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Abstract

In [6], Snir proposed the Selection Problem (seaxching  in a sorted table) to
show that the CREW PRAM is strictly more powerful than the EREW PRAM.
This problem defines a partial function, that is, one thak is defined only on a
restricted set of inputs. Recognizing whether an arbitrary input belongs to this
restricted set is hard for both CREW and ER.EW PRAMS. The existence of
a total function that exhibits the power of the CREW model over the EREW
model was an open problem. Here we solve this problem by generalizing the

Selection problem to a Decision Tree problem which is defined on a, full domain
a,nd to which Snir’s lower bound ampplies.
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1 Introduction

Consider the Selection problem, which we denote (S): given an input vector X =

( x1,x2,..., ~~-1) and an input y, where all inputs are integers, find the index i such
that z; < y 2 x;+l. (By definition x0 = -oo and x,+1 = DO). Problem (S) is just the
problem of searching in a sorted table of integers.

Snir [6] considered this problem in the context of parallel computation in two
different PRAM models. A PRAM consists of a set of processors PO, .&. . . which
communicate by means of cells A,&,, A&, . . . of shared memory. One step of compu-
tation consists of three phases. In the read phase, each processor may choose one
cell to read from. In the compute phase, an arbitrary amount of local computation
can take place. In the write phase, each processor may choose one cell to write into.
The models that Snir considered differ in the degree of simultaneous access to shared
memory that is allowed. In the EREW PRAM, no two processors may simultaneously
read or write into the same cell. In the CREW PRAM, simultaneous read access is
permitted, but not simultaneous write access.

It is easy to see that the complexity of problem (S) on a CREW PRAM is O( 1),
and Snir [6] proved an O( d&-G) upper and lower bound on solving the problem
in the EREW model. His proof proceeds by using Ramsey’s Theorem to restrict
the set of inputs so that the behaviour of an algorithm solving the problem depends
only on the relative order of the input values. Essentially, processors may only make
comparisons and gather input va,lues,  and an information-theoretic argument shows
that this cannot be done quickly. The use of Ramsey’s Theorem means that the lower

- bound holds only if the input numbers are drawn from a large enough range.

A more serious problem with this lower bound proof than the size of the range
needed is that the problem is only defined on a restricted set of inputs (termed a
deft domain i n  [4]).  Tlle xoj em of testing whether the input is valid (that is, the1 1 1
x’s are sorted) requires O(log  n) time in the CREW model. (This follows from the
lower bound of [I] on the computation of the OR of 12 bits). It could be argued tl1a.t
knowing that the input is of a specia.1  form gives information to the CRE\V PRAM
that the EREW PRAM cannot use, and thus the comparison is “unfair”. Examples
have been given of PRAM models which can be separated by the use of functions
defined on partial domains, but which a,re equal or incomparable when considering
functions on full doma.ins  ([Z], [:3]).
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In the next section we show how the Selection problem (S) can be reformulated
as a. Decision Tree problem, such that the output is well defined for any input.

2 Generalization of the Selection Problem to a
Decision Tree Problem

Let T be a complete rooted binary tree of size 72 such that n = 2” - 1 where h
is a.n integer. An input variable is associated with each node of T. The variable
5,/z is associated with the root, x,i4 and x3,i4 with the left and right child of the
root respectively, and so on. More precisely, if a node has xi associated with it, and
i = (2X:  + 1)‘2’,  then the left child of the node has xj associated with it, and the right
child has xk associated with it, where j = (2k - i)2b and k = (2k + 3>2”. We number
the nodes, giving a. node the same index as the variable associakecl  with it.

We now sta,te the Decision Tree problem, denoted problem (D): A pa.th from each
node to one of the leaves is defined inductively. The successor of internal node i is the

. left child of 1: if y < .c; and the right child of i if y 2 z;. There is a. unique root-leaf
pa.th terminaking a.t some leaOf  j. The output of the problem is j - 1 if ?J < x; and j
if y > r;.

Theorem  2. l P~mdlent (S) can be solved in @(log log n) time in the CREW model.

Proof: Problem (S) is solved in the CREW model by using the “pakh doubling”
technique. A processor P; is associated with each node i in the tree. P; rea.ds  y
and x;, t’hereby  determining the successor of node i. This informakion  is stored in
memory, sa.y in location i of a,rray S. For a leaf j, let S(j) = j. Then, in pa.ra.llel,
each processor 1’; executes the instruction S(i) +-- S( S(i)), a. total  of log log n -times.
,4fter t.his is done, S(n/2) = j means that node j is the 1ea.f  at, t,he end of the pa.th
front t,lle  root. 111 O(l) steps the answer can be computed.

To set that a. CREW PRAM requires O(log  log 11,)  time to solve problem (D), we
invoke a. result of Simon [5], which states thak  any nonclegenera.te  Boolean function on
71 \:a.riables  requires fl(log log ?a) steps to compute on CREW. Our problem does not
define a. 1300lean  function, since inputs a,re tuples of integers, but we can construct a.
BOO1ea.n function 9 by letting y = 1, restricting 21, X2,. . . :r,,-l lo ha.ve  value  O-or 1,
a.nd defining the output of y to be f (mod 2). Tl le resulting y is at least, as ea.sy to
comput.e as .f, a.nd is a, nonclegenerake  Boolean function of 71 - 1 \-ariahles.
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Theorem 2.2 Problem (D) requires O( J&j%) time to solve in the EREW model.

Proof: The purpose of demonstrating an 0( JG) algorithm is to show that the
lower bound of Snir is the best possible, as the lower bound model does not charge
for local computation. As before, a processor P; is associated with node i. In the first
step of the algorithm, P; rea,ds  5; and stores this value in node i. We note that in
O(1) steps a processor at a node can read any information stored in its left and right
children and coalesce this information along with any information it has. Thus, in
O(Jlogn> steps, a node v that is at level kdi + 1 for some integer k can gather
the values of all variables associated with nodes in the subtree  of height Jlogn below
node v. Knowing these values and the value of y, a processor can determine in one
step the node that is l/l- levels below v on the path from v. In effect, the binary
tree has been compressed so that it is now a tree of height l/rogn and fanout 26.
The naive sequential algorithm to find the bottom of the root-leaf path can now be
run, taking O(Jlogn)  steps.

To prove the lower bound, we show that problem (S) is reducible to problem (D)
in time 0( 1). In fact, problem (S) is just problem (D) restricted to inputs in which
t,he x’s are sorted. The root-leaf path defined by problem (D) is just the sequence of
variables that would be queried by binary search.

Another way of stating the sepa,ra.tion  implied by the previous two theorems is
that for each integer T, there exists a problem which can be solved in T steps in the
CREW model, but which requires 2’tT) steps on the EREW model.

3 Separations on Boolean input and output

These results can be extended slightly to show a. lower bound for a problem with
integer input but Boolean output. The l)rol)lem  is just,  problem (D), but the output
is taken to be the output of problem (D) mod 2. To see that Snir’s lower bound-. applies to this problem, one mllst esa,mine  Snir’s proof. He shows that if o(dz)
steps a.re used by some algorithm, there exist two inputs in the restricted domain‘P and an integer i such that the outputs of problem (S) on t’hose  two inputs are i and
i + 1 respectively, and the computakion  of the EREW PRAM on the two inputs is
identical. For two such inputs, the output of problem (D) mod 2 would also differ,
and the lower bound follows.



In [6], Snir gives a lower bound for a problem with Boolean input and output. The
problem is to identify the switching index when the input is a string of O’s followed
by a string of 1%. A lower bound of n(log(n/p)) t ime in the EREW model is proven,
where p is the number of processors. The problem can be solved in O(log n/logp)
time in the CREW model.

In the same vein as in the previous section, it is easy to see that if we modify
problem (D) to restrict the inputs to being Boolean, and further fix y = 1, then
Snir’s problem is just the modified problem defined on a restricted set of inputs.
Thus the modified problem (D) takes time at least n(log(n./p))  time in the EREW
model. Problem (D) can be solved in time 0( (log n/logp)  log logp) in the CREW
model. The p processors are assigned to nodes in the first log p levels of the tree and
in O(log logp) steps can find out which node at the lowest level is reached by the
root-leaf path. This procedure is then repeated log n/ log p times until the bottom of
the tree is rea.ch4.
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