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1. Introduction.

In the usual formulation, an instance of size n of the stable marriage problem involves n men and
n women, with each person ranking representatives of the opposite sex in order of individual preference for
a marriage partner. A complete matching, i.e, a set of n marriages, is called stable if no man and woman,
who are not married to each other, would prefer each other to their actual partners under the matching.
Gae and Shapley, who introduced the problem, showed that at least one stable matching does exist; in fact,
they provided an iterative procedure that finds a stable set of marriages [4]. Later, McVitie and Wilson [11]
developed an alternative ( “fundamental”) algorithm; its work is described by a sequence of proposals of men
to women made one at a time, while the Gale-Shapley algorithm used rounds of simultaneous proposals.
Both algorithms yield the same matching which is male-optimal compared to any other stable matching,
simultaneously for al men. Using a reduction to a classic urn scheme, Wilson [13] proved that the expected
running time ol the fundamental algorithm for the random instance of the problem is bounded by nH,,
(Hp =14 --. + I/n). In the course of a detailed study of the stable marriages problem, Knuth [10] found
a better upper bound (n — 1)H, + 1 and established a lower bound nH, — 0(log4 n). Among several
open problems, Knuth [10] posed the question of estimating the expected number of stable matchings. He
indicated that the answer to this question might be found via an integral formula for the probability that a
given matching is stable.

A primary purpose of this paper is to establish-by using Knuth’'s formula-that the expected number
of stable matchings is asymptotic to e™! n In n for n — oo. Curioudy, it is of the same order as the average
number of proposas in the fundamental agorithm. This should be compared with the fact that the minimum
number of stable matchings for any problem instance of size n is 1, while the mazzmum number grows at least
exponentially with n, Knuth [10], Irving and Leather [6]. (For other deterministic results on the structure
of the set of stable matchings, we refer the reader to Irving [7], Irving et a [8], and Gusfield et a [5].)

Another purpose of this paper is to show that, almost surely (as.) for a random problem instance,
the maximum (inintmum) total rank of women by men for a stable matching is asymptotic to ninn (resp.
n?/ In n). Since the minimum rank of women by men coincides with the number of proposals by men in the
fundamental algorithm, the statement shows that this number is as. close to n In n. On the other hand, the
maximum rank of women by men coincides, in distribution, with the total rank of men by women in the
male-optimal  stable matching, which this algorithm determines. So, the latter rank is a.s. close to n?/ Inn,
and far exceeds n In n. The stable matching in question heavily favors men, at the expense of women. The
situation is just the opposite in the female-optimal stable matching.

The rest of the paper is organized as follows. In Section 2, we derive a general formula for the probability
that a given matching is stable, and that its rank has a specified value. This is a generalization of Knuth's
formula. for the probability that a matching is stable. The latter is used in Section 3 to obtain asymptotics of
the expected number of’ stable matchings. The general formula is applied then in Section 4 to study the as.
asymptotic behavior of the minimum rank and the maximum rank for a stable matching. In the appendix,
we prove some auxiliary results for a random partition of the unit interval.




2. Basic formulas.

By symmetry, each one of n! matchings (pairings) of n men and n women has the same probability P,
of being stable. Knuth [10] proved that

2n
——

(2.1) Pn:/"'/ H (I = a;yj) de dy,
1<i#j<n
wheredz = dz; ... dz,,dy =dy; .. . dy,, 0<2; <1, 0<y; <1 (1 <4,5<n).

Define the (men-oriented) rank of a stable matching as the sum of the ranks of women by men in this
matching. The rank lies between n and n?; it equals n (resp. n?) if each man happens to be matched with a
woman whom he ranks first (resp. last). Define P, as the probability that a given matching is stable and
that its rank equals k (n < k < n?). We want to show that

(2.2) Pnk:/ / (257" H (1 = 2i(1 = z + zy;)) dz dy;

1<i#j<n
here the integrand equals the coefficient of z*—" in the product. Notice that this relation implies (2.1) since
the sum of the integrands over k eguals the integrand in (2.1).

Proof of 22). (@ Let U = (uy1, ..., up ),V =(v1,..., v, ) be the set of men and the set of women.
Each man u € U (resp. woman v € V) ranks women (resp. men) uniformly at random, independently of all
‘other men and women. A way to generate such a random ranking system is as follows. Let us assume that
there are given two n x n matrices X = [Xj;], ¥ = [¥i;] whose entries arc al independent, each uniformly
distributed on the interval [0, 1]. For each man u; (woman v;) we define a permutation, i.e, ordering, m;

(resp. w;) of theset { 1, ..., n} such that

Xi,w,(l) < Xi,r;(i’) <. < l\'i,nj.(n) )

(reSP~ Yc-)j(l),j < y;‘JJ(L’)_) < < );u.,(n)‘]) .

