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Abstract

In this paper we use interior-point methods for linear programming, developed in the
contest of sequential computation, to obtain a parallel algorithm for the bipartite matching
problem. Our algorithm runs in O*(y/m) time!. Our results extend to the weighted bipartite
matching problem and to the zero-one minimum-cost flow problem, yielding O*( /mlog C)
algorithms?. This improvés previous bounds on these problems and illustrates the importance
of interior-point methods in the contest of paralel algorithm design.

1 Introduction

In this paper we use interior-point methods for linear programming, developed in the contest,
of sequential computation, to obtain a parallel algorithm for the bipartite matching problem.
Although Karp, Upfal, and Wigderson [20] have shown that the bipartite matching problem is
in RNC (see adso [25]), this problem is not known to be in NC. Special cases of the problem are
known to be in NC. Lev, Pippenger, and Valiant {23] gave an NC algorithm to find a perfect
matching in a regular bipartite graph. (This algorithm is based on a sequential algorithm of
Gabow and Kariv [ 12]; see aso [5] .) Miller and Naor [24] gave an NC algorithm to find a perfect
matching in a planar bipartite graph (if one exists) and other special cases are considered in [16].

The previous best deterministic algorithm for the problem. due to Goldberg, Plotkin, and
Vadya [ 13], runs in O*(n?/3) time. This agorithm is based on combinatorial algorithms for the
maximum flow and bipartite matching problems [G, 7, 8, 14, 17] and on a parallel connectivity
agorithm [26]. In this paper we describe an 0*( \/m) agorithm for the bipartite matching problem
that is based on an interior-point agorithm for linear programming and on Gabow’s algorithm [11]
for edge-coloring bipartite graphs. For graphs of low-to-moderate density. this bound is better
than the best previous bound mentioned above.

The significance of the bipartite matching problem has been well-recognized in the contest of
sequential computation, combinatorics, and graph theory. More recently. the importance of the
problem for parallel computation has been recognized as well. The efficiency of several parallel
algorithms depends on the parallel complexity of the bipartite matching problem. For example,
Aggarwal and Anderson [1] and Aggarwal, Anderson, and Kao [2] show, respectively, that an
NC algorithm for bipartite matching implies NC algorithms for the problem of constructing a
depth-first search tree in undirected and directed graphs.

The results presented in this paper extend to the maximum-weight matching problem and to
the zero-one minimum-cost flow problem. The resulting algorithms run in O*(\/mlog C) time.
The previous best agorithm for the zero-one minimum-cost flow problem runs in O*((nm)?/5 log ')
time [13]. The new agorithm is better for both the zero-one maximum flow and the zero-one
minimum-cost flow problems for al graph densities.

‘Throughout the paper, n and m denotes the number of nodes and edges of the input graph. An algorithm runs
in O*(f(n)) time if it runs in O(f(n)log*(n)) time for some constant k.
2Throughout the paper we assume that al costs and weights are integers in the range [-C'. . C]. where C > |.



An interior-point algorithm works as follows. The agorithm starts with a point in the interior
of the feasible region of the linear program. In its main loop, the algorithm moves from one
interior point to another, decreasing the value of a potential function a each iteration. When
this value is small enough, the algorithm terminates with an interior-point solution that has a
near-optimal value. The finish-zip stage of the algorithm converts this near-optima solution into
an optimal basic solution.

Karmarkar’s revolutionary paper [ 19] spurred the development of the area. of interior-point
linear programming algorithms, and many papers have followed his lead. Karmarkar's algorithm
runs in O(N L) iterations.> Gonzaga [15] discovered a simple variation of Karmarkar's algorithm
that uses an affine transformation instead of the projective transformation used by Karmarkar.
Renegar [28] was the first to give an interior-point algorithm that runs in 0( v/N L) iterations.
A different O(v/N L)-iteration agorithm was developed by Ye [33], which is an improvement of
Gonzaga’'s agorithm (a similar agorithm is described in {10]). The matching algorithm discussed
in this paper is based on Y€'s linear programming algorithm. The fastest linear programming
algorithm currently known is due to Vaidya [32]. This algorithm is based on Renegar's method
and terminates in the same number of iterations, but reduces the time per iteration using fast
matrix multiplication, rank-one updates, and careful balancing. See [30] for a. survey of the
interior-point algorithms.

