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Abstract

We present a. general method for translating sodin 2; by comparisons algorithms to
algorithms that compute a Hamilton path in a. tournaments.  The tjranslation  is based
on the relation between minimal feedback sets and Ha.milton  paths in tournaments. We
prove that t,here is a one to one correspondence between t,he set of minimal feedback sets
and the set of Hamilton paths. In the comparison model, all the tra.deoffs for sorting

between t,he number of processors and the number of rounds hold when a. Hamilton path
is computed. For the CRCW model, with O(P))  processors, we show the following:(i)
Two paths in a tournament can be merged in O(log  log??.) time (Valiant’s algorithm
[Va]); (ii) a Hamilton path can be computed in O(log  7)) t.inie (Cole’s algorit~hm).  This
improves a previous algorithm for coiiil~iitiiig  a Ham ilt,on l)atli whose runiiing  time was
0(log2 n) using O(n2)  processors.
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1 Introduction

11 tournament ‘7 = (I/, D) (IV1 = n is a directed graph in which every pair of vertices is)

joined by a directed edge. It can be viewed as a complete graph whose edges are given an
orientation. A Hamilton path in a gra.ph is a simple path that contains all the vertices, and

each vertex appears exa,ctly once. A well known theorem states that there is a. Hamilton

path in every tournament [Re, Be].

In this paper we investiga.te  the complexity of computing a Hamilton pa)th in a tourna.-

ment and other problems rela.ted to it. Our methodology relies on the intimate relationship

that exists between Ha.milton paths and minimal feedback sets in tournaments, and their

connection to sorting algorithms. Sorting by comparisons may be viewed as computing a

Hamilton path in a transitive (acyclic) tournament. The purpose of this paper is to show

the opposite direction, na,mely how sorting algorithms can be generalized to compute a

Hamilton path in an a,rbitra#ry  tournament.

Sorting by compa.risons is a. well investiga.ted  problem, perhaps the most in computer
science. We show how to exploit the wealth of results on it to design parallel a#nd sequential

algorithms for a,rbitra.ry tournaments.

Parallel algorith IUS to compute a Ha3milton path in a, tournament have appeared in [Na.,
So], but were designed by ad hoc principles. The key idea. in computing the Hamilton path

in both papers is the follo\c-ing:  in every tourna,ment there exists a vertex (separator) whose

indegree and ou t.degrce a.re bounded from below by IVl/4; this gives a recursive formulation
of the problem with only a. loga,rithmic  number of steps. The difficulty with this a,pproach  is

that. the best bound known for finding a, sepa.ra.tor  requires 0( n2) processors. Ramac1~andra.n

[Ra] showed using aadversary  arguments that a lower bound on the number of edges whose

orientakion must bc known in OIXIN  to find a, separator is sl(~,~).

In a.nalogy to sortin,,c we define two additional problems on tournaments:

l Merging tw;o pakhs  such t,ha?.t  the relative order of the vertices in the original paths

remain s after t, he m erge.

0 k-selection7 e.g. finding the kth vertex in the Hamilton path in a, tra.nsitive  tourna-

ment, is generalized to finding

arbitra.ry tourna.men  t.

a vertex which is the kth in some Hamilton path in an

We now present a summa,ry  of our method. A minimal edge feedback set F in a directed

grasp11  G = (I/? D) is a set of edges such tha,t G’ = (V, D - F) is a,cyclic, and F is minimal
with respect to containment. We prove tl1a.t  there is a one to one correspondence between

the set of minimal feedback sets and the set of Hamilton pakhs in an arbitrary tournament7

and show how a minima.1 feedkk set can generate a Hamilton pakh and vice versa,. We also
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show that an edge in a0 transitive tournament whose orientation is known by implication,
cannot appear in the Hamilton path. Assume now that the input to a sorting algorithm is

not a transitive tournament but rather any arbitrary tournament.. If a. in inima.1  feedback
is computed for each round of comparisons and its orientation flipped, namely the sorting

algorithm is “cheated”, then the Hamilton path computed by the sorting algorithm \vill also
be a Hamilton path for the original input. Intuitively, this ha.ppens  because the edges on
which we “cheated,’ are actually implications. These notions are formalized and proved, a.nd
they result in a general method for translating any sorting (or sorting related) algorithm to

an algorithm that computes a Hamilton path.

There are two known proofs for the existence of HaGmilton paths in tournaments. One
proof is Redei’s proof [Re], and the other is the aforementioned separator theorem. In view

of our results, the first proof corresponds to insertion-sort, wl1erea.s the second t.o quick-sort.

In fact, our results imply that the known sequential sorting algorithms also compute a.

Hamilton path in an arbitrary tournament.

The equivalence between sorting and computing a, Hamilton path holds both in the

comparison model and in PRAMS. Valiant’s comparison model [Va.] can be easily generalized

_ to arbitrary tournaments. In this model we prove that the complexity of computing a
Hamilton path in an arbitrary tourna.ment and in a, transitive one is the sa.me. It follows

that all the lower bounds, upper bounds and processor-time tra.deoffs  for sorting, apply also

when computing a, Hamilton path in an arbitrary tournament. These bounds and kadeofl’s

ha.ve been proved in a series of papers, [AAl, AA2, AAV, Al, AV, 13He, 13110,  I’]. Hell
and Rosenfeld [HR] 1rave also considered the sequential complesity of a.lgorithms in the

comparison model for computing generalized. paths in tournaments.

The situation with implementing our translation method in the PR.Ah4 model is more

- complex. The difficulty is that it requires the computation of a, minima.] feedback edge set
in a. directed graph. It is not known whether an NC algorithm exists for this problem.