_We postulate that the woman v,,(;y is the j-th best choice for the man u;, and that the man w,,; is the i-th

best choice for the woman v;. By the definition of .\ and Y, the 2n random permutations are independent,
of one another, and each is distributed uniformly. (The cases when two eements of one row of X, or onec
column of Y, coincide have total probability zero, and thus can be neglected.)

(b) We may, and shall, consider the particular matching M = {(11.1:', v;) o 1 < i< n}. The rank @, of
this matching equals n + "7 [{j : Xy; < Xi;} |, and we need to evaluate Py, the probability of the event.
A = {M is stable and @, = k}.

For x = (x1,. ..,z5) and y = (y1,..., ym ) O < x5, y; < 1.1 <4, j < n), define Pz, y) to be the
conditional probability of the event A given that X;; = 115, ¥j; =y (1 <i<n, 1 <7< n); in short
Prr(x,y) = Pr(Ale). Since dl X,p5, Yop ae independent,, by the Fubini theorem it. will suffice to show that
Por(z, y) equals the integrand in (2.2). To this end, we first observe that

(2.3) Pui(z,y) = [Z*]E(x(M):9"e)

)



where (M) is the indicator of the event {A is stable}, and the expected value is conditioned on X;; = 5,
Yij =y (1 €1 < n, 1< j<n) To evaluate this expectation, it is convenient to introduce a “marking”
procedure: Fix z € (0, 1); scan the pairs (¢, j) and, whenever \;; < Xj; (= #;), mark the pair with
probability =z, independently of al other pairs. Then, setting B = {M is stable and all the pairs (¢, j) such
that .\;; < .Xj; are marked}, we can write

(2.4) E(x(M)z9" |e) = z"Pr(Ble).

Let C = {(1,]) T # _]}, and let B,‘j ((l j) € C) be the event “Xi < /Y;j, or (\;; > AYij, }“ < },, and (. )
is marked) .” A little reflection shows that
B = ﬂ Bi; .
(i j)EC

Besides, conditioned on X¢ = 24, Y35 = ys (1 £ @ < n, 1 < 3 < n), the events B;; are independent, and
Pr(Bjjle) = (1 ~ &;) + =i(1 — ;) 2, (1,7 e C.

Therefore

Pr(Ble)= J] (@-=i(1-3+zy)),
1<i#j<n

so (see (2.3), (2.4))
Par(z,y) =71 [ (I-al—z+4zy)). 0

1<i#j<n

Note: In order to obtain (2.1) directly, rather than from (2.2), one can use a similar argument, setting the
marking probabiity » = 1, so that, Pr( B;; |¢) = | — x;y;. The original proof of (2.1) given by Knuth [10] did
not use the random matrices X, Y, but. relied instead on an inclusion-exclusion formula, and interpretation
of each term as the vaue of an 2n-dimensional integra with the integrand equa to the corresponding term
inthe expansion O J[;¢izjcn(l — 2iy;)-

3. Expected Number of Stable Matchings for Large n.
We shall prove in this section that
(3.1) Pa= (1 + o(l))e tnln nnt.
Since there are n! matchings, the formula. (3.1) implies im mediately
Theorem 1. The expected number of stable matchings is asymptotic to e"'nlnn.

Proof of'(3.1). In the course of the argument, and in the nest section as well, we will use the following

facts.
Let X1,...,-X, be independent random variables each distributed uniformly on [0, 1]. Set
Se=3 N;. T, = (Z‘\j’) / S
j=1 j=1



Introduce also the random variables Ly, . . ., L,, which are the lengths of the consecutive subintervals of [0, 1]
obtained by selecting independently n — 1 poiuts, each uniformly distributed on [0, 1] (in particular, the
L; sum up to 1). Set

7
9
Uy = E L, M, = max L;.
— J 1<j<n
]:

Lemma 1. Let [,,(-), fu(-, <), gn(’) be the density of Sy, (Sp, T), and U, respectively. Then

n—1
(3.2) Fuls) = (Tf_—l)!Pr(Mn <571,
S0, in particular,
sn—-l
(3.3) fals) < mon
Also
qn—l
(34) fn(S,t) < G;—__l—)!.(/n(t) .

Lemma 2. (Asvuptotic hehavior of M,,, Uy, ). In probability, as n — oo,

Mn/n‘1 Inn—1,
nlU, — 2.

