases, provide a more compact representation of properties tha11 temporal logic. -1
structured diagram notation is suggested for the graphical representation of these automata. A single
sound and complete proof rule is presented for proving that all computations of a program have the
property specified by a V-automaton.

1. INTRODUCTION

As the field of formal specification and verification of concurrent systems grotvs 111ore 111at1we.

increasing attention should be directed to making the suggested techniques convenient and uatiual.
In earlier stages of the research in this field, the emphasis was put on maximal expressibility of the
specification language and universal applicability (completeness) of the verification 111ethod.

One approach that was developed during these earlier stages consists of the specification lang11age
of temporal logic and its associated verification system. It gave a satisfactory answer to the requirements
of espressibility and relative completeness of the proof system. However, it soon lx~arne apparent that

An abbreviated version of this paper appeared in the Proceedings of the 14th Symp. 011 Princil)lrs
of Programming Languages (January 198i).

This research was supported by the National Science Foundation under Grant DC’R-84-13230 ~11~1
by the Defense -Advanced Research Projects .Agency under Contract X00039-84-C-031 1.

tl(%ailc4 proofs of p10~:“am l)roperties. losing temporal logic, arc sonlc>times te~lious to read and follon-.
S(*vernl sug~;(~stions were llli~rl(~ in order to remove some of the tcdiolls detail and gil-c a more compact<
rc~preseuta t iou of such pro()fs, highlighting the creative elements. \vllich usually- are the invariaxl t s and
the conver~ellce functions ~lsecl. Xotablc among these suggestions are severa.l high-level rules, such as
the chain rllle discussed in (1IP2]. and the representation of proofs by diagrams ([OL]. [klP2]).

Anotllcbr somewhat unsatisfactory point about temporal proof systems is t,hat so far they have not
provided a. general and direct reduction of the proof of a temporal property into a set of non-temporal
vcrificntion condition.< (also known as proof obligations). Traditionally, all the proposed proof systems
for sequential programs (e.g.. [Fl], [Ho], [D]) can be summarily described as a reduction of a program
property, sltch as partial OL’ total correctness, into a set of first-order verification conditions expressible
in the underlying assertion language. For special temporal-logic for~~das that are boolean combinations
of the four basic forms 0.11, 0 p, 0 0 p, and 0 op. where p is a stake-formula (i.e., a non-temporal
formula), a direct reduction to verification conditions over the underlying assert,ion language is provided
by the proof rules presented in [MP2]. However, for more genera.1 formulas 9, we have to use temporal
reasoning, i.e., general theorem-proving methods within temporal logic, to obtain the validity of 9 from

the validity of simpler formulas of the four basic forms.

One of t,he often suggested alternatives to the verification of concurrent systems by temporal logic is
the llse of finite-state automata. Since one of the unique features offered by temporal logic is its ability to
deal wit,h infinite computations, the appropriate version to consider is automata over infinite words. -4s
WLS provecl by Wolper ([W]), the expressive power of such automata exceeds that of common temporal
logic, and corresponds to a stronger temporal logic called ETL. He also provided a transformation from
a propo+itioual temp0ra.l formula into an equivalent automaton over infinite inputs. Further research
ou verificat,ion by automata (see [WI, [WVS], [VW]) concentrated on the cases of finite-state programs,
in which the verification problem is decidable. The approach recommended in those papers is to use
temporal logic for specification and then, in order to verify a program property, translate the temporal
formula into the equivalent automaton and apply automata-theoretic methods to solve the translated
verification problem.

‘4 significant improvement in the utilization of automata for the specification and verification of
concurrent systems has been recently suggested by Alpern and Schneider ([AS]). They recommend using
alltoniata a.lso for specification. Then, they suggest an approach to verification that applies to the
general case of programs with possibly infinitely many states. The actual verification method is based
on the introduction of invariants and convergence functions, and is very similar to the general verification
methods suggested in [OL] and [MP2] for a restricted set of temporal formulas.

The approach of [AS] is base on deterministic B&hi -4utomata. The expressive power of a Jingled
deterministic Biichi a.utomaton (DBA) is rather limited, and there are interesting program properties
which cannot be expressed by such an automaton. Consequently [AS] consider a specification to be

L presented as a boolean combination of deterministic Biichi automata. For the verification of a property
presented in this way, over a given program, they provide several proof rules; one rule handles a single
DBA. and the other rule handles the complement of a DBA. Since such a combination is known to express
any property specifiable by automata over infinite inputs, the approach attains maximal expressibility.

1x1 this paper we
concurrent programs.

present an alternative uniform approach to the specification and verification of
using finite-state automata. over infinite inputs. The approach is based on a new

type of l~oll-detet.nlinistic aiitomata. call4 V-uutomutu. Such an automaton acc*trpts a given inI)irt if ~11
its pos+ible runs over this input are a.ccel)t.ing. W-c will show that V-automata are maximally expressi\-c*.
i.e., as expressive as ETL. Our automata also lead to a l-er! natura.1 verification method lmsefi 011

invariants and convergence flmctions. in n style similar to [OL], [Ml?], and [AS].

11-e would also like to promote in this paper a wider use of graphical representation of automata
and proof diagrams. It has been our esperience, which we would like to share with the reatlers;, that
a well-structured diagram often represents the major ideas in a proof in a more concise and llicid foim
than a string of textual lemmas. A common objection against graphical representation by transition
diagrams is tha.t, beyond a very modest size, they beconle so entangled as to be unreadable. \‘<e counter
this objection by using a structured-diugrum notation as used in the proof lattices of [OL] and Statecharts
of [Hal].

2. VARIABLES AND ASSERTIONS

The following elements will be used both in the programs and in the specification formalism:

L’ = (111, 112, . . . } - A countable set of w.riables. Some of these variables represent data variables
which can he modified by assignments of the program. Other variables are control variables and
may represent, for exa.mple, the loca.t,ion of t.he next statement to be executed by the program.
1Ve assume that each variable ranges over an appropriate domain, e.g., a data variable may
range over the non-negative integers. a control variable may range over a finite set of locations.

_ L - A language of assertions. The language includes all the first-order formulas over the variables
in 1/‘. We assume a fixed interpretation of the predicate, function, and constant symbols over
t,he appropriate domains. (To achieve completeness. it is not sufficient to consider a first-order
language, and a stronger assertion la*nguage is needed. For that purpose, we will introduce
&point operators into our language.)

3. PROGRAMS AND COMPUTATIONS

JVith no commitment to a syntax of a particular programming language, we <associate with each
program P the following elements:

S - -4 set, of pi.ogram states. Each program st5ate sf S is a mapping from the variables in v to their
domains. We use the notation S[U] to denote the value that s assigns to u E V. More generally,
for an expression e over the variables in V, we denote by s[e] the value of e in s. Similarly, for an
assertion 9 and a program state s. we say that s sahcfies cp, and write s C= 9, if s[v] = T, that is,L
evaluat.ing 9 over s yields the truth value T. In this case we refer to s as a p-state.

2’ - -4 finite set of transitions. In our model, each transition tET is represented by an enabling condition
pt, which is a quantifier-free assertion, and a transformation ?it := Bt, assigning to a finite list. of
variables Ct a finite list of expressions Et. If s and s’ are two program states such that s I= pt and
s’ = (s; uf:s[et]), tha is, s satisfies lit and s’t is obtained from s by reassigning the values s[et] to

the variables Ir.,.
that t is en&led

then we sa;- that, ’.Y is the t-,~~ccce3sor of P ant1 write .,’ = t(J). If -5 I= pt. we say
o&r\\-ise t is th;abled 011 s. ant1 then t(.Y) is undefined.

0 A precondition. This is an assertion sI)ecifying initial values for some variables, and conditions that
other variables satisfy in the first program state.

.
F -- .4 finite set of faxmess requve7nents. Each requirement is a pair (9, r;*) of two qiumtifier-fret as-

sertions. The intended meaning of the fairness requirement (3. II,) is that a computation that has
infinitely many ;-states sholild also have infinitely many $-states. In a @pica1 application, 9 may
state that a transition t is enabled, while $ states that it. is activated. In this case. the requirement
(v,$) states that if t is enabled infinitely many times. it must, also be activat,ed infinitely many
times.

-4 program state s, such that t(s) is disabled for all t E 2’ is callecl ternGnu for P.

A computation of a. progranl P specified by the above elements is a finite or infinite sequence of states

such that the following requirements are met:

(1) Initialzty: so l= 0.

(2) Consecutio7L: For each i, 0 5 i < la/, there exists a transition f E T such that Y,+I = t(s*).

(3) - Terminatio7b: Either CT is infinite, or it terminates in a state ok that is terminal for P.

(4) Fairness : For each fairness requirement (9, +) E F. either 1.7 conta.ins only finitely many v-states,
or d contains infinitely many $-states.

.
For a finite computation o = so, $1, . . . , sk, we denote by la\ the index of the last state in 0. We write
1~1 = w to denote the fact that o is infinite.

4. V-AUTOMATA

A V-automaton A is specified by the following elements:

Q-

R

S

A finite set of automaton states.

GQ- A set of recurrent
infinitely many times.

states.

c&--4
point on.

set of stable states. These are states that some good runs visit exclusively. from a. certain

These are states that some good runs are espected to visit

E - A finite set of entry conditiona. With each QEQ, we associate an assertion e(q)EE that charac-
terizes the condition under which the automaton may start its activity in Q.

c - A finite set of tr(Lnsition conditions. With each pair q, (I’EQ, we associate a.n assertion c(q, ~‘)EC
that characterizes the condition under which the automaton may move from q to q’.

-An!- alltomaton states (IEQ. suc*h that e(q) = F, (*an nc\-er ap1~‘;11 i* tilt> iil..\t ilUtOllli!tOll stat,cJ i n
a run. To those states ~EQ whose c>ntry conclition f(q) is tlifferent from I‘ n-e rc>fer a8 i71.itl.d states.
iniplvinj& that thcl\- <*an appear as th> first FlUtOllli~tOll stattl in a run..

The two sets R and S are the gcnc~ralization of the notion of acc*ept.ing states to the case of infinit,e
inputs. For convenience. we denote by B = Q - R - S the :;ct of WW, occcpting (bad) states. The sets R
and S may have a nonempty intersec.tion.