Li’e consider two PR_4h4  sort,ing algorithms, and give for these special casts a tlon t r.i\.ial
procedure that computes a minimal feedback set in consta,nt time. The a.lgorithms are
Cole’s merge-sort [Co] and Valiant’s merging algorithm [Va.], a,nd our results are in the

CRCW model. Hence, a Hamilton path .can be computed in O(log n) time, airtl two paths

of length n can be merged in O(loglog n) time; both algorithms use O(n) processors.

These two algorithms achieve an optimal speed (up to a0 constant factor) lvith respect

to the sequential complexity. Notice that in our case the number of processors is linear in

the number of vertices and not edges. This result is interesting by itself.

Our results also imply an O(n log n) sequential algorithm for computing a, Hamilton path
in an arbitrary tournament. As we already have mentioned, merge-sort will adso output a.
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Hamilton path for an arbitraxy tournament. This bound also follows from Redei’s proof [Re],
but only when a,ppropriate  data structures a,re used. It can be proved that Batcher’s sorting

network [Ba.], also computes a Hamilton path when the input is an aabitrxy tournament,.
However? it is not obvious whether the AIiS sorting network [AKS]  can be a.dapted  to

tournaments. This motivates the search for a. sorting network whose depth is less tl1a.n

O(log2n)  and also computes Hamilton paths. It. would also imply better bounds for EREW
algorithms.

As for the k-selection problem, it is easy to show a. lower bound of fl(log 7t/  log log 12)

time for any PR.AM model even in the ca,se of transitive tournaments. Hence. t,he best

strategy (up to a factor of O(loglog 1~) would be first. to compute a Hamilton path, and

then solve the k-selection problem. On the other hand, in the comparison model, the result
o f  [AKSS] p lim ies an O(loglog 12) upper bound.

2 Terminology and preliminaries

Let T = (V,E) denote a tourna.men  t, tha#t is a complete gra.ph whose edges are orientted.

Let the cardinality of’ the vertex set lx denotetl I,y 11.. If a.11 edge is oriented from 3~‘ to W,

then we sa.y that w is smaller tl1a.n 40 (20 is greater t1~a.n v) a.nd denote it either by v < W,

or by v d w. A path ~0, q, . . . , vk is a. sequence of vertices where ‘u; < v;+l a’nd ‘(1;  # ~:j for

0 5 i # j 5 k. A cycle is a pa,th where ‘L’~ = ‘ak. [f v&es v precedes vertex w in a. pa&h P,

the11 ‘u < w with respect to the pa,th P or 1’ is below w (W is above v). The first and last

vertices in the path are called bottom and top l.espectively.

A tournament is transitive if and only if’ it is acyclic. -411  implication in a. transit.ive

tournament is an edge whose orientation is il~~plietl by the orienta.tion  of other edges in the
tournament, namely to avoid cycles.

Let P and Q be two paths in an a,rbitraa*y tournamcn t a.nd let R be the result of merging

P and Q. Then this merge has the following property: if v < w with respect to P (Q), then

a.lso v < ‘1~7  with respect to R.

An edge feedback set F il; a directed gral)h 6’ = (I/‘?  D) is a set of edges such that

G’ = (V, D - F) is acyclic. Computing sucll a set, of minimum cardinality is NP-complete

[C:J], whereas computing a minimal such set with respect to containment ca’n be ea.siIy done
in polynomial time by a greedy a.lgorithm. -411 easy property of minimal feedback sets is

t1la.t the graph resulting from inserting a.ny edge of F in G’ is cyclic.

The graph G = (V, IV, Q) is ca,lled a. complete path directed bipartite  graph (a,bbreviated

CPB) if Q contains all the edges between V and 147, and the graph induced by 11’ (W) is a,

directed Hamilton path.



3 Hamilton paths, minimal feedback sets and the compar-

ison model

In this section we show how Hamilton pa.ths  and minima1 feedback sets are relaked to each

other in tournaments. We first extend the parallel compa.rison  model to tournaments. This

model wa,s first, introduced by Vaknt  [Va,]  for the purpose of ana.lyzing sorting a.lgorithms;
only compa.risons a.re taken into account in it, whereas internal processor computation and

communicakion  a,re not cha.rged for. The struct,ure of an algorithm in this model is the
following: in each round a. set of element pairs are compa.red until the output is kno\vn.

The aim of an algorithm is to minimize both the number of rounds and the total number

of compa.risons.

M7e extend this model for tournaments in the natural  way. The answer t.o a, compa.rison is

the orientation of an edge in the tournament. Hence, in the beginning we have a tournament
whose edge orientakion  is unknown, a.nd at each round, we a.sk for the orientakion of a. set

of edges. The a.lgorithm proceeds till the induced gra,ph  of the known edges cont!a.ins the
solution. Let .f(v, 1,:) denote the minimum number of comparisons needed to compute a

fkction  S in I; rounds and 2) processors. As \ve a.lready ha.ve mentioned, sorting can be
viewed a.s computing a. Ha.milton pakh in a, transitive tourna,ment.

The next easy lemma. is used by our main theorem tha,t follows immediately.

Lemma 3.1 Let e = 1~ -+ v be an edge in a transitive tournament direction is

by implication. Then e cannot appear on the Hamilton path.

Proof: If the orienta~tion  of e is IillOWIl  by implication then there exists an element *w such

that u -+ ~7 and w - au. Hence? e ca.nnot appear on the Hamilton pakh. i

Theorem 3.1 Let A be an algorithm that computes a Hamilton path in a transitive tournament

with complexity H(~~, I;). TIlen there exists an algorithm l? that computes a Hamilton path in

a non transitive tournament ‘1‘ with the same complexity fI(l,, /;).