Besides, for everv p > 0,

Pe(M, > n""(Inn — Inlnn ﬁp)) >1—-0(mn™". Vde. ¢ —1)

Note. The relation (3.2) is wel known (see Feller {3, Ch. 1], for instance), but (3.4) appears to be
new. We prove hoth relations in the Appendix by using the fact that the joint density of L, ,, , L,—;
equals (n — 1)!, whenever this density is not zero. As for Lemma 2 (also proven iu the Appendix), the
argument iS based on a classic result which states the following: {L; : 1 < j < n} has the same distri-
Dution as {117/ 577 T 1< j < n}, where Wy, Wa . . . are independent, exponent ial, wit h parameter one
(Breiman [l], KNarlin and Taylor [9], Rényi [12]). (Sam Karlin has informed me that, in a course which he
taught n 1986, he used this connection for asymptotic study of M, and other extremal characteristics of
(Lj 1< j<n})

(@ Let us begin with an upper bound for P, Since 1 — o < exp(—a — a?/2), we get from (2. 1 ):

—

n 1
(3.5) P, < / _ /(H / exp(—ys; — ygtj/Q)dy> dey...dx,,
- =1 0

where

2
bJ:E x;, ”:E I'i,

i#] i#]

and integration is taken over 0 < x; <1 (1 <7< n).



Fix @ > 0 and break the integra into two parts, fl forsi=zy+-- .4+ rp <w({) :=alnnnand fg for
s > w(n). Let us show that, for a sufficiently small value of g,

(3.G6) =o(nlnn/n!).
J:

Dropping the factors exp(—y*t; /2), and integrating with respect to y, we have

/ / /<w(n)< l—e*::])( SJ))dr (dz = d=zy .. .dz,).

To smplify the last estimate, we observe that for z > 0,

1—e 2\ 1 z
(ln . >_—z (l_e"—l>'

which implies existence of a constant ¢ > 0 such that

— e 7 /
(3.7) —c < (ln1 ¢ ) <0;
z
aso
1- C_z ! -1
(3.8) In = —(140(1))z7', z—00.
z

By (3.7),

1 — p—S l —- s 1 o2 1

In € In ¢ / (ln ¢ ) dz
§—=T, Z
1—-e¢°
<In +czy

Therefore,

Zln <nln

and, since § ;2 < @ In Inn, we have

1—e=*\"
/ < (In n)c"/ dz .
1 +<w(n) s

The last integra is the expected vaue of (]_"e_"gﬂl)n over the event {S, < u(n)}. Then, by (3.3),

w(n) _ p—s\n
(=) 4,

3 < (- 1)7 [ ‘
< (ln n)ca ((n - 1)!)_144)(1'1)
= Oo(n(In n)/%/n!) .

provided that a < (2¢)~!. This proves (3.6).



Turning our aftention now to f,, i.e, to s > w( n). the generic factor of the product in (3.5) can he
estimated as follows:

! o0

y exp( —ys; — y*t;/2) dy < sj'l 3 exp(—z - z:"(t,-sj'r‘))/Z) dz
0

< S;l / exp(—=z — 2*(t;57%)/2) d2
0
= sj"l (1 - ljs_3/ zexp (—z—2%(t; s72)/2) dz)
0

<spH(1—tsTPF(ts7?),

where

-

! o0
(3.9) t=) z7, F(u)= .I zexp(—z—22u/2) dz .
j=1 .

Therefore, the integrand in (3.5) is bounded above by

(11" ) (I -ssre)

j=1 =

Here

= 5" exp(1+ O(w(n)™1)).
Therefore

J < exp(l + O(w(n)™)) 3 s7"exp(—(n = Dts™2F(ts™%)) dx;
2 s2w(n)

s0, using Lemma 1 (3.4) (and the fact that s < n), we have

(3.10) J <exp(l + O(w(n)™)) ((n = l)!)~1 / s~tds
E(exp(—(n=1)UaF(Uy,))) .

Here, by Lemma 2 (see dso (3.9)),

(P) lim exp(~(n = U F(Un)) = exp(~2F(0))

(3.11) = exp (—-‘2/ ze”? dz) =e"2.
0

6



((P) lim designates the limit in probability.) So, invoking the dominated convergence theorem, we can assert
that the expected value in (3.10) converges to e~2. Besides,

1

(3.12) | .I s7'ds=Inn(1+0(Inlnlnn/Inn)).
\w(n)

Therefore,
J < (1+ o(1))e~'nlnn/n!,
which implies (see (3.6)) that
Pa<(@+o(1))e tninn/nt, |

(b) It remains to estimate P,, from below. Denote by D the set of all nonnegetive X = (2, . . . , X,,) such
that
(3.13) 3lin<s<n/In’n,
(3.19) s7lz; < (1 + €)lnn/n, 1<j<n,
(3.15) sTH< (L +€)2/n,

( =308 =i z) where ¢ > 0 is fixed. According to (3.13), (3.14),
(3.16) Xj<(@+e(nn)'<1l  (1<j<n)
for al sufficiently large n, so that
DC{z:0<z;<1,1<j<n}.

