
March 1989 Report No. STAN-CS-894250

A Sound and Complete Axiomatization  of Operational
Equivalence  between Programs with Memory

bY

Ian Mason and Carolyn Talcott

Department of Computer  Science

Stanford University

Stanford, California 94305



SECURITY  CLASSIFICATION  OF THIS  PAGE

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

l a  REPORT  SECURITY  CLASSIFICATION 1 b RESTRICTIVE  MARKINGS

2a SECURITY  CLASSIFICATION  AUTHORITY 3 DISTRIBUTION  /AVAILABILITY  OF REPORT

I
2b DECLASSIFICATION  1 DOWNGRADING  SCHEDULE

4 PERFORMING ORGANIZATION REPORT  NUMBER(S) 5 MONITORING  ORGANIZATION  REPORT  NUMBER(S)

STAY-CS-89-1250
6a NAME OF PERFORMING  ORGANIZATION 6b OFFICE  SYMBOL 7a NAME OF MONITORING ORGANIZATION

(If applicable)

Stanford University
6c. ADDRESS  (Crty,  State, and ZIPCode) 7b ADDRESS  (City,  State, and ZIP Code)

Computer Science Dept. /Stanford Univ.
Stanford, CA 94305

8a NAME OF FUNDING  /SPONSORING
ORGANIZATION
DARPA

8b OFFICE  SYMBOL 9 PROCUREMENT  INSTRUMENT  IDENTIFICATION  NUMBER
(If applicable) N00039-85-C-0211

Bc. ADDRESS  (City,  State, dnd ZIP Code)

Arlington, VA 22209

1 1 TITLE  (Include Securrty Clawficatfon)

10 SOURCE  OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
ELEMENT  NO NO NO ACCESSION  NO

A Sound and Complete Axiomatization Of Operational Equivalence between Programs w/Men
12 PERSONAL  AUTHOR(S)

Ian Mason and Carolyn Talcott
13a TYPE OF REPORT 13b TIME  COVERED 14 DATE  OF REPORT (Year, Month, Day) 15 PAGE COUNT

FROM TO- 1989, March 26
1 6  SUPPLEMENTARY  NOTATION

17 COSATI CODES 18 SUBJECT  TERMS  (Contrnue on reverse rf necessary and rdentrfy by block number)

FIELD GROUP SUB-GROUP

19 ABSTRACT  (Contrnue on reverse rf necessary and ldentrfy  by block number)

in this paper we present a formal system for deriving assertions about programs with
memory. The assertions we consider are of the following three forms: (i) e diverges (i.e. fails
to reduce to a value), written 1 e; (ii) eo and el reduce to the same value aad have exactly
the same effect on memory, written eo - el; and (iii) eo and el reduce to the same value
and have the same effect on memory up to production of garbage (are strongly isomorphic),
written eo 2? el. The e, ej are expressions of a first-order Scheme- or Lisp-like language
with the data operations atom, eq, cur, cdr, cons, setcur, setcdr, the control primitives let
and if, and recursive definition of function symbols.

20 DISTRIBUTION  i AVAILABILITY  OF ABSTRACT 2 1 ABSTRACT  SECURITY  CLASSIFICATION
0 UNCLASSlFlEDiUNLlMlTED q  SAME AS RPT 0 DTIC  USERS

!2a NAME
P

F RESPONSIBLE  INDIVIDUAL 22b TELEPHONE  (Include Area Code) 22c OFFICE SYMBOL
Caro yn Talcott (415)723-2273

DD Form 1473, JUN 86 Prevrous  edrtrons  are obsolete.

S/N 0102-LF-014-6603
SECURITY  CLASSIFICATION  OF THIS  PAGE



A Sound and Complete Axiomatization  of Operational
Equivalence between Programs with Memory t

Ian Mason Carolyn Talcott
University of Edinburgh St anford University
IAM@SAIL.STANFORD.EDU CLT@i’SAIL.STANFORD.EDU

Copyright @ 1989 by Ian Mason and Carolyn Talcott

1. Introduction

In this paper we present a formal system for deriving assertions about programs with
memory. The assertions we consider are of the following three forms: (i) e diverges (i.e. fails
to reduce to a value), written T e; (ii) eo and el reduce to the same value and have exactly
the same effect on memory, written eo w el; and (iii) eo and el reduce to the same value
and have the same effect on memory up to production of garbage (are strongly isomorphic),
written eo N el. The e, ej are expressions of a first-order Scheme- or Lisp-like language
with the data operations atom, eq, car, cdr, cons, setcar, setcdr, the control primitives let
and if, and recursive definition of function symbols.

The formal system we present defines a single-conclusion consequence relation C I- @
where C is a finite set of constraints and @ is an assertion. A constraint set is a finite subset
of atomic and negated atomic formulas in the first-order language consisting of equality, the
unary function symbols car and cdr, the unary relation atom, and constants from the set
of atoms, A. Constraints have the natural first-order interpretation. The semantics of the
formal system is given by a semantic consequence relation C + Q which is defined in terms
of a class of memory models for assertions and constraints. The main results of this paper
are

Theorem (Soundness): The deduction system is sound: C I- @ --+ C + a.

Theorem (Completeness): The deduction system is complete for @ not containing
recursively defined function symbols: C 1 + + C I- a.

Operational equivalence [Morris 1969, Plotkin 19751 abstracts the operational seman-
tics of programs and is the basis for soundness results for program calculi and program
transformation theories. Two expressions are operationally equivalent if they are indistin-
guishable in all program contexts. The importance of the strong isomorphism relation is
that strong isomorphism relative to the empty set of constraints is the same as operational
equivalence. Thus the formal system can be used for proving operational equivalence, and
is complete for expressions which do not contain recursively defined function symbols.

From the rules of the formal system and the proof of completeness we obtain a deci-
sion procedure for the semantic consequence relation. This is an important step towards
developing computer-aided deduction tools for reasoning about programs with memory.

[Oppen 19781 gives a decision procedure for the first-order theory of pure Lisp, i.e.
the theory of atom, car, cdr, cons over acyclic list structures. [Nelsen and Oppen 19X’]

t This research was partially supported 11~1 DARPA contract N00039-84-C-0211



2

treats the quantifier-free case over possibly cyclic list structures. Neither treats updating
operations. [Boehm 19851 d fie nes a first-order theory for reasoning about programs in the
language Russell which includes facilities for allocating and modifying memory. Program
constructs are defined by two classes of axioms: (1) axioms about the value returned and (2)
axioms giving the effect on memory. Some relative completeness results are given, but no
decidable fragments are considered. Russell is strongly typed and hence prohibits many Lisp
programs. The semantics of the full first-order Lisp-like language was studied in [Mason
1986, 1986a].  Here the model-theoretic equivalence strong isomorphism (E) was introduced
and used as the basis for studying program equivalence. Many examples of proving program
equivalence can be found in [Mason and Talcott 1985, Mason 1986, 19881.  [Felleisen 19871
develops a calculus for reasoning about programs with memory, function abstractions and
control abstractions. [Mason and Talcott 1989a]  gives an alternative approach to treating
programs with memory and function abstractions and develops the theory of operational
equivalence for this case. More complete surveys of reasoning about programs with memory
can be found in [Mason 1986, 1986a,  19881 and [Felleisen 1987, 19881.

The remainder of this paper is organized as follows. We first define our language
and its operational semantics. We then present the axioms and rules of the formal system.
Following that we define memory models and semantic consequence and prove the soundness
theorem. Finally we prove the completeness theorem. To do this we develop a syntactic
representation of the operational semantics which is also useful for reasoning about programs
in general.

We conclude this section with a summary of notational conventions. We use the usual
notation for set membership and function application. Let Y,Yu, Yr be sets. Yn is the set
of sequences of elements of Y of length n. Y* is the set of finite sequences of elements of
y- [Y17-*~7Ynl is the sequence of length n with ith element yi. Pw(Y) is the set of finite
subsets of Y. [Yo + Yr] is the set of functions f with domain Yu and range contained
in Yr. We write Dam(f) for the domain of a function and Rng(f) for its range. For any
function f, f{y := 9’) is the function f’ such that Dom( f’) = Dom( f) U { y}, f’(y) = y’,
and f’(z) = f(z) for z + y, z E Dam(f). N = (0, 1,2,.  . .} is the natural numbers and. .z,J,n,no,  . . . range over fV.

2. The Operational Semantics

In existing applicative languages there are two approaches to introducing objects with
memory. We shall call these the Lisp approach and the ML approach. In the Lisp approach
the semantics of lambda abstraction is modified so that upon application lambda variables
are bound to newly allocated memory cells. Reference to a variable returns the contents of
the cell and there is an assignment operation (setq or set ! ) for updating the contents of the
cell bound to a variable. With this modified semantics one can no longer use beta-conversion
to reason about program equivalence. For example in the program ((AX.. .setq(z,  n +
1). . .)v) beta-conversion is not even meaningful, x cannot be substituted for by a value.
Instead a cell must be allocated and x replaced by the cell name or labeled value. In the
ML approach cells are added as a data type and operations are provided for creating cells
and for accessing and modifying the contents. Reference to the contents of a cell must be
made explicit. The semantics of lambda application is preserved and beta-value conversion
remains a valid law for reasoning about programs. The Lisp approach provides a natural



3

syntax since normally one wants to refer to the contents of a cell and not the cell itself.
However the loss of the beta rule poses a serious problem for reasoning about programs.
This approach also violates the principle of separating the mechanism for binding from that
of allocation of memory [Mosses 19841.  Following the Scheme tradition, [Felleisen 19871
takes the Lisp approach to provide objects with memory. In order to obtain a reasonable
calculus of programs, the programming language is extended to provide two sorts of lambda
binding and an explicit dereferencing construct. There have been recent improvements in
this calculus, but the problem of mixing binding and allocation is inherenent in the approach.

We take the ML approach to introducing objects with memory, adding primitive op-
erations that create, access, and modify memory cells to the call-by-value lambda calculus.
Since we are working in the first-order case, memories with cells that contain only a single
atom or cell are not adequate for representing general list structures. Thus we treat memo-
ries with binary cells. In the higher-order case when cells can also contain function objects
unary cells are sufficient. For brevity, we restrict our attention to expressions not containing
recursively defined function symbols. The definitions and many of the intermediate results
lift naturally to the full first-order language (see [Mason 19861).

We fix a countably infinite set of atoms, A, with two distinct elements playing the role
of booleans, T for true and Nil for false. We also fix a countable set X of variables disjoint
from A.

Definition (WJE): The set of value expressions, UJ, and the set of expressions, IE, are
defined by

W=XUA

IE = WU  let{X:= lE}lE Uif(E,lE,E)UlF~(iE)UF~(E,E)

where the unary memory operations are lFr = {atom, car, cdr} and the binary memory
operations are IF2  = {eq, cons, setcar, setcdr}. The equation for lE is just compact notation
for a standard inductive definition defining (E to be the least set containing W and such that if
x E X, ej E IE for j < 3,6r E [Fr,  and 62 E IF2 then let{x := eu}er, if(eo,er,e&  Sr(er), and
62 (er , ea) are in IE. We let a, ao, . . . range over A, x,x0, y, x, . . . range over X, u, uo, . . . range
over W, and e,eu,. . . range over lE. The variable of a let is bound in the second expression,
and the usual conventions concerning alpha conversion apply. We write FV(e) for the set
of free variables of e. seq( eu, . . . , e,> abbreviates if (eo, seq( el , . . . , en), seq(el, . . . , en)).

Expressions describe computations over S-expression memories - finite maps from
(names of) cells to pairs of values, where a value is an atom or a cell. We call the value of
a cell in a memory its contents. The memory operations are interpreted relative to a given
memory as follows. atom is the characteristic function of the atoms, using the booleans
T and Nil; eq tests whether two values are identical. cons takes two arguments, creates
a new cell (extending the memory domain) whose contents is the pair of arguments, and
returns the newly created cell. car and cdr return the first and second components of a cell.
setcar and setcdr destructively alter an already existing cell. Given two arguments, the first
of which must be a cell, setcar  updates the given memory so that the first component of
the contents of its first argument becomes its second argument. setcdr similarly alters the
second component. Thus memories can be constructed in which one or both components
of a cell can refer to the cell itself.



4

To define the operational semantics we fix a countable set of (names of) cells, Cc, disjoint
from A and X. V = AU c is the collection of storable memory values. The set of memories,
RJI, consists of finite maps from cells to pairs of values. Cells which appear in the range of
a memory are assumed to lie in its domain. For each n E N we also define a collection of
n-ary memory objects, Ocn)  c V” x IU, (elements of 0(l) are called objects, and we omit
the superscript). The cells in the n-tuple component of a memory object must lie in the
domain of its memory component. The set of environments or bindings, B, is the collection
of finite functions from X to V. The set of descriptions of computations, [ID, is a subset of
lE x II3 x &d. In a description the free variables of the expression must be in the domain of
the environment, and cells in the range of the environment must be in the domain of the
memory. This is all summed up in the following definition.

Definition (Semantic Domains):

Memories: tin!  = {p E [Z + (2 u A)2]  ( Z E P,(C)}

Objects:

Bindings:

aD@J = {[I@, . . . ,vn-l];~  1 /J E M,Vi E Dam(p)  U A,i E n}

B = {P E [X + a/] 1 x E Pw(X)}

Descriptions: UD = {e; P; P 1 We) C Don-@), R.w(P) G Dam(p)  U A, p E M}

We let c, co, . . . range over UZ, 0, 00, . . . range over V, p, ~0, . . . range over l&U, u; p, uo; PO, . . .
range over 0, p,pu,.  . . range over ll3, and e; /3; CL, eu; PO;  PO,. . . range over [ID. We use “;” in
some notations, for example objects and descriptions, since some components of the these
tuples are also collections (sets or tuples) and we wish to emphasize the outer level tuple
structure. We extend environments to value expressions by adopting the convention that
p(a) = a when a E A.

The operational semantics of expressions is given by a reduction relation Z+ on de-
scriptions. It is generated in the following manner. A is the reflexive transitive closure of
the single-step relation I+ which is defined in terms of reductions of primitive expressions
and reduction contexts. The single-step reduction relation, I+, is a subset of (IID x IID), as is
A. The action of the memory operations is given by the primitive reduction relation, -,
which is a subset of (IFI (0) x 0) U (IFa (0c2)) x 0). Finally, the evaluation relation, +, is a
subset of (ICD  x 0). Evaluation is reduction composed with the operation converting value
descriptions (u; ,0; p) into memory objects.

Computation is a process of applying reductions to descriptions. The reduction to
apply is determined by the unique decomposition of a non-value expression into a reduction
context filled by a primitive expression.

Definition (Eprim ): The set of primitive expressions, IEnrim, is defined as

E prim = if(W, IE, IE) U let{X := W}lE U IFr(W) U lF2(W,  W)

Definition (&E): The +lt of contexts, “IE, is defined inductively using the special symbol
E for holes:

‘ii = {E} U )\( U A U let{X := ‘lE}‘IE  U if(EIE,E(E,EIE)  U ~.FI(%) U F2(EE,EE)



5

Definition (R): The set of reduction contexts, R, is the subset of “IE defined by

R = {E}Ulet{~:=[W}[EUif(IW,IE,IE)U~~([W)UIF2(W,[W)U~2(~,IE)

We let E, E’ range over “E and R range over R. E[ejj denotes the result of replacing
any holes in E by e. Free variables of e may become bound in this process. We often
adopt the usual convention that I[ ]I denotes a hole. To avoid proliferation of brackets when
dealing with composition of c0ntext.s  we write E; E’[e]l for E[E’[eJJjj  and similarly for longer
composition chains.

Lemma (Decomposition): If e E E then either e E W or e can be written uniquely as
R[e’j where R is a reduction context and e’ E IEprim.

Definition (H): The single-step reduction relation I-+ on IID is defined by

(beta) R[let{x := u}e]l;  p; p I+ R[e]l;  P{x  := ,0(u)};  p

( f>i ~uifh el, e2)n; P; P ++
{

RU4l;  P; I-L if P(u)  # Nil
R[e2]1;p;p  i f  p(u)  =  N i l

(delta) RIS(ul,.  . . ,2ln>D;  p; p H R[xJ;  P{x := v'); 1~'

where in the (beta) clause x 6 Dam(p) and in the (delta) clause x 4 Dam(p), S E
IF,, S( [WI, . . . , wn]; /J) - w’; /L’, and vi = p(ui) for 1 5 i 5 n. The primitive reduction
relation, - , in (delta) is defined by cases according to the nature of 6 E IF,.

Definition (-): The primitive reduction relation S( [WO, . . . , Vn-l]; ,LL) - v’; p’ is the least
relation satisfying the following conditions.

atom(v; p) - T+ ifvEA
Nil ;  p otherwise

car(c; p) - Vo; P

cdr(c; p) - ~1; P

eq([wO~  ‘11; PI - {
if vug = vli!iy. p otherwise7

cons( [u0,  VI]; p) - c; P{c := [vo, VII> for any c such that c e Dam(p)

setcar( [c, w];  p) - c; p{c := [V, VI]}

setcdr([c,  w];  p) - c; p{c := [WO, v]}

where in the cases for car, cdr, setcar  and setcdr we assume that c E Dam(p)  and p(c) =
[uo, WI-

Although formally cons is multi-valued, the values differ only by renaming of cells and
generally we will not distinguish them. Defining cons as a relation rather than a function
which makes an arbitrary choice is the semantic analog of alpha conversion and greatly
simplifies many definitions and proofs. If p is a memory and 29 E {car, cdr}, then the
function ti, E [Dam(p) + V], is defined by

carp(c)  = v ++ (3v’)@(c) = [w, v’]) and cdr,(c)  =  w ++ (3v’)(p(c)  =  [w’, w])



6

Definition (-,i,l): A description e;p;p  E UD evaluates to the object w; /..L’ E UD, if it
reduces to a value description denoting that object.

e; p; p c-, v; p’ * (3u; p’; p’)(e; p; p 15 U; P’; P’ A P’(U) = v>

As for primitive reductions, single-step reduction and evaluation are single-valued rela-
tions modulo renaming of cells. A description is defined, written ./, e; p; p, just if (3~; ,Q’ E
q(e;P;P - 2.‘$)- A description is undefined, written ‘/ e; ,L?; /J, just if -(J, e; ,8; ,Q).  We
identify a closed expression with the description consisting of it, the empty environment
and the empty memory. Thus 1‘ e abbreviates 1 e; 0; 0. In the absence of recursively defined
functions reduction sequences are finite. In this case a description is undefined only if re-
duction terminates in attempting to access or update the contents of an atom. In the full
first-order case undefinedness also includes divergence.

We define operational equivalence following [Plotkin 19751.

Definition (S): Two expressions are said to be operationally equivalent, written ea E er ,
if and only if for any closing context E, E [eo] and E[el]  are either both defined or both
undefined.

(YE E “E 1 Fv(E[e01)  = FV(EUel])  = 0)(( A 1‘ EUei])  V (A 1 EUei]))
i<2

By definition operational equivalence is a congruence relation on expressions. However it
is not necessarily the case that instantiations of equivalent expressions are equivalent even
if the instantiation is defined. Note that T and Nil are not operationally equivalent. More
generally, define two closed expressions to be trivially equivalent if both are undefined, both
return the same atom or both return cells, then two expressions are operationally equivalent
just if they are trivially equivalent in all closing contexts. This is the usual characterization
of operational equivalence in the presence of basic data. Both definitions are equivalent in
this setting since equality on basic data is computable. These observations are summarized
in the following lemma.

Lemma (Congruence):

1. e0 S el - (VE E “IE)( E[eo] 2 E[el])

2. It is not the case that 1 e A eu 2 er implies eu {II: := e
variable z and expressions e, eu, er .

3. l(T g Nil)

1 F el{x := e} for arbitrary

4. eo E el c-) (VE E Ti 1 FV(E[eo]) = FV(E[e$  = O)(E[eo]  Z” E[el])  where for closed
expressions eb, e\ e6 ?:‘O e\ iff

(A Tel) V (~~o;PoA+~)((~ e’; w Vi;/.Li)  A  ((Vg = 211  A  Vo, 01 E A )  V (VO, Vl E C)))

i<2 i<2

Proof (congruence):

(1) For the if direction take E = [ ]I. For the other direction note that for any E if E’ is
any closing context for E[ej]  for j E 2 then E’[E] is a closing context for ej for j E 2.

(2) As a counter-example we have eq(x, x) E T but eq(cons(T,  T), cons(T, T)) Z Nil.



7

(3) The context if (E, cur(T), T) will distinguish T and Nil.
(4) The if direction is trivial. For the other direction suppose (Ai< E[ej]  - vj; pj).
If wo,wr E A and 00 # vr then the context if(eg(wo, E), car(T),T) will distinguish the
expressions. Similarly, if we E A and vr E C then the context if(atom(E), cur(T), T) will
distinguish the expressions.

n,ongruence

3. The Formal System

In this section we present the language and rules of our formal system. The assertion
language IL and the constraint language L are defined as follows:

Definition (L):

%=(EdE)u(E-E)u(,pE)

Definition (L):

L = (cur(W) = W) u (cdr(W) = W) u (W = W) u l(W = W) u (utom(W))  u l(utom(w))

We let cp, . . . rangeoverl a’,... range over lL, and C, Co, A,. . . range over Pw(,C).

The set of constraints L is a subset of the atomic and negated atomic formulas in the
first-order language consisting of equality, the unary function symbols cur and cdr, the
unary relation atom, and constants from A. We will freely use standard notions such as
first-order satisfaction, +.

Definition (Th(A)): The theory Th(A) is defined by

Th(A) = (utom(u),  l(u = a’) 1 a, a’ E A, a # a’>

To state the rules, as well as the side conditions on rules, we use the following notation.
The result of pushing a context E through an assertion @ is defined by

T akn ifQ,=le
E[IIQ]  = E[eo] N E[eJ  i f  Qi = e0 N el

man 21 E[el] if @ = eu N er .

For 6 E {cur,cdr}, x is d-less in C just if l(3u E W)(C  b z9(x)  = u) and (V?J E X)((6(y) =
u) E c + c + 1(x = y)). If x is &-less in C then the only way to consistently add
information concerning ti(x) is by adding an assertion of the form 8(x) = u. Furthermore,
if x is O-less in C then we can add 8(x) = u to C without changing equality consequences of
C. Dam(C) is the subset of FV(C) defined by Dam(C) = {x E FV(C) 1 C k lutom(x)}.
If x E Dam(C) then x must be interpreted as a cell. For each constraint p E L there is a
corresponding assertion T(v) E IL defined by

6(x) N u if cp is d(x) = u and 19 E {cur, cdr}
eifu0,u1>  - T if 9 is u0 = u1

T(P) = eq(uo,ul)  N Nil if +9 is l(u0 = ul)
atom(x) N T if p is atom(x)
atom(x) N Nil if p is wtom(x).



8

3 . 1 . The Rules

Definition (C I- a): The consequence relation, I-, is the smallest relation that is closed
under the rules given below.

The rules are partitioned into several groups of related rules. Each group of rules is
given a label for future reference and members of the group are numbered. For example
(S.i) refers to the first rule in the group of structural rules (the first group below). A
rule has a (possibly empty) set of premisses and a conclusion. In the case that the set of
premisses is non-empty the rule is displayed with a horizontal bar separating the premisses
from the conclusion. A pair of rules that differ by interchanging premiss and conclusion is
presented as a single rule with a double bar.

Most of the rules are solely concerned with N. Of the rest those that concern all
assertions are (S.ii, L, R.i). The structural rule (S.ii) is used to put constraint sets into a
form necessary for application of another rule - for example (set .vii). It also incorporates
trivial facts concerning equality and the nature of the atoms. The left elimination rules,
(L.i, L.ii), enable one to reason by cases while (L.iii) allows one to eliminate vacuous
constraints. (R.i) states the key property of reduction contexts.

The rules concerning divergence are (D, cons.iii, set .vii). The latter two concern
both 1‘ and N and allow memory descriptions encoded in a constraint set to be represented
syntactically. The rules concerning N are (E.i,ii,iii,G).  The first three simply assert that
it is an equivalence relation weaker than N. The garbage collection rule allows for the
elimination of garbage - cons cells no longer accessible.

Structural rules (S).

where in (ii) C U Th(A) k 9.

Left elii-ninat ion (L).

0i
C U {atom(x)} I- @ C U {~utom(x)}  I- Q

ct-a

( 1
ii c u {l(UO = Ul)} t- @ Cu{uo  = Ul} I- tD

cl-a
(iii) c u {qx)  = z} I- Q,

cl-3

where in (iii) 29 E { cur, cdr}, x E Dam(C), and x 6 FV(@)  U FV(C).

Equivalence rules (E).

0
C l - e

i 0 N el
( >ii

C I- eo N el Cke1 = e2 . . .
( >

C t- eo 21 el

C I- eo N el
111

C l - e 0 = e2 C I- el N eo

(iv) C I- eu N e0 ( >
Et-e0 N el C I- el N e2

( >
C l - e0

V vi N el
C l - e0 - e2 C l - e I N e0



Rule concerning eq (es).

0i c I- edx, Y) N T
cl-xwy

Divergence rules (D).

0i Et-b0 CUel
( >ii CMe0 Cl - e0 - el

Cl -e 0 - el Ct-Tel
. . .

( >
c i- atom(x) N T c k- utom(x)  N T

111 ( >iv
c t- T a(x) C I- T setz9(x,  y)

where in (iiijv)  19 E {cur, cdr}

Reduction context rules (R).

cl-ip
G, c kR[@]

(ii) C I- R[if(eo,  el, e2>] N if(eo,  RUell, Rlk2ll)

(iii) C t- R[let{x  := eo}el] N let{x := eo}R[el]

where in (iii) x # FV( R).

Rules concerning let (let).

(i) C l- e N let{x := e}x (ii) C I- e{x := u} N let{x := u}e

Rules concerning if (if).

(i) C I- seq(eo,el)  N let{x := e0)el.

(ii) c k if (Nil, eo, el) N el (iii)
c i- eq(u, Nil) N Nil
C I- if(u, eo, el) N eo

where in (i) x 4 FV(el).

Rules for cons (cons).

(i) C I- let{xo := cons(T, T)}let{xl := cons(T, T)}e

- let{xl := cons(T, T)}let{xo := cons(T, T)}e

(ii) C t- seq(eo,let{x  := cons(u0, ul)}el)  N let{x := cons(uo,u,)}seq(eo,e,)

(iii)
CuAl-@

C I- let{x := cOns(u,,ud)}[@]

where in (ii) x 6 FV(eo), and in (iii) @ E (E - E) U (TIE),  x f! (FV(C) U {u,, ud}) = Z and

A = {lutom(x),  cur(x) = u,, cdr(x)  = ud, 1(x = y) 1 y E 2 U FV(@) - {x})



10

Rules for setcur and setcdr (set).

0i
C I- eq(xo,xz)  N Nil

C I- seq(setd(x0,  xl), seM(x2,  x3),  e) - seq(setti(x2, x3), setfl(x0, Xi), 4

(ii) C I- seq(setzil(x,  yu), set6(x,  yl))  N setfl(x,  yi)

(iii) C I- seq(setd(x,  y),x) N setfl(x, y)

(iv) C I- seq(setcdr(xo,  xl),  setcur(x2,  x3),  e) N seq(setcur(x2,  x3),  setcdr(xo,  xl),  e)

(v) C I- setcur(cons(z,  y),x) - cons(x,  y)

(vi) C I- setcdr(cons(x,z),  y) N cons(x,  y)

( >vii
c u {29(x) = uo} I- @

c u {8(x) = ul} t- seq(set~(x,uo>,[Qn)

where 29 E {CUT,  cdr} and in (vii) @ E (IE N lE) U (T IE), x E Dom( C), and x is ?9-less in C.

Garbage collection rule (G). If I’ is a context of the form

let{zr := cons(T, T)} . . . let{z, := con@, 7’)))

seq(setcur(zl,  uy), setcdr(zl,  uf), . . . , setcur@,, u:), setcdr(z,,  U$ E).

and {zr,... ,z,} n FV(e) = 0, then

3.2. Consequences

The following are some consequences of the rules defining C I- a.

Lemma (Equiv): If C U Th(A) and C’U Th(A) 1lave the same first-order consequences
then C t- @ ++ C’ I- a.

Proof (Equiv): By @ii). &quiv

Lemma (Mon): If C I- Q then C U C’ I- @.

Proof (Mon): By induction on the length of proof and cases on the last rule applied.
We consider the two most interesting cases.

(cons.iii) Assume that x 6 FV(C’)  and that we have derived

c k let{x := cons(?&,ud)}[@]

where the last rule applied is (cons.iii). Then by induction hypothesis C U C’ U A’ I- @
where A’ = A U {1(x = y) ( y E FV( C’)}. Hence by (cons.iii) we are done. Qons.iii

(set.vii) Assume we have derived C u {d(x) = ur} I- seq(setti(x,  ue), [a]) and the last
rule applied is (set .vii) in the forward direction. Thus x E Dom( c>, x is O-less in C, and



11

C u {19(x)  =  uo) I- @. By  ( L ) we may assume that for 6(z) = u E C’ we have either
CuC’+z= 2 or C U I? + ~(2 = 2). Let

c, = {u = 241  1 (3+9(z) = u E c’ A c u c’ t= 2 = 2))

co = c’ - {19(z)  = u E c’ 1 c u c’ k z = x}.

Then

c u co u c, u {6(x) = uo) I- a by induction hypothesis

C U CO U C, U {G(x) = q) t- seq(setti(x,  Q-J), @) by (set .vii)

C U C’ U {6(x) = ‘~11) t- seq(setti(x,  uo), a) bY (S).

The proof for application of (set.vii) in the reverse direction is similar. 4jet.v;;

OMon

Lemma (Equality):

C + x = y A c k @ ---) c i- @{x := y)

Proof (Equality): By induction on the length of proof. Again we consider only the
interesting cases.

(S.i) If C + 2 = y then C U {cp>  k p{x := y}.

(S.ii) If C k p then C U {cp} b x = y - C k x = y.

(set.vii) Note that if C U {8(z) = u) k x = y and C is &less for z then C + x = y and
use (Equiv) in the case z E {x, y).

q  Equa1it.y

Lemma (Examples):

(i) {~utom(x))  I- setcur(x,  cur(x)) N x

( >ii C F cdr(cons(x,  y)) N y

(iii) C I- seq(seq(e0, el), e2) N seq(e0, seq(el,e2>>

(iv> C I- 4x, Y>  N eq(Y,x>

( >V C I- eq(x,x)  N T

(vi) C I- atom(u) N T

( >vii c I- a0 # a1
C I- eq(uo,ul)  N Nil

. . .
( >Vlll

C I- atom(x) N Nil C i- atom(y) N T
C I- eq(x,  y) N Nil

(ix) C I- let{xo := cons(u& u,d))let{xl  := cons(uT,uf))e

~let{xl := cons(uT,  ut))let{xo := cons(ug,  u,“))e

provided {x0, x1} n FV(u& u& U& u:) = 0

(x) C l-let{y:= eo)let{x:=  el}e2 -let{x:= let{y := eu)er)ez if y @FV(e2)



12

Proof (Examples):

(i) Let C’ = {~utom(x), cur(x) = y) then by (set .ii,iii)  we have

C’ 1 seq(setcur(x,  y), setcur(x,  y)) N seq(setcar(x,  Y), X)

and by (set.vii) we have I? I- setcur(x,  y) N x. Now, using (L,S,E,R)  we obtain C l-
setcur(x,  cur(x)) N 2.

(ii) C I- let{z := cons(x,  y))cdr(z)  N let{z := cons(x,  y)}y by (S.i, cons.iii). Thus
C I- cdr(cons(x,  y)) N let{z := cons(x,  y))y by (R .iii,let.i). The result now follows by
(E,G) and the simple exercise showing that

let{z := cons(2,  y))y N let{z := cons(T,  T)}seq(setcur(z,  x), setcdr(z,  y), y).

(iii’) By (R.ii) and the definition of seq.

( i v )  B y  (L.ii,S,E).

(v,vi,vii)  B y  ( S ) .

(viii) To show that C I- eq( x, y) N Nil it suffices by (L.ii, S.i) to show that C U {x =
y) t- eq(x, y) N Nil. By (Equality, E, S.i) and the assumptions we have that C U {x =
y) t- T N Nil. The result now follows by (S.i, E).

(ix) This is left to the reader. A similar derivation can be found in the proof of com-
pleteness.

(x) This is an instance of (R.iii).

q  Examples

4 . Soundness

In this section we present the semantics of our formal system. We begin by defining
what it means for a model to satisfy an assertion or a constraint set. The semantic conse-
quence relation between constraint sets and assertions is defined naturally in terms of these
satisfaction relations.

Definition (model): A model is an environment-memory pair such that cells in the
range of the environment are in the domain of the memory. We let ,O; ,v, PO;  ~0, . . .range
over models.

Definition (N): Two descriptions with the same model are defined to be equi-valued,
written eu; p; p Ner;p;p,ifboth d’ grver e or both evaluate to the same object:

1. ‘h;P;p  and b;P;rcl, or

2. (3T P’)(% P; I-L - v;p’ A ez;P;p--+  v;p’)

Definition (E): Two descriptions with the same model are strongly isomorphic, written
e0;P;p = er;P;p, if both diverge or both evaluate to the same object up to production of
cells not accessible from the value:

1. ‘h&p and TQ;P;P,  or



13

The model-theoretic equivalence strong isomorphism (E) was introduced in [Mason
19861 and used as the basis for studying program equivalence. The relation between strong
isomorphism and operational equivalence is given by the following theorem. [This theorem
holds for the full first-order language, not just the fragment with no recursively defined
functions .]

Theorem (Strong Isomorphism): If ee, er E IE, then eu E er if and only if for every
,B;p such that FV(ee, er) C Dam(p)  we have that eu;P;p  N er;P;p.

Proof (Strong Isomorphism): The key idea is to show that if there is a context
that distinguishes two expressions then there is a simple memory context, see section 5
for the definition, that distinguishes them. See [Mason 19861 for further analysis of strong
isomorphism. q  StrongIsomorphism

Definition (kL>: The notion of a model satisfying an assertion, p; p bh @, is defined
for FV(@) E Do,(p) by

1

T e; Pi P if@=Te
p;p be i# f--) eo;P;p  N el;p;p if @ = e0 N el

eo;P;p 21 el;/3;p if @ = e0 = el.

The notion of a model satisfying a set of constraints /3; p +C C is simply first-order
satisfaction adapted to the memory structure framework. For any memory p we define the
corresponding first-order structure M p by

MP = <Dam(p) U A, carp, cdrp, atom>

where Dam(p)  U A is the domain of M,, car,, cdr, are treated as binary relations, and
atom is a unary relation. For ,O E lE8, 9 E ,C such that FV((p)  c Dam(p)  and Rng(P) C
Dom@)UA we write M, + p [/?I for the usual first-order satisfaction relation where q [/3] is
the interpretation of p relative to the environment ,B, thought of as a Tarskian assignment.
Thus

P(x) E A if p is atom(x)
P(x) E Dom(4 if +9 is 7atom(x)

M, I= CPM t-;r Pbo> = P(w) if p is uo = ur
cd # f%> if y is l(uu = ur)
ti,(p(x))  = p(u) if q is S(x) = u and 19 E {car, cdr}

Definition (kc): p; p +c C if there is a ,!Y I) p with FV(C) s Dom(p’) and Rng(P’) E
A u Dom(&) such that M, + p [p’]  for p E C.

Definition (C b a): The semantic consequence relation C + Q is defined by

A constraint set C is consistent just if p;p  f=~ C for some model ,B;p. In order to
make explicit the consequences of the above definition of satisfaction, we state the following
definition and lemma.



14

Definition (IF): The memory structure theory, Cm, corresponding to C is defined by

Cm = C U Th(A) U {latom(x)  1 (3u  E W)((car(x)  = u) E C V (cdr(x) = u) E C)}

Lemma (Sat): For 9 E L we have Cm + cp t) C + T(p).

Proof (Sat): This is an easy consequence of properties of first-order satisfaction and
the fact that if 9 has a model then it has a model with the same ,C consequences that
corresponds to a memory structure. bat

Theorem (Soundness): If C I- @ then C b Qi.

Proof (Soundness): It suffices to show that each rule preserves soundness, i.e. sound-
ness of the premisses implies soundness of the conclusion. We restrict our attention to those
rules for which this result is non-trivial. The proofs for the remaining rules are either trivial
or else minor variations on the ones given.

Lemma (S): c u {cp) t= T(Y) for Y E L
Proof (S): Suppose ,B; p k~ C U {y} and without loss of generality that FV( C U {v}) C
Dam(p). Then by definition ,B; p +L p. This together with the definition of T is sufficient
to force that ,B;p +h T(p).  &

Lemma (L): Suppose that 29 E {car, cdr},x  E Dam(C),  and 2 4 FV(@) U FV(C).  Then

c u {d(x) = 2) + @
Cl=@

Proof (L): Suppose that l(C + Q). Then without loss of generality we may assume
that there is a p; p such that Dam(p)  = FV(C) U FV(@)  with /3; p +C C and -(/3; ,x +L a).
Since z 4 FV(C)  U FV(@)  we have that P{.z := $L(P(x))>w kc c u P(x) = 4 and
1 (P-t z := $&?(x))};~  be a). Thus l(C u {8(x) = z} + a). q  L

Lemma (cons): Suppose that @ E (lE N E) U (TIE),  x 61 (FV(C) U {G, ud)) = 2 and

A = {latom(x),  car(x) = u,, cdr(x)  = ud, 1(x = y) I y E 2 U (FV(cP) - {x})}.

Then

c + let{x := cons(u,,ud)}[@]

Proof (cons): Suppose that FV(C) c p, x $ Dom(p) and that p;p +L C. Furthermore
assume that -(p;  p k let{x := cons(u,,  ud)}[@]). Thus choosing c @ Dam(p)  and letting
P’; P’ = ,6(x := c};p{c  := [,8(&),/?(ud)]}  we have that l(p’;p’ I= a). Consequently it
suffices to show that /?‘; ,Q’ I=L: C U A. This is routine. Dons

Lemma (set): Suppose that @ E ((E N IE) u (‘/ IE), x E Dom( C) and x is cdr-less in C.
Then

C u {cdr(x)  = uo} + @

C u {cdr(x)  = 2~1) + seq(setcdr(x, uo), [a])



15

Proof (set): Pick /3;~ such that p; p +C C, FV(@)  U FV(C) U {x, ui} G Dam(p),
,8(x)  = c and for i < 2 put

Xi = C U {cdr(x)  = ui}

Pi = P{C := [car,(c),  P(Ui)])

c&-J  = Q,

Q>l  = seq(setcdr(x, uo), [a]).

Furthermore, without loss of generality, assume that FV(Ci)  C_ Dam(p). We show that
APO l=L: Co ifl&m I=L XI. The result then follows by observing that /3; ~0 + @o iff
PI; ~1 I= @I. Clearly P; pi +L { cdr(x) = ui} since by construction cdr,,  (c) = /?(ui). Thus
it suffices to show that for any p E C, M pO j= cp[/3]  H M,, b ~[p].  This is trivially
true if 9 is of the form atom(y), latom(y),  ue = ur, l(uu = ur) or car(y) = u, so suppose
that (cdr(y)  = u) E C. S ince x is cdr-less in C we have that C k 1(x = y), consequently
cdr,,(P(~))  = ~%,(P(Y)). Thus  M,,  I= W-(Y)  = u)[Pl  iff M,, I= W(Y)  = u>[Pl.  4jet

5. Completeness

In this section we state and prove the completeness theorem.

Theorem (Completeness): C /= @ implies C t @.

The proof of the completeness theorem is essentially an elaborate normal form theorem.
Suppose C /= eu N- er. We define two forms of contexts which feature in the normal form
proof: syntactic memory contexts, I?, and modifications, M. Using these contexts we define,
relative to C, a form of syntactic reduction, Lx. It is defined in such a way that

(e AC e’) + (C l- e N e’)

and if C contains enough information concerning the nature of the free variables of ei, then

and either e: E {R[ti(ui)],  R[seM(ui,  ui)]},  6 E {car, cdr} and CvTh(A) b atom or else
e: = ui, In the latter case the normal form of ei is then defined simply to be I’;; Mi; ui. We
show that one can use the introduction on the left rules to force C to contain the necessary
information. Consequently suppose, for arguments sake, that C does contain sufficient
information and that the normal form of ei is I’; ; Mi; ui. Then we have C I- ei N I’; ; Mi; ui.
Thus by soundness C + ei N I’;; Mi; ui. Consequently C b PO; MO;  uu N I’1 ; Ml; ~1.  The
completeness result then follows by showing that equivalent normal forms are provably
equivalent.

To obtain additional insight, consider the semantic question of deciding for any C
@ whether C + a. Since all computations terminate we can decide for any ,f3; p such

and
that

FV(@) G Do,(p) whe the r  P;,Y k a. We say C is complete for @ if C determines the
structure of its models upto depth the size of a!. If FV(e) & Dom(/?),  the size of e is 2 n,
and ,8; ~0 and p; ,~r are the same to depth n - agree on cells reachable from Rng(P) by



16

paths of length < n - then e; ,B; ~0 and e; ,O; ~1 have the same computation sequences. Thus
if C is complete for @, to decide C + @ we need only pick some ,O; p such that p; p + C
a n d  FV(@) G Dom(/?) and check whether ,O; 1-1 k @ (For consistent C it is easy to find
such models). Finally we note that for any C, Q we can find a finite set of constraints
{Ci I i < N} such that

0 for i < N, Ci is complete for a,

l for i < N, any model of Ci is a model of C, and

l any model of C is a model of Ci for some (unique) i < N.

Thus C + @ * (Vi < N)Ci k @ and we have seen how to decide the righthand side of the
equivalence.

The completeness proof parallels the decidability argument using syntactic representa-
tions of memories and reduction. We begin by developing these representations. We then
present the key lemmas for the proof of completeness and the proof itself. Finally we prove
the lemmas.

5 . 1 . Memory contexts and Modifications

Definition (Memory contexts): The syntactic analog of a memory is a memory con-
text, l?, which is a context of the form

let{21 : = cons(T,T)}... let{z, := cons(T,T)}

seq(setcar(zl,uF),setcdr(,zl,uf),.  ..,setcar(~&f&setcdr(~&$&).

where zi # xj when i # j. In analogy to the semantic memories, we define the domain
of I’ to be Dom(I’)  = {z~,. . . ,z,}. For r as above we define the functions carr, cdrr E
[Dom(l?) -+ U] by cary(zi) = UT and cdrr(zi)  = uid. Two memory contexts are considered
the same if they have the same domain and contents. Thus a memory context is determined
by its domain and selector functions. We also define extension and updating operations on
memory contexts. r{z := [u,,,, ?&&]}  is defined for z $ Dom(lY) to be the memory context
I” such that Dam(P) = Dom(I’)  u {z} and for ti E {car, cdr},

if z’ = z
otherwise.

l?{ car(x) = u} is defined for z E Dom(I’)  to be the memory context I” such that Dom(l?)  =
Dom( I’) and

carp (2) = u if x’ = z
carr  (2) otherwise a n d  cdrp(z’)  =  cdrr(z’).

Similarly for I’{ cdr(z) = u}.

To express the constraints implicit in a memory context r we define for any C the
extension of C by I’ relative to a given set of variables X.



17

Definition (C,“): If X E P,(W - Dom(l?))  and FV(C) n Dom(I’)  = 8, then we define
CF as follows

A ad = U {-atom(z), d(z) = ud I ug = &(z), 19 E {car, cdr}}
zEDom(r)

Am = u (~(2 = Y) 1 y E FV(C) u X u (Dom(I’) - {z})}.
zEDom(I’)

It is natural and convenient to extend memory contexts by sequences of assignments
to variables that are not in the domain of the memory context, but are assumed to be cells.
We call such extensions modifications.

Definition (Modifications): A modification, M, is a context of the form

seq(set&(zr,  ur), . . . , set%&,Un>,E)

where set8i E {setcar,  setcdr}  and xi = zj implies i = j or setl9; # setdj. We de-
fine Dam(M) = (21, . . . , zn} and 6M(zi) = ui if sett9i = set8  for 6 E {car, cdr}. Thus
Dom(6& = {zi E Dam(M) I sett9i = setz9) for r9 E {car, cdr}.

5.2. C-Reduction

In analogy to the semantic reduction relations we define the relations -c, HE, and
AC. In order to ensure that definitions are meaningful we introduce the notion of coher-
ence. Roughly a constraint set and a memory-modification context are coherent (written
Coh(C,  I’; M)) if Dom(l?) n FV(C)  = 0, modifications in M are to elements of Dam(C),  C
decides equality on Dom( c>, distinct elements of Dam(M) are provably distinct in C and
C contains at most one car or cdr assertion for any z in Dam(C). (The last condition is a
technicality to make various definitions and proofs simpler.) Note that coherence ensures
that 19~ is single-valued modulo C equivalence.

Definition (Coherence): If I? is a memory context and M is a modification as above
then we say &,I’; M) is coherent, written Coh(C,  I; M), if the following five conditions
hold:

(1) Dom(I’)  n FV(C)  = 0

( 2 )  Dam(M) c Dam(C)

(3) If x0,x1 E Dom(6M) are distinct, then C b ~(20 = x1) for 6 E {car, cdr}.

(4) If x0,x1 E Dam(C) then C k (x0 = x1) or C + 1(x0 = 21).

(5) If x E Dam(C) and 29 E { car, cdr}, then there is at most one formula (6(z) = u) E C
with C + (z = x).

We write Coh(C,M)  for Coh(C,I’;  M) when Dam(I) = 0; Coh(C,I’)  for Coh(C,I’;  M)
when Dam(M) = 0. and Cob(C)  for Coh(C,  r; M) when Dom(I’)  = Dam(M) = 0.



18

Definition (M{I~(z) = u}c): Suppose that M is a modification, Coh(C,  M) and x E
Dam(C). Then M{car(z)  = u}~ is defined to be the modification M’ with Dom(car~,)  =

Dom(carM)  U {z}, Dom(cdrM’) = Dom(cdrM), and for z’ E Dom(6M’)

carMr (2) = carM(z’) if C + l(z = 2’)
U if C i= (z = z’) and cdrM1 (x’) = cdrM( 2’).

Similarly for M{ cdr(z) = u}~.

Definition (-c>: For C and I’; M such that Coh(C,I’;  M) we define the relation
I; M[e] -C I?; M’[e’]  as follows (letting X = FV(I; M[e]) and 6 E {car, cdr})

I’;M[tir(u)] if u E Dom(I’)
wbw~ -c I’;M[ti,(u)] if (W E Dom(&))(C k (d = u))

r; ibquq otherwise if u E Dam(C) A C + (JO(U) = u’)

~~w~d~o,~l)n -c wwn if C U Th(A) b uu = ur
I; M[Nil] if YE: u Th(A) + l(~o = '1~~)

r; M[cons(uo,  ul)jj -c r{z := [uo, ~1); iqzn if z E X - (Dom(I’) U FV(C) UX)

r; M[[setfi(u,  u’)jj  -c
r{qu) = d};ik+] if u E Dom(I’)
r;M{t9(~)=  d}&] ifu E Dam(C)

For general use in reasoning about programs one would want to strengthen the definition
of syntactic reduction by using full semantic satisfaction rather than first-order satisfaction
in the side conditions. The weaker definition is adequate for proving completeness and
simplifies the proof.

Definition (I-Q): For C and I’;M such that Coh(C,I’;  M) we define the relation
I’; M; R[e] wC I’; M’; R[e’] as follows. Let X = FV(I‘; M; R[e]). Then

( f>i r; M; RUif( u, el, e2>D WC
I’; M; R[el] if C+ u Th(A) + T(U = Nil)
I’; M; R[e2] if C + (U = Nil)

(beta) I?; M; R[let{x := u}e] ++c  r; M; R[e(x  := u}]

(delta) r; M; RIS(ul,. . . , un)j WC r’; W; I@‘]
where in (delta) we assume that S E IF,, I; MIS(ul, . . . , un)]  -C I”; M’; u’ and Dom(I”) -
Dom(I’)  is disjoint from FV(I‘;  M; R[S(u,, . . . , un>ll).

Lemma (Coherence): Coherence is preserved by syntactic reduction.

If a modification M is coherent with a constraint set C then the modification of C
implicit in M is carried out explicitly in defining CM.

Definition (CM): For Coh(C,  Al) we define CM as follows

a s s i g nAM = {6(z) = u9 1 ua = 23M(z),  z E Dom(fiM),  ti E {car, cdr}}

Agrget = {(6(x) = u) E C I (32 E Dom(fi&)(C  + x = x), 6 E {car, cdr}}



19

The Context Modification Introduction lemma combines and generalizes the cons and
setti  introduction rules to arbitrary memory-modification contexts.

Lemma (CMI): If Coh(C,  I; Al), @ E (IE N IE) U (TIE),  a#nd X = FV(I; iW; R.[9B)  then

is derivable.

Proof (CMI): This is a simple consequence of the introduction rules (cons.iii) and
(set.vii), together with the congruence rules and the definition of coherence (particularly
the fifth condition). The only point to observe is that if C is the disjoint union of C’ and
{CdT(Zi) = wr, cdr(zi)  = wf},, eDom(M),  then each Xi is car-less and cdr-less in c'. &MI

5.3. Proof of Completeness

Before we state the key lemmas, we require one last set of definitions. The rank of
an expression r(e) is just its size. The rank of an assertion r(@)  is the maximum rank
of the expressions occurring in a. At(X) is the set of atoms occuring in X. A car-cdr
chain of length 5 n is a reduction context of the form 0 = 6e(Sr(. . . tik(~) . . .)) where
29j E (car, cdr}, j 5 k, and k < n. Finally we define the notion of n-completeness for
constraint sets relative to a finite set of variables and atoms. The idea is that such a
constraint set contains sufficient information to completely determine the evaluation of any
expression of size less than n built from the given variables and atoms.

Definition (n-Complete w.r.t. [z, A]): C is n-complete w.r.t. [z, A] if for every 0, 00,
car-cdr chains of length 5 n, and y, y. E 2, if C + O[yn = u and C + Oo[yo]l = uo, then

(C + atom(u)) V (C + latom(u))

(~~u=a)V(~/=~(u=cr))  cuEAU{T,Nil,u~}

(C /= latom(u))  -+ (3 ua,ud E u)((c  k CUT(U) = ua) A (c k cdr(u)  = Ud))

(C + atom(u)) + +zL~, ‘Ud E u)((c  b CUT’(U) = Ua) V (c k cdr(u)  = ud))

The following five lemmas enable a straightforward proof of the completeness theorem.

Lemma (0): If C is inconsistent, then C I- <I>, for any Q E IL.

Lemma (1): If e Z+c e’, then C I- e N e’.

Lemma (2): If C is r(e)-complete w.r.t. [FV(e), At(C, e)] and Cob(C),  then there exists
I; M and an e’ such that e t& I; J4[[e’n and exactly one of the following holds:

1. e' = R[S(u)n,S  E { car, cdr} and C U Th(A) k atom(u).

2 .  e’ =  R[set6(uo,ul)~, set8 E {setcar,  setcdr} and C U Th(A) b atom(

3. e’ = u, and Coh(C,  I’; M).

Lemma (3): For any consistent C, 2, Qi E lL, and n E N there exists N E N and a family
of constraint sets {Ci}i<N such that

1. Each Ci is n-complete w.r.t. [Z,At(Ci,  a)], and Coh(Ci).



2 0

2. (w;P)(P;P l=c c * (3i < N)(P;P FL Ci))

3 .
Cik@ i<N is a derived rule.

Cl-@
Lemma (4): Let ei = Ii; A!li[Ui] with Coh(C,I’i;  &Ii) for i < 2. If C b eu N er then
Et-e0 N er. Similarly if C + eu N er then C I- eo N er.

Proof (Completeness): Assume C b @. By lemma 0 we may assume that C is
consistent. By lemma 3 it suffices to prove that C I- Q under the added assumptions that
Cob(C)  and C is r(Q)-complete w.r.t. [FV(@),At(C, @)I. By lemma 2 we have that for
each e; in @ there exists Ii; Mi and an ei such that e; Ac Ii; Mi[ein  and exactly one of the
following holds:

1. e{ = Ri[fii(ui)],  29i  E { cur, cdr}, and C U Th(A) b atom(

2 .  ei = Ri[settii(ui, ui)], set6i E {setcar,  setcdr} and C U Th(A) k atom(?~,;).

3. e: = ui, and Coh(C,  ITi; Mi).

By lemma 1 we have C I- ei N r;; Mi[ein and by soundness we have C + ei N I’i ; Mi[e’j.
We consider three cases, depending on the nature of @.

(CD = 1‘ e) Since C is consistent e’ E W is impossible.

In the other two cases we use (D) and (CMI) to show that C I- 1 I; M[e’n,  and hence that
Et--e.

(@ = (e0 N el)) We may assume that l(C + T ei) since the case when C + 1‘ ei follows
directly from the previous case. Hence we have C I- e; N I’i; Mi[uiJ and C b e; N
Ii; Mi[uij for i < 2. Thus C + IO; Mo[uo]l  N Il; Ml[uljj  and by lemma 4 C I- IO; Mo[uon N
hi wuud.

(a = (e0 = el>> similar.

ocompleteness

5 . 4 . Proofs of the Lemmas

Lemma (0): If C is inconsistent, then C I- a, for any @ E IL.

Proof (0): If C is inconsistent then by (Sat) either C k T = Nil in the usual first-order
interpretation, or else C + atom(x) and C + 19(x) = z for some x, 2 E W. In the former case
the result follows by the structural rules and properties of if. In the later case it suffices
to observe that C I- 7 z and so since C t- e{y := z} N let{y := z}e we can conclude, by
choosing y new, that C I- T e for any e. The result follows without much effort. 00

Lemma (1): If e Ac e’, then C I- e N e’.

Proof (1): It suffices to show that if Coh(C,  I’; M), then

r; M[[e] wC rf; M’[e’] -+ (c I- r; hi@] N rf; M’[e’]).

Let X = FV(M[en), C’ = (Cj?),, and note that the proof naturally divides up into three
cases depending on the decomposition of e into Rue,].



21

(if) In this case e = R[if(u,  el, e2)jj and by hypothesis either C b (u = Nil) or CF U
Th(A) k l(u = Nil). Thus either C' k u N Nil or C' I- eq(u,Nil)  N Nil, by (S.i). In the
former case C’ I- if (u, el, e2) N e2 by (if.ii,R.i,E),  and so by (CMI)

C k r; kl; R[if (u, el , e2)] N r; M; Rue&

In the latter case C’ I- if (u, el, e2) N el by (if.iii) so again by (CMI)

C I- r; M; R[if (u, el, e2)] N r; Al; R[e&

(beta) In this case e = R[let{x := u}eoj, and by (let.ii) C’ I- let{x  := u}eo N eo{x :=
u}. Hence by (CMI)

c I- r; iv; R[let{x := u}eoj N r; M; R[eo{x  := u>n.

(delta) In this case e = S(U) and consequently we may assume that

and (Dam(P)-Dom(I’))nFV(I’;  M; R[S(ti)])  = 8. The proof naturally divides up into seven
cases, depending on 6. In four of these cases, corresponding to when 6 E {atom, car, cdr, eq},
we have that I? = I’ and M = &“. Consequently in these cases we need only show that
C’ I- ti(~) N u’ and invoke (CMI) to obtain the result. We begin by considering these four
cases.

(6(G) = atom(u)) In this case there are two possiblities, either u’ = T or u’ = Nil. In the
former case we have that C U Th(A) b ta om u an so C’ U Th(A) + atom(u). Hence by( ) d
(S.i) we have that C’ k 19(a) N u’. Similarly in the latter case we have that X,X + latom(u)
and so C’ k lutom(u).  Hence again by (S.i) we have that C’ I- ti(‘11)  N u’.

(S(E) = eq(u0,ul)) Again there are two possiblities, either u’ = T or u' = Nil. In the
former case we have that CUTh(  A) + uu = ur and so by construction of C’ and (S.i) we have
that C’ I- eq(uo,  2~1)  N T. In the case where u’ = Nil, we have that C’ U Th(A) b ug # ur
and so by (S.i) C’ l- eq(uo,ul)  N Nil.
(5(u)  =  c a r ( u ) )  In th’1s case we have that C’ + car(u) = u’ and hence by (S.i) C’ t-
car(u) N u’.

(S(G) = cdr(u)) This case is a trivial variation on car.

(6(u)  = cons(u0,  ~1)) In this case we have that I’ = I’{ u’ := [uu, ul]} and that u’ 4
Dom(I’)  U X. Now note that

C’ I- cons(u0,  ul) N setcdr(cons(u0,  T), ul) by (set .vi)

N setcdr(setcczr(  cons(T,T)),u~),u~) by (set .v,R.i)

N let{u':= cons(T, T)}setcdr(setcur(u’,  UO),  ul) by (let .i,R.iii)

-let{u':= cons(T, T)}setcdr(seq(setcar(u’,  UO), u’), ul) by (set .iii,R.i,CMI)

~let{u':= cons(T, T)}seq(setcar(u’,  UO), setcdr(u’,  ul)) by (R.ii,CMI)

-let{u':= cons(T,  T)}seq(setcar(u’,  UO), setcdr(u’,  ul), u’) by (set.iii,CMI)



22

Thus we have shown that C’ I- cons(u0,  ur) N {u’ := [UO, ur]}; u’ and so by (CMI)

c k r; M; R[cons(uo,  ul)jj N r; M; R[{u’ := [uo, w]}; u/n
N r; M; (u’ := [UO, u1]};  R[u’]l by (Rii,Riii,CMI)

N r{d := [uo, WI>; w wn
by (Rii,Riii,cons.ii,cons.iii,CMI) and (Example.iii)

(b(fii)  = setcar(u0,  ul)) In this case uo = u’ and there are two possibilities, either ue E
Dam(C) or uu E Dom(I?).  In the latter case, assuming that I’(u0) = [u&z& we have that
r’ = quo := [ul, z&l}. Now by (set.iii) C’ I- setcar(uo,ul)  N seq(setcar(u0,  ur),uu) and
so by (CMI)

C k r; M; R[setcar(uo,  ul)n N I’; M; R[seq(setcar(ue,  ul), Uo)]

N I’; seq(setcur(u0,  ul), M; R[uon) by (S.i,Rii,set.i,set.iv,CMI)

nJ rl; M; R[u’n by (S.i,Rii,set.ii,set.iv,CMI)

while in the former case, assuming that uu E Dam(M) we have that M’ = M{car(uo)  = ~1).
Now by (set .iii) C’ I- setcar(uo,  ul) N seq(setcur(uO,u1),~0)  and so by (CMI)

c t- I’; M; R[setcur(uo,  ul>ll N r; M; R[seq(setcar(uo,  ul),  uo)n

N IJ; M; seq(setcur(u0,  ul), R[uoj) by (S.i,Rii,set.i,set.iv,CMI)

N r; M’; R[u’]l by (S.i,Rii,set.ii,set.iv,set.ii,CMI)

The case when (3z)(C + z = uu A z E Dam(M)) is almost identical to the above argument.

(6(u)  = setcdr(uo,  2~1)) This case is a trivial variation on setcur.

01

Lemma (2): If C is r(e)-complete w.r.t. [FV(e), At(C, e)] and Cob(C),  then there exists
r; M and an e’ such that e & I?; M[e’n and exactly one of the following holds:

1. e’ = R[S(u)j,S  E { cur, cdr} and C U Th(A) b atom(u).

2 .  e ’ =  R[set6( uo, ul)n, set8 E {sctcrrr.  set&r}  and C U Th(A) b atom(

3. e’ = u, and Coh(S,I’;  M).

Proof (2): This follows from the simple observation that if e ++c e’ and C is r(e)-
complete w.r.t. [FV(e), At(C, e)] then C is r(e’)-complete w.r.t. [FV(e’),  At(C, e’)]. Conse-
quently the three cases above are the only ones in which further reduction is not possible.
02
Lemma (3): For any consistent C, Z, @ E ll, and n E I+4 there exists N E N and a family
of constraint sets {Ci}i<N  such that

1. Each Ci is n-complete w.r.t. [%, At(Ci, a)], and Coh(Ci).

2. (VP; P)(P;  P I=t C * (Ii < N)(Pi P I=L ci>>



23

3 Cit-iD i<N. is a derived rule.
Cl-@

Proof (3): This is a simple consequence of the introduction on the left rules. I&

Lemma (4): Let ei = Ii; Mi[[ui] with Coh(C,I’i; Mi) for i < 2. If C k eo N er then
C l - eower. SimilarlyifC+eo=er thenCl-ea=er.

Proof (4): By lemma 0 we may assume that C is consistent. Using a simple construction
from constants one can show that for any consistent C there is a /3; ,Q such that

1. Dam(p)  = FV(C)  and ,8;~ +L C,

2. p(x) = p(y) iff C + 2 = y.

Given such a p; p we show that if eo; ,0; p N er; ,8; p then C I- eo N er . First observe that
by e0;P;fi N el; p;p and lemma 2 we can construct a bijection f : Dom(I’n)  + Dom(I’r)
such that (extending f as the identity off Dom(Io)) C + f(&,(x))  = Gr,(f (x)) for all
x E Dom( IO) and 6 E {cur, cdr} and C k f ( uo) = ul. Consequently I’o; u. and I’r ; u1
differ only upto a-conversion and C-equality and hence we may assume they are the same.
For y E Dom(fl&nDom(dM,) we have C + 6~~ (y) = ‘111,  (y) and we may assume they are
the same. If y E Dom(a&-Dom(dMJ then there must be some u such that C + #(y) = u
otherwise we could choose ,Y such that ti,(p(  y)) is not the value assigned by MO. Using
the derived rule (Example.i), {~atom(x)}  t- setcar(x,  car(x)) N x, we can remove y from
Dom(Mo). Repeating this we can transform MO and Mr into the same modification. Hence
Eke0 N el. Cl,

Now we show that
eO;P;pu  el;P;p + C I- e0 N el.

If eo; ,6; p 21 er; ,0; ,X then there exists w; p’ with Dam(p) z Dam($),  ,~,pr with /J’ c pi,
and Pi > p with Pi(ui) = v such that ei;p;p  A Ui;pi;  /Ji. Now put

Gi = {X E Dom( ri) 1 pi(x) E Dom(pi) - Dom(,$)}

Then by construction ui 4 Gi and if x E Dom(I’i)-Gi then +;(x) 6 Gi, for 29 E {cur, air}.
Similarly if x E Dom( Mi) then ~9, (x) 4 Gi for 29 E { cur, cdr}. Consequently we can show
that

for I& and I?{ memory contexts with the property that Dom(I’Gi)  = Gi and

Gi n FV(I’i; Mi[ui]) = 0.

Also note that, putting eI = I’:; Mi[ui], that eb;,f?; p N ei;/?;p. Thus by the previous
argument C I- eb N e\, the result now follows from the garbage collection axioms (I& ; e{) N-
ei for i < 2. ON 04



24

f-3. Summary and Conclusions

We have presented a formal system for reasoning about equivalence of first-order Lisp-
or Scheme-like programs that act on objects with memory. The semantics of the system
is defined in terms of a notion of memory model derived from the natural operational
semantics for the language. Equivalence is defined relative to classes of memory models
defined by sets of constraints. The system is complete for programs that use only memory
operations (no recursively defined functions, arithmetic operations, etc.). Thus the system
can be seen to adequately express the semantics of memory operations. Presumably this
could be extended to a relative completeness result for expressions built from memory and
other algebraic operations, or for the full language, but we have not explored this possibility.

Equivalence in all models is the same as operational equivalence. Thus we have a means
for reasoning about operational equivalence of programs. The formal system provides a
richer language than operational equivalence since it provides a method for reasoning about
conditional equivalence and equivalence with respect to restricted sets of contexts. This is
essential for developing a theory of program transformations, since most of the interesting
transformations are based on having additional information, i.e. on being able to restrict
the contexts of use.

We could have omitted mentioning the equi-value relation N and simply formalized
undefinedness and strong isomorphism (see [Mason and Talcott 1989al). However, equi-
valuedness is an interesting relation in its own right and we have the stronger result giving
soundness and completeness for all three relations. Our formal system also directly reflects
the informal characterization of strong isomorphism as equi-valuedness modulo garbage
collection.

Implicit in the proof of completeness is a decision procedure for deciding when an
expression is defined and whether two expressions are equivalent for all models of a set of
constraints. There are three key algorithms. The first algorithm is an algorithm for deciding
first-order consequence for constraints by a simple extension of an algorithm for putting a
set of equations and inequations into a canonical form. The second algorithm generates
a set of r(e)-complete constraints each of which completely determines the computational
behavior of the expressions in question. The third algorithm finds a renaming of bound
variables of a memory context that transforms one object expression into another that is
equivalent modulo a set of constraints, or proves that no such bijection exists. Mindless
application of these algorithms of course results in combinatorial explosion. An interesting
open problem is to find strategies that are reasonably efficient for a useful class of queries
and to incorporate this into a system for reasoning about programs.

Work is in progress to extend the formal system to a full higher-order Scheme-like
language (with untyped lambda abstraction). [Felleisen 1987, 19881 gives an equational
calculus for reasoning about Scheme-like programs but such calculi do not deal adequately
with conditional equivalence. The success of our approach in the first-order case depended
on being able to define a semantics for conditional equivalence. In this case there is a natural
model-theoretic equivalence (strong isomorphism) such that equivalence in all models is the
same as operational equivalence. The existence of such a model-theoretic equivalence in the
higher-order case remains an open question. The naive extension of the notion of strong
isomorphism to the higher-order case does not work. Also operational equivalence in the



25

first-order fragment does not imply equivalence in the higher-order language since non-atoms
are no longer necessarily cells. Thus some refinement of the rules will be required.

Acknowledgements

We would like to thank the following people for carefully reading earlier versions of
this paper, and pointing out numerous mistakes and confusions: Louis Galbiati, Matthias
Felleisen, Furio Honsell, Jussi Ketonen, and Elizabeth Wolf.

7. References

Boehm, H.-J.

[1985] S’d ff t1 e e ec s and aliasing can have simple axiomatic descriptions, ACM TOPLAS,
7(4), pp. 637-655.

Felleisen, M.

[1987] The calculi of lambda-v-cs conversion: A syntactic theory of control and state in
imperative higher-order programming languages, Ph.D. thesis, Indiana University.

[1988] A-v-CS: An extended X-calculus for Scheme, Proceedings of the 1988 ACM confer-
ence on Lisp and functional programming, pp. 72-85.

Jarring,  U. and Scherlis, W. L.

[1986]  Deriving and using destructive data types, IFIP TC2 working conference on pro-
gram specification and trunsformution, (North-Holland).

Mason, I. A.

[1986a]  Equivalence of first order Lisp programs: proving properties of destructive pro-
grams via transformation, First Annual Symposium on logic in computer science,
(IEEE).

[1986]  The semantics of destructive Lisp, Ph.D. Thesis, Stanford University. CSLI Lec-
ture Notes No. 5, Center for the Study of Language and Information, Stanford
University.

[1988] Verr ca‘fi t ion of programs which destructively alter data, Science of Computer Pro-
graming, 10, pp. 177-210.

Mason, I. A. and Talcott, C. L.

[1985]  Memories of S-expressions: Proving properties of Lisp-like programs that destruc-
tively alter memory, Department of Computer Science, Stanford University Report
No. STAN-CS-85-1057

[1989a]  Axiomatizing Operational Equivalence in the presence of Side Effects. Fourth
Annual Symposium on logic in computer science, (IEEE).

[1989b]  P rogramming, Transforming, and Proving with function abstractions and memo-
ries. Proceedings of the 16th EATCS Colloquium on Automata, Languages and
Programming. Stresa. 1989.



26

Morris, J. H.

[1968] Lambd a calculus models of programming languages, Ph.D. thesis, Massachusetts
Institute of Technology.

Mosses, P.

[1984]  A basic abstract semantic algebra, in: Semantics of data types, international sym-
posium, Sophiu-Antipolis, June 1984, proceedings, edited by G. Kahn, D. B. Mac-
Queen, and G. Plotkin, Lecture notes in computer science, no. 173 (Springer,
Berlin) pp. 87-108.

Nelson, C. G. and Oppen, D. C.

[1977] Fast decision procedures based on congruence closure, Computer Science Depart-
ment Report STAN-CS-77-647, Stanford University.

Plotkin, G.

[ 19751 Call-by- name, call-by-value and the lambda calculus, Theoretical Computer Sci-
ence, 1, pp. 125-159.

Oppen, D. C.

[ 19781 Reasoning about recursively defined data structures, Computer Science Depart-
ment Report STAN-CS-78-678, Stanford University.