V-alltolmta. i~re intended to specify computations of programs. Thercforc. we define the notion of a
‘V-automaton A accepting a computation.

Let u be a computation. 4 7’un of A over c7 is a sequence of aut.oniaton stakes

such that:

l The first program state so satisfies the entry condition associated with qo, i.e., so I= e(qo).

l For each i, SUC~I that 0 5 i < Irl - 1, si+l I= c(qi,qi+l).

8 Either /I*(=)u/, i.e., the run and the computation have equal lengths, or 11.1 = i < 101, but then
si+l bcc(qiv (I) for every q E Q, which means that the run cannot be extended beyond qIri to an
automaton st,ate consistent with the program state si+l.

We refer to runs for which Irl = I 1o as complete runs, and to runs for which 1~1 < Ial ils incomplete.

?Ve can describe the behavior of the automaton A, when generating a run 7’ over a computation
0, as follows. Initially, it chooses an automaton state QOEQ such that so, the first program state in 0,
satisfies e(qo). The automaton state ~0 is the first state in the run. Evera.fter, let the automaton be at
automaton state qi, at position i = O,l, . . . in the run. It then reads the next program state si+l from
(7 and non-deterministically chooses to move to a next automaton state qi+l, provided s,+l k c(qi, qr+l).

In the case that there is no qi+l such that .s,+l I= c(q,,qi+l), the run cannot be extended, and we
obtain an incomplete run.

We define now the notion of a run r of A over a computation o being accepting.

l An incomplete run is never accepting.

l -4 finite complete run r of A is defined to be accepting if its last (automaton) state belongs to
Ru S.

l For an infinite complete run r, let 1f(r)zQ denote the set of (automakon) states that appear
infinitely many times in f. The infinite run r is defined to be accepting if:

l hf(r) n R # 0, i.e., some of the states appearing infinitely many times in T belong to
R, or

m If(r) s S , i . e . , all the states appearing infinitely many times in I’ belong to S
(equivalently, from a certain point on, only states belonging to S appear in T).

I Sote that if we detine 1nf(I) for a finite run r to l)e a singlc*ton set consisting of th(t last. state of 1’.
. then the definition of ac*c*epta.ncc given a.bove applies to both finite and infinite complete> rims.

-4 V-automaton A ncceyts a computation CY if (1.11 the possible runs of A over u are nccc~pting. This
definition eml)odies the main difference between V-automata and conventional finite automata (which
can be called 3-automata) in the way they treat. non-determinism.

-4 run which is not acceptin g is called rejecting. If a computation 0 has at least one rcjcctiiig run
T, then the automaton A does Ilot accept the computation O. In this case, we say that A rejects the
computation u.

Two V-automata A and k are defined to be equivalent if they accept precisely the same set of
computations.

If a V-automaton A accepts all computations of t.he program P, we say that A is v&H over P.

Clearly, the automaton A is valid over a program P, if for each computation u of P,

(a) All complete runs of A over u are accepting.
(b) A has no incomplete runs over u.

We define A to be weakly vnlid over P, if clause (a) above holds for every computation of P. Thus, weal;
validity allows some rejecting runs over computations of P, provided they are incomplete.

.

5. REPRESENTATION BY DIAGRAMS

It is useful and illuminating to represent V-automata by diagrams. The basic conventions for such
representations are the following:

l The automaton states are represented by nodes in a directed graph.

0 Each initial state is marked by a small arrow, called the entry edge, pointing to it

0 Directed edges, drawn as arrows, connect some of the states.

0”
l Each state belonging to R is represented by a diamond shape inscribed within a circle

l Each state belonging to S is represented by a square inscribed within a circle
0

The diagram contains assertions that label both nodes and edges (i.e., entry edges and edges between
nodes). Unlabeled nodes and edges are implicitly labeled with the assertion T.

The assertions labeling nodes and edges in the diagram define the set of entry conditions and
transition conditions of the associated automaton as follows:

l Let q E Q be a node in the diagram corresponding to an initial automaton state. Let L’ be the

assertion labelins the ~io(lc q, and ; l)e the assertion labeling the entry edge.

Then, the entry condition e(q) is given by:

e(q) = p A $.

l Let Q, q’ be two nodes in the diagram corresponding to automaton states. Let $ be the a.ssertion
labeling node Q’ and ql, . . . , vn the assertions labeling all the edges connecting q to (I’

Then, the transition condition c(q, q’) is given by:

ch’) = (ww9v . . . v$%a)e.

Note that this convention allows putting into the label of q’ any conjunctive factor ?I, that is
- common to the labels of the edges entering q’ . Note also that if there is no edge connecting q

to q’, then c(q, q’) = F.

Since V-automata and their diagram representations are suggested as a specification language, we list
below several examples of simple temporal-logic formulas and their representation by diagrams.

Example 1: The following automaton specifies the temporal property

oou,
i.e., 11 holds continuously from a certain point on:

This automaton is actually deterministic. It accepts a computation iff from a certain point on all
program states satisfy U. This is obvious since such a computation leads to a (unique) run that stays in
q1 from a certain point on. Clearly, for this automaton R = 0, S = (q1 3.

J

8

Example 2: -4s our next example, consider an automaton specifying the temporal ljroperty

i.e.. (I holds infinitely many times:

This automaton is similar to the previous one, but differs in its acceptance sets R and S. For the
present automaton R = {q* }, S = 0, and hence a computation is accepted iff it has infinitely many
‘u-states, causing the automaton to visit q1 infinitely many times. J

Actually, from a theoretical point of view, the set R of recurrent states is redundant. This is stated
in the following proposition.

Proposition: For every V-automaton A, there exists an equivalent V-automaton 1, effectively
derivable from A, such that k = 0.

Example 3: We first illustrate the proposition by presenting an R-less automaton for the temporal
property of Example 2, 0 0 u, which seems to use the set R in an essential way (having S = 0).

rr
This automaton is non-deterministic.

Consider first a computation u that contains infinitely many u-states. One possible run over u stays
forever in qo and is accepting. Any run over u that enters q1 will eventually reach a later u-state in u,
which will force it to proceed to q2 and remain there forever. Hence all runs over u are accepting, and
therefore the automaton accepts 0.

Consider next an infinite computation 0’ which has only finitely many u-states. For such a compu-
tation we can devise a run r that stays in ~0 until the last u-state is passed. It then proceeds to q1 and
stays there forever. This run is obviously rejecting, and hence the automaton rejects the computation
U’. J

Proof of the Proposition: Let A consist of the components Q, R, S, E, and C. Without loss of
generality we may assume that the acceptance sets R and S are disjoint, i.e., R n S = 0. If they are

!)

.

IIO~ tli<Joint. it c-an l>e sho\vn that the ;Illtonlnton A ‘. \\-hicll ih identic;ll to A in all components exc’c‘l)t
for the i\<*(*cpt;\llcc sets that are siven 1)~ R’ = R ant1 S’ = S - R. is eclllivalent to A. Trivially. for the
illltOllliltOll .A’. R ’ I ? S ’ = a.

Let. Q’ = {q’(q E Q),,Q” = {q”(q E Q} 1)e t,wo disjoint copies of the set Q. In general for any sulwt
I\- 2 Q. we denote hi- I<’ and I<” the sllbsets {q’lq E Ii} and {q”lq E Ii}. respectively, referring to the
(~orresyontling copies of I’ in Q’ and Q”.

The general idea of the construction is to let A consist of two copies of the automaton A, wl~o<c
sets of states are denoted, respectively, by Q’ and Q”. The first copy has similx entry and transition
conditions as A. In addition, for each pair of states ~1, qzE&. we allow a transition between qi and (1:.
whose transition condition is c(qi, qi) = c(ql, qz). This allows a run to proceed for awhile in the first
copy, and then. non-deterministically, to switch and continue within the second copy. The second ~01)~
has a structure which is essentially similar to that of A, except that we set all transition conditions
c(qy,qy). for q1ER. to F. This causes the R”-states to become traps, i.e., once a run enters such a stn te
it cannot continue.

As acceptance sets for the automaton 2, we take E to be empty and $ to consist of Q’UR’US”. Tllc
intention of the constructioq is that for an infinite run r’ over A to be rejecting, it must eventually switch
to the second copy, where it never visits an R/‘-state and visits infinitely many times some non-S”-stntcx.

We define the following components of 2:

tj = Q’ u Q”, tlla is, Q consists of the two disjoint copies of Q.t

R = 8, as stated by the proposition.

? =‘Q’ U R” U S”. Thus the stable states in 2 are all the states in Q’ and all the accepting states
of both types in Q”.

The set E of entry conditions is defined as follows: For each QEQ,

F(q’) = F(q”) = e (q) .

The set C of transition conditions is defined by the following cases: For each ql,qzEQ,

c(ql,q2) ifql 4 R
+&‘,q;) = T if q1 = q2 E R

F otherwise

z(q;,q;) = F .

Thus, transitions within Q’. or from Q’ to Q”, have conditions identical to the corresponding transitions
in A. The same holds for all transitions within Q” that do not depart from R”-states. ,411 the R/‘-states
are trap states, in the sense that once a run reaches such a state, it remains there forever. No transitions
are allowed from Q” back to Q’.

We claim that a computation is rejected by A iff it is rejected by ?i. This will esta.blish that A and
li are equivalent.

WC will show ouly rlicx casts of iufinite computations. A.isunie that a comp1~tation 0 is rejec*tetl 1~;
A. This nl(‘i111s tllnt there cskrs a rejecting computa.t.ion I* which, from a cc>rtain point on (~a\- after
stc>]> k 2 0). llCIvc’l’ visits ill1 R.-.\t;lt(, and visits infinitely- many times a non-s-state. \Ve f’illl con5trIlct a
run r’ of A that siunllatcs t’ in the first copy Q’ up to step k, where it switches t,o Q” and contin~~es the
simulation there>. It is CY\SJ- to see that I: visits infinitely many non-S”-states and does not get traljped
in an R”-state. Coilseqlic’iit.ly. F is il rejecting run of A, causing A to reject 0.