PiGoof:  Let &I,. . ,. , QI; be disjoint. sets of directed edges and let F = 1;; U Fl U . . . U Fk be

a, set with the followiug properties:

1. FL 2 Qis

2. Fl is a. minima.1 feedback set in the graph inducecl by Ql.

3. Inductively, I;‘; is a minima.l feedback set in the gra.ph induced by (Q1 - 171)  U (Q2 -

F2)u  --- u (Qi-1 - K-I) u Qi-
It is easy to verify thak for every 1:? Fi = Fl U . . s U Fi is a minimal feedback in the gra,ph

induced by Q1 U... U Q;.
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Denote by 1Fi the set of edges of Fi such tha,t the orientation of each edge in F; is

flipped and let. Q: = Q; - F; U TFi. Define A(R1, . . . , Ri) to be the set of comparisons in

round i + 1 of algorithm A under the assumption that the compa,risons in the first i-rounds
were RI,..., R;. With these notations, the set of comparisons of Algorithm B, 91: . . . , Qk,

will be derived from algorithm A in the following way:

1. QI - -40)

‘2. Q;+I + Jt(Q&.,Q::)
First we show that Algorithm B is well defined by proving that H; = Qi U - - - U Qzwl is a

legal input to round i of a.lgorithm  A. It is easy to verify that H; is a. legal input if it is

a.cyclic. Assume to the contrary that there is a cycle c in it. The edges of H; are of two

types: edges of the minima1 feedback set Fi tha,t were flipped, or unflipped  edges. By the
definition of a. minimal feedback set, for every edge e = (‘2~ --+ U) E F", there is a, pa.t.1~  p, of

u&lipped edges from o to U. Now, exchange every edge e E c that belongs to Fi by pe and

get as a. result a. cycle of edges that were not flipped. If that cycle is not simple, it contains
a0 simple cycle a.s a. subgraph, hence contradicting Fi being a minimal feedback set.

Now tha.t -Algorithm B is well defined, assume to the contra.ry  tha& its output p is not
a. Haniilton pa.th  in I‘. The path p is not a, Hamilton path only if it contains edges whose

orienta,tion  was flipped, na,mely edges that belong to F, the minimal feedba,ck  set.. This

cannot happen as the edges of F are implications in the graph induced by HA., and therefore

cannot a.ppea,r  on the Hamilton path by the lemma 3.1. 1

Corollary 3.1 Let A be an algorithm that merges two paths in a transitive tournament with

complexity M(~J, I;). Th en there exists an algorithm B that merges two paths in a non transitive

tournament with the same complexity. i

i-Inother  prol)lem  tha,t wa,s extensively studied in transitive tournaments is the k-selection

probleln:  find an element larger than /C - 1 elements and smaller than IL- 1: elements. This
problem ca,n be generalized to non transitive tournaments in two wa.ys. The first one is

io find a.11 element in the tournament (if one exists) whose indegrec is exactly equal to k.
It ca.n be shown tha.t the minimum number of comparisons needed to cl&ermine  such a.11

element is s1(~~),~)  [Ra.], and therefore the running time ca,nnot be polylogarithmic with a

linear number of processors.

A more relaxed definition is to find

k-th element iu some Hanmilton path.

an element v in the

We show tha,t the

tournanlent such that v is the

complesity of this problem is
equivalent to the complexity of k-selection in the transitive case.



Corollary 3.2 Let J! be an algorithm that solves the k-selection problem in transitive tour-

naments with complexity S(p. Ic). Then there exists an algorithm B that solves the &selection

problem in non transitive tournaments with the same complexity.

Proof: Algorithm A is translated into G in the same way as in Theorem 3.1. The corollary

follows from the observation that any k-selection algorithm can be viewed as a step in a

sorting algorithm. 1

It follows from Corolla.ry  3.2 that the &selection algorithm of [AICSS] in the comparison

model whose time complexity is O(loglog ~1) with a. 1inea.r  number of processors, can be

applied to arbitrary tournaments as well. On the other hand, in the PRAM model, we have

the following theorem tha*t implies that the best strategy for /;-selection,  (up to a fa,ctor of

O(loglog n)), would be first to compute a Ha,milton path.

Theorem 3.2 There is a lower bound of R(logTj./  loglog la) on the complexity of the k-

selection problem for transitive tournaments in the PRAM model.

Proof: This follows easily from the lower bound of [Bea,] on computing the exclusive OR of

a bit vector, as it also implies a lower bound of 0(log I?,/ log log n,) on sorting. Assume there

was a k-selection algorithm whose time complexity ivas bet,ter than O(log  12). Invoking this

. a.lgorithm n times simultaneously for k = 1,2, . . . , ~1. would imply a better bound for sorting.

Hence, a. contradiction. i

Another consequence of Theorem 3.1 is the following relation between Hamilton pa&

and minimal feedback sets.

Theorem 3.3 Let P be the set of all Hamilton paths in a tournament T and let .F be the set

of all minimal feedback sets in a tournament T. There is a one to one correspondence between

P and F.

- Proof: We first show how a minimal feedback set 4’ can be computed from a given Hamilton

path p. For every pair of vertices v, w such thai ?J precedes 20 in the pa*th, add the edge
(v, UJ) to F if it is oriented from ‘UT to V. Ot)viously, I’ is a, minimal feedback set and t\vo

different paths cannot generate the same minimal feedback set. We now prove the other

direction. Let F be a given minimal feedback set in a0 tournament T and let T’ be the

tournament in which the orientation of the edges in F were flipped. By Theorem 3.1, a.