We want. to show that the dominant part of P, is contributed by the region 1), which should not be very
surprising in light of Lemmas 1, 2 and part (a). Set

P,,(c):/xw( (/0 Hl—-my,)dy,))dx

i£]
s0 that Py > Py(e). Since 1 — a = exp(-a — a?(1 + O(a))/2), « — 0, using (3.16) we can write for fixed j,
H(l - l’,jyj) > exp(—yjsj - y];)tj(]. + On )/2) !
t#£]
where

o,=c1ll ' n, c =c(e) > 0.

(Recall that s; = 37, i, t; = 3, x}.) Hence, for each j,

Ij(il?)::é H(l—a:;yj)dyj
t#]
> I)lexp(—ysj——yQtj(l +0,)/2)dy

_S]-l ‘1” e”? exp(-—z:)(tjsj”z)(] +0,)/2) dz

- l—e™ I 2.
(3.17) > 5 exp (—(t]-.s] 2(1_6 3])/ fz (/;) .




(Tn the iast step, we have used Jensen’s inequdity, namely that

‘]:2‘4(:)3(0(;)) d->B ([2‘4(3)0(;)(1:> ,

2 <1
if B(e) is convex, A(z) > 0, and f;: A(z) dz = 1) TO simplify this estimate, we observe Chat, by the
definition of D,
sji=s5—1, =s(l—ux;/s)

= sexp(—a;/s + O(;l?;“»)/sg)) = sexp(—a;/s + o(z;/s))

>c lan, Ve € (2,3).
uniformly over a € D, if n is large. Therefore

l—e™% =1+ O(n-cl) .

¢

J g g (1 + s 57/2)

=240(n"""), = =-2>0,
and (13.1'7) becomes
Liz)> L +0m ))s  exp(a;/s + o(x;/5))
cexp(=(t;s;7°)(1+ O(In™'n))).
But ¢ >2,5;<s =370, 25,3 5., tj = (n = 1)t; therefore

(3.18) H Li(z)> (L +o(1))es " exp(—n(ts~)( 1+ o( 1))
i=1

uniformly over x € D.

[Let us switch to new variables, namely

'uj:;zrjs_l, 1<j<n-1.
Define also v, = 2, s7". Clearly, 0 < v; < 1 and 3_7_, v; = I. The conditions (3.13)~(3.15), which define D,

.become

(3.19) 3Inn<u<n/lnn,
(3.20) v <(L+)lnn/n,
) : n
(3.21) vl < (1+€)2/n.
j=1
Thus, in new variables, the region is the direct producit of the interval defined in (3.19) and a region D*
defined in (3.20), (3.21). Besides, the Jacobian of (1, . . ., x,) with respect to (u, v1, . . ., v,—-1) equals u" 1.

So, it follows from the estimate (3.18) that

n/in?n
Po(€) > (14 o(1))e((n — 1)!)*1 ( / u! (lu)

3lnn

n

(3.22) . / _exp (—n Zv}’)(n - D)ldv, dv=dvy...dv,_ .

ji=1

o0



The first integral here is In n( | + o( 1)). Let us have a closer look at the second integral. Its integrand is
at least exp (—2( 1 + €)) everywhere on D* . In addition, (n — 1)! is the joint density of the first (n — 1)
subintervals among n subintervals Ly, . . ., L,, introduced in Lemma 1 (see Breiman [1, Ch. 13], for instance).
Thus, the inequdity (3.21) leads to

P,(e) > (1 + 0o(l)) exp(—=1 = 2¢)(nlnn)/n!

n + ) !
: Pr(lrgnjaé\:n Ly <(l+¢€lnn/n, F:ILJZ <@ €2/

for every fixed ¢ > 0. But the probability of the event on the right hand side tends to 1 as n — oo (see
Lemma 2). Letting n — oo and then ¢ | 0 we are able to conclude that

P,>(1+ o(1))e 'nlnn/n!. |

4. Probable Behavior of the Maximum Rank and the Minimum Rank of a Stable Matching.

Let », and R, be the minimum (male relaied) rank and the maximum rank for any stable matching. It is
well known that I’,, equals the total number of proposas in the fundamental agorithm, in which men propose
to women. The resulting stable matching is both male optimal and femae pessimal. So, by symmetry, we
can assert that, in distribulion, R,, coincides with the female related rank of that particular matching.