Similarly. gi*en a rejecting r11n F of 2, it is easy to simulate it by a run 1‘ of A. that moves to
q1 whenever ? iim~-es to q: or to q:‘. Since a rejecting run of ?i must eventually move to Q”. it. will
visit infinitely many non-S”-stat.es and only finitely many R’- and R”-states. Consequently I* is also
rejecting. A

The automaton presented in Esample 3 is an improved version of the genera.1 construction. Literally
applying the const.ruct,ion, described in the proof, to the automaton of Example 2 yielcls the following
equivalent autoinaton:

Following the syntax of State&arts [Hal], we introduce two additional conventions t.hnt lead to more
compact and structured representation of diagrams. We introduce the notion of super-states represented
as boxes containing other states. -4s a general rule we interpret any construct associated with a super-
state to be associat.ed with every contained state. The two applications of this general rule are:

l An edge connecting super-states f to Q^’ is equivalent to a set of edges connecting each q E c t,o
L each q’ E T’.

l An assertion ~7, labeling
contained state Q E c.

a super-state should be added as a conjunct to the label of each

Example 4: Consider the following diagram representation of the temporal propert!

0 !J II v c] 0 I’.

11

i.e., (I hc~lcls continrrously from :I certain lx& on or 1’ holds infinitely many times:

FVe show that this deterministic automaton accepts a computation iff it has the required property.

Obviously a run r over a computation 0 is accepting iff either T visits ~0 infinitely many times or it
is restricted to qr from a certain point on. The first case is possible iff infinitely many program states in
0 satisfy V. The second case is possible iff all program states in u beyond a certain point satisfy 11 A 1~.
That is, r is accepting iff a satisfies the given property.

This structured representation is equivalent to the following flat representation (not using any of
the structured conventions):

A t/-automaton is called complete if the following requirements are met:

(4 (v e(d) = T.QEQ
(14 For every q E Q, (V c(q,q’)) s T .

q’EQ

12

These two requirements guarantee thn t a 11 runs are complete. since any partial run over (IT can allVil~S
be extended to the full length of (T. Clearly, a (.omplete automaton is valid over a program P iff it is
weakly valid over P.

In man\- cases, we will restrict ourselves to complete automata. This is not a real restriction since
automa ton A can be transformed to an equivalent complete alrtomaton A’.

To see this, consider an incomplete automat.on A. To construct A’, we a.dd to Q. the set. of states
of A, an additional error state qE, which is not included in either R’ or S’. Thus, we define

&’ = &u (qE}

R’ = R, S’ = S

For every q. FE &, we define e’(q) = c(q) and c’(q. rT) = c(q, Zfj.

In addition, we define the entry condition for QE by

and the transition conditions by

c’(QE,qE) = 7’7

c’(qE,q) = F for each q E &.

c’(q,qd = -(V c(q.q’)) f o r e a c h q E Q.
9’EQ

Thus, an incomplete run that has nowhere else to go can proceed to QE, but then must reject.

Example 5 (Resource Manager):

-4s a more extensive example consider a system consisting of a reso’lbrce manager ?II and two cus-
tomers, Ci and C2.

The customers communicate with the mana.ger by shared boolean variables rI and g,, i = 1.2. The
protocol of communication between the mana.ger and customer Ci can be expressed by the followingL
cycle:

fi := T - Ci sets Ti to T, signaling a request for the resource.

gi := T - kf sets 9; to T, signaling Ci that the resource is granted.

rl := F - c, resets r, to F, signaling a release of the resource.

9i := F - bf resets g, to F. acknowledging the release.

Cutler the assumption that there is only ouc resc)urc*c, it is requiretl tllilt tllC I‘esolI~cc is nevel
granted to more than one c*ll\tc)uler at a time.

&-e present a specificatioll of this s\->tem by a 5et of automata. The system 5atisfks the spf4ficatiorl
if each of its computations is accepted lx every automaton in the set,.

The first automaton sl)ecifies that the communicat,ion between the manager i\lltl the cllst.omer c’,
(for i = 1.3) preciselv follows the protocol described above.I

.

Foote that this automaton is incomplete. Consequently, whenever the automakon observes a program
state satisfying gz, lrI, ‘gi or r,, while being at the automaton state qo, ~1. qz or 43, respectively, it
generates an incomplete run. Such a computation is therefore rejected. In addition to the safet#y require-
ment, that the four events of setting and resetting the communication variables follow the periodical
sequence described above, this automaton also contains a liveness requirement. by which the state ~0
should be visited infinitely many times. This implies that the computation cannot. sta.y forever in any
of 9, 42, ~13, a.nd forces the eventual occurrence of the next event in the protocol.

The other automaton specifies the integrity of the resource, expressed by the requirement that it is
alwa.ys granted to at most one customer.

Note that in addition to the safety property 0 -(gl A gz), this automaton specifies the liveness
property that no C, holds the resource forever.

For comparison, let us consider the temporal specification of the l)rc)per’ty expressed by the first

13

(ll’, A T!/,) /I

q ☯(�Y☺ + (7gl)q 7gt A �i,] A
0 ☯I�, -+ (I�/ 1 24 (r, A g, ,] A
q ☯g, -+ (Yt) ZA (91 A T)] A
q ☯(-?A --t (-7-,)tl(vi A -gz)]*

where U is t.he lL7ble,s.s operator (also called u~nlc ,untiZ). whose relation to the until operator ti is given
by:

cLLl3 = (00 v cd//!?).

14-e consider
lucid and concise

this to be one of the examples where specification by automata appears to be more
t.han the equivalent temporal specification.

6. VERIFICATION

Let P be a program and A a complete V-automaton defining a temporal property. We would like to
verify that A is valid over P, i.e., all computations of P are accepted by A and hence satisfy the temporal
property. This requires showing, for each run T over every computation 0 of P, that

- 172f(7+-3 # 0 or Inf (r) G S.

T;5;e introduce a single proof rule by which the validity of complete automata over programs can be
established.

In the proof rule we use the notion of well-founded relations. -4 binary relation (IV, 4) is called
well-founded if there does not exist an infinite descending sequence of elements UJ, of W, that is,

For a transition t E T, associated with the enabling condition pt and the transformation ct := zt,
assertions 9, $, we write

to denote the verification condition

(p A pt) 4 II,[&/G].

The formula II,[F t zlt is obtained from do by substituting the expressions et for all the (free) occur-/-]
. rences of the variables Et. It obviously holds over a st at,e s iff (!I l~olcls over the state s’ obtained by

applying the transformation ?it := Zt to s. The validity of this verification condition implies that every
t-successor of a v-state satisfies $. We write

i(1) JJ w>
>t {J,} holds for all transitions t E T in P.to denote t1la.t (9

V-rule (Validity of A over P)

To show that, a complete automaton A accepts all computations of a program P that 1~s an
empty set of fairness reqllirenients:

(I) Associate with each automaton state Q E Q an assertion Qq, called the inwl,Tiant at (1. s;llch
that the following requirements are satisfied:

(11) Initiality

[O A e(q)] ----t cxq for each q E Q.

(12) Consecution

{c.tq} P {c(q,q’) + aq!} for each q,q’ E Q.

(13) Termination

% --) (Vpr) for each q E B.
tET

(R) Find a well-founded relation (TV, 4). Associate with each automaton state q E Q, a
(partial) ranking function pq : S -+ W, mapping program states into elements of 14’. such
that the following requirements are satisfied:

(Rl) Definedness

aq --t (pp. E TV) for each q E Q.

* (R2) Non-increase

(9 A (pq = w)} P {c(q,q’) + (pqJ i w)} for each q E Q, q’ E S.

(R3) Decrease

hl A (Pq = 41 P {c(q,q’) -+ (pql + w)} for each q E Q, q’ E B.

The intended meaning of the invariants CY~ is that in any run T over a computation 6, whenever 1’
visits the automaton state q in response to reading the program state s, then Y I= Qq.

The intended meaning of the ranking functions pq is that they measure the “distance” either to
the next R-state or to the stability point of a run T over a computation 0. The stability point of an
accepting run r, if it is defined, is the point beyond which r visits only S-states.

Premise (11) ensures that if, in response to seeing the initial program state 90, the automaton
chooses to start a run at the automaton state q E Q, then (Ye holds at so.

Premise (12) ensures that if the run r has already progressed up to the automaton state 4, and,
seeing the next program state s’. the automaton has chosen to proceed to the automaton state q’ (which
is possible only if s’ satisfies c(q, q’)), t’hen aql holds at s’.

Together, (11) and (12) guarantee thak any run r over a computation o that enters q on seeing s, is
such that s I= cyq.

Premise (13) ensures t.liat uo finite run over a computation 0 can terminat,e in a non i~Cccl)tiIlg state.
This is done by requiring that if the automa ton enters DEB on reading .‘;. and hence .G I= ng, tllerl .$
cannot be the 1Hst state in (7.

Premise (Rl) requires t,ha t the
the ranking fuiictiun p4 is defined.

invariant associated with the aut~omaton stat)c q, implies that

Premise (R3) requires tha.t if the automaton can move from the state ‘1 to the stable state q’ E S
in response to the progress of the computation from Y (at 4) to s’ (at (I’), and s satisfies oq, then
P,+‘) 5 P,(S). ~‘1 ris shows that in any stable automaton-transition the ram; does not increase.

Premise (R3) is similar to (R2). However, it considers a bud automaton transition, i.e., from the
sta.te Q into a bad st.ate Q’EB. It requires that such a transition causes a strict decrease in the rank, i.e..
PqW + P&S)*

Note that on performing a ret urrent automaton transition, i.e., Q --t (!’ where q’ E R, the rank is
allowed to change arbitrudy.

Soundness

It is easy to argue that if we succeed in finding invariants oq, a well-folrnded relation (WY, +), and
ranking functions ps, such that all the premises are satisfied, then this establishes the validit,y of A over
P.

Assume that all the premises are satisfied. Consider a computation

0: sfj- s1, s2. . . .

and a run r over it.

r : Qo* 41, 42,

We show that r is accepting for A.

If r is finite then, by (13), its last automaton state must be in R U S and hence r is accepting.

If r is infinite, consider the sequence of ranks generated by applying Pi, to st, i = 0,l. . . . ,

1, : P&d7 P&l), P&2), * - - *

The premises (11) and (12) ensure that si l= oq, for each i = O,l, The premise (Rl) then
implies that all the expressions in k are defined and yield values taken from II-.