Hamilton path in T’ is also a Ha.milton pa.th in T. let F, amd F2 be two minima81  feedback

sets and let v -+ w be an edge in Fl a,ncl not in F2. Fl a.nd F2 cannot generate the same

path as Ti will contain v t w and T; will contain v --+ ‘1~. 1

It follows from Theorem 3.3 tha.t all the results on the cardinality of P [MO] apply to

F as well. A criterion to decide whether there is a pa.th in a tournament that starts at a

given vertex w and ends at some other given vertex 10 also follows from Theorem 3.3. Let



in, (OUT,,) be the set of incoming (outcoming) edges into w (out of vj.

Corollary 3.3 A necessary and sufficient condition for the existence of a Hamilton path from

u to w is the existence of a minimal feedback set containing both i~z, and o~ut~,,.

Proof: Assume that such a minima.1 feedback set exists. After its edges are flipped, ‘U

becomes a source and w a sink and hence, according to Theorem 3.1, there is a, Hamilton

pa,th from v to w. If a Hamilton path from v to w exists, then in, and o&, belong to its

corresponding minimal feedback set. (Same construction as in Theorem 3.2). 1

4 The CRCW model

In this section we exhibit a.lgorithms for sorting and merging in an arbitrary tourna.mcnt,

that are ba,sed on Theorem 3.1. The complexity of these algorithms makches the complesit,y

of the corresponding a.lgorithms in transitive tournaments.

In the first subsection we present Algorithm &IFS that in O(1) time finds a. minimal

feedback set in a. CPB gra.ph G = (I/, IV, E). In the other two subsections, we show how t,o
translate certain a.lgorithms for sorting and merging in transitive tournaments, to a.lgorit~hms

in arbitrary tournaments by calling MFS a.s a subroutine. It turns out tha.t computing a
minimal feedback set in our special cases, reduces to computing it in a CPB graph. M’c

shall prove tha.t in each case, thcl fccedba.ck set computed by repeakcd  calls to i\lgorithru

IMFS is indeed the minimal feedback set required by Theorem 3.1. The a.lgorithms chosen
are (they both use O(n,) processors):

Merging: Valiant’s merging algorithm [Va,]  with O(log log 1%) time complesit,y.

Sorting : Merge-Sort [Co] wit Ii 0 ( log 72) time complexity.

4.1 Finding the minimal fwdl-,z& set

Algorithm MFS invokes the two procedures h1AXTIVDEX  aIld MAXPREFIX.  1Ve now

present them and prove t1la.t each ca,n be implemented in O( 1) time.

Procedure MAXINDEX( /I):

input: A binaay sequence .;L = n.l . . . . , c/,c; E processors.

output: The ma.ximum indes I<, J 5 1,: 5 (1, such that elk = 1.



Lemma 4.1 MAXINDEX can be implemented in the CRCW model in O( 1) time.

Proof: It is well known tha.t,  comput,ing the OR (respectively, AND) of a. bina.ry sequence

of length C with L processors takes O(1) time in the CR.CW  model.

First we show how to compute MAXINDEX  in O(1) time with C2 processors. Each

element of A such that a; = 1 computes b; = ma)x;<i<l a(j) in O(1) time. (This is possible- -
as each ni has e processors a*vailable).  If b; = 1, then there exists an index j > % such that

clJ = 1, and therefore i cannot be the desired answer. In this c&se we set ui = 0 and clearly,

only one value rema.ins equal to 1. The index of this value is the answer.

Now we show how to compute Rk4XINDEX  in O(1) time in the CRCW  model with

only J!! processors. (For clarity, assume that fi is an integer. j

1. Divide the C elements of the sequence into & blocks where each contains fi COllseC-

utive items.

2. For 1 5 i 5 &‘, let c; denote the OR of the i-th block.

3. Let k be the output of Procedure MAXINDEX  when the input is the vector cl:. . . ? CJT.

This t,a.kes 0( 1) time as there a.re t processors and the vector is of length fi.

.I. Let I;’ be the output of Procedure MAXINDEX  when the input is the k-th block.

This ta,kes O(l) time as there are C processors and the block is of length &.

.5. The output is k’.

Procedure MAXPREFIX(A, B):

input: A sequence A = al, . . . ? al of integers; e2 processors.

output: A sequence 13 = bl,. . . , bc of integers such tha,t for every i, 1 5 i 5 C.

L&ma 4.2 MAXPREFIX can be implemented in the CRCW model in O(1) time.

Proof: First construct in O(l) time a0 matrix 11J = {~,.~~}~~.j,j<~  ivhcr~ 7)1,,J  = .I iif

a; > “.j ) or 1. = j. Each row i ca,lls a vaaia.tion of procedure MAXINDEX and computes

in 0( 1) time: the minimum index j in the subrow  na;,i+l, . . . , ?T?,i,c SUCI~ tl1a.t.  ?lli!j = 0 and

ll?j.i+l = . * * = lTLi,$-] = 1. For every k? 1 5 k < ?’ or j 5 1; 5 l set m;,k = 0. If now

17?,i,.i  = 1, then ai > “.j aad for each x7, i < k < j, it is also known that CL; > nk.

Therefore, it now remains for each nj to find the minima.1 index 1: such tha*t. ?7b;:.i = 1.

Again, this can be done in time 0( 1) by ca.lling a variation of procedure MAXINDEX for

each column of the makrix &I. 1
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Figure 1: The three types of cycles.