Our goal is to prove

Theorem 2. In probabili ty

(4.1) ro/nlnn — 1,
(4.2) Ro/n*ln~ln—1,
asn — o0.

Notes. According to this theorem, the stable matching reached via proposals made by men to women
is as. considerably more favorable to men than to women. In short, initiative pays! Also, the relation (4.1)
means that the number of proposals in the fundamental agorithm is as. close to n Inn.

The core of the proof is the following statement.

Proposition. For every p > 0 and 6 € (0, e# - 1),

(4.3) Pr(r, > n(lnn —Inlnn-p)) >1 - O(n?%,

(4.4) Pr(R, <n*In~!a(1+ (Inlnn + p) In"tn)>1-0(n"?%.

Proof of Lemma 3. Notice first that for every k between n and n?,

Pl’(’l’" S k) S n! Z an )

m=n

Pr(Ry > k) <nt > P .

m=k



Here P, ,,, is the probability that a fixed matching is stable and its rank equals m. In Section 2, we proved

that
Pam = //([z"""‘]@(x:, y, 2)) dzdy

(4.5) ®(2,y,2) = [J(1 =2l - =+ 235)) -

i#]
Mimicking an approach due to Chernoff [2] (which alows to estimate the tails of a distribution through its
moment generating function), we can write then

! n—k P
(4.6) Pr(r, < k) <n//0<|£1<]‘1 2" R(z, y, 2)) dx dy,
(4.7) Pr(R, > k) < n! // ir;fl(z"“k<1>(z,y,z)) dx dy .

In the argument which follows we will not try to determine the best z = z(z, y); it will he sufficient to choose

z=z(s) (s = 1, %)

(I) Consider », first. Bounding each factor 1 — z;(1 — z + zy;) in (4.5) by exp(—z;( 1 - z + .'Jyj)), and
integrating with respect to y = (y, . . . , ¥,), we obtain from (4.6)

: n—k ' - 1 — %%
Pr(r, <k)<nl! /02‘21 (z ¥exp((z — 1)(n = 1)s) H > dz .

Y
j=1 7

" (sj = Y;4; 2:)- Here, by (3.7), (3.9 and the condition z < 1,

L 1 —em28\"
) |
zs; s

j=1

where c is an absolute constant. In conjunction with Lemma 1 (3.3), we have then

(4.8) Pr(r, <k) < cn/o. 0<|rz]f<(e)\p( (s, 2))) ds ,
(4.9) H(s,z) =(z=1)(n=Ds+nIn(1—-e"**)=kInz-1Ins,

for al n < k < n?. The relation (4.3) will be proven when we show that the right. hand expression in (4.8)
goes.to 0 as n~% (6 € (0,e" — 1)), foi

(4.10) k=n(lnn—Inlnn-p).

To make the best use of (4.8), it is natural to choose z = z(s) which minimizes H (s, =) for = € (0, 1].
But
H,=(n=1s+ns(e”* -1)"1—kz"1=0

if zs = a and « satisfies an equation

(4.11) h(ey=k,  hle):=a((n-1) +n(e*=1)7")



Now, h(0+4) = n, and an elementary (albeit tedious) computation shows that
(@) >hO0+H=n/2~-1.

Hence, (4.11) does have a unique positive root a = a(k) for al k& > », and a(k) is continuousy differentiable
with a’(k) > 0. In particular, if k is given by (4.10) then

a=(1+0O(nn/a))(k/n)
=lnn-Inlnn-~p+0(InN n/n)

(4.12) <lhn~Ininn-p, Vo <p,

for n sufficiently large.

Now, we can choose z = a/s if s > a and z = 1 for s < a. Then it follows from (4.9) that
n
/(; oérzli;l(exp(H(s, z))) ds
a oS}
s/ sT 1= ds+a-"(1-e'")"e‘”‘““/ shlem(r=10 ds
0 a

<A+ Ay,

where

a
Ay :/ sTH1—e )" ds,
0

A2 — (a(n _ 1))‘/"(1 _ e-a)netn—l)a(k _ 1)|
So, if k satisfies (4.10),

Ay <a(l — ™)1 = O(aexp(—ne™®))

(4.13) =0(m™), Ve e(0,0).

