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1. Introduction.

In t#he usua.1  formulation, an instance of size n of the sta.ble  marriage problem involves n lllell and

n womell, with each person ra.nking representatives of the opposite sex in order of individual preference for

a. nia,rriage  part(ner. A complete matching, i.e., a set of n marriages, is called sta.ble  if no man and woman,

who are not married to each other, would prefer each other to their actua.1  partners under the matching.

Gale and Shapley,  who introduced the problem, showed that at least one stable matching does exist; in fact,

they provided a11  iterative procedure that finds a. sta.ble  set of marriages [4]. La.ter,  McVitie  and Wilson [ll]

developed a.11  alt,ernative ( “filllda,nlellt,al”) algorithm; its work is described by a sequence of proposa.ls of men

to women made one a.t a tilne, while the Gale-Shapley algorithm used rounds of simultaneous proposals.

Both a.lgorithms  yield the sa.me ma.tching  which is male-optimal compared to any other stable matching,

simultaneously for all men. 1Jsing a. reduction to a classic urn scheme, Wilson [13]  proved that0 the expected

running t(ime of the f~lndarnc~llt,al  algorithm for the random instance of the problem is I~ouncled by nNn,

(H, = 1+-m . + l/n.). III the course of a detailed study of the stable marriages problem, Knuth [lo] found

a better upper bound (n - l)H, + 1 and established a lower bound n,H, - 0(log4  n). Among several

open problems, Knuth [lo] posed the question of estimating the expected number of stable matchings. He

indica.ted tl1a.t.  the a.nswer  to this question might be found via an integral formula for the proba.bility  tha.t a.

given ma.tching  is stable.

A primary purpose of this pa.per  is to establish-by using Knuth’s formula-that the expected number

of stable ma.tchings  is asympt,ot8ic  to e-l n ln n for n - oo. Curiously, it is of the same order as the average

number of proposals in the fundamental algorithm. This should be compared with the fact that the minimum

number of stable matchin gs for any problem instance of size n is 1, while the maximum number grows at least

exponentially with n, Knuth [lo], Irving and Leather [6]. (For other deterministic results on the structure

of the set of stable matchings, we refer the reader to Irving [7], Irving et al [S], and Gusfield et al [5].)

Another purpose of this paper is to show that, almost surely (as.) for a random problem instance,

the maximum (lninimuln)  total rank of women by men for a stable matching is asymptotic to nlnn (resp.

n’/ In n). Since the minimum rank of women by men coincides with the number of proposals by men in the

fundamental algorithm, the statement shows that this number is a.s. close to n In n. On the other hand, the

maximum rank of wolnen  by men coincides, in distribution, with the total rank of men by women in the

male-optimal stable ma.tching,  which this a.lgorithm  determines. So, the latter rank is as. close to n2/lnn,

and far exceeds 11.  In n. The stable matching in question heavily favors men, ant the expense of women. The

sit,uation is just t,he opposit,e  in the female-optimal stable matching.

The rest of the paper is organized as follows. In Section 2, we derive a general formula for the probability

t,ha.t a given ma.tchin,0’ is st,a.ble,  and that its rank has a specified value. This is a generaliza.tion  of Knuth’s

formula. for the proba.bility  that, a matching is stable. The latter is used in Section 3 to obtain asymptotics  of

the expected number of’ sta.ble ma.tchings.  The genera.l  formula is applied then in Section 4 to study the a.s.

asymptotic behavior of the minimum rank and the maximum rank for a. stable matching. In the appendix,

we prove sonle  auxilia.ry  results for a random partition of the unit interval.
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2. Basic formulas.

By symmetry, eac.h one of n! matchings (pairings) of n men and n women has the same probability P,,

of being sta.ble.  Knuth [lOI  proved that

2n

(2.1) pn .** /lc~<,,(l - .x;yj)dxdy,
- _

where dx = dxl . . . dxcn, dy = dy, . . . d yn, 0 5 xi _< 1, 0 5 pj 5 1 (1 5 i,j 5 n).

Define the (men-oriented) rank of a stable matching as the sum of the ranks of women by men in this

matching. The rank lies between n and n2; it equa.ls  n (resp. 11’)  if each man happens to be matched with a

woman whom he ranks first (resp. last). Define Pnk as the proba.bility  that, a given matching is stable a.nd

th.$  its rank equals k (n 5 k 5 n”). We want to show that,

(2.2) p,,= ---J .i [z”-“1 n (1 - zi(l - J + ryj))  dx dy;
l<i#j<u

here the integrand equals the coefficient of ,zk-” .111  the product. Notice that0 this rela.tion implies (2.1) since

the sum of the integrands over k equals the integrand in (2.1).

Proof of (2.2). (a) Let IJ = (~41,  . . . , u.,~ ), V = ( ~1,  . . . , v,, ) be the set, of men and the set of women.