\j;lie are now rea.dy to present Algorithm MFS.

Algorithm MFS:

Input: A complete path bipartite gra.yh G = (V, klr, Q); 1:’ = ‘~1,. . . , v,; TV = ~1,. . -, w,;

O(r2 + T-S)  processors.

Output: A minimal feedback set F in G’.

For all i, 1 < 2’ 5 1‘ :

1. Define u(i) as follows:

(a,) If Vi > TO,, then Q.(i) = S;

(b) else, if vi < WI, then n(i) = 0;

(c) otherwise, let a(i) be the maximum index j such that wj < 0; < wj+l

(1 5 j 5 s - 1).

2. Let b(i) be the maximum value a.mong { n( 1)) . . . ,0(i)}.

3. For all j, 1 5 j 2 b(?:): if vi < ‘t0.i then adcl the edge z7.i  + “oj to F.



Lemma 4.3 The set F computed by Algorithm MFS is a minimal feedback set in Q.

Proof: F is a minimal feedback set if Q’ = Q - F is a,cyclic and if adding an edge of F to
Q’ generates a cycle.

Assume to the contrary that there is a cycle in Q’ and suppose that the cycle is one of
the following three types:

1. VU;,  Wj, Vii, e e . , vi (Figure la);

2. Vi7Wj~.~.~ tuj/, vi (Figure lb);

3. vi7 wj,. . . , wjt, ~~1,. . . , v,i (Figure 1~).

We now show tha$ in the three a.bove cases B(i) 2 j and this leads us to a contra.diction,

because in Step 3 of algorithm MFS, edge vi --+ wj E F.

1. The edge Toj --+ vi/ is in Q; therefore the maximality of a(?) implies tha,t I 2 j

and consequently, b(i) 2 b(C)  2 u(C) 2 j.

2. The edge tuj/ + 1 7; is in Q; therefore n(i) 2 j’ which implies that b( i j 2 j’ > j.

3. The edge tLlj/ -+ v;r is in Q : therefore- b(i) 2 b( i’) 2 n( i’) 2 j’ > j.

in

Now let c be an a.rbitrary cycle and let vi be its highest vertex in 17. The successor of pi
c belongs to IV, and denote it by wj. We show that there are three possible cases, a.ncl

each implies the existence of one of the above three types of cycles.

If wj is the highest vertex of c in W then its successor in c is vi/ E V. It follows tha.t,

i’ < i (from vi being t.he highest j a.nd hence vi, toj, vi/, . . . , vi is a cycle in Q’ of type (1).

Otherwise, let wail be the highest vertex of c in W for some j’ > j. Denote the successor of
wj/ in c by v;/ E 1,’ for i’ 2 1:. There a.re two cases. If i’ = i then in Q’, vi, ‘tck7, . . . , luj/, vi is

_ a cycle of type (2). Else. i’ < 2’ and v;, wi,. . . , wjt, vi/, . . . , vi is a8 cycle in Q’ of type (‘3).

TO complete the proof, we have to show that if an edge vi -+ wj E F is a.dded to Q’,

then a cycle is generated. This follows from the following two fa.cts:

Fact  1: The edge ‘tlJa(i) -- vi is alwa.ys an edge in Q’ as’ long as u(i) > 0.

Fact 2: if 71; -I PlJ.i E F then j 5 b(i).

If j < n(i), then vi, PO&~?.  . . , tlla(i)? v; is a, cycle (type (2)). Otherwise, by the above two
facts a(i) < j 5 b(i). If j = b(i), tllen there exists 1.’ < i such that a(i’j = b(i). By Fact 1,

wb(i) + vi/ E Q’ a.nd ui, ZU~, vi/, . . . , vi is a0 cycle (type (1)). Else, j < b(i) snd a.ga@ there

exists i’ < i such that a(i’) = b(i) > j and by Fact 1 Wb(i) + Vi/ E Q’. It follows that

vi, wj, e e s 7 IUb(i), VU;l, s a . 7 t~i is a* cycle (type (3)). 1
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Lemma 4.4 Algorithm MFS can be computed in time O(1).

Proof: It is easy to see how step Ic ca.n be computed with the help of procedc~e  MAXIN-
DEX with 9”s processors. Hence, it takes time O(1) by Lemma 4.2. Step 2 ca,lls Procedure

MAXPREFIX with r2 processors and can also be computed in time O(1) by Lemma 4.3.

Obviously, the rest of the algorithm can be computed in time O(l) . I

4 . 2  M e r g i n g

In this subsection we show how Valiant’s [Va] merging algorithm ca.n be modified to a

CRCW algorithm that merges two paths in a tournament. We ela.bora.te on its description

for two reasons: (ij to simplify the proof of Theorem 4.1; (ii) to the best of our knowledge,

a detailed description of Valiant’s algorithm in the PRAIvI model does not exist. The

algorithm uses a. 1inea.r  number of processors (linear in the length of both pa.ths) and its
time complexity remains O(log log n) ( 1’ is the length of S, the longer path). Borodin and

Hopcroft [BH] proved a, lower bound of fl(loglog n) on the complexity of merging two paths
and hence, our results are tight. Herea.fter, denote by -y = wr , . . . , x7,  and I’ = yr, . . . , yTn

the two paths to be merged. We omit ceiling a.nd floor for clarity.