Furthermore, by Stirling's formula for factorias,

(4.14) As = O((Inn/n)M? exp (da( k),
where
(4.15) bn(k) = Fulk, a(k)),
F, = (n=Da+nl —y— k] i — !
(4.16) w(k, @)= =Da+nn(1—-e ") =rlna+ (k-1 pr——t

To sharply bound ¢,,(k) from above, we need to look closer at I, ( x, «). First of dl,

OF, (K, a)/0a = (n — 1) + n(e” — D= ket

11



so that
(4.17) OF(r, a)/da|azary =0,

see (4.11), and

A ] o K—1
(4.18) O (k. @)/0k = In 7a(n ~1)
Consequently, (#qg, o) defined by
(4.19) L0 -1 = nag ,
(4.20) Ko = (n—1ag + 1

is a stationary point, of F,, (x, . An easy bootstrapping shows that

(4.21) ag=Inn+Ininn(1+00n""n)),
ko = n(lnn +Inin n(l+ O(In~' ny)) ,
50 that ko > k (see (4.10)). Then, by (4.15), (4.16), (4.19)~(4.21),
on (ko) =F, (ko,ap)=nIn(1 —e" %)~ Inag
= —Inag + O( ne” %)
(4.22) =— 111 g+ O0(n"1n).
Let, us show that, in fact, ¢,(xo) = max ¢,(x). Indeed, since a = a(x) is differentiable, using (4.17). (1.18)

we obtain

¢;1.(’5) = aFn(Kv 0’)/6"’|z1v:a:a(n)

1 na )
(4.23) = 111(1 + a(n—_l(m — 1>> > ()0,

for k < (>)ko. (a/(e® — 1) decreases if « increases, and a’(x) > 0.)
Since x < Ky, we now know that ¢, (b) < é, (ko). Still, we would like to do better. knowing also that,
in fact, kg — k is close to 2n In In n. To this end, choose k; such that a; = a(k;) satisfies

noa

(4.24.) s Inln n
that is (cf. (4.19), (4.21)).
(4.25) a; =Inn+Innn(l + O(ln—1 n)) .

Then Ky € (k, ko); redly, ry < ko Since «y < ag (compare (4.21) and (4.25)) and k < k; (compare (4.12)
and (4.25)). Therefore,

b0() = alre) = [ 610} d
(4 96) < ¢n (ko) — /Kl Pp(r)dr .
k

12



The derivative ¢/,(x) is given by (4.23). Since na/(e® — 1) is at least In In n (see (4.24)) on [k, x4], we easily
get

(4.27) é1(K) = (1+ o(1))e™?, a = a(r),

uniformly over & € [k, x;]. Besides, considering x as a function of a, we have (see (4.11)) also

dk

L

(4.28) = n(l+ O(ae™®) = n(1+ o(1)) .

(n=1) + n(e® =1 —ae®)/(e? ~1)°

Combining (4.26)-(4.28), we estimate
n(k) < ulKo) = (1 + o(1))n(e™*F) — ¢=1).
Here (like in (4.13)))
ne=*® >ef Inn, Vo €(0,p),

and, by (4.22), (4.25),
¢n("70) < 0,

ne~® = nexp(—Inn — Ininn(l+ O(ln"ln)))

=O(ln~tn) .
So, we arrive at
(4.29) bn(k) < —e” Inn, Vo' €(0,p).
Therefore (see (4.14))
(4.30) Ay = O(n-(l/“e")), Vo' €(0,p),.

The estimates (4.8), (4.13), and (4.30) show that

Pr(ry < n(ln n — Inln = p)) = 0= =D) | ¥/ c(0,p). B

(11) Turnnow to R,, the maximum rank of a stable matching. With the help of Lemma 1 (3.2), (3.7),
(3.8), and (4.7), we obtain similarly to (4.8), (4.9),

(4.31) Pr(R, > k) < an) inf (exp(Hi(s, 2))) bn(s) ds
where

O,(s) = Pr(M, < s71),
and

H(s,z)+7ysz, s < so,

(s, 2), s> sg;

(4.32) Hy(s, 2) = {

13



v, so are absolute constants. (In the part I, we could afford to drop the factor 8,(s). but this time we will
need it.)

Let us show that the right hand expression in (4.31) goes to 0 as n=% (6 € (0, e# — 1)), for
k=nIn" (1 + (Inlnn 4 p)In~" n).
The root a of the equation (4.11) is this time
a=nln"' n(1+(nnn. + p,)In" ),

where

pn=p+o(l).
We choose z = a/s if s < a,and z = 1 for s > «. (Recal that a feasible z has to be at least 1.) Set.
(4.33) a; = nln"'n(1+(Inlnn+p)In"'n), o e(0,p).