We consider now two cases. If r contains infinitely many occurrences of R-states, it is obviously
accepting. Otherwise, there is a position j such that for all m 2 j, q,.,, E B u 5’.

* Combining (R2) and
non-increasing sequence:

w together, we obtain that the sequence k, from position j on, forms a

In addition,
Pqm+l bm+l).

(R3) ensures that for each Q m+iEB there is a strict decrease in rank, i.e., p9,(sm) F
It follows that r can contain only finitely many occurrences of B-states, because otherwise

17

:t n-oulcl ha\-cl contained an infiuitel\- tlecreasill. g subseq~ience of c~l(xic~nt5 of I\-. which is iml)c)ssiblc clue
to the \~c~ll-fo~uldetlIless of (‘I$-. +). Hence all states that appear iufinit(‘l!. inany times in T nre from S.
i\ll(1 1% i, ;t(.c.(‘l>ting also in this case.

17-t> couclude that t,he V-rule is sound.

For siulplicity, and with no loss of generality, we presented the rule for the restricted case of cornplebe
‘alltomata. When we consider arbitrary V-automata, the following can bc observed:

In an\- case, the premises of the V-rule ensure that a.11 complete runs over computations of P are
accepting. Thus, for an arbitrary automaton, the V-rule establishes we& validity.

To establish validity of an arbitrary V-automaton over the program P we add another premise:

(14) P- Completeness

bd P { V c(q, g’)} for each g E Q.
9’ EQ

Thus. while the automaton A may be incomplete. premise (14) ensures that it is complete over all
program states that can be generated by the program P, and hence guarantees that A has no incomplete
runs over computations of P.

7. EXAMPLE

As an example of the use of the V-rule, consider the following program PI:

initially .T = 0, y = 1

loop forever do
when x = 0 do y := y + 1

or
when x = 0 do .ZT := 1

or
when x = 1 do y := y - 1

The property of this program that we wish to verify can be expressed by the formula

cl(.r = 0) v O(y = 0).

It states that in any computation, either continuously .r = 0 or eventually y = 0.

This automaton switches to q2 and accepts (since q2 is a trap R-state) as soon as it detects a
program state in which y = 0. This covers the disjunct O(y = 0). If however, no such occurrence is
detected. the automa.ton stays forever in qo or ql. In this case, the automaton moves to (11 and rejects.
as soon as it detects an ,r # 0. Otherwise, i.e., if continuously y # 0 but also I = 0, the automaton stays
*jt qo and accepts, due to stability. This covers the disjunct q (z = 0) of the temporal formula.

To apply the V-rule we choose as follows:

l Invariants. We associate the assertions 00, or, ox with the automaton states qo, qi , 42, re-
_ spectively. They are given by:

a0 : (r = 0) A (Y > OL

f-21 : (x = 1) A (Y > 01,

cr2 : T.

l Well-founded relation. We use the set of ordinals w + 1, that is, all the natural numbers
(including 0) plus the ordina.1 d (the first infinite ordinal). An isomorphic domain can be
represented by the set of pairs { (1,O)) U { (0, m)lO i. 772) ordered lexicographically, i.e..

(0,nz) 4 (1,O) for any n2 2 0,

(0,772) 4 (0,772’) iff 777 < 777’.

l Ranking functions. We associate the ranking functions po,pl,p2 with the automaton stat,es
qo, ~1, q2, respectively. They a.re given by:

po=w, p1=y, p2=0*

To provide a graphical representation of the selected elements, we show an annotated version of
the automaton. In this version. the invariant crC, (enclosed within braces) and the ranking function
(appearing in the form ps = c for some expression e) annotate the node q. Consistently wit,11 our
previous conventions, any assertion annotating a super-state is interpreted as an additional conjunct in

19

Let us consider the different premises of the v-rule under this choice.

(11) Here we have t,o verify

[O A c(q)] -+ oq for each g E Q

Jn the present case 0 : (.r = 0) A (y = 1). Therefore we have to verify the following:

(0) [[(~=o)w=l)] A [(.z'=O)A(y#O)]] + [(x=0) A (y>O)],

tl) [[b = 0) A (Y = 111 A [<.r # 0) A Cy # O)]] --+ [(x = 1) A (y > O)],

(2) [[(x = 0) A (I/ = l)] A (y = O,] + T.

All these formulas are obviously valid.

(12) Here we have to serif\-, for each (I, (I’ E Q, the validity of the requirement

For each program t.ransition t, we can identify its enabling condition pt and the values it reassigns
to the variables .x and y, which we denote by J“ and y’, respectively. The following table summarizes
these elements for the three transitions of the program PI:

transition t Pt X’ Y’
fl 5= 0 X Y+l
t2 x=0 1 Y
t3 x=1 X y - l

We observe that for all of these transitions y’ 2 y - 1.

Let us denote by c”(Q, (I’) and crb, the expressions for c(q, y’) and oqt in which we substitute x’
and y’ for .c and y, respectively.

20

Therefore we have to show that for each transition to{ tl . t2, t:j}, the following formula is b*alid:

[og A lb A c’(q, q’ ,] + a;, .

\Ve show this by considering all automaton transitions (I + (I’, that is, all l>airs Q, q’ E Q for
\vhich C(Q, q’) is different from F.

qo + qo : [(zr = 0) A (y > 0) A pt A (cr' = 0) A (y' #O)] ---) [(.T' = 0) A (y' > O)].

The first conjunct of the consequent obviously holds. In view of y’ > y - 1, y > 0 implies
11’ > 0. Together with y’ # 0 this yields y’ > 0, establishing the second conjunct.

cl0 + Ql : [k’ = 0) A (y > 0) A pt A (x # 0) A (y' # O)] + [(x' = 1) A (y' > O)].

The only program transition t allowing x = 0 and x’ # 0 is t2 which lea.ds to x’ = 1. The
second conjunct y’ > 0 is established as before.

41 + (11 : [(x = 1) A (y > 0) A pt A (y' # 0)] + [(x' = 1) A (y' > O)].

The possible values of x’ are .r’ = x = 1 or x’ = 1. Consequently, in both cases x’ = 1. The
conjunct y’ > 0 is established as before.

!? + (?2 for Q E ho, !Wl2} : [CQ A pt A c’(q,q2)] + T.

These formulas are trivially valid.

(13) Here we have to verify, for each Q E B, the validity of the formula

Qq ---) (v >Pt ’
tET

The only bad state in this automaton is ~1, and the disjunction of the enabling conditions for al
t*hree program transitions is (x = 0) V (x = 1). The resulting formula is

. [(x = 1) A (y > 0)] + [(x = 0) V (.r = l)],

which is trivially valid.

(Rl) Here we have to verify, for each q E Q, the validity of

% --+ (h&q.
The only g E Q for which p* is not a constant from W is Q]. For ql, we show that

[(x = 1) A (y > 0)] --+ (u > 0).

which obviously holds.L

(R2) Here we have to verify, for each QEQ and Q'ES, the validity of the formula

This amounts to showing, for each program-transition t,

21

Since S = (~0). there is onl!- one relc\-ant i\ut()ll~atoll transition to be considered.

‘10 + qo : [(.r = 0) A (y > 0) A pt A (J’ = 0) A (y’ # o)] + (d 5 d).

which is obviously valid.

(R.3) Here we have t.o verify, for each q E Q and q’ E B. the validity of the requirement:

1% A h7 = z(g) PI {c(q,q’) + (pqt 4 ,lJ,}.

which is equivalent to showing the validity of:

[ap A p t A c’(q, q’)] --+ (& + pg) for every t E 2’.

The only state (I’ E B is ql. We therefore consider:

cl0 + q1 : [(x = 0) A (y > 0) A pt A (L’ # 0) A (y’ # O)] + (y’ < w).

This is valid since y’ is a finite integer, which is always smaller than w.

Ql --) Ql : [(x = 1) A (y > 0) A pt A (y’ #O)] --t ty’ < y).

The only program transition enabled under x = 1 is t3, for which y’ = y - 1 < y.

Temporal Proof

For comparison, let us consider the proof of the same property using a temporal proof system similar
to the one presented in [MP2]. Such proof systems are usually based on three basic rules.

The first rule states that any temporal formula 9 implied by the initial condition 0 is valicl over all
computations of P. This rule can be stated as

INIT rule

The second rule establishes safety properties expressible by a formula of the form /-J(cr --+ N Lc ti)
for assertions 0, j?.

INV rule
{a} P {cl! v i3}

cl@ --f Qfi,3)

The third rule is somewhat more involved, and uses well-founded induction to establish conditional
liveness properties expressible by a formula of the form q (CI t 0 /3) for assertions 0, /3. We will refer
to this rule as the PROGRESS rule.

The property we wish to verify for the program PI is given by the formula

0(x = 0) v O(y = 0).

This formula is ucither a safet!- formlrla nor a liveness formula. Hence no single rule can 1~ used tc)
establish it. and some combination of the rules is called for.

Intleetl, the major steps in the verification of this formula are the following:

Step 1: \;esify

0 [[Lt. = 0) A ty > O)] + [(x = 0) A (y > o,] L1 [(cr = 1) A (y > o,]].

This can be established by the INV rule, checking that the premise

{(.I- = 0) A (y > 0)) PI { ((.r = 0) v (1. = 1)) A (Y > 0,)

holds. This is equivalent to showing, for all transitions tE{tl , t2, ts}, the validity of the formula

[(.L’ = 0) A (y > 0) A pl] + [((d = 0) V (d = 1)) A (y’ > O,].

By the precondition r = 0 it is clear that only tl and t2 are enabled:

l For tr, we ha.ve .T’ = .T = 0. y’ = y + 1 > 0.

l For t2, we have r’ = 1, y’ = y > 0.

Step 2: k7esify

q ☯☯c .r = 1) A tY > 01 1 --+ O(Y = o,] -
* This is established by the PROGRESS rule using the ordering over the natural numbers as the well-

founded relation. The ranking function used is p : y. Since, under :P = 1, t,he only enabled transition is
ts, it is clear that each step of the program strictly decreases p.

step 3: Use temporal reasoning on the results of the two preceding steps to establish that

[(x = 0) A (y = l)] + [O(s = 0) v O(y = O)].

Now apply the INIT rule, using the fact that 0 is (x = 0) A (y = 1) for the program PI. and obtain

q p = 0) v O(y = 0).