Each man u E U (resp. woma.n  v E V) ranks women (resp. men)  uniformly at random, independently of a.11

*other  men and women. A wa.y to genera.te such a random ranking system is as follows. Let us assume tl1a.t.

there are given two n x n matrices X = [Xii],  1’ = [1ij]  whose entries arc all independent, each uniformly

dist8rihuted on the interval [0, I]. For each ma.n 1~;  (wo~nan  v;) we cleline a permula.tion,  i.e., ordering, r;

(resp. wj) of the set { 1, . . . , n} such that,

Xi,**(l) < &r,(2) < * . . < Si,7@) )

CresP* ywI(l),j < ywJ(C?).j  < . ’ . < l&(,,),j) .

-We post,ula.te  tha.t the woman url(j)  is the j-t11 best choice for tjhe n1a.n  VL~, and that the ma.n  ‘Al,;  is the i-t11

best choice for the woman vj. By the definition of S and >‘-,  I,IIC  ‘Ln ra.ndom permuta.tions are independent,

of one another, and each is distribut’ed  uniformly. (The cases when two elements of one row of -X, or one

column of Y, coincide have total probability zero, and thus can be neglected.)

[b)  We may, and shall, consider the pa.rticu1a.r  ma.tching  111  = {(u,, 11;)  : 1 5 i 5 n}. The rank Q,I  of

t’his matching equals n + ET’,  l{j : iyij < X,:i}  1, and we need 1.0  eva.luatc 13zlk,  tmlle probability of the event.

A = {h/l is stable a.nd Qn = k}.

For x = (xl,. . .,xn) and  y = (yl,... , y,,, ) (0 5 xi, yj 5 3 ~ 1 5 %, j 5 u), define Ptl,k(  r, y) to be the

~cmdi120nal  proba.bility  of the event, A given that Sii = I:;, ‘Ijj = gj (1 5 1’ < n, 1 _< j 5 n); in shorI

Y,,k(x, y) = Pr(AI*).  Since all X,p,  Yap are independent,, by the E‘lll,ini theorem it. will suffice to show tl1a.t

p,)12k(x,  y) equa.ls  the integrand in (2.2). To this end, we first observe t1ra.t

(2.3)



where l(M) is the indica.t80r  of the evelIt {M is stable},  a.nd the expected value is condiGoned  on Sji = xi,

\)j = Yj (1 <- 1’ 5 n., 1 5 j < n.). To cva.luate  this especta.tion,  it is convenient t,o introduce a. “maxking”

procedure: Fix 3 E (0, 1); scan the pairs (i, j) and, whenever Sij < Sii  (= xi), mark the pair with

proba.bility  z, independently of all other pairs. The11,  setting 13 = {M is sta.ble  (IVY a.11 the pairs (i, j) sucll

t.hat, S;j < Sii are marked}, we ca.n  write

Let C = {(i,j)  : i # j}, and let Bij ((i. j) E C) be the event “-Yii  < Xij, or (Sii  > Sij, 1’)j  < 1i.j all<1 (i, j)

is marked) .” A little reflection shows that,

I3 = n Bij .
(j.j)EC

Besides, conditioned on X, = x,, Y>p = yp (1 5 Q’ 5 n, 1 < 13 5 n), the events Bij are independent, and

Pr(B;jI*) = (1 - .I’;) + Zj(l - yj) Z, (i,j)  E c.

Therefore
Pr(BIo)  = 111 (1 - Zi(l - 3 + Z?Jj)) ,

so (see (2.3), (2.4))

Note: In order to obtain (2.1) directly, ra.t,her  tl1a.n  from (2.2),  one can use a similar argument, setting the

maxking probabiity z = 1, so that, Pr( B;j IO)  = 1 - .l*;.yj.  The origina.  proof of (2.1) given by Kn~lth [lo]  ditl

not use the random matrices X, Y, but. relied instea.d on aa inclusion-exclusion formula., and interpreta.tion
of each term a.5  the value of a.11 2n-din1rnsiona.l  integral with the integrand  equal to the corresponding term

in the expansion Of nl<,zj<n(l - XiYj).- -

- 3. Expected Number of Stable Matclhgs  for Large 11.

We shall prove in this section that0

(3.1) P,, = (1 + o(l))esln iii n/n! .

Since there axe n! nia.tchings,  the formula. (3.1) implies im media.tely

Proof of’(3.1). In the course of the a.rgument,  a.nd  in the nest secGon  as well, we will llse the following

fa.cts.

Let X1,  . . . , S,, be independent random vaxiables each distribut(ec1  uniformly on [0, 11. Set
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Tntroduce  also the random variables ~51, . . . , L,, which are the lengths of the collsecut,ive sul~intervals  of [O,  I]

obtained by selecting independently 11. - 1 poiuta, each uniformly distributed 011  [O, 11 (in particlllar,  the

Li sum up to 1). Set

u,, = 2 L; (
j=l

Mf, = ly~2n Lj .
- -

Lemma  1. ht.  J,,(e):  f,,(. , .), g,,(e) be the densitv  of Sn, (S,, T,), and 17,~ respectiveJ.y. TJEII

(3.2)

so, in yarlkrilar.

(3.3)

Also

(3.4)
p-1

f&J) F jl2!hm.

Mn/nml lnv. - 1,

nU, -+ 2 .