Breaking [0, n] into [0, a,], [a1, a], and [a n], and using (4.9), (4.32), we can write

n

igfl(exp(Hl(s, 2)))0n(s) ds <a™*(1 - e~ )"~ D4(B, + By) + B,
Jo 22

By =¢e" ‘]a: sk’”le_("_l)“ﬂ,,(S)dS’

B, = J sh=le=(m=Deg (5)ds,

1

where

n
Bs = J 5711 = e*) @9 ds .
We estimate By, B2, Bs, moving backward.

(1) For s € [a, n],
On(s) = Pr(M, < s7') < Pr(M, < a™') = ba(a).

Since
a'!=n"'(Inn-Ininn-p}), o= pto(l),

we have then by Lemma 2

(4.34) B3<On(a) s 'ds=0n""), Ve€(0 p).

Ja
(2) Next, .
Ba<,(a) |+t  ds
Here

P

buar) = O=""), VY p2€ (0, ),

because (see (4.33)))
a;* =n Yinn—Inlnn - p' + o(2)) .

14



Also

a o) )
\1 Sk—le—(n—l)s (LS_</ sk-le—(n-—l)s ds
0
1

) B ) ko \k!
=(n-1) ‘(b—l)!—O((e(n_1)> ) .
(k ~n?In~! n.) Therefore,

—ef2 k-1 -t
(4.35) B‘.) =0 (’Il (m) ) .

(3) Finaly,

a
By < e ‘] 1 sFle=(n=1)s gq

@
— 10 J e9(8) ds, qs) ;= (k— 1) Ins = (n —1)s.

The function q(s) achieves its maximum at

Sx =

-1 _
= nin Yn(l+ auuin 4 p2) In~ta), P = p + o(1).
n. —_—

By (4.33), s« > @1, S0 that q(s) is increasing on [0, a;]. Also
Se = a3 (1 + o)) ,
s —ay=nln"n(p-p + o).

Therefore, since q'(s) = —s~*(k — 1),

B,

IN

Y are? ) < are’ exp(g(s.) + %q"(é)(al - s*)%)

k=1
° (<e(i; -—ll) ) exp(ya — An” In~3 n))

E—1 0\
—0¢( ( : ) ) exp(—AnIn~3 n/2), A>0.
e(n—1)

(5 €a,5"))

(4.36)

il

(Recall that a= O(n In™" n), s0 that @ = o(n* ln™> n)))
A combination of (4.31), (4.34)-(4.36) yields at last

Pr(R, < k)< (‘71(n~en exp(dn(k)) + n~¢7),
for every ps € (0, p) and every ps € (0, p), provided that p' < p. Here, as in the part I,
on(k) = Fu(k,a), a=a(k).

It remains to recall (see (4.22)) that the maximum value of the function ¢, (k) is negtive.

The proof of Propostion is now complete. &
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The rest is short. First, of al, », equals the total number of proposas in the fundamental algorithm,
and this number is stochastically dominated (Knuth [10], Wilson {13]) by the total number of draws in the
coupon collector problem with n coupons, and the expected value of the latter isn i, (H,, = 14+ 3 4+ . -+ 1)

n

Given ¢, > 0, let A be the event that a certain coupon, say j, has not been drawn in the first N =
(1+¢€,)nlnndraws. Then

Prr,<(1+e,)nlnn)>1-nPr(A)
=1-n(l-n"Y)Y>1 - nexp(—=N/n)
=l-n"%"—=1,

provided that €, In n — co. Combining this with (4.3), we obtain:
Pr(n(lnn —Inln n = p) <7, <n(lnn +wn)) — 1,

for every p > 0, and w(n) — oo however dowly. Consequently, »,/n In n — 1 in probability.

Furthermore, denote by m,; the total number of proposals made to a. woman j in the course of the
fundamental algorithm. Let. R,,; be the rank of her eventua partner, according to her preferences, needless

to say. By symmetry,
(4.37) E(mpy) = = E(mnn) S0 Yn Hy) = H,, .

Besides, given 7, = k, Rpj — 1 is binomialy distributed with parameters n — k and p = (k + 1)~!. Therefore

n— Ty, n+1
- )
Tnj +1 Tnj +1

E(Rnjlmn) = 1+

and; by Jensen’'s inequality and (4.37),

n+1 n+1

E ;) > = .
(Rﬂ])_E(er.j)+ 1 H,+1

SO,

E(R,) = E(Z Rn]-> >n(n +1)/(Hy, + 1)
j=1

=n?n" n(l1+ 00" n)).
A simple argument, which uses (4.4) and the last, relation yields that. in probability, R, /n2In~! n — 1.