Valiant?s algorithm employs a. divide-and-conquer nlethod: in O(1) time, merging two

paths is divided into merging many pairs of subpaths  from ,%- and Y? lvhere in each pair,

the length of the subpath  belonging to ,x is 6. Then. in 0( 1) t,ime, the paths produced
by merging the pairs a.re concatenated to output the desired merge. The basic step of the

recursion is when n is a. constant and then, the merge is completed by performing a.11 possible

comparisons. The time complexity O(loglog 11) is the solution of the recursive equa,tion:

0 T(cr) = O(1) ; CI’ = O(1) ;

l T(n) = ,T(fij + O(1).

tfre now explain how the divide-a.nd-conquer is a,chieved. Ea,ch of the two paths, _y axd

Y? is divided into subpaths  whose lengths are a. square root of t,heir original length. The

top of every subpatlr is called its leader, and denote by L,;‘r’ a.nd L1’ the set of leaders in ..x

and Y respectively. We ma-y sometimes refer to LA- and LT’ also as pa.ths.

The first step of compazisons  in the algorithm is between a,11 the leaders of I,_x-  with a,ll

the leaders of LY. (This ca,n be clone in one step a,s fi < 71 + ‘71.) At this point, for each
lea,der y’ E LY, there are two successive leaders M’ < R: E LS, such t-hat  y > :c’ and y < 2.

This pair of lea,ders is uniquely defined in the case of a t.ra,nsitive tournament a.nd can be

comput.ed in time 0( 1). The exact place in X where y is eventually inserted, will be called

the insertion point of y. Now, for two consecutive lea,ders in Lk’, 9’ < :q, there is a. subpath

LX(y) in I-,*x- and a. subpath  ‘i’(y) in Y, such that each vertex in these subpaths  is smaller

11



LX LY Y

Lx’(Y)
0 ” Y
.

0 Y’

0 0
0 0

0 0
l .

a. After merging LX and LY

(Y)
A-(z)

x LX Y

Y(x)

h. After merging LX and Y

Figure 2: Proof of Theorem 4.1

_ than y and greater than y’ (Figure 2a.).

The second step of compaxisons in the algorithm is performed between all the vertices

in LX(y) and Y(y) for each leader y E LIP. After this s~.ep, the insertion point in Y of each

leader x E LX is known, namely there are two successive vertices in Y, y’ < y, such tha.t
x > y’ and z < y. Again, this pair of vertices is uniquel,v defined in the case of a transitive

tournament and can be computed in time O( I). Now for two consecutive leaders in LX,

CC’ < CC?  there is a subpath  X(x) in -;\- and a. subpa.th Y(x) in Y, such that ea.ch vertex in

these subpaths  is smaller tha.n n: and greater than x’ (Figure 2b).

Now the subpa,ths can be merged siInuit,a.neously. For every leader 3: E LS, the algo-

rithm merges recursively the paths X(x) a.nd Y(x) into the path Z(x). After the recursion

is completed, R: (x’) can be inserted above (below) 2(x,).

Thus, by merging fi pairs of subpa,ths a.nd then concatenating them through the leaders

of X , the desired merge is achieved.

The comparisons steps that precede the recursive calls in Valiant’s algorithm incur two
problems in an arbitrary tournament. A lea,der y E LY (CC  E LX) may have several insertion

points in LX (Y); furthermore, if y’ < y (x’ < x) then the insertion point of y’ (x’) is not

necessarily snmller  than that of y (2:).

To overcome these problems, we compute a minima.l feedback set in the gra,ph induced

by the compaxisons,  as suggested by Theorem 3.1. Whenever a0 set of vertices is compaxed,

12



a. minimal feedback set is computed and the orientation of its edges is flipped. In all cases,

the minimal feedback set is either the output of Algorithm MFS, or the union of outputs

of different calls to Algorithm MFS. There are four cases summarized below:

1) The base case of the recursion: Here, n is a, consta,nt,  and the minimal feedback set

is the output of Algorithm MFS computed on the whole graph.

2) The first round of comparisons before the recursive calls: Here, the leaders of

LX and LY are compared and again, the minimal feedback set is the output of

Algorithm MFS.

3) The second round of comparisons before the recursive calls: The gra.ph induced

by these comparisons is a union of CPB gra,phs  and Algorithm MFS is invoked for

each CPB gra.ph.  The minimal feedback set is the union of the minimal feedback sets

computed for each CPB graph.

4) The rounds during the recursive calls: The structure of the comparison graph is

the same as in case (3) and the minimal feedback set is the union of the minimal

feedba.ck sets computed for each CPB gra.ph.

Theorem 4.1 The modification of Valiant’s merge algorithm according to Theorem 3.1 merges

two paths in an arbitrary tournament.

Proof: We prove it by induction on k, the depth of the recursion. When k = 1 (case l),

namely the length of one of the merged paths is a constant. the correctness follo\vs as

Algorithm MFS computes a minimal feedback set (Lemmas 4.3). -4ssume that the theorem

is true when the recursion depth is less than k.

In the first step of comparisons (case 2), the leaders of X a,nd Y- are compared. It.
follows a,gain from lemnra. 4.3 that a minimal feedback set is indeed computed. Hence, the

picture depictecl by Figure 2a* is valid. Now assume that the second round of comparisons
before the recursive calls t,ook place (case 3) and a,ssume also that the union of minimal

feedback sets computed for edge disjoint subgraphs is not a feedback set. To disprove this

l&t a.ssumption,  it is enough to show for every cycle tha,t all of its edges belong to the same
subgra.ph  . We prove the following claim:

Claim: For each leader y E LY, if a vertex from LX(y) (or Y(g)) t&lies  part in a, cycle,

then that cycle is completely contained in LX(y) U Y(y).