I’r(!I\/I,,  2 ,,-‘(I1171 - 111111?~  -p)) 2 1 - 0(1)-q  7 if tl E (0, 6” - I )

Noie. l’he relat.ion ( 3 . 2 ) is well known (see Feller [3, Ch. 11, for instance),  bill (i3.4)  appears to be

11ew. We prove both relations in the Appendix by using the fact t8hnt  the joiut. c1vllsit.y  of Ill, , , , L,,-1

equals  (1)  - 1 )!, whenever this density is not zero. As for Lemma 2 (also proveu iu the Appendix), the

a.rgument  is based 011  a classic result which states the following: {Lj : 1 5 j < II} has the same distri-

-l,uI,ioii  as { I I:, / xi:=, 1.1-k : I 5 j < ?I}, where T/T’l,  T4,7z  . . . a.re  indepeiicl~~nt,  cspoII(~l~i iill, \vil I1 ~~ill’~~ll~(‘lC~  Ollc

(Brcinlau  [I], I \arlin  a.ud  Ta,vlor  i], Rkuyi [12]). (S am Karlin has informed nre that, in a course which he

~,a.ugllt~  iI1 1986,  lie r~sccl  tllis conuectNiou  for asymptotic study of M,,,  nncl  other  eslsrcvnal  c.ll~ll.ac.I.(-‘t.ist.ics  of

{ L j  Z-1 5 j 5 II}.)

(a) Lel IIS Ixlgin with a.11  upper bound for P,, Since 1 - cy 5 exp(--a  - a’/‘L), we get,  front  (2.  I ):

(3.5)

where

Sj =
c xi , tj = C XT:,

i#j i#j



Fix (1. > 0 and break the integral into two parts, JI for s := $1 + - 1 . + .cn < w(n) := c1  lnln n and s2 for

s > cu’(n).  Let us show that, for a sufficiently sma.ll  value of a,

(3.G)
J

= o(n In n./n.!)  .
1

Dropping the factors exp(-y”l.j  /2), and integrating with respect to y, we have

To simplify the last estimate, we observe that for z > 0,

(lnF)‘=-*-’ (l---&j-),

which implies existence of a constant c > 0 such that

(:3.7) -

also

(3.8) (lnF)‘=  -(l+O(l))ZS1,  t-00.

By (34,

< ln 1 - ems
- -+CXj.

S

Therefore,
n

c
ln 1 - e-‘J

<nln q+CfJXj,

j=l
Sj -

j=l

and, since Cj xj 5 CL In Inn, we have

The last integral is the expected value of
( l-ex$-‘s~)n )

* over the event {Sn 5 u(n)}. Then, by (3.3),

J < (lnn)ca  ((n - I)!)-~ /u’ni (’ - z-“” dx
1 * 0

5 (lnn)ca((n  - l)!)-lW(?t)

= O(n(ln n)l”/n!)  .

provided that a < (2~)~‘.  This proves (3.6).
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Turning our attention now to JI, i.e., t#o s > U(  r7). t’he generic factor of the product in (Z3.5)  cats  he
estimated as follows:

J

1

J

cu

cl
esp(  -gsj - ~*t;/2)  dy 5 s;’ esp(-:  - 2(ljsJ~‘)/2)  d:

0

2 esp (-2 - z2(ij sA2)/2)  dz
>

where

(3.9)
j=l

F( Ii.)  = J= 2 esp(-z  - z’u/2)  dz .
n

Therefore, the integrand in (3.5) is bounded above by

Here

2 f?k = (17 - 1)t ,
k=l

and (0 5 xj 5 1, s = Clzl xj 2 W(T))),

n

rI
- 1sj = s-n fi(l - Xi/S)-’

j=l j=l

= S-” fi eXp(Xj/S + O(X;/S2))

j=l
= ssn esp(1 + O(w(n)-‘))  .

Therefore

J 5 esp(l + ~cu(n)-l,) J s-‘l  esp(-(n.  - l)ts-2F(ts-‘))  dx ;
2 s&d(n)

so, using Lemma 1 (3.4) (and t’he fact thak s 5 ?I), we ha.ve

(3.10) J 5 esp(l + ~(u(n)-~))  ((n - I)!)-~ ii., s-l ds
3

. E( esp(-(n  - l)U,,F(li,)))  .

Here, by Lemma 2 (see also (3.9)),

(P),!Gvesp(-( 17  - l)U,,F(li,))  = esp(-2F(O))

(3.11)



((P) lim designa.tes the limit iu probability.) So, invoking the domina.ted  convergence  tlleorem, we can assert

that8 the expected value in (3.10) converges to e-‘. &sides,

(3.12)
. 11J s-l ds = 111  n (1 + 0( ln ln ln ?I./ In 1~))  .

w(n)

Therefore,

J 5 (1+ o(l))e-‘nlnn/n!,
2

which implies (see (3.6)) t,liat

Pn 5 (1 + o( l))e-ln  ln 77/72!  ,

(b) It remains to estimate P,, from below. Denote by D the set of a.11 nonnegative x = (x1, . . . , x,,) such

that

(3.1:3) :3 111  Il. 5 s 5 n/ ll? iI )

(3.14) s-‘Xj 5 (1 + E)llln./n) 1 5 j 5 ?I )

(3.15) s-2t 5 (1 + 42/n.  )

