
February 1989 Report No. STAN-G-89-1248

Efficiency of the Network Simplex Algorithm
for the Maximum Flow Problem

bY

Andrew V. Goldberg, Michael D. Grigoriadis, and Robert E. Tarjan

Department of Computer Science

Stanford University

Stanford, California 94305

E’ehlary 1989

Efficiency of the Network Simplex Algorithm
for the Maximum Flow Problem

Andrew V. Goldberg1
Michael D. Grigoriadis2

Robert E. Tarjan

’ Department of Computer Science, Stanford University, Stanford, CA 94305. Research partially sup-
ported by a Presidential Young Investigator Award from the Na.tional Science Foundation, Grant No. CCR-
8351097, an IBM Facuity Development Award, and AT&T Bell Laboratories.

Depaxtment of Computer Science, Rutgers University, New Brunswick, NJ 08903. Research partially
supported by the Office of Naval Research, Contract No. N00014-S7-K-0467.

3 Depart’ment of Computer Science, Princeton University, Princeton, NJ 08544 and AT&T Bell Labora-
tories, Murra.y Hill, NJ 07974. Research partially supported by the National Science Foundation, Grant No.
DCR-S605961, and the Ofice of Naval Research, Contract No. N00014-87-K-0467.

Efficiency of the Network Simplex Algorithm for the Maximum Flow Problem

Anclrerw V. Goldberg’

Michael D. Grigoriadis’

Robert E. Tu,rjun”

February, 1989

Abstract. Goldfarb and Hao have proposed a. network simplex a,lgorithm
that will solve a ma.ximum flow problem on an n-vertex, m-arc network in
at most nm pivots and 0(n2m) time. In this paper we describe how to
implement their algorithm to run in O(nm log n) time by using an exten-
sion of the dynamic tree data structure of Sleator and Tarjan. This bound
is less than a logarithmic factor la,rger than that of any other known algo-
rithm for the problem.

Key Words and PiLrases: algorithms, complexity, data structures, dynamic
trees, graphs, linear programming, maximum flow, network flow, network
optimization.

1. The Maximum Flow Problem

Let C: = (V,E) b e an undirected gra.ph with vertex set 1’ of size n and edge set E of
size m. We regard each edge {v, W} as consisting of two oppositely-directed arcs, (v, ‘10)
and (w,v). For any vertex v we denote by E(v) the set of vertices ‘lo such that {v, w} is
an edge. We assume that C: is connected and that n > 2. Let each arc (v, W) of C: have a
nonnegative rea,l-valued capacity u((7, w). Finally, let s and t be two distingllished vertices
of G’; s is the source and t is the si7~Jc. A (feasible) fi ow on C: is a real-valued function .f
on the arcs satisfying the following constra(ints:

1 Department of Computer Science, Stanford University, Stanford, CA 94305. Research
partially supported by a Presidential Young Investigator Award from the National Science
Foundation, Grant No. CCR-835809’7, an IBM Faculty Development Award, and AT&T
Bell Labora*tories.

2 Department of Computer Science, Rutgers University, New Brunswick, NJ 08903. Research
partially supported by the Office of Naval Research, Contract No. N00014-87-K-0467.

3 Department of Computer Science, Princeton University, Princeton, N.J OS544 and AT&T
Bell Laboratories, hlurray Hill, N.J 07974. Research pa.rtially supported by the National
Science Founda.tion, Grant No. DCR-S605961, and the Office of Naval Resea.rch, Cont>ra.ct
No. N00014-%--K-0467.

1

For e\-ery XC (U, ~1)) f(,u, 10) = -f(,w, v) (antisymmet,ry constraints) W)

For every arc (v, IV), f(v, w) 5 ‘IL(V, Lv) (capacity constraints) (1)-7.d

For evesy vertex v 4 {s, t}, c .fh ‘L(J) = (0 conservation cons t’raint s) (1.3)
wEE(v)

The vu,Z,lLe of a flow .f is value (f) = CVEE(sJ ,f(s, ~7). The muimum jlo*w problem is
that of finding a flow of maximum value.