Proof of the claim: Construct the following graph fI: for each leader y E LY- associate a,

vertex f(y) in II which is the contraction of Lx(y) and Y(y) e.g., a vertex in H can be

viewed as a set of “old?’ vertices. Let a and b be two vertices in II; the eclge c1 -+ b exists if
before the cont,ra,ction, there was an edge oriented from a vertex in the set n to a. vertex in

the set b.

13
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Notice that the leader y is the only vertex in f(y) tha.t was compa,red to vertices in

LX(y’) for any leader y’ < y. The way the segments in LX were chosen implies 1ha.t y is

grea.ter than all the vertices in L_rir(y’) and cleaaly y is greater tha.n aI the vertices in IT(“).
Hence, H is well defined and is isomorphic to a, path. The correctness of the claim follows

immedia t e ly .  1

In the rounds during the recursion (case 4), similar a,rguments  to the above hold. The

analogous claim is that for each leader 2 E LX, if a vertex from X(z) (or 1-(,x)) t&es part
in a cycle, then that cycle is completely contained in LX(y) U l,‘(y). Therefore, it is enough

to compute a minimal feedback set in each CPB graph. 1

Theorem 4.2 The time complexity of the modified algorithm is O(loglog n) when O(?L) pro-

cessors are available.

Proof: Define T(n, m) to be the time complexity of the modified a.lgorithm.  By Lemma,
4.4, Algorithm MFS can be implemented in time O(1) if the number of available processors

is O(r2 + TS),  where T and s denote the lengths of the input paths. We need Do show t.ha.t,
whenever Algorithm MFS is invoked there is a sufficient number of processors a.va.ilable.

If n is a constant, the claim follows from the fact tha.t O(n + 7)L) = 0( IL+). When L-Y

and LY are compared, the claim follows from the inequality &K’ < n + m.

If Ca; = ,/Z, then C a: 5 n. Therefore, there are enough processors for the second

step of comparisons that precedes the recursive call. Each subpath  Y(y) from T’ that is
merged with cy leaders from LX, receives O(a2 + cufi) processors.

For the simultaneous recursive calls there a.re enough processors, as ea.ch submerge of

two paths of length n.’ and m’ gets O(n’ + m.‘) processors.

Clearly, the rest of the algorithm can be implemented in constant time same as the
transitive case. Hence the recursive equation is:

T(?t,  ~2) = T(Jn, m’j + c,

for Tsome constant c. The solution of the a.bove equality is O(loglog n). i

4 . 3  S o r t i n g

In this subsection we show how a. pa.th in a. tournament can be found in the CR.CW  model

in O(log n) time using O(n) processors. We rely on Cole’s merge-sort [Co] algorithm and

compute a minimal feedback set in O(l) time for each round of compa.risons.  We shall

give only an outline of Cole’s a.lgorithm,  and ela,borate  on the steps where compazisons  a.re
performed. We refer the reader to the description of Cole’s algorithm in [GR] as our outline

depends on it a.nd uses its terminology.
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output,  to the parent t redzrce(,ual,)  (2;)

ml,, +- mel*ge(S, Y’), with the help of old val,,

a sorted sequence a sorted sequence
from the left child from the right child

w WI

Figure 3: The local action in an internal node v in the tree.

In the previous subset Con, the merging algorithm implies a sorting algorithm whose

* complexity is O(log  n loglog71).  To improve the complexity to O(log n)? Cole showed how
to pipeline the merging steps. Let, T be the complete binary tree tha.t describes the st.a.ndard

merge-sort algorithm; a, typica.l node ‘I? in T merges two lists /Y a,nd Y when both -y a.nd ‘f,-

are sorted. The novelty of Cole’s a.lgorit,hm is tha.t node ‘L’ starts processing the lists -y and

Y before they axe sorted. Namely, a,t the it11 step, two lists -Z?; and x are merged, where
IY; is a sortSed sample of X, and 1: is a8 sorted sample of Y. This merge ca,n be computed

in constant time if the results of the i - 1st step are 1ilIOWIl.

For the sa,l<e  of simplicity, assume t.ha.t, 11,  is a. power of 2. Let TV be the subtree rooted
at v and list., he the list of e1ement.s stored initially at the leaves of TV. Let INI, be the
current list a.ssocia.ted  with node u of the tree. The sequence ~1, will a.lwa.ys bc a sort-4

su bsequencc of list,, , a,nd lvill double its size in ea,cll round. We say that a. node is complete

if and only if 1;~11.~,  = /is!, . Let us IIOK describe wha.t happens in a typical internal node 17

of the tree during the course of the a.lgorithm (Figure 3).

In the It11 step, node u receives from its left child a#nd right child sequences --Y; and 1,;
respectively. It merges the two sequences to a sorted sequence PO/,  with the help of the old

Vd,. If v is incomplete, then it sends eve]-y  fourth element of’ UC~I, to its parent. During
the first, step a.fter 8 becomes complete. every second elelnent is sent up, wherea,s in the

step a.fter tha.t, every element is sent up. The sequence 2; sent by v to its pa-rent is ca.llcd

red ucc( ?d,,).

‘I he algorithm begins when a.ll the lea?.\-es send their value to their paxents.  A node
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S(i)  = the set of elements of S lying between t,he i - lth and z’th elements of 2.

I’(i)  = the set, of elements of Y lying between t,he i - lth and ith elements of 2.