(

S = C;=l Xj , t = CT=1 X3 1

)

where 6 > 0 is fixed. According to (3.13), (3.141,

(3.16) Xj 5 (1 + C)(lll?t)-l  < 1 (1 5 j 2 11.)

for all sufficiently large n, so tl1a.t

We want0  to show that the dominant8  part of P,z is contributed by the regioil II, which should uot be.very

surprishg  in light of Lemnlas 1, 2 and part (a). Set

so that Pfl 2 Pn(e). Since 1 - a = exp(-a - cu2(1  + O(CX))/~), a --f 0, using (3.16) we can write for fixed j,

n(l - XiYj) 2 eXp(-Yjsj - Y;tj(l + fin )/2)  9
i#j

where

CT,,  = c 111 - 1 1-l ) c = c(c) > 0.

(Recall thak *sj = Cifj x;, tj = CIfj x:.)  Hence, for each j,

Ij(X):= -

In

(1 - Xi?Jj) d?Jj
+ 0 i#j

I 1

L exp(-ysj - y2tj(l + ~n)/2) dy
. 0

J“j
-1= sj

0
em2 exp(-z”(tjsj2)(1  + ~,~,)/2)  ds

(3.1i)



(111  the last step, we have used .lensen‘s inequality, namely that,

J: ‘2 (J:7
A(z)B(C(z)) dz 2 B A4(  $7 z) cl: )

21 -1 >

if’ U(o) is coIlvex, ,4(z) 2 0, and fzzI’ A(z) dz = 1.) T0 siinylify t#llis  estiniate,  Ive observe Chat, by the
defillitiou  ol’ D,

sj=s--L - s(1  - Xj/S)J-

= SeXp(-Xj/S + O(Z?/.S’)) = SCX]'(-&j/S  + O(Xj/S))

2 c’ 1111)  ) Vc’ E (2,311
uniformly over a: E D, if 77  is la.rge.  Therefore

1-e -si = 1 + O(?P’)  .

Js J e -Z/+=2-~ (1 + 0Sj  + S;‘/2)0
=2$-q&‘),  c”‘=c’--‘2>(),

alltl (13.1’7) becomes
Ij(X) > (1 + O(91,-c’))S-1  C'Sll(Xj/S  + O(Lj/S))-

. eXp(-(tjST’)(  1 + O(lLI-’ ?I))) .

13Ut~  y’ > 2, Sj  5 S = Cyzl Xj,  xy=, tj = (1)  - l)f; t,heref’ow

- (3.18) fi i’j(X)  > (1 + o( l))es-” eXl’(-H(l.S-‘)(  1 + 0( 1)))
j=l

uniformly over L E D.

IA us switch to new va.riables,  naniely

21 = c Xj = S ,

j=l

‘Vj = XjS-’ , l<j<H--1.-. -

Define aho u7, = x, s- ‘. Clearly, 0 5 I:j 5 1 and Cy=, llj = 1. Tl~e conditions (3.13)-(3.15),  which define D,
,become

Thus, ill new variables, the region is the direcf pmtlucl  of the interval defined in (3.19) and a region D’

dc+ined in (3.20), (3.21). Besides, the Jaco1~ia.n  of (~1,  . . . , .t,,) with respect to (u, ~1, . . .,1+,-l)  equak u”-l.

So, it follows from the estimake  (3.18) t,hat#

(3.22)



The first integral here is In n( 1 + o( 1)). 1,et  us have a. closer look at the second integral. Its integrand is

at least exp (-2( 1 + e)) everywhere on I)* . In addition, (n - l)! is the joint density of the first (n - 1)

subintervals a.mong n subintervals ~51,  . . . , L,, introduced in Lemma 1 (see Breiman [l, Ch. 131,  for instance).

Thus, t,he inequality (3.21) lea.tls to

P,,(E)  2 (1 + o(l)) rsp(-I  - ‘Le)(nlnn)/n!

. Pr ( lFja:n Lj 5 (1 + 6) hi n / n , 2 153 5 (1 +
,

- - j=l 6)2/n  >

for every fixed E > 0. But the proba.bi1it.y  of the event on the right hand side tends to 1 as n. + oo (see

Lemma 2). Letting n + (30 and then c 1 0 we are able to conclude that

P,l > (I+ o(l))e-‘nlnn/n!. 1

4. Probable Behavior of the Maximum Rank and the Minimum Rank of a Stable Matching.

Let I’,~  and R,, be the minimum (male relnded)  rank and the maximum rank for any stable matching. It is

well known that I’,, equa.ls  the total number of proposals in the fundamental algorithm, in which men propose

to women. The resulGng  stable matching is both male optimal and female pessimal. So, by symmetry, we

ca.n  assert that, Zn disll‘jh~lo~~, R,, coincith with the female related rank of that pa.rticular  matching.

Our goal is to prove

Theorem 2. In prohahili  f-v

(44 r,/nlnn --f 1,

(4.2) 11&/n*  In-l 12 --) 1 ,

asn-00.

Notes. According to this theorem, the stable matching reached via proposals made by men to women

is a.s. considerably more fa.vorahle to men than to women. In short, initiative pays! Also, the relation (4.1)

means that the number of proposals in tile fundamental algorithm is a.s. close to n Inn.