Even though the temporal-logic proof presented above is obviously more concise than t,he automaton
proof, it calls for more creativity and heuristic planning than the automaton proof. This planning involves
the decomposition of the proof into three steps and deciding which rules (including temporal reasoning)
to use in each of the steps. After making these decisions, the subsequent efforts are devoted to the
construction of appropriate invaria.nts and ranking functions. Obviously, the invariants and the ranking

. functions used in the two proof methods are closely related.

In contrast, the automaton proof is almost mechanical, in the sense that n-e did not have to de-
compose the proof into steps, and could proceed directly to the construction of invariants and ranking
functions.

The price we paid for this uniformity is that more verification conditions had to be checked than
in the case of the temporal logic proof. This can be esplained by the fact that the decomposition of the
proof into separate steps is equivalent to a decomposition of the automaton into several sub-automata.

23

Step 1 only considered the srib-automaton consisting of the automaton t,ransitions qo + (10 and qo + (11.
Since Step 1 was identified as a. safety property. no ranking functions were required for its proof. Step 2
only considered the sulk-a.utoma.toll consisting of the automaton t,ransitions q1 -+ qi and ‘1, --f y...

8. SAFETY AUTOMATA AND THEIR VERIFICATION

In our zeal for obtaining a single and uniform verification rule, we have lumped into the V-rule
premises (Il)-(13) which deal only with invariants (the safety part), and premises (Rl)-(R3) which deal
with the ranking functions that establish the liveness part.

There are cases in which we may want to deal separately with the two parts.

We define a -9ufety automaton (see also [AS]) to b e an automaton with the following restrictions:

(1) n=0.
(2) Each bnd state q, i.e., q E B = Q - S, is a trap state, that is:

c(q,qi = T,

c(q. q’) = F for all q’ # q.

This definition corresponds to the intuition that a safety property is such that its violation can be
recognized over a finite prefix of the computation, and once it is recognized it cannot be remedied. Thus
a run is accepted by such an automaton iff it does not visit a bad state even once.

Example

Consider the program P;! for mutual exclusion ([PI) p resented by the following transition diagram:

initially (y1 = F) A (yz = F) A (t = T)

VI : = T
.

Y1 :=F t :=T

II

y2 := F t := F

Its main safety property is that of mutual esxlusion, claiming that l(8s A m3) is continuously true.
We use locations as state predicates. For example, the assertion C3 asserts that currently the program

24

is at loca.t,ion es. This sa.fety property is specified by the autonmton Al below.

This automaton has two states, the good state qo associated with the condition ~(4’3 A m3), a.ncl the
bad state ql, to which we switch on detection of a program state satisfying 6 A m3. Once we are in q1
we can never get out. J

It is easier to verify the validity of a safety automaton over a program than that of a general
automaton.

S-rule (Validity of a complete safet,y automaton)

Find for each state q E Q an assertion aq, such that:

(11) Initiality - as before

(12) Consecution - as before

(13’) Impossibility

O!7 = F for each q E B.

Note that (13’) implies (13), bu a so ensures that no run over a computation of the program cant 1
visit a bad state.

Returning to the example of the mutual exclusion algorithm, we can pick

Qo : (!A = &..3) A (yz z rn~..~) A

Eto,, v m0,l v (&,3 A m2 A -t> V (e2 A m2,3 A t,] 7

al : F.

c In the assertion a0 we used, among others, the abbreviations

e0,1 = -to v k’, and h.3 = e1 v e2 v es.

To check that this choice, which obviously satisfies (13’), also satisfies (11) and (12), we consider
each premise in turn. Both of them can be simplified, due to the fact that cul = F. Thus, it only remains
to check:

(Il) 0 -+ a0 , 0 -+ -(es A ma).

2.5

This is ol)violis due to the fact tha.t

and t.0 the implications Co + 743, etc.

(1’1) This premise requires to verify the following three clauses:

(21) (00) p, {T ---) 00)

(1)) (~0) pz ((43 A m3) -+ F}
(c) { F } 9 { T -+ F } .

Clause (a) can be simplified to

{flo) p2 {flu>,

which claims that cyo is preserved over all transitions. This has to be checked for each transition
separately, and is the major part of the verification effort.

Clause (1,) simplifies to

{m) p2 c-93 A 7723)),

which, due to the fact that QO implies -(!!a A ma), follows from clause (a).

Clause (c) is trivially valid since it has the precondition F.

Similarly to the general case, to extend the S-rule to possibly incomplete automata, we require the
additional premise (14).

SIMULATION BETWEEN AUTOMATA

We observe that for any automaton A, there is a set of invariants to which we refer as the native
invariants. and which automatically satisfy the premises (11) and (12). These are the invariants defined
bY

-vq = e(cl) V (V c(d,d).
q’EQ

It is trivial to check that the native invariants S, satisfy (11) and (12). In some cases they also
satisfy (13) and it is possible to choose ranking functions p, that together with the A*,,‘s, also satisfy
(Rl)-(R3).

This, unfort,unately, has not been the case with the automaton
the example of Section 7. The native invariants for this automaton

Ar considered for the program PI in
are given by

.
YIJ : (.r = 0) A (y # 0)

Xott>. for example. th:lt even thougll two of the t,dges rntc‘ring ~12 are labeled by y = 0, the thir(l
edge. corrcspondin~ to c(~2, qz), is lal,elcd bl- T. which nlakeh -\; = T.

It is easy to set that the invariants i~0-:~2 do not satisfy (13). nor do they support the premises (Rl) -
(R.3) with the ranking functions we wish to use. Consequently. we could not use t,he native invariants
for I)roving the validity of A 1 over the program PI. and had to come up with stronger assertions 00 - c\p.

On the other hand, let us consider the automaton A’, presented below.

This automaton is obtained from A 1 by deleting the original labels from the edges and the nodes
and labeling each node q: by the assertion cr,. By our encapsulation conventions, we factored out the

- conjunct, y > 0 from ~0 and ~1 and used it to label the super-state containing both ~0 and ql. What is
the relation bet.ween the automata A1 and Ai’! First, we observe that the two automata are structurally
similar. This means that there is a one-to-one correspondence between the states of A1 and the states of
A’,. which respects membership in the acceptance sets R and S. Thus, for i = 0,1,2, qi E R iff qi E R’,
and ‘1, E S iff q: E S’.

Secondly, we can show that any run r of A 1 over a PI-computation c corresponds to a run r’ of A ‘1
over 0, such that r visits qj at step i iff T’ visits q> at that step. This is an immediate consequence of the
fact that og - ~22 satisfy the premises (Il), (12) and hence, whenever we visit qj, aI is known to hold.

We describe the relation, holding between A 1 and A’, , by saying that A’, simulates Al, relative to
PI. A precise and more general definition of this relation will be presented later.

Obviously if A ‘1 simulates A 1, and A’, is valid over the program PI, then so is Al. This is because
any run r of A 1 induces a run T’ of Ai, which passes through R-states or S-states exactly at the same
steps that I* does. Since A’, is valid, T’ is accepted, and therefore, so is r.

A similar conclusion holds for weak validity. Thus, if A 1 and A’, are not necessarily complete. ff ‘1
simulates A 1, and A’, is weakly valid over P, then also A1 is weakly valid over P . This shows that if A1
(but not necessarily A ‘1) is complete, and A ‘1, simula.ting A 1, is weakly valid over P, then A1 is valid over
P. This is because for a complete automaton validity and weak validity coincide.

The graphical representation of the automaton A’, has a special form, which we call a. TLode-labeled
automaton. This means that only nodes are labeled 1)~ assertions. but never any edges. In terms of

27

our original (non-graphical) definition of an autolllatm. a node-labeled automaton has an assertion gq
associated with each state (I. such that

l For evesy q E Q. e(q) is eithcar F or pg.

l For every Q. Q’ E Q, c(q, q’) is either F or pqt.

It can be shown that every automaton is equivalent to a node-labeled automaton. For example, the
following automaton is the node-la.beled equivalent of A 1:

For node-labeled automata, it is very easy to compute the native invaria.nts. They are simply given
by Jq = pg. Thus, for the automaton A ‘1, the native invariants are given by

s; = a0 = (s = 0) A (y > 0).

*v =1 Ul = (x = 1) A (y > O),

,lr’ = a2 = T.2

It is now easy to show that the native invariants of A’, satisfy (13), and together with the ranking
functions pi, as chosen above, satisfy (Rl)-(R3).

We may therefore describe the verification process of A over P as being a two-stage process. The
first stage consists of finding inva.riants crq that satisfy the premises (11) and (12). This stage ca.n be
described as finding an automaton A’ which simulates the original automaton A, relative to P, such that
the native invariants of A’ are the op’s.

The second stage consists of finding ranking functions p* that, together with the invariants cyq,
satisfy (13) and (Rl)-(R3). This stage can be described as showing that ps, together with the na.tive
invariants of A’, -Vi. satisfy (13) and (Rl)-(R3).

The extension from A to A ‘, considered above, only involved strengthening the entry a.nd transition
conditions. It is useful to consider more general extensions, in which single states of A are refined into
sets of states in A’. The general definition is given by:

Let A’ = (Q’, R’, S’, E’, C’) and A = (Q, R, S, E, C) be two V-automata and P a program. We say
that A’ simulates A relative to P, if there exists a function f : Q’ -+ Q such that:

0 q’ E R’, S’ * f(q’) E R, S, respectively.

28

l For any run 1’ of A over a computation of P, there exists a run r’ of A’ over the same computation
such that r = j’(1”).

In this definition, if r*’ = Q;, Q:. then f(r’) = .f(qh), f(qi). For a mapping f : Q’ -+ Q as above,
we denote:

f-‘(4 = {d E Q’ I !-Ccl’) = Y>.

Our previous observation also extends to this general definition: Obviously, if A’ simulates A. and
A’ is valid over P, then so is A.

The following proof rule provides a method for proving that A’ simulates A, relative to P.

E-rule (A’ simulates A, relative to P)

To show that A’ simulates A, relative to P:

Find a. mapping f : Q’ ---f Q, such that

4’ E R’, S’ W f(q’) E R, S, respectively.

Then, verify the following requirements:

(El) For each Q E Q.