Interior-point algorithms have proved to be an important tool for developing efficient sequentia
algorithms for linear programming, its special cases, and quadratic programming (see e.g. [18]).
In this paper we apply these tools in the context parallel computation. For the purpose of paralel
computation, an important fact is that the running time of an iteration of an interior-point,
algorithm is dominated by the time required for matrix multiplication and inversion. Therefore,
an iteration of such an agorithm takes O(log® N) time on a PRAM using N3 processors [26].

Roughly spesking, every /N iterations of an O( /N L) iteration interior-point algorithm de-
crease the gap between the current value of the objective function and the optimum value by a
constant factor. The bipartite matching problem can be formulated as a. linear program with an
integral optimum value. Therefore, the size of the maximum matching is known as soon as this
gap is below one. Furthermore, the gap between the value of an initial solution and the optimal
value is a most N. In Section 3, we give such a formulation with N = O(m) and L = O( log n).
This suggests that an interior-point algorithm can be used to find the value of the maximum
matching in a bipartite graph in O(y/mlogn) iterations, or 0*( ,/m) time. In this paper we
develop an algorithm running in this time bound that finds a maximum matching as well as its
value.

For this we need to overcome two difficulties. First, we need to find an initial interior point
with small potential function value, so that the number of iterations is small. The second diffi-
culty comes from the fact that standard implementations of the finish-up stage of interior-point
algorithms either are inherently sequential or perturb the input problem to simplify the finish-
up stage, which makes L, and therefore the number of iterations of the main loop, superlinear.

N and L denote the number of variables and the size of the linear program. See Section 2 for forma definitions.



For the speciad case of the bipartite matching problem, we give a parallel implementation of the
finish-up stage that runs in O(log? n) time using m processors. This implementation is based on
Gabow’s edge-coloring agorithm [ 11].

Our techniques apply to the more genera masmum-weight matching problem. The algorithm
and its analysis are only dightly more involved in this more general case. and for brevity, we focus
on it. The results for bipartite matching are obtained as a simple corollary of the results for
weighted bipartite matching. The main loop of our masimum-weight matching agorithm runs in
O*(y/mlog C) time, and the finish-up stage runs in O*(logC) time. Therefore, the agorithm runs
in O*(y/mlogC) time. A standard reduction between the weighted matching and the zero-one
minimum-cost flow problems (see eg. [4, 20]) gives O*(/mlog C) algorithms for these problems.

This paper is organized as follows. Section 2 introduces definitions and terminology and
reviews Y€'s linear programming algorithm. Section 3 gives a linear programming formulation of
the bipartite matching problem that has an initial interior-point with a small potential function
value, and shows how to use the linear programming algorithm to obtain a near-optima.l fractiona
matching. Section 4 describes a parallel procedure that, in O*(logC) time, converts the near-
optimal fractional matching into an optimal zero-one matching. Section 5 contains concluding
remarks.

2 Preliminaries

In this section we define the matching problem and the linear programming problem, and review
some fundamental facts about them. For a detailed treatment, see [27, 29]. We also give an
overview of Y€s agorithm.

The bipartite matching problem is to find a maximum cardinality matching in a bipartite
graph G = (V, E). The maximum-weight bipartite matching problem is defined by a bipartite
graph G = (V, E) and a weight function on the edges w : E — R. The weight of a matching M
IS 3 cear W(E). The problem is to find a matching with maximum weight.

We use the following notation and assumptions. G = (V, E) denotes the (bipartite) input
graph, n denotes the number of nodes in G, m denotes the number of edges in G, and ' denotes
the maximum absolute value of the weights of edges in G, which we assume to be integral. To
simplify the running time bounds, we assume, without loss of generality, that m > n — 1 > [,
and C > 1. We denote the degree of a node v by d(v), and the set of edges incident to node v by
6(v). For a vector x, we let x(i) denote the ith coordinate of . We use a CRCW PRAM [9] as
our model of parallel computation.