The core of t#he proof is the following statement.

Proposition. For every p > 0 and S E (0, er - I),

(4.3) Yr(T,,  2 n(lnn - In Inn - p)) 2 1 - O(d),

(4.4) Pr(R,  5 7,’ Iii-ln(1 + (in Inn + p) hi-’ n)) > 1 - O(d) .

Proof of Lemma 3. Notice first, t,hat for every x? between n and n2,

Pr(7>,,  5 k) < n.! C Pnm ,
m=n

4

13r(Rtl > k) 5 n! 2 P,,, .
m=k

9



Here  P,, ,I) is the probability that, a fixed matching is sta.ble  and its rank equals n?. In Section 2, we proved

that

Pnm =
II

([P-n]cp(x,  y, 2)) dxdy ,

(4.5) Q(XL’,Y,,I) :=n(l-Xi(l-Z+ZtJj)).
i#j

Mimicking an a.pproach due to Chernoff [2] (which allows to estima.te  the tails of a. dist,ribution t8hrough its

moment genera.ting  function), we can write then

(4.6) Pr(r,  5 Ic) 5 n!
II

i n f  (znmL
O<z<l

qx, Y/,  4) dx dY >

(4.7) Pr(R,  2 k) 5 n!
II

inf (+znBk
221

cI>(x, y, z)) dx dy .

In the argument which follows we will not try to determine the best z = 2(x, y); it will he sufficient8  to choose
% = z(s) (s = cy-1 Xi).

(I) Consider 7=,, first. Bounding each factor 1 - x;(l - z + ZYj)  in (4.5) by esp(-.E;(  1 - z + =yj),>,  and

integrating with respect to y = (~1,  . . . , y,), we obtain from (4.6)

Pr(7’, 5 k) 5 n! - I)(?? - 1)s) fi l - e-2s~‘) da: ,

j=l
2Sj

- (sj = & xi). H ere, by (3.7), (3.S) and the condition z 5 1,

” 1 _ e-t”J

rI
j=l

ZSj
~c(l-~~“>” (

where c is an absolute constant. In conjunction with Lemma 1 (3.3), we ha.ve then

(4.8) Pr(r,,  5 k) 5 cn
I

‘n inf (exp(H(s,  z)))  ds ,
0 O<zll

(4.9) H(s,  2) := (% - l)(n - 1)s + n ln( 1 - evi”)  - k hi z - 111 s ,

for all ?1 < X: 5 7~~. The relation (4.3) will be proven when we show t1la.l  tOhe  right. ha.nd expression  in (4.8)

goesIt  0 as nAh (6 E (O,ep - l)), foi

(4.10) X: = n.(ln n - la In n - p) .

TO make the best use of (4.S), it is natural to choose z = z(s) which minimizes H(s, 2) f’or ,z E (0, 11.
But

H, = (n - 1)s + ns(e*’ - 1)-l - k2-l = 0

if zs = a and a. satisfies an equation

(4.11) h(cr) = k ) h.(a) := Cr((??  - 1) + n,( eQ - 1)-l)

10



Now,  h(O+)  = II, and a.11 elementary (a.lbeit tedious) computakion show tl1a.t

II’ 2 lt’(o+) = n/2 - 1 .

Hence, (4.11) does have a unique positive root a = c/.(k) for all k > 11,  and (I(X:) is continuously differentiable

with a’(k) > 0. In pa.rticula.r, if b is given by (4.10) then

u = (1 + O(ln n/71))( k/l/)

= hi n - In ln n - p + 0( In’ n/11)

(4.12) < 111 n - hi ln 72 - p’ , vpl <p,

for n sufficiently large.

Now, we can choose z = a/s if s > a, and z E 1 for s 5 o. Then it, follows from (4.9) that

Ion o$f<l(exp(H(s, 4)) ds
a

5
I

* .Kl

~~‘(1 - e -S)71 & + a-X’( 1 _ e-“)“e’“-I)”

0 1

sk-lp-(“-l  b ds,
a

Al =
I

a s-l(l - e-“)” c/s,
0

A2 = (a(,, - l))-k(l  - e-a)‘hp(“--I)‘l(X*  - I)!.

So, if k satisfies (4.10),

Al 5 a.(1  - e-“)“-’ = O(uexp(-ne-=))

(4.13) = O(nsep’) , v P ’ E (O,Y).

Furthermore, by Stirling’s formula for factorials,

(4.14) A2 = O((ln n/n)l/” esp ($,I(  k)))  ,

(4.15) #h(b)  = F&c (1.(k)) 1

(4.16)
h: - 1

F,(K, a) := (n - 1)cy + n ln( 1 - P-“) - I; III CI + (ti - 1) Iii ~
e(n - 1) ’

To sharply bound &(k)  from above, we need to look closer at, f;‘,,(  K, (r).  First of all,

alqtc., cr)/Bcr = ( 71- 1) + n(P - I)-’ - I- ti.cr ,

11



see (4.11), and

(4.18) M,,(/i.  o)/tk  = In K - l
cy(n. - 1) .