???e?ye(x,  Y) = merge(X(  l), Y(1)). . . merye(X(7),  Y (7))

Figure 4: Merging ,3- and Y with the help of a good sampler 2.

termina.t.es two steps after it became complete, and t,he algorit~hm ends when the root

becomes complet,e. lt follows from the \vay redzlce(pal,)  is defined, tha.t two rounds a.fter

2’ became complete, its parent becomes complete. Therefore, the algorithm takes O(log  11,)
rounds of internal computation in the nodes of the tree. In order to achieve the desired

complexity, Cole showed how to implement each such round in consta,nt  time.

We now need some notakions.  The rank of an element M in a. sequence S, ra~J;(x,  X ), is

the number of elements in A- preceding x. The cross rank from X to Y, denokd by R[X, Y],
a is the function for which R[X,Y](m) = 7x+.2’,  Y) for each x E _X. A sorted sequence -X- is

a. good sampler of the sorted sequence Y if a,nd only if, between a,ny 1; + 1 adjacent elements

of {-c+J~~-u{rx)} tllcre axe a.t most 21;  + 1 elements of 1,‘.  In our case: assume t1ia.t  1; = 1.-

i.e-, between any two element of E- there are a,t most three elements of X. Note tl1a.t it is

always  true that, rerl~ce(X)  is a good sampler of X.

The motivation behind these notakions  is as follows. The cross ra+nk &[S, 1’3 (&[I-, X])
enables us to merge the sorted sequences X and Y in time O(1). In this sense? the merge of

two sequences and their cross ranks, are equivalent. Our description relies heavily on this

fact. It is also easy to merge in constant time two sorted sequences -7L  and 1’ with the help

of a. sequence 2 which is a. good sampler of both (Figure 4).

The basic propert*y of the a.lgorithm that entails its correctness is well demonstrated by

the following invariant preserved art ea.& step:
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Main invariant: if each X; is a good sampler of X;+l? and each 1’;  is a good sampler of

Y;+l then each Zi is a good sa#mpler of .&+I.

In terms of cross ranks, the merge of Xi+1 and Er;+l is performed in t.liree steps:

1. The four cross ranks: R[X;,  x+1],  R[x,  X;+l],  R[Xi+l) J’;] and R[Y;+l, X;] are com-
puted with the help of R[X;,X;+l] and R[Ji,Yi+l].

2. The two cross ranks: R[X;+I, x+1] and R[Yi+l, Xi+l] are computed with the help of

the cross ranks of the previous step. (As stated before, this is equivalent to merging

x+1 and Y;+l ).

3. The cross rank R[Z;, Z,+I] = R[rec(tbce(X;  U I;), red~ce(X;+l U x+1)] is computed
with the help of the previous ca.lcula8ted cross ranks.

The three steps ca,n be implemented in O(1) time with O(lX;+ll  + IE:+ll) processors. The

reason is that the good sampling property insures us that in ea,ch CPB gra.ph, at least one

of the pa,ths is of length at most three.

We now explain how to modify the above a.lgorithm  according to Theorem 3.1 so that

it computes a Hamilton path in an arbitrary tournament. Whenever a. set of vertices is
compared, a minimal feedba.ck set is computed a.nd the orientation of its edges is flipped.

Each sta,ge of comparisons can be decomposed to edge disjoint CPB gra,phs  and in each one

a0 minimal feedback set is computed by invoking Algorithm MFS. The union of the minimal

fccdba,ck sets computed in ea,ch CPB gra.ph will be a0 minimal feedba.ck  set in the gra,ph

induced by the set of comparisons.

Theorem 4.3 The modification of Cole’s sort algorithm according to Theorem 3.1 finds a

Hamilton path in an arbitrary tournament.

Proof: For arguments similaz to those in the proof of Ihe merging a.lgorithm,  it follows
tha.t the union of the outputs of the calls for algorithm MFS in each node of the tree T, is

a. minimal feedback set in the gra.ph induced by the compa.risons performed at that node.

_ The theorem follows from the next claim proved by induction on (k, ,i), where k is the

‘height of t.he tree and 1: is the current step.

l In the 1:th step, in a tree of height k, the algoritilm computes a. minimad feedback set.

l The sequence sent by v, the root of this tree? in the ith step is consistent with the

previous sequences sent by v. Namely, if UCI.!, contains the relation fl: < y for a, y E

/is-t,,?  then in all previous steps, vu2, never cont,a.ined the relation y > z.

The induction holds clea.rly for k = 1, namely the lea,ves. Now let ‘7” be a. tree of height

k, let v be its root and let i be the current, step. We prove the first part of the inductive

claim by showing that there cannot be a cycle aafter  the edges of the minimal feedback set



in T’, computed in the ith step, are flipped. Let X and 1’ be the sequences that v received
from its left and right children respectively. It follows from the induction assumption on

the height of the tree that any cycle contained completely in X or in Y was ha,ndled by-the

children of ‘L’. On the other hand, a cycle containing vertices from both X and Y could only

be generated by v. Assume there is such a, cycle and w.1.o.g. it contains aVn edge between

vertices Q, b E X where a precedes 15 with respect to -X. Because of the second paxt  of the

induction hypothesis, this edge is n ---+  b. However, such cycles a,re detect,ed by Algorithm

MFS.

After flipping the minimal feedback set, the graph induced by Ii.&, contains a#n insta.nce

of Cole’s merge-sort algorithm. Therefore, the correctness of the second claim follows from

the correctness of Cole’s algorithm. 1

Theorem 4.4 The time complexity of the modified algorithm is O(log ??,j.

Proof: A more detailed inspection of the algorithm shows that in each CPB graph at least

one of the paths is of length a.t most three. In Cole’s algorithm each node in the tree gets

wc+1l + IK+1lj P rocessors, this number is sufficient to calcula,te the calls for algorithm

MFS. 1
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