10 A e(q)] + (v 44’)).
q’Ef-‘(q)

UW For each ql, 42 E Q and qi E f%d,
{q} P {+w2*) + (v c%?Ld,)).

Q;Ef-‘(ql)

where Ni; is the native invariant of A’ at c&.

The purpose of the two premises is to ensure that each step in a run I* of A over u, a computation
of P, can be emulated by A ‘.

Premise (El) ensures that if QEQ is the first automaton state in r, corresponding to the first program
state so in a, then a corresponding initial state q’~f-r(q) can be found in A’.

Premise (E2) ensures that if the run r of A has proceeded up to the automaton state ~1, while the
simulating run r’ of A’ has proceeded up to qi~f-‘(ql), then the next step of A can also be simulated
by A’. If the next step of A is from ~1 to 42 in response to the program state s, which must therefore

L satisfy c(ql, 42), then the premise guarantees some ~&~f-l(qz) such that s I= c’(qi, qi).

The definition of simulation is a global concept, requiring the existence of a simulating run r’ for
each original run f. The E-rule translates this into a Iocal property, requiring that it will always be
possible to extend a finite segment of a simulating run one step further.

Example

Let us reconsider the safety property expressed by the automaton Aj, and stating that mutual

cscllisioii is niaintained for the program P2. Since this is a safety alltomaton. its valitlarion require
finding iiivariaiit.s that satisfy (11). (1’3). and also (13’).

Followin:! the discushim above. \ve suggcbht the automaton Al presented lwlow.

/YI = e1.3, y2 = ml..3

To identify the function f mapping the states of A; onto states of AZ, we use the naming convention. by
which the names of states in A i are of the form ;.j, such that f(q:,,) = qi. In the special case that there
is only one state in AL corresponding to q, in A 2, we lise the simpler name q:.

We claim that Ai simulates AZ. This case illustrates the more general situation, that the mapping
between Q’ and Q is not one-to-one. The native invariants of this automaton are:

N& : (Yl - h.3) A (y2 - n?l..3) A C?,YI A In2 A (-d)

It is trivial to see that (the incomplete automaton) A; is weakly valid over P2, since no run of it, can
L

ever move to qi, whose entry condition is F. Thus, the main verification effort is to show that Ai indeed
simulates AZ. This requires showing:

which are obvious, and

In principle we also have to show that

f-%.1> p2 ((e3 A ms) + F}. fori=l, 4 , and w p2 iFI

But this follows from the four clauses above, since each NL.) implies ~(e3 A ~3).

We claim that these four clauses are easier to understand than the single verification condition

where ~0, is the invariant we used before to verify A?, and is equivalent, to N{,r V NL,2 V jl’s,,, V -WA,4.

The reason is that the four sub-assertions partition the state space covered by ~0, in a way that makes
it easier to follow each transition in the program and convince ourselves that, indeed, it can only lead
from one lVA,] to another. as shown in the dia.gram.

A Liveness Property

-The second property of this program is a liveness property, specified by At below. This automaton
_ states that whenever process P? is at E2, it will eventually get to (3, that is, q ((2 + 0 Cs):

A symmetric property holds for the process P2.

We present in the next page an automaton AL simulating the automaton As. We annotate the states
by their common entry and transition conditions which are also identical to their native invariants. and
by their ranking functions.

L It is not difficult to see that the simulating automata, presented by Ai and Ai above, are very similar
to the proof diagrams recommended in [OL] and [MP2] for concise presentation of the main elements in
the proof of a temporal property. This provides a common framework for both specification automata
and proof diagrams.

d.1 : m20~‘l.1 = 6

32

10. EXPRESSIBILITY

In this short section we show that the specification power of Vautomata is identical to that of the
logic ETL, which is an extended version of t,emporal logic, stiitlied by Wolper in [WI.

For this proof we need the notion of a Biichi automaton. A B&hi automaton B is an automaton
as defined in this paper with the restriction that S=0. -4 Biichi automaton B accepts a compirtation

. u if there exists at least one run of B over o that is accepting. Thus, while a V-automaton acccpt,s
a computation 0 if nil runs over LT are accepting, a Biichi automaton accepts CT if some run over o is
acceptming.

V-automata, in particular those with R=0, are dual to Biichi automata. To explain the dualit>
relation, we call a V-automaton A=(Q,0, S.E, Cr) and n Biichi automaton B=(Q. R,(b,E,C’) dual. if
R=Q - S. We denote this fact by writing B = A, or A = 8. Dual automata are related by the follolving
proposition.

Proposition: A accepts a computation u iff B rejects 0

Proof: To prove the proposition, we observe that for a given (7, 7‘ is
run of B over CT. Let rzl~7(0) be the set of all runs common to A and B

a run of
over O.

A over u iff it is also a

With the above not,ations, we can establish the following list of equivalences:

A accepts u H Vr E run(u) : 1f(?*) C S

e Vr E run(u) : Inf(r) II R = 0

w ~3r E r.,(u) : I&r) n R # 0

e B rejects u. 4

We now use the results of [WI, stating that Biichi automata have the same expressive power as
ETL. to show:

Proposition: V-automata have the same expressive power as ETL.

Proof: Let 9 be an ETL-formula. Clearly, also 79 is an ETL-formula. according to [WI, there esists
L a Biichi automaton B(lcp) expressing the same property, i.e., accepting all computations that satisfy

19. and rejecting all computations that satisfy 9. Let A = g(-9). Then A accepts precisely all the
computations that B(y) rejects, namely, all the computations that satisfy q.

To show the other direction, denote by p(B) the ETL-formula (whose existence is ensured by [WI)
expressing the same property as B. Then for the V-automaton A = B, the ETL-formula ~q(A) specifies
precisely the same property as A. ~

33

I 11. COMPLETENESS

In this section we sketch a proof of c*ompleteness of the v-rule for proving the validity of a conll)lete
automaton A over a program P. W-e consider only the case that P has no fairness requiremerns. The
general case will be discussed in the nest section that dea.ls with fairness. \Ve also assume that the
considered automaton A has an empty R.

.
The claim of completeness of the v-rule can be expressed by the following t,heorem.

. Theorem: If A is valid over P, then there esist a well-founded set (IV, -x), invariants og, and
ranking functions pq, expressible in the language L, that satisfy the premises of the \.-rule.

We split the discussion into two parts. In the first part, called semantic completeness. we only show
the existence of (IV, +), og, and ps that satisfy the premises of the V-rule. In the second part. called
syntactic compZetene>s, we consider the question of expressing oq and pq in the language L.

(A) Semantic Completeness

Let A be a complete automaton that is valid over P. We define a computation segment of the
program P to be a finite sequence of program states, that satisfies requirements (1) and (2) in the
definition of computations, but is not necessarily maximal. A run T over a computation segment r7 is
defined exactly in the same way as a run over a computation.

Invariants

We give a verbal definition for the invariant og for each Q E Q:

s I= o!q ++ There exists a computation segment, whose last program state is .>, and
a corresponding run, whose last automaton state is q.

Thus, s satisfies og iff there exists a computation segment of the form u * s, and a corresponding run of
the form r * q, for some sequences cr and r.

In this definition we use * to denote concatenation of an element to a sequence. The sequences u
and r, can also be A (the empty sequence).

We show that these invariants satisfy the premises (Il)-(13) of the v-rule.

.

l To show (Il), let q E Q be an automaton state and SCC be a program state such that s I= OAe(q).
We claim that, in this case, A * Y is a computation-segment,, and A * q is a run over it. Hence,
by the definition of og, s t= erg. It follows that 0 A e(q) implies aq,

l To show (E), let s k cllg and s’ = t(s) for some transition t E T of P. We have to show that
s’ t= wL!l’) + &q’). Assume that s’ k c(q, q’). By the definition of LL~, J k oq implies the

L
existence of a computation segment u * s and a run r * q over it. Since s’ = t(s), u’ = u * s * 8’
is a computation segment of P, and since s’ I= c(q, q’), r * q * q’ is a run over u’. It follows that
s’ I= OIq’.

l To show (13), let s l= oq and qEB (i.e., q $! R U S). By the definition of oq, there exists a
computation segment u * 9 and a. run r * q over it. If s is terminal in P, i.e., t(s) is undefined
for all t E T, then u * s is a computation of P and r * q a run over it, which is rejecting, due to

1~a.t A is valid over P. Hence s cannot be terminal,(I E B. This contradicts the a.ssuIl~ption t
and must, therefore satisfy V p,.

fE7’
Ranking Functions

We follow the tlechniques of [LPS], [GFMR], and [-4P] in assigning ordinals to program states in
a complitation. This assignment defines (for each automaton state (1) a function ps, mapping program
stakes into the ordinals, which are taken as the domain of the well-founded relation (IV. 4) required in
the rule.

We start by constructing the run tree R of the automaton A over the program P. The root of the
run tree is a special node called ~0. The immediate descendants of 1.0 are nodes nr , n:!, . . . labeled by
pairs of the form (.llQqt), where s, is a program state satisfying 0. and q;EQ is an initial automaton
state such that s;l=f(y,). We assume that the pr0gra.m states are enumerable, and hence a sequence of
all the initial program states, i.e., those that satisfy 0, can be constructed.

Except for the root node ro , which we may consider to be labeled ly 1.0, all the nodes in R are
labeled by pairs (s, q). Let n # ~0 be a node labeled by (s, q). Tlle d irect descendants of n are defined as
follows: For each 5’ = t(s) and q’ such that s’ I= c(q, q’), n has a direct descendant n’ labeled by (s’, q’).
Obviously, each node. escept possibly ro, has only finitely many direct descendants, corresponding to
the finitely many transitions in 7’ and states in Q. For a node 11 # ~0 we denote its immediate parent
by plods).

* It is not difficult to see that any rooted maximal path 7c in R (i.e., a pa.th starting at ro) defines a
computatiou (7 and a run T over it. This also shows that for all pairs (.s, q) labeling nodes in the tree,
8 I= CL~ holds for the invariants og defined above, since (s, q) are rea.cha.ble by a computation segment
and a run over it.