Consequently, (/CO,  00)  defined by

(4.19) I- (YtJ - 1 = nmg ,

(4.20) 60 = (77 - 1)WJ + 1

is a. st,a.t,iona.ry  point, of F,, (I<, a). An easy l~~otstrapping  ~110~s  that

(4.21) a0 = In n + In ln n( 1 + O(ln-’ n)) ,

1~~  = n(ln n + lnlnn.(l + O(ln-l  n))) ,

so that q > k (see (4.10)). Tllen, by (4.15),  (4.1(i), (4.19)-(4.21),

.(4.22)

oT1 (A-~) = F,, (tco, ao) = 11 ln( 1 - edcuo)  - In CYO

= - Iii cvg  + 0( neeao )

= - 111 trg + O(K1 17) .

Let, us show tlia.t., in fact, $,,(Q)  = inax&,,(  Iudeed, since a = U(K)  is differentiable, using (4.17), (,l.lS)

we obtain

(4.23) = 111 1 +
(

1 (-$y1))  >(<)O,u(n - 1)

for ti < (>)r;o. (d/(P - 1) decreases if cu increases, and U’(K)  > 0.)

Since Ii < ~0, we now I;I~OV that c$,,  (b) < d,, (/in). St,ill,  we would like t#o  do lAtei*, knowing also t,llat,
in fact, ~0 - k is close to ‘271 111  In 71. To this end, choose h;i such that  ~21  = a(Ki) satisfies

(4.24.)
no 1
- = 111111  11. )
e”l - 1

that is (cf. (4.19),  (4.21)).

(4.25) ai = In 7) + lnln n(1 + O(ln-l  n)) .

Then ~1 E (k, r;,~);  really, 1 ~1 < /;c) since CV] < cxo (compaxe  (4.21) and (4.25)) and A: < &;1 (compare (4.12)

and (4.25)). Therefore,



.l?he deriva.tive C&,(K)  is given by (4.23). Since ncl/(e’ - 1) is at least In hi n (see (4.24)) on [Ic,  611,  we easily

get

(4.2T) d:,(K) = (1+ o(l))ema, a = U(K),

uniformly over h: E [k*, ~13.  Besides, considering K as a function of Q, we ha.ve  (see (4.11)) also

(4%)

2 = (n - 1) + n(e’ - 1 - ae’)/(e’ - l)*

= n ( l +  O(ae-a )) = n(l+ o(l))  -

Combining (4.2G)-(4.28).  we estima.te

dn(b)  < &(Ko) - (1 + o(l))n(e-‘Ck)  - e-“l).-

Here (like in (4.13)))

and, by (4.22), (4.25),

ne -a(E)  > ep‘ In n ,- VP’E  (W,

4&O)  I 0 >

ne -a1 = nexp(-Inn  - ln lnn( l+  O(ln-ln)))

= O(ln-’ n) .

So, we arrive aA

(4.29)

Therefore (see (4.14))

(4.30) A2 = O(n-(‘/2+eP’)), VP’ E (O,P), *

The estima.tes  (4.8), (4.13),  aad (4.30) show that

I+(?*,, 5 n(ln n - lnlnn - p)) = O(7CceP’-‘)), v P’ E (0, P> * I

_ (11) Turn I~OW  to R,,, the ma.ximum  rank of a stable matching. With the help of Lemma 1 (3.2),  (3.7),

(:3.8),  a.nd  (4.7), we obtain simila.rly  to (4.8),  (4.9),

(4.31) Pr(R,,  2 Ic) 5 cn J* $(exp(Hl(s,  z)))&(s)  ClS
0 -

where

and

O,(s) = Pr(Mn 5 s-l),

(4.32) I-l&, 2) =
{

ff(s, 2) + YSZ , s L so,
H(% 4 > s > so;

13



y, SO are a.bsolute constants. (In the part I, we could afford to drop the factor e,(s).  but this time we will

need it.)

Let us show that the right hand expression in (4.31) goes to 0 as nS6 (6 E (0, eP - l)), for

k = n2 111-l ?I(1 + (lnlnn +p)ln-l  n).

The root.  a of the equation (4.11) is this time

U = nln-l n.( 1 + (lnlnn. + pn) In-l n) ,

where

Pn = p+ O(l).

We choose z = U/S  if s < a, and z E 1 for s > CI..  (Recall that a feasible z has to be at least 1.) Set

(4.33) a1 = nln-l n(l+(lnlnn+p’)ln-‘n), P’E (O,P).

Breaking [0, n] into [0, al], [al, a], and [a, n], and using (4.9),  (4.32),  we can write

J

n
inf (exp(Hr(s,  z)))@,~(s)  C/S  5 ~~“(1 - e-‘)“eCn-‘)‘(H1  + &) + B3,

0 221

where
B1 = eya J(L1 S%-le-(rr-a *)v, (s) ds ,

0

B2 = Ja S~-le-(fJ-‘h()(S) ds 7a1
B3 = J ” ~~‘(1 - e-“)“@,(s) ds .

a

We estimate B1, B2, Ba, moving backward.

(1) For s E [a, n],

Since

en(s)  = Pr(Mn  < S-r)  5 Pr(M,,  5 (2-l)  = en(a).