To date, the asymptotically fastest known algorithms are those of Goldberg a.nd Ta.rja.n
[S] and of Ahuja, Orlin, and Tarjan [I]. Tlle former runs in O(12177 1og(,rl,2/??z)) time. The
latter requires integer capacities; it runs in O(nn-2 log(?s(log U)‘12/n2 + 2)) if no capacity
exceeds U. Both of these algorithms are based on the O(n3)-time Agorithm of Goldberg
[5]. Extensive discussions of the problem, its applications, a,nd classical algorithms for it
can be found in [5], [IS], [14], [l7].

The above statement of the maximum flow problem simplifies notation by avoiding
explicit mention of “forwa*rd” and “backward” residual a.rcs. It is completely equivalent
to the usual formulation on directed graphs. The ca.se where two oppositely-directed arcs
(v, w) and (UJ, U) have nonnegative capacities ZL(v, LO) a.nd u (w , ,u) and zero lower bounds
ca,n be represented by an undirected edge {v, 2~) haying lower bound -ZL(UJ, U) and capacity
ZL(V, w). We also assume for simplicity that no pair of vextices in G is connected by more
than one edge, but allowing G to be a multigraph does not in any way affect our results.

2. The Network Simplex Algorithms

The network simplex algorithm is a specia,liza.tion of the revised simplex method that
uses an a.ppropriate data structure and a pivot selection rule for its implementation. It is
ba,sed on an early observa.tion by Fulkerson and Da.nt,zig [6] a.nd Dantzig [4] that a,ny basis
matris of a vertex-edge incidence matrix of G corresponds to a rooted spanning tree and
can be permuted to an upper triangular matrix with a &1 diagonal. (For a, description of
the method see e.g. the books of Chvata,l [Z], and Kennington and Helgason [12]; for an

implementation see Grigoriadis [1 l] .)

We state the network simplex algorithm for the maximum flow problem in a form
suitable for our implementation; we omit, for exa.mple, the return arc (t, S) that is aclclecl
in t,he stancla.rcl treatment. Given a flow .f, an arc (,u, ~1) has resictual cnpncit;~ ZL~(U, ‘LO) =

U(U) 10) - f(V) w). ,4rc (u, 10) is saturated if uf(v, 20) = 0 and resi&nul if ufj~U, (11) > 0. &An
edge {v, w} is saturated if either (u, co) or (w, U) is saturated, and residual otherwise. A
basic fio*w is a flow f such tha.t the set of residual edges forms a forest (a set of trees) with
s and t in different trees. Given a basic flow f, a basis is a pair of trees S, Z t!hat a.re
subgraphs of G, such that s E S, t f 2, a.ncl every vertex and every residual edge is in
either S or 2. Given a basic flow .f and a. ba.sis S, 2, a.11 edge (or a,rc) is a tree edge (or
tree a,rc) if it is in S or in 2, a,nd a- nontree edge (or nontree (Lrc) if not. -4 basic flow .f is
called degenerate if there is a saturated t,ree edge and nondegenerate otherwise.

The network simplex algorithm ma,intains a basic flow .f and a corresponding basis
S, 2. Sta.rting from such a flow f and basis S, 2, the algorithm consists of repea,ting t,he
following step until there is no residual a,rc (u, rv) with v E S, t E 2:

Pivot. Select a residual arc (11, ~1) with ‘0 E S, w E 2. -4cld {v, 20) to S U 2, forming a
single spanning tree T. This t,ree contains a, unique simple pa.th p of tree arcs from s to t.
Let S be the minimum capacity of a,n arc on p. *4dd S to the flow of every arc on p. Delete
from T some edge {x, ,g} such that (x, y) is a saturated arc of p. This produces two trees
that form a basis for the new basic flow.

-4rc (v,*w) is called the entering arc of the pivot a’nd (x, y) the leaving arc; the pivot
is said to be on (v, w). It is possible for 6 to equal zero if the basic flow is degenerate; then
the pivot is said to be degenerate. A degenerate pivot does not change the flow but does
change the basis. -4 nondegenerate pivot changes the flow, increases the flow value, and
may or may not change the ba.sis.

If a basic flow and a corresponding basis are not available initially, they can be com-
puted in O(nm> time in several ways. One way is as follows. Let .f = 0 and compute a.
spa.nning tree of T of G. Then, select a nontree residual edge, identify the unique simple
cycle it forms in T, and push flow around this cycle so that at least one of its edges is
saturated. Repeat this step until there axe no nontree residual edges. Finally, push enough
flow from s to t along the unique (s, t) path in T so that at least one additional edge is
saturated. Deleting from T this edge yields a basic flow and a basis S, 2. The running
time for this computation can be reduced to to O@log n) by using the dyna.mic tree
data structure [15]? [16], [Vi’], but tllis does not improve the running time of the overall
algorithm.

3. A Refinement of the Algorithm with a Polynomial Number of Pivots

The algorithm of the previous section need not terminate unless a.n anti-cycling rule,
such as Cunningham’s [3], is used for breaking ties in selecting the leaving a,rc. For integer
data, such an implementation solves t,he ma.simum flow problem in at most ~~17 pivots
and in O(n2172U) time using a simple rooted tree data structure to represent the ba.sis.
Goldfarb and Grigoria.dis [9] proposed a rule tha,t pivot’s on a residual arc (u, (~7) with
v f S, 20 E 2, for which t,he number of resiclua.1 arcs in the paths from s t40 ~7 in S and from
w to t in 2 is minimum over all nontree residual arcs from S to 2. This variant. works
better in practice than others, but it does not improve the pseudopolynomial bound on
the tota, number of pivots.

The key to making the network simplex algorithm run fast is to choose pivots more
carefully. Goldfarb a.nd Hao [lo] proposed a pivot rule such that at most nm pivots occllr.
Explaining their rule requires a few extra definitions. We call c?.n arc (v, UJ) pse*tLdoresid,&
if it is residual or a tree arc’. For any vertex v, we define the label d(,u) of ‘U to be the
minimum number of pseudoresidual a,rcs on a path of pseudoresidual arcs from s to v, or
infinity if there is no such path. Every vertex label remains finite, and indeed less than n,
until after the last pivot. Goldfarb and Hao’s pivot rule, which we call the smallest label

rule, is:

Among all residual a.rcs (7~. 10) with ‘0 E S and w E 2, pivot on one with d(,v) minimum.

Efficient implementa.tion of this rule requires a reformulation of it, also proposed by
Goldfarb and Hao: Repeat the following step until d(t) = co:

Choose a vertex 11: E Z with cl(*w) minimum. Pivot on any residual arc (27, K) with
v E S. (Such an arc will have d(v) = d(w) - 1.)

4. Efficient Implementation of the Smallest Label Rule

We shall describe a way to implement the smallest label rule so tha,t the running time
of the resulting network simplex algorithm is O(nmlog n). This improves Goldfarb a.nd
Hao’s bound of 0(*n2m), a.nd is within less than a logarithmic factor of t’he bound of any
other known a.lgori t hm.

’ If the basic flow is nondegenerate, every pseudoresidual arc is also a residual arc.

4

Our implementation consists of two main parts. The first pa.rt, described in this
section, is a way to mainta,in vertex labels in a total time of 0(nm). The ~~~oncl and more
complicated part, explained in the next three sections, is a clyna,mic tree data structure
used to choose pivots and to maintain the basis. The amortized time 2 per pivot with this
da.ta structure is O(log n), resulting in the claimed O(n?n log 12) overall time bound.