.
Conversely, for any computation u=sg, sr, . . . and any run r=qo, ql, . . . over 0, there exists a maximal

path in R whose sequence of labels is ro, (SO, qo), (~1, ql),

Nodes in the tree that are labeled by (s, q), for q E S, are called stable nodes. All other nodes,
including ~0, are called unstable. Since A accepts all computations of P (and R = 0), all paths in R
contain only finitely many unstable nodes.

For any node n, there exists a path 7r leading from ro to n. We define the lowest unstable ancestor
of n, denoted by lun(n), to be the last unstable node on the path 7r. Since 1-0 itself is unstable, lua(n)
is always defined. If n is unstable then lua(n) = n.

Compressed Tree

From the tree R we construct another tree C, called the compressed tree, with a mapping from the
nodes in R onto the nodes of C. The nodes in C consist of a node E for each unstable node n in R. The
root of C is K. For all other nodes E, we define the parent of ii, pnrc(11). by the expression:

pccrc(?l) = lua(parR(n)).

By this definition, to find the parent of a node E in C, go back to R. Locate n’. the parent of n in
R. Find II”, the ha of n’. which must be unstable. Then take 17” to be the parent of E in C.

35

The mapping between nodes in R and nodes in C is given by .f’(n) = Eun(t)). It has the property
that, if 17 is the parent of II’ in R, then either j(n) = .f(n’), or f(n) is the parent of j(f)‘) in C. This
sloops that a path ii in R can be mapped to a path in C, which we denote by f(7r). Conversely, for every
path i; in C. there esists a path 7r in R such that ,f‘(~) = F. S ince all paths in R have only finitely many
unsta.ble nodes, it follows that all paths in C are finite.

However, the price paid for achieving the finite-path property is that, in general, many nodes in
C may ha.ve infinite degree, while in R all nodes, except possibly ro, have a uniformly bounded finite
degree.

A generalization of this construction is presented in [Ha2], where it is described as a transformation
from “thin” infinite-path trees, into “fat” but finite-path trees.

A tree with the finite-path property is also called a well-founded tree. If all the degrees are countable,
which is the case here, we can assign countable ordinal ranks 6(~) to all the nodes 5 in such a tree. The
a.ssignment is the following:

l If ii is a leaf, then 6(n) = 0.

l If ii is not a leaf, then S(Z) = lub{6(n’) + 1 / K = pm-c(~)},

where lub is the least upper bound.

Definition of Ranking Functions

We are now ready to define the ranking function ,D~(s) for every automaton state q and program
state s such that sl=cr,. As premise (Rl) requires. these are the only program states for which pQ(s) has
to be defined.

.

Let (s. q) be a pair such that .+a,. There exist one or more nodes n in R which are labeled by
(s, q). Consider the tree R(n) which is the sub-tree of R rooted at n, i.e., R(n) consists of n and all of its
descendants. Note that in the case that R has more than one node n labeled by (s, q), all the trees R(n)
are isomorphic (which means that there is a one-to-one mapping between their nodes which preserves
the labels), so it does not matter which one we pick.

Construct C(n), the compressed version of R(n), in a way similar to the construction of C from R.
The only difference is that for the computation of the lua in R(n), the root n is considered unstable,
regardless of whether n is unstable in R. Assign ordinals to the nodes of C(n). Let 6 be the ordinal
assigned to the root 5 of C(n). Then we define pq(s) = 6.

This ranking has two important properties. Let n be the parent of n’ in R, where n, n’ are labeled
by (s. q) and (s’, q’), respectively. Then it can be shown that:

0 Always pq(5) 2 pq’ (s’).

l If q’$S, i.e., n’ is unstable in R, then pq(s) > Pan.

These two properties lead to the fact that premises (R2) and (R3) are satisfied by the cyQ and pq
chosen above.

To see this, consider a state s satisfying og, and a successor state s’ satisfying c(q,q’). Premise
(R2) requires showing that Pan 5 pe(s), while (R3) re quires that if q’ 4 S, then Pan + p,(s). By

our construction both (s. q) and (.$‘, q’) are nodes in the tree R, with (s,q) being the ljarent of (.s’.(I’).
Hence, by the two observations a.bove, the two premises are satisfied.

(B) Syntactic Completeness

Next, we have to show that the erg and pq chosen above can be expressed in the assertion language

I L.

A small technical problem is that, formally, p* is not an assertion but a function. This can be
resolved by replacing the ranking function by a ranking assertion v~(UY), parametrized by an element 11:
of the well-founded set IV. The meaning of the assertion ye(w) is given by:

I s I= $9q(w) * p*(s) = w.

After this modification, it remains to show that og and cpq(w) are expressible in L. W’e refer the
reader to [API, [SRG], and [Fr] for arguments showing that if L contains the fixpoint operators of the
j.mdculus, then the assertions Q* and am, verbally defined above, can be expressed in L.

Discussion

One of the points emerging when considering the V-rule is that the need for infinite ordinals is
essential in this process. In previous papers, the need for infinite ordinals was usually attribiitecl t,o
concurrency, fairness, or unbounded non-determinism in the programming language or computational
model (see for example [LPS], [Fr], [API). As the present paper shows, the need for infinite ordinals
arises even in a simple non-deterministic program without concurrency, fairness, or unbounded non-

- deterministic constructs, such as program PI in the example of Section 7. We advance the thesis that
the element responsible for the need for infinite ordinals is the specijcation language. As so011 as we
deal with non-terminating programs, and have a specification language strong enough to espress liveness
properties more complex than unconditional eventualities, infinite ordinals are necessary.

.

12. FAIRNESS

In this section we sketch the extensions needed to the approach in order to a.ccommodate fnirnc,ss.
While fairness was included in the basic model of programs, represented by a set of fairness requirements
b,+>, ~JI th P f 1e roo ru es, and claims of completeness, were discussed up to this point with the restrictive
assumption of an empty set of fairness requirements. Suppose we are presented with a program P that
contains fairness requirements (v3,, $i) for i = 1, . . . , n, and we are asked to verify a property y.

L There are two basic approaches to solve this problem. The first is by extending the property to be
proven. The second is by extending the proof rules.

According to the first approach we use the V-rule, as presented above, to prove the extended property

X’ : 0 [Cl 0 Vi A 0 q (+z)] V X
a=1

over the program P’, obtained from P by omitting all the fairness requirements.

The pr0pert.y \’ is valid over the program P' iff ever\- computa.tion of P' either violates one of the
fairness requirements, or satisfies 1. In other words, t is satisfied by a.11 the computations of P. i.e..
those computations of P' that also satisfy the fairness requirements of P.

Since the extension, expressed above by temporal logic, is readily espressed by automata, this
provides one way of dealing with fairness. Note that if x is one of the properties. such as C-J ~1 or 0 9,
for which the temporal proof system provides direct rules, the extended property 1’ does not have this
form any longer. Consequently the direct rules are no longer applicable without further changes. tha.t
esplicitly reflect the fairness requirements. As a result, temporal logic proof systems (see, e.g., [MP2]),
provide several versions of rules for establishing liveness properties such as 0 cp. A basic version (simi1a.r
to our v-rule) does not use any fairness assumption. Another version relies on the weak fairness properties
of the program, and still another one. utilizes also the strong fairness properties.

The second approach, considered here, follows precisely that route, and suggests a modified V-rule,
in which the modifications directly reflect the fairness requirements. We present here only the simpler
version of weak fairness. A fairness requirement of the form (9, II,) is called a weak-fairness requirement
ify=T.

This requirement demands that if the computation is infinite, it should contain infinitely many
program states satisfying $J. Furthermore, we illustrate in detail only the case of a single weak fairness
requirement.

The rule, modified for a single weak-fairness requirement, calls for two invariants, CX: and cri, to
he associated with each q E Q. A well-founded relation and ranking functions are needed, as before.
Denoting 0: V cxq2 by cyQ, premises (Il)-(13) and (Rl) remain unchanged.

The premise (R2) is replaced by:

W-1) { 0; A (Pq = w)> p { 4% 4’) -+ [[QpJ A (pq’ 4 UJ)] v [cr;, A (pq, = TN)]] }
foreachqEQ,q’ESuB,i=1,2

(R2.2) [cyt A $1 + (ri for each Q E Q,

(R 2 . 3) {cy;: A (pq = 4 p} { c(q,q’) + (p,, 4 4 > for each Q E Q, q’ E B.

We can explain this modification by observing that the invariant aq has been split into the two
invaria.nts cri and CY~. The case of c$ records the fact that a state satisfying li, has been detected since
the last decrease in p. In the simpler case, where no fairness was assumed, we relied on the well-founded
ranking to ensure that we either visit infinitely many R-states, or that we visit only finitely many
bad states (states in B). Concentrating on a run that avoids R-states from a certain point on, the
original premise (R3) required that the rank decreases on any visit to a had state. Since the ranking is
well-founded, we can only visit finitely many bad states.

Here, we do not insist on finitely many bad states in general. Only runs that have infinitely many
$-states are required to have this property. Thus, we do not require a decrease on every visit to a bad
state. Instead, we require a decrease on each first visit to a bad state, following a visit to a $-state.
Consequently, infinitely many bad stakes contradict the well-foundedness of the ranking only if they are
coupled with infinitely many &-states.

To see how this requirement is expressed by the premises (R2.1)-(R2.3), observe the following:

By (I2), each successor of a state satisfying a: V 0: mllst, also satisfy 0: V of.

Premise (R2.1) reqllires that as long as we do not. visit au R-state (and the interesting case is wheu
NY’ visit only finitely many R-states), the rank cannot increase, which means that it either decreases or
remains the same. The premise also requires that if the rank has not decreased, then the identity of the
sul)-assertion, i.e., c~i or 0$, is preserved over the transition. If the rank decreases, then we only kno\v
tl1at a$ (i.e., either 0’(I, or CV~,) holds after the t,ransition.

Premise (R2.2) forces any state satisfying ai and li, to also satisfy CY~. The switch to $ records a
visit to a $-state.

Premise (R2.1) f ’or z = 2, ensures that once we are in the cu2 mode of the assertions, we remain in
t.his mode as long as the rank does not decrease. This is because we wish to preserve the informat,ion
that, we have recently encountered a $-state until the next visit to a B-state, which will force such a
decrease.

Premise (R2.3) requires that a transition starting at CV~ and entering a B-state, should decrease
p. Observe that this is weaker than the original (R3), which it replaces, since here the decrease is
required only if the transition started at a cui-state, while the original premise requires a decrease from
any &,-state. Note that on entry to a B-state from a program state satisfying cyi, which by (R2.3) is
accompanied by a rank decrease, we are allowed. by (R2.1) to switch back to at, thus erasing the record
of a recent encounter of 4.

Hence, if 1c, occurs on entry to any state, it causes 0: to become true (due to (R2.2)). If the next
transition enters a B-state it causes p to decrease and allows CK: to change back to at. If the next
transition enters an S-state, the cu2-mode is preserved until the first exit from S. If that exit moves to
a B-state, it causes a decrease in p. If the exit is to an R-state, then p may assume an arbitrary value.

. This rule is sound and complete for the simple case of a single weak-fairness requirement. It is easy
t,o see how it can be generalized to the case of n > 1 weak-fairness requirements, associated with the
assertions $1, . . . ,$J*. We split each ag into cyi, . . . ,atS1, where o* = cr: V . . . V CE;~+‘. The three
premises aSsume then the form:

W-1) {a; * (PO = 4} P wl,q’) + [[wf A (pqt 4 w)] v [a;, A (pq, = w,]] }
foreachqfQ,q’ESUB,i=l, n+l,

(R2.2) [ai A $J~] --$ ai+1 for each q E Q, i = 1, . . . , n

(R2.3) { a;+1 A (pq = ,t~:,> P { c(q, q’) + (ppN 4u,)} for each q E Q, q’ E B.. .

In this representation ai for i = 2, . . . , n. + 1 records the fact that we have already encountered
$1, . . . , @i-l since the last decrease in rank.

It can be shown that the two suggested extensions. extending the property and extending the rule.
are closely related. There exists a direct translation bet,ween a proof using aq,pq on the extended
property 1’ and a proof using oi, . . . , a:+‘, pq in the extended rule on the property 1,

39

13. MODEL CHECKING

In this section we sketch an algorithm that checks the validity of a given V-automaton A over a
given finite-state program P. The finiteness restriction is obtained by restricting the set of variables, to
which the program and the automaton refer, to a finite subset V’ s \‘, all of whose variables range over
finite domains. This restriction leads to a finite number of program states S and to the fact that all
assertions, even the ones containing quantifiers or fixpoint operators, are decidable, i.e.. their validity

’ or inconsistency can be checked algorithmically. The latter is due to the fact that any formula in t,he
assertion language L is equivalent, under the restriction of finiteness, to a boolean combination of atomic
formulas of the form u = a, for some variable u E V and a constant a in the domain over which u ranges.

For simplicity, we assume that P has no fairness requirements. In case it has, they could be added
to A in the manner discussed in the section dealing with fairness. We also assume that the automaton
A is complete and has an empty R. ,4s we have seen, these assumptions lead to no loss of generality.

A finite-state program P can be represented as a finite graph Gp, whose nodes Np are the states
S, and whose edges Ep connect s to s’ iff s’=t(s) for some transition tcT. A subset of the states CoCS
is designated as the subset of the initial nodes in the graph. These are all the states s that satisfy 0,
the precondition of P.

of the program graph Gp
The algorithm starts by constructing a graph G = (N, E) that can be viewed as

with the automaton A (viewed as a flat transition graph).
the CTOs3-pTO&Ct

_ The nodes _V in the graph G are pairs of the form (s, q} where s E C is a program state and Q E Q
- is an automaton state. Some nodes, LVo 2 N, are designated as initial in G. They are all the nodes

(s, q) such that

Y E SJO and s I= e(q).

Edges in E are drawn between (s, q) and (s’, q’) iff

5’ = t(s) for some t E T and s’ I= c(q, q’).

Note that in the construction of LVO and E, we used the fact that questions such as s k 9 are
decidable for each s E 3 and cp in L.

Consider a maximal path 7r in G, starting at some initial node n E No. Clearly, such a path defines
a computation CT of P and a run T of A over it. The algorithm presented here searches for a rejecting
run. If it fails to find such a run, we conclude that A is valid over P.

Aigorit hm
from initial

: As
nodes

a preliminary transformation,
. These can never participate in a rejecting run.

we eliminate from G all the nodes which are unreachable

We now repea.t the following sequence of steps until either success or failure are announced. Some
of the steps remove nodes and edges from the graph, so when we refer to G and its elements, we mean
the elements in the current version of G.

If the graph G is empty, stop and announce failure (to find a rejecting run). This means that A is
valid over P.

(2) Decompose the graph into maximal strongly connected components, and let c’ 2 G be such a
component which is terminal, i.e., there are no edges in the current version of G connecting nodes
in C to nodes in G-C’.

(3) If C is a singleton node (s, q), with no edges leaving it, consider the following subcases:

0 If Y is not terminal in P (i.e.. t(s) is defined for some tCf) or YES, the node (s-q) cannot
participate in a rejecting run. Proceed to step 5.

l Otherwise, we have identified a reachable node (S,(I) such that s is terminal in P and q$S.
This means that A is not valid over P. Stop and announce success.

(4) Otherwise, C is a component that has a cycle K going through all the nodes in C’. If C has a node
(s,q) with q 4 S, ts op and report success. The infinite path starting at some initial node. reaching
C, and then infinitely repeating K, passes infinitely many times through the automaton state q,
and hence generates a rejecting run.

(5) The component C cannot participate in a rejecting run. Delete all nodes in C and all edges leading
to these nodes from G - C. Return to (1). ~

The above algorithm is very similar to several previous model checking algorithms for linear and
branching temporal logics as well as automata-based algorithms, such as in [CES], [LPI. [EL] and [VW].
The complexity of the algorithm is linear in the size of the initial graph G, i.e., in (A 1 x (Gp I.

ACKNOWLEDGEMENT

.
The decision to introduce non-determinism into our automata was inspired, to some extent, by a

suggestion of Moshe Vardi to examine the B&hi automaton corresponding to the negation of a formula,
and show that it accepts no computations of the program. This suggestion and the related discussion
are gratefully acknowledged. His approach to verification by automata is presented in [VI.

m’e thank Fred Schneider for helpful discussions concerning his work on the subject of automata
as specification devices. We also thank Martin Abadi, Marianne Baudinet, Tom Henzinger and Alur
Rajeev for critical reading of the manuscript.

REFERENCES

[API Ii. Apt, G.D. Plotkin - Countable Nondeterminism and Random Assignment, JACM 33,4
(1986), 724-767.

[AS] B. Alpern, F.B. Schneider - Verifying Temporal Properties without using Temporal Logic,
to appear in TOPLAS.

ICES] E.M. Clarke, E.A. Emerson, A.P. Sistla - Automatic Verification of Finite-State Concur-
rent Systems using Temporal Logic Specifications, TOPLAS 8,2 (April 1986). 244-263.

[D] E.W. Dijkstra - A Discipline of Programming. Prentice Hall (1976).

[EL] E.-A. Emerson. C.L. Lei -- Modalities for h,Iotlel Checking: Branching Time Strikes Back.
12th Symp. on Principles of Programming Languagea (1985), &I-96.

[Fl] R.W. Floyd - Assigning Zlleanings to Programs, in Mathematical Aspects of Computer Sci-
ence, 19th Symp. of -4~~1. Alath., -4merica.n Uathematical Society, Providence (196’7). 19-32.

‘ [Fr] N. Francez - Fairnes>, Springer-Verlag (1986).

.
. [GFMR] 0. Grumberg, N. Francez: J.A. Ma.kowsky, W.P. deRoever - 4 Proof Rule for Fair

Termination of Guarded Commands, Information and Control 66 (1985), 83-102.

[Hal] D. Hare1 - Statecharts: -1 Visual Formalism for Complex Systems, Technic&Z Report. Weiz-
mann Institute (19S4).

[Ha21 D. Hare1 - Effec lve Transformations on Infinite Trees, with -Applications to High rnde-t’
cidability, Dominoes. and Fairness, JA CM 33.1 (1986), 224-248.

[Ho] C..A.R. Hoare - An Axiomatic Approach to Computer Programming, CACM 12 (1969),
5’76483.

[LPI 0. Lichtenstein. A. Pnueli - Checking that Finite-State Concurrent Progra.ms Satisfy their
Linear Specifications. 12th Zymp. on Principles of Programmzng Languages (1985). 97-101.

[LPS] D. Lehmann, -4. Pnueli. J. Stavi - Impartiality, Justice and Fairness: The Ethics of Con-
current Termination. LNCS 115. Springer-Verlag (19Sl).

[MPl] 2. Manna, A. Pnueli - lerification of Concurrent Programs: The Temporal Framework, in
‘The Correctness Problem zn Compxter Science (R.S. Bayer. J.S. hsloore, eds.), Academic Press
(1981), 215-X4.

[MPZ] 2 Manna, .A. Pnueli - Adequate Proof Principles for Invariance and Liveness Properties. 1
of Concurrent Programs, Science of Computer Programming 4 (1984), 257-289.

. [OL] S. Owicki, L. Lamport - Proving Liveness Properties of Concurrent Programs, TOPLAS
4.3 (1982), 455-495.

:P] G.L. Peterson - Myths about the Mutual-Esclusion Problem, Information Processing Letters
12,3 (1981), 115-116.

[SRG] F.A. Stomp. W.P. deRoever, R.T. Gerth - The P-Calculus as an Assertion Language for
Fairness -Arguments. Technzcal Report 84-12. Utrecht (1984).

[V] hl.\-. Vardi - 1Terificatinn nf C~ncurrect Progi’ams: Tile ,Aucomata-Theoretic bramen-ark,
2nd Symp. on Logic in Computer Sczence. Ithaca (1987), 167-1’76.

L iVF+‘] B1.Y. Vardi, P. Wolper - -111 -Automata-Theoretic -Approach to -4utomatic Program IPrifi-
cation, IEEE Symp. on Logic in Computer Science, Cambridge (1986), 332-344.

[W] P. TY lpo er - Temporal Logic can be More Expressive, 22d Symp. on Foundations of Com-
puter Science (1981), 340-34s.

[WVS] P . n- lpo er, M.Y. Vardi. -1.P. Sistla - Reasoning about Infinite Computation Paths. 24th
Symp. on Foundations of Computer Science. Tucson (1X3). 185-194.