U-l =n-’ (hi n - hi ln n - p; ) , Pi, = P+4%

we have then by Lemma 2:

(4.34)
J

n
B3 5 &a(u) s-l ds = ~(n-~~“),

a
v P3 (5 (0, P) -

(2) Next,

Jl-lBZ < 6, ( a.1 ) Sb-le-(7a-1)s (js.

11  1

Here
e,(q)  = O()I-fP2)  ( v P2 E (0, P’) 7

because (see (4.33)))
- 1

a1 = n.-‘(Inn -Inlnn - p’ + o(1)) .

14



Also

J cI sk-le-(rl-l)s (is < *mc -
at .I

&-le--(lb--l)d de9

n

= (17  - 1)-“(k  - l)! = 0
((qs))y  *

(k - n2 hi-’ n .) Therefore,

(4.35) B2 = 0 (KeP2 (-$$-*) .

(3) Finally,

J a 1

B1 5 eya Sk-le-(n-l)j ds
0

(6 1

= eya J e’J(‘) ds, q(s) := (k - 1) Ins - (n. - 1)s.
0

The function q(s) achieves its ma.ximmn at

IL-1
S* = - = 11 111

n - 1
-l n(1 + (111111 71. + p;, 111-l  It> , pi = p + o(1).

By (4.33), s+ > ~1, so that  q(s) is increasing on [0, (111.  Also

9-* = a.1 (1 + o(l)) ,

s* - ul = 77. In -2 n(p - p’ + o(1)) .

Therefore, since q”(s) = -se’(k - l),

B1 < eyc’clle 4(n1) 5 u.leYn exp(q(s,) + $q”(g)(ul - s*)‘)

(g E [a*, s*])

(4.36) =
k - 1K ) k-l

0 -
e(n - 1)

exp(yu - An” lnS3 n.)
1

= 0 ( ($+.-)k-l)  exp(-Xn’ln-3n/2), X > 0.

(Recall that a = O(l)  In-i )I), so t8ha.t  (1. = o(1~~  1nA3  n).)

A combination of (4.31), (4.34)-(4.36)  yields at last

Pr(Z?.,,  5 b) < cn(1~-‘~’ exp(&(k))  + nSeP3) ,

for every pz E (0, /) and every p:3 E (0, y), provided that p’ < p. Here, as in the part I,

o,n(4 = F,,(b.)  t a = u(k) .

It remains t,o recall (see (4.22)) that the ma.ximum  value of the function &(k)  is negative.

The proof of Proposition is now complete. 1
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The rest, is short8.  First, of all, I=,, equals t#he total number of proposals in the Fullt1a.il~c~nt.a.l  a.lgorithm,

and this number is s~ochnsl~cally  dominated (Iinuth  [lo], Wilson [13])  by the tota. number of draws in the

coupon collect80r  problem with n coupons, and the expected value of t’he la.tter is n H,, (H,, = 1-t f +a . .+ i).

Given c,, > 0, let A be the event that a certain coupon, say j, has not been drawn in the first N =

( 1 + E,, )n In II draws. Then

Pr (r,, 5 (1 + cn)n In n.) 2 1 - n Pr(,4)

= 1 - n(1 - n-l)‘v 2 1 - nexp(-N/n)

= 1 - 1l-c” ---f 1)

provided tl1a.t  E,,  In II. - KJ. Combining this with (4.3), we obtain:

Pr(n(lnn. - lnln n - p) _< 7*,,  5 ~(1x1  17.  + w(n))) A 1 ,

for every p > 0, and w(n) - 00 however slowly. Consequently, r,,/~2 ln n. 4 1 in probability.

Furthermore, denote by r,,j the total number of proposals made to a. woman j in the course of the

f\lndanlent,al  a.lgorithnl.  Let. R,,j be the rank of her eventual part’ner, according lo her preferences, needless

(4.3Q E(7rn*)  = **- = -qLl) I: 1’-‘@a H,) = H,, .

13csi  des , given T,,; = k, R,j - 1 is binomially distributed with pa.ra.met.ers  ?t - X: a.nd 1) = (X:  + 1)-l.  Therefore

and; by Jensen’s inequa.lity  and (4.37),

n+l
E(Rnj)  ’ E(K,,j)  + 1

n+l
=H,,*

SO,

2 n(n + l)/(Hn + 1)

- n2 In-’- n(1 + O(ln-’ II)) .

A simple a.rgument,  which uses (4.4) and the last, relation yields tahat3.  in probability, R,, /YJ’ lnml n - 1.

rrheorem  2 is proven.

AcX-r~orvle~~er?le~~~,.  I a.rn very grat)eful  to Don Iinuth  for invitin g me to spend the year of 198s  a.t,  Stanford.