Theorem 2 is proven.
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Appendix

Proof of Lemma 1. For 0 < s1 < 89 < n,
Pr(s; < Sp < s9) = / - v/d;zrl codey

: € (51, s2). We switch to new variables

where 0 < z; <1 (1 <j<n), ands, =3 %

n
un = Z.’L’j,
i=1

v = zju"t, 1<j<n~-1

Define also v, = z,n~!, SO that S°7_ v, = 1. The inverse transformation is

Y 1<j3<n,

where

n—1

rpy=1— E v .
j=1

Its Jacobian is «®~1, whence
Pr(s; <5, < s2) = / . / W rdudvy . dug-y,

where s; < U < s and maxy<j<n v; < u”l. Therefore

ful(s) = g1 // dvy .. .dv,
———

maxijs—l
1<5<n
Sn—l
= oy M <,
L, _1 in the random partition of [0, 1]

since (n — 1)! is the joint density of the first (n — 1) intervals L,
by, (n — 1) random points.
Similarly, denoting y"7_, v7 by t,

. -1
Pr(s1 < S, <sz, t1 < T < to) = // u" ™ dudvy . . . dvg_q
e —
slgugsg
t1 <t<ta
maxiju'_l

< /.../u”’ldudvl...dvn‘l
S —
8§ U &

s1<ulsa
1,%tZ1a
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(in both integrals, Z’.’__l v; < 1). Since this inequality holds for al s; < s, and t; < t3, we have

J=1
-
fn.(S,T) S n — 1)' d‘r (/ /(n —1 ‘dvl d’Un 1)

P 1

= (_——T)' 9gn(7)
where g,( -) is the density of }"7_, L;.

Proof of Lemma 2. The random variables L, . . ., L,, are exchangeable and, for 1 < k£ < 12 — 1, the joint
density of Ly, ..., L isgiven by

k n—-k—-1
(A1) fr, r.(z1,. ,.1:1.):(71—1)5;(1—2%) , (a = a(a—l) (a—=b+1)),
Jj=1
where 0 < z; < 1, Z;T":] x; < 1. In particular,
k n
(A.2) Pr(Li>x1,..., Ly > ap) < Za:])
j=1
provided that 37, 2; < 1. (See E'eller 3, Ch. 1].)

(1) Fix z and let = (Inn + z)/n. Define N,, as the total number of the varigbles L; > x. Then by
"(A.2), for every k > 1 and n large enough,

E(NE) = akPr(L1>2, ... Ly > )

=081 - ke)® = (1 + o(1))n* exp(nln(1 - kz))

(14 0(1)) exp(klnn + n(-kx + O(In” n/n?%))
= (1+r)(l~))(€‘2)k, n—00.

Therefore, N,, converges in distribution to a Poisson distributed random variable N with parameter A = e~=*
- Consequently, denoting max;<;<» L; by Ad,,,,

Pr(M,<(Inn+z)/n)=Pr(N,=0) = Pr(N=0)=e¢ ,

and
M, = (Inn. + 0,( 1)) /n,

where O,( 1) stands for a random variable hounded in probability asn — co. 1

(2) Let, 2 = (]n n—Ininn— p)/n. We want to show that

PrM, < X) Z0(m~¢"), V4 €(0,p).

To this end, we observe that (Li,. ., L,) coincides in distribution with (£, . . . , £,) where
n -1
L;=W; (Z W;;)
k=1
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and Wy, ..., W, are independent, exponentidly distributed with parameter 1 (Breiman [1, Ch. 13], Karlin
and Taylor [9, Ch. 13]). Using the central limit theorem for (moderately) large deviations (Feller [3, Ch. 16]),

we have (E(Wj) = var(W;)=1):
Pr<

ZH:VVJ' —n
j=1

> nt/7. n1/2> = O(exp(—n?"/2)).

SO,

Pr(M, <z) < Pr (1Ta§ Wj < 2(n + 719/14)) +O(exl)(—71,2/7/2)).
_]_11

Here,
Pr <1r<naé< W; <z(n + nQ/M)) = (l-exp (—;L‘(nJrng/“.)))"
IIsn

< exp(~nexp(—z(n + n1)))
= exp (— exp(Inn—~(Inn—Inln 77 - p)(1 + 71—5/14)))

< exp(- exp(inin n + p')) = n~" Yo' € (0,p). B

(3) 1t remains to show that nU, — 2 in probability, where U, = 3"7_, L?. To this end, we notice that

Un = (i W,)/(Z‘; Wk>2 :

and, by the weak law of large numbers,

(P) lim }-ZVV]Z :/ e " dy = 2,
j=1 0 . v

[/, coincides, in distribution, with

n—oo N

(P) lim lZW] :/ ze Tde=1;
et 0

n—00 7 4
J=

S0,

P limn U, = 2.

n—+00
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