It is well known that the node-edge incidence matrix of a bipartite graph is totally unimodular.
Therefore, any optimal solution of the following linear program is the convex combination of
maximum-weight matchings, and hence the optimal value of this linear program is equal to the



maximum weight of a matching.

Matching-I: maximize wtf
subject to: Y .esy fle) < 1, foreach v eV,
f>0.

A feasible solution to the system of above linear inequalities is caled a fractional matching. We
denote an optimal solution of the linear program by f*.

Y€'s algorithm handles linear programs in the following form:

Primal LP: minimize cta
subject to:. AX = b,
z 2> 0,

where. A is a matrix, and b, ¢ and x are vectors of appropriate dimensions. We assume that the
matrix A and the vectors b and ¢ are integra. We use N to denote the number of variables in the
linear programs we consider. A vector X is a feasible solution if it satisfies the constraints Ax = b
and z > 0. A feasible solution x is optimal if it minimizes the objective function value ctz, and is
an intertor point if it is in the interior of the feasible region, i.e, if coordinates of x are positive.

The linear programming dudity theorem states that the minimum value of the Primal LP is
equal to the maximum vaue of the following Dual LP:

Dual LP: maximize bir
subject to:  Air +s = ¢,
s > 0,

where 7 and s are the variables of the Dual LP, the dimension of = is equal to the dimension of b.
and the dimension of s is equal to the dimension of x. Feasible and optimal solutions and interior
points for the dual problem are defined in the same way as for the primal.

Let @ be a feasible solution to the Primal LP, and let (7, S) be a feasible solution to the Dual
LP. The vaue ctz is an upper bound, and b'r is a lower bound, on the common optima value of
the two problems. Hence the difference ctz — bir = stz measures how far the current solutions
are from being optimal. This quantity is called the duality gap.

Ye's agorithm is based on algorithms of Gonzaga {15] and Todd and Ye [31]. Freund [ 10]
describes a very similar algorithm, and gives a detailed discussion of a good choice of ¢ (defined
beow). The agorithm is applied to a pair of prima and dual linear programs in the above form.
It starts with a vector (Xg, o, So), Where zo and (mg, sp) are interior points of the primal and dual
linear problems, respectively. At each iteration of the main loop, the agorithm moves either from
the current interior point of the prima problem to ancther interior point of the problem, or from
the current interior point of the dual problem to another interior point of the problem. Progress
is measured by a potential function

N
®(z, s) = qlog(z's) — Z log(z(7)s(:)) — N log V.



where ¢ = V + /N. Each iteration reduces this potential function by a constant.

The number of iterations of interior-point algorithms depends on a parameter [ that is related
to the size of the input numbers. This parameter is often defined to be the total number of bits
in the binary description of al coefficients in A, b and c. We use a different definition [19, 32],
which leads to a much smaller value of L in the case of the bipartite matching problem. Let D(A)
denote the maximum absolute value of a subdeterminant of A, and let B denote the maximum
absolute value of the coefficients of b and c. Then L is defined by

L = log D(A) + log N + log B.
With this definition, L = O(log(nC)) for linear program Matching-I.

When the value of the current feasible solution 2 is less then 2—L away from the optima.l value,
a standard (sequential) rounding procedure yields an optimal solution.

The following lemma is the basis for the analysis of Ye's agorithm.

Lemma 2.1 [33] If we have an initial solution (g, g, Sp) such that ®(zg,s0) < O(VNL), then
after 0( /N L) iterations the duality gap zfs < 2L,

Proof': Recall that the algorithm decreases the potential function by a constant per iteration.
Thus after O( VNL) iterations ®(z, s) < — vV NL. The potential function can be rewritten as
follows:

stx

A‘\Y
d(z, 9 = (st — .
(z,9) = VN log(s r)+;log 0200 N log N (1)
Note that the second term is minimized when the values of s(7)z(z) are the same for al ;. and
therefore this term is at least N log N. Therefore, if the potential function value is at most —v/N I,

then VN log(stz) < —v/NL. Hence we have zts < 2-L. |

To obtain an 0( v/N L) bound on the number of iterations, one has to provide an initial solution
(o, To, 8o) With ®(zg, sp) < VNL. Consider the potential function ® written as in (1). It is easy
to find an initial solution for which the