Don introduced me to the sta.ble  marriage problem and, in particular, suggested that 1 underta.ke  an asymp-

t,ot,ic  st,utly  of the expected stmable ma.t&ngs.  In an ea,rly sta.ge of this work, I was greatly helped by insightful

comments on the problem made by N. G. de Bruijn in a let’ter  to Don. Ma.ny discussions of he work in

progress with Don, and also Audy Goldberg, V1a.d  Lifschitz, and Herb Wilf, inva.ria.l>ly encoura.ged me to

keep going. Don read the first draft of the pa.per  and ma.de  numerous suggestions, which were extremely

useful to me in writing the final  version. My sincere thanks to Da.vid Aldous, l3rad Efron, Don Iglehart,  and

Sa.m Kazlin  for opportunities to present a. talk on the stable matchings problem.



Appendix

Proof of Lemma 1. For 0 < s1 < sz < n,

where 0 5 xj 5 1 (1 5 j 5 n), and s,, = CT=, 3IC. E (~1, 272). \Vtl  switch t,o new vaaiables

n
21.  = c Xj ,

j=l

% = Xjll-’ , l<j<n--1

Define also 21~  = x,77-l, so that C’?-  u. = 1. ?‘he inverse transformation isJ - 1  3

Zj = 'II  l)j  , lLjLn,

where

11 - 1

1' - 1 - c “‘j .?I -
j=l

Its .Ja,cobian  is u”-l,  whetIce.

where sl < u < s2 and maxl<j<,,  t’j 5 11-l.  Therefore- -

maxv,<a -1

l<j<n

11 - 1
=gq! Pr(M?,  < s-l)  ,

since (n - l)! is the joint density of the first (12 - 1) intervals L1, . . . , ,!&-I in the random partition of [O, l]

by, (n - 1) random points.

Similarly, denoting Cy=, V; by 1,

Pr(sl  5 Sn 5 S 2, t* < I-r,,,,  5 t2) =
J I

. *. ‘Il. ” - * dudq . . . dv,,- 1
-
s1<7L<sz
tl<t<l?- -

mas v3 <u-l

< . . . u”-* dtr,dq . . . dv,,-l-
.i s



(in both integrals, CPz,’ ~j 5 1). Since this inequality holds for all s1 < .sz a.nd tl < t2, we ha.ve

where gn( .) is the density of Ci’=l  LT.

Proof of Lemma 2. Tile  random  va.riables  ~51, . . . , L, are exchangeable and, for 1 5 k 5 12 - 1, the joint4

density of ~51,  . . . , Lk is given by

(A-1) .fLl L&l,. . ,.l'k)=(~~-l)~(l-~Xj)n-k-l,  (ab~~a(a-l)...(rc--+l)),

where 0 < 3:j 5 1, C,z‘,, .r:j 5 1. In pazt#icular,

(A-2) Pr(LI 2 21,.  . . , Lk>zk)=  (lvgxj)n.

provided that, C’=, xj 5 1. (See E’eller [3, Ch. I].)

(1) Fix z and let .1:  = (Inn + :)/I,. Define N,, as the total number of the variables L; 2 x. ‘IThe~l by

* (A.2),  for every k > 1 and 12.  large enough,

E( Iv&) = &Pr(&  2 2, . . . ,Lk 2 2)

- r$(  1 - k~)~ = (1 + O(l))nk  exp(?2ln(l  - kz))-

= (1+0(l))  exp(k1 nn + n(-kx + O(ln2  n/n”)))

= (l+O(I))(e-z)k,  n-+00.

Therefore, N,, converges in distzibution  to a Poisson distributed random variable N with pa.ra.meter  X = e-‘.

- Consequent81y, denoting maxlsj<l,  Lj by Ad,,,,

Pr( Mn < (111  n + 2)/n)  = Pr(N,  = 0) -+ Pr(N = 0) = eee-’ ,

and

h4,,  = (Inn. + O,( 1)) /n ,

where O,( 1) stands for a. random varia.ble  hounded in proba.bility  as n + CO. I

(2) Let, c = (111 n. - In In n - /‘)/an.  We want to show that

Pr(Mn 5 x) = O(KeP’) ) v p’ E (0, P) *
To this end, we observe t,hat (151,. . , L,,) coincides in distribution with (L,, . . . , L,,) where

- 1
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and WI, . . . , l/v, are independent, exponentially distributed with parameter 1 (Breiman  [1, Ch. 131,  Karlin

and Taylor [I-),  Ch. 131).  7Jsing the central limit theorem for (modera.tely)  large deviakions  (Feller [3,  Ch. lG]),

we ha.ve  (E( Wj ) = va.r( HI, ) = 1) :

SO ,

Here,

Pr(M,  5 .r:) 5 Pr
(

max Wj 5 x(n + u9/14
l<j<n 9

+ O(exp(-n2q2))  .

Pr
(

max LVj 5 X(n + Tbg’14
9 (

=
l<j<7&

1 - exp (--L( 71  + n.‘/14)))‘”

5 exp(-nexp(-x(n  + ng/14)))

(3) It, remains to show that nU,

I;,, coincides, in distribution, with

.

= exp (- exp (1n n - (ln n - III In 77 - p)(l  + 7~~~‘~~)))

5 exp(- exp(lnln n + p’))  = I?-~“’ , WE (Rd.  I

+ 2 in probability, where [I,,  = Cy=, Li. To this end, we notice that

a.nd, by the weak law of la.rge  numbers,

(P) lim n IJ,,, = 2 .12 - ccl
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