To maintain vertex la.bels, we use the met,hod proposed by Goldberg and Tarja.n for
maintaining exact distance labels in their maximum flow algorithm (see [S], Section 7).
For each vertex 20, we ma.intain a pointer into a fixed list A(w) of the arcs (u, 20). This
pointer indicates a pseudoresidual arc (v, zu) with d(v) = d(w) - 1. That is, a,rc (v, 20) is
on some pseudoresidual path of fewest ascs from s to 10. We call (v, w) the current CLTC
of w. For each vertex w, we also ma,intain a list L(w) of those vertices x such that the
current arc of x is (w, x). Initializing this information at the beginning of the maximum
flow computation can be done by a single breadth-first search from s, taking O(m) time.

Goldfarb and Hao proved that vertex labels can never decrease, only stay the same
or increase, as the algorithm proceeds. Fur thermore, once a, pseudoresidual arc (v, w)
becomes a saturated nontree arc, it ca,nnot become pseudoresidual again until at least one
of d(v) and d(w) increases.

We need to update vertex labels after each pivot; the leaving arc (x, y) may no longer
be pseudoresidual. If (x, y) is indeed no longer pseudoresidua.l, and if in addition (x, y) is
the current arc of y, we delete y from L(x) and initialize a set R=(y) of vertices to be
relabeled. Then we repeat the following step until R is empty:

Relabel. Select a vertejc w E R and delete it from R. Let (v, 1~) be the current arc of ZP.
(Since w was on R, either (v, w) is no longer pseudoresidual or d(v) 2 d(w).) Scan the arcs
a.fter (V,ZD) on A(w) until finding one, sa,y (x, ,<o), such that (CC, zu) is pseucloresiduall and
C/(J) = d(w) - 1, or reaching the end of A(LO). In the former case, make (;I:, ZC) the current
a.rc of w and add w to L(x); the relabeling is complete. In the latter case, scan all of A(20)

to find the first pseudoresidual arc (y, 20) on A(w) with d(y) minimum. Make (y, w) the
current arc of w, add w to L(y), set d(w) = d(y) + 1, a.cld all vertices on L(w) to R, and
set L(zo) = 0, completing the relabeling. If there is no such arc (y, to), then d(w) = 00;

’ By amortized time we mean the time per operation averaged over a worst-case sequence
of operations. See [18].

5

t)he ma.simum flow computation is complet,e.

It is straightforward to verify by induction the correctness of this method of ma.int,a.in-
ing vertex labels and current arcs. Each arc list A(w) for tar # s is scanned at most % - ‘3
times, twice for each possible value of
maintain vertex labels is thus O(nm).

c-/((I)) (from 1 to 12 - 1). The total time needed t’o

5. The Use of Dynamic Trees

To choose pivots and maintain the ba,sis, we use a,n extension of the dynamic tree
data structure of Sleator and Tarjan [15], [16], [17]. This da a structure will represent a,t
collection of vertex disjoint rooted trees, each vertex of which has an integer label, and
each edge {v, w} of which has two associated real values, g(v, w) and y(w, v). We denote
by parent(v) the parent of vertex v in its dynamic tree; if 27 is a tree root, parent(v)=null.
We adopt the convention that every tree vertex is both an ancestor and a descendant of
itself. The data structure supports the following ten operations on dynamic trees. Each
operation takes O(log k) amortized time, where LJ is the total number of tree vertices.

m&e-tree(v): Make vertex v into a one-vertex dynamic tree. Vertex v must be in no other
tree.

find-parent(v): Return the parent of vertex v, or null if v is a tree root.

*find-value(v): Com u e and return g(v, parent(v)); fp t i v is a tree root, return infinity.

find-min-vulue(v): Find and return an ancestor w of vertex v such that g(w, parent(w))

is minimum; if v is a tree root, return cu.

find-min-label(v): Find and return a descendant ‘w of ‘U that has minimum label.

chun,ge-lubel(v, 2): Set the label of ‘v equal to 1.

change-vulue(v, 6): Add real number S to g(w, parent(w)) and subtract S from

g(Purentiw), f-4 for every nonroot ancestor 20 of v.

link@, rw, a, p): Combine the trees containing v and w by ma,king w the parent of v. Define
g(v, w) = CY and g(w, v) = p. Before the link operation, vertices v and w must be in
different trees, with v the root of its tree.

6

c~t(u): Break t,he t’ree containiqq vertex u in two by deleting the edge joi
parent. Before the cut operation, vertex v must be a nonroot.

evert(v): Reroot’ the tree containing vertex u by making v the root.

To implement the network simplex algorithm, we maintain the basis S, 2 as a pair of
dynamic trees. Tree 2 is perma.nently rooted at t; the root of S changes as t,he algorithm
proceeds. Initia.lizat.ion of the two t,rees requires n make-tree, n - 2 link, and 12 ch,unge-label

operations a.t the beginning of the algorithm. Each time a vertex label, x computed by
the method in Section Lz, changes, we perform the corresponding ciLo.nge-l&jel operation.

To determine which pivot to do next during the computation, we perform fin&&-
label(t), which returns a vertex in 2, say w, of smallest label. We pivot on t’he current
asc (Iv, *to) of w, as defined in Section 4. To actually carry out the pivot, we first perform
evert(v), to root S at v. Then we perform link(v, w, a, p>, where cv = QUJU) and ,8 =
ZL~(.LU, v). We compute the leaving arc (x, y> of the pivot by letting x be the \-ertex returned
by find-min-va,lue(.s) and then letting y be the vertex returned by find-parent(x). The
amount of flow to be moved from s to t is the amount, say 6, returned by find-value(x).

To complete the pivot, we perform change-value(s, -6) and then cut(x). At the end of
the masimum flow computation, we compute the flow on all the tree arcs by using n - 2
find-value opera,tions.

With this implementation, each pivot takes O(1) tree operations. The a,mortized time
per pivot is O(log n), so the overall running time of the network simplex a.lgorithm is
0(72172 log n), a,s desired.

6. Representation of Dynamic Trees by Phantom Trees

It remains for us to discuss how to implement dynamic trees so tha,t t)he a,mortizecl
time per tree operation is O(log n). Obtaining such an implementation requires extending
the Sleator-Tarjan data structure. ,4n extension designed to maintain edge va,lues a,ncl
to support a.11 the opera,tions except find-min-label and change-label appears in [19] and
ca,n be used without modification here. The novel part of our implementa.tion lies in the
handling of vertex labels; whereas the original dynamic tree data structure was designed
to compute combinations of values over tree paths, the operation find-min-lube1 requires
combining values over subt rees. We shall describe a data structure that supports the

operations make-tree, find-pwent, find-min-label, change-la#bel, link, cut, and evert. For the
other operations, we can either use a separate data structure of the kind described in [19],
or we can combine the two structures into one. This can be done by adding informa.tion
representing edge values to the data structure described below. (See [19].)

To perform find-min-label operations efficiently, we need to impose a constant upper
l->ouncl on the va.lence of each tree vertex. Thus we represent each dynamic tree D by a
root,ecl phnntom, tree P. Tree P contains all the vertices of D and possibly some additional
dum~m~y vertices. Ea,ch vertes in a. phantom tree, henceforth called a p-vertex, has a label a.nd
a. color. In the simulation of a dynamic tree D by a) phantom tree P, the colors are vert,ices
in D. El-erg phant.om tree ha.s ma,ximum valence three. The following operations are
allowed on phantom trees: make-tree, find-parent, find-min-label, change-label, link, cut,

and ever& with the added constraint on link operations that link(v, w) cannot be performed
unless u and w both have valence at most two. (The third and fourth parameters of a link
operation are unnecessary, since edges do not have values in phantom trees.) Phantom
trees a.lso support three additional operations:

f i n d - c h i l d r e n (v) : F d d tin an re urn the set of children of v.

fLnd-top(v): Find t.he ancestor of v closest to the tree root that has the same color
as v.

change-color(,u, 7): Set the color of ‘u equal to y.

The precise correspondence between dynamic trees a.nd phantom trees is as follows.
In a phantom tree P corresponding to a dynamic tree D, there is a path p(v) of vertices
colored v corresponding to each vertex v of D. . One of the vertices of p(v) is identified
with 2’ and has the same label as v; the rema.ining vertices of p(v) are dummy vertices,
ea,ch of which has label oo and valence exactly three. Each edge {v, w} of D corresponds
to a.n edge {v’, 20’ } of P with v’ colored ‘U and 20’ colored w . That is, if each path p(v) in
P is condensed into a single vertex v and loops (edges of the form {x,x}) are deleted, the
result, is tree D. (See Figure 1.)

[Figure 13

We simulate each of the dynamic tree opera.tions by a constant number of phantom
t,ree opera.tions, a.s follows:

S

7nde- tree(v):

make- tree(v); change- color(*u, tl).

*find-parent(v):

find-color&d-parent(find-top((7))).

find-min-label(v):

*find-min-label(find-top(u)).

change-label(v):

change-label(z?).

link@, *tu):

Step 1. Let u=find-top(v). Perform find-children(u). If u has two or fewer children, go

to Step 2. Otherwise, find a child q of ‘(1 (if a.ny) colored v; if there is no such child, let
q be any child of 21. Let r be new vertex (not in any phantom tree). Perform make-tree
(r); change-color@, v); change-label(r, 1~3); cut(q); link(q, r); link(u, r). Replace u by r

and go to Step 2.

Step 2. Perform *find-parent(find-children(w). If w has valence two or less, let
x = w and go to Step 3. Otherwise, choose a child y (if any) colored 20; if there is
no such child, let y be any child of 20. Create a new vertex z (not in any phantom
tree). Perform make-tree(z); change-color+, w); change-label@, CO); cut(y); link(y, z);
link(,w. 2). Let x = z; go to Step 3.

Step 3. Perform link@, x).

cut(v):

Step 1. Let u=jnd-top(v) a,nd x=find-parent(u). Perform cut(u). if u = v, go to
Step 2. Otherwise, perform find-children,(u). Let q and r be the children of u. Perform
cut(q); cut (r); link(q,r). Destroy dummy vertex U.

Step 2. If 2 = ‘20, stop. Otherwise, find the two vertices y and x adjacent to x by
performing find-parent(x) a,nd find-children(x). If one of y and z, say y, is the parent
of x, perform cut(z); cut(x); link(z, y). Otherwise, perform cut(z); cut(y); link(z, y).

In either ca.se, destroy dummy vertex n: and stop.

9

evert(u):
evert(v).

Each dynamic t,ree opera.tion consists of O(1) phantom tree operations and 0(1) ad-
ditional work. Since each dummy vertex in a pha.ntom tree has valence exactly three a.
dynamic tree containing k vertices corresponds to a phantom tree containing at most 3k/2

vertices.

7. Representation of Phantom Trees by Virtual Trees

We implement phantom trees by using t,he method of Sleakor and Ta.rjan [16], modified
only as necessary to deal with vertex labels and colors. We assume some familiarity with
[16]; we shall merely sketch the details of the implementation, highlighting the changes
needed for our purpose. (See also [17], Cha.pter 5.)

We represent each phantom tree P by a rooted virtual tree 1/, which contains the
same vertices as P but has different structure. Each vertex of V has a, lefl child and a right

child, either or both of which can be missing, and at most three m,iddle children. We call
an edge of V solid if it joins a left or right child to its parent and dashed otherwise. Tree
V consists of a collection of binary trees, its solid subtrees, connected by dashed edges.
The parent in P of a vertex x is the symmetric-order successor of x in the solid subtree
containing x in V, unless x is last in its solid subtree, in which case its parent in P is the
parent in V of the root of its solid subtree. (See Figure 2.) That is. each solid subtree in
17 corresponds to a path in P, with symmetric order in the solid subtree corresponding to
the order along the path from deepest to shallowest vertex. We say a vertex x is a solid

descendant of a vertex y in V, and y is a solid ancestor of y, if x is a descendant of y and
t’he pakh from x to 9 consists of solid edges.

[F gi ure 2.1

We represent the structure of V by storing with each vertex x pointers to its parent,
its left and right children, and a list of its middle children. We also store with x its la,bel
and color. In addition, we store with x one piece of cumulative informakion, min-label(m),

which is the minimum label of any descendant of x in V. Finally, we store with x a
reversal bit rev[.x), used to ha,ndle the evert operation. The interpretation of reversal bits
is as follows. Let s,zhrn-rev(x) be t,he mod-two sum of the reversal bits of a11 solid ancestors

10

of .I’. If sum-reu(x) is 1, then the meanings of the left and right child point.ers of ,r are
rel-ersed, i.e., the left pointer points to the right child a.nd vice-versa.

We use two 0(1)-t ime restructuring primitives on virtua.1 trees. The first is rotation,

in which two vertices n: and y joined by a solid edge are intercha.ngecl while preserving
sl-mmetric order. (See Figure 3.) The second is splicing, in which the left child, if any, of
a. \-prtes x is made a middle child, and possibly in a,cldition some middle child is ma.cle the
left child. (S ee Figure 4.) A splice can only be performed if .u is the root of a solid subtree.
It is straightforward to verify that all the values stored at each vertex can be updated in
0(1) time after a rota.tion or a splice.

[Figure 31
[Figure 41

The main restructuring operation on virtual trees is splaying. A splay a.t a vertex x
consists of a specific sequence of rotations and splices along the pa.th from z to the tree
root. The effect of the splay is to restructure the tree, making x the root. The actual time
required for a splay at x is proportional to the (original) depth of x; the amortized time is
0(log L$ if the tree containing x has k vertices. See [16].

We can perform each of the phantom tree operantions using at most two splay opera-
tions and 0(1) additional restructuring of the tree. We shall describe the implementation
of three of the operations; implementation of the others is similar. (See [16].) To perform
evert(v), we splay at v, make the left child of ‘U (if any) al. middle child, and flip the bit
Te*lr(u). To perform find-min-label(v), we choose a, vertex x of minimum min-label among
v and all its children except the right child. We search clown through descendants of .zz
to find a vertex y such that label(y)=min-label(x). (This search is guided by label a,nd
min-lnbel values.) Then we splay at y and return y. The splay at y pays for the search to
rea.ch y. We perform find-top(v) as follows. First, we splay a.t v. Then we let i = 0 and
‘Vg -- U. We repeat the following step until vi has no right child or vi differs in color from
U: search down from the right child of 0; through left, children until reaching a vertex vi+1
of the same color as v or that has no left chilcl; repla.ce 2. by i + 1. Once this computation
is completed, we splay at vi and return vi if it has the same color as v; if it does not, we
return Vi_1. The splay at vi pays for all the sea.rching.

With this implementation, the amortized time per phantom tree operation is O(log 1~).

11

This implies by the discussion in Section 6 t!hat’ t,he amort,ized time per dynamic tree
operation is O(log 12). By the discussion in Section 5, this implies in turn that the a.mortizecl
time to choose a pivot a,nd implement it in the network simplex algorithm is 0(log ~2,). This
gives the main result of our paper:

Theorem I. The Goldfarb-Hao version of the primal network simples algorithm for
the ma,ximum flow problem ca,n be implemented to run in O(nm log 12) time.

8. References

PI

[I2

PI

PI

PI

PI

VI

PI

PI

PO1

P11

P I2

P31.

PI

P51

R. I<. Ahuja, .J. B. Orlin, and R. E. Tarjan, “Improved time bounds for the mal.simum
flow problem,” SIAM J . Comp&, Tao appea.r.

V. Chvatal, Linear Programming, W. H. Freeman, New York, 19S.3.

W . H . Cunningha,m, “*4 network simplex method”, Mathematical Programming 1
(1976), 105-116.

G. B. Dantzig, Linear PrograuLcming and Extensions, Prince t,on University Press,
Princeton, N.J, 1963.

L. R. Ford, Jr. a,nd D. R. Fulkerson, Flows in Networks, Princeton University, Prince-
ton, NJ, 1962.

D.. R. Fulkerson and G. B. Dantzig, “Computations of maximal flows in networks”,
Naval Research Logistics Quarterly 2 (1955), 277-283.

A. V. Goldberg, “-4 new max-flow a.lgorit hm ,” Technical Report blHT/LCS/TM-291,
Laboratory for Computer Science, Massachusetts Institute of Technology, Cambritl~c.
MA, 1985.

A. V. Goldberg and R. E. ‘Tarja,n, “A new approach to the maximum flow problem,”
J. Assoc. Comp&. Mach. 35 (19S8), 921-940.

D. Golclfarb and M. D. Grigoriaclis, “-4 computational comparison of the Dinic a,nd net-
work simplex methods for maximum flow”, Annals of Operations Research 13 (19SS),
83-123.

D. Goldfarb and J. Hao, “A primal simplex algorithm that solves the maximum flow
problem in at most nm pivots and O(n’m) time,” manuscript. Department, of In-
dustrial Engineering and Opera.tions Research, Columbia University, New York, NY,
1988.

M. D. Grigoriadis, “An efficient implementation of the primal simplex method”, Math-
ematical Programming Study 26 (1986)) S3-111.

J. L. Kennington and R. V. Helgason, Algorithms for Network Programming, Wiley,
New York, NY, 1980.

E. L. Lawler, Com,binntorinl Optimization: Networks and Matroids, Holt, Reinha.rt,
and Winston, New York, NY, 1976.

C. H. Pa.padimitriou and I\;. Steiglitz, Combinatorial Optimization: Algorith,m,s and

Complexity, Prentice-Hall. Englewood Cliffs, NJ, 1982.

D. D. Sleator a,nd R. E. Ta.rja.n, “A data structure for dynamic t’rees,” J. Computer
and S;ystem Sciences 26 (1983), 362-391.

13

[16] D. D. Sleator and R. E. Tarjan. “Self-adjusting binary search trees,*’ J. Assoc. c’ow-
put. Mach. 32 (1985), 652-686.

[u] R. E. Tarjan, Data Structures and Network Algorithms, Society for Industrial and
Applied Mathematics, Philadelphia, PA, 19S.3.

[lS] R. E. Tarjan, “Amortized computational complexity,” SIAM J. Algebraic and Discrete
Methods 6 (1985), 306-318.

[19] R. E. Tarjan, “Efficiency of the primal network simplex algorithm for the minimum-
cost circulation problem,” to appear.

14

(b) -

0

8

b

0

8

b

F&n 1. A dynamic tree and a corresponding phantom tree
(a) Dynamic Tree D. (b) Phantom Tree P.

Labels inside the vertices of P are colors. Primes are added to distinguish vertices.

15

a a
4 a

0
m

Figure 8. A virtual tree corresponding to the phaatom tree in Figure 1
Solid edges axe solid; dashed edges axe dashed.

16

A 6 C

RIGHT
ROTATION

LEFT
ROTATIMJ

Figure 3. A rotation in a virtual tree. Triangles denote subtrees.

A B C D 6 A C D

Figure 4. A splice in a virtual tree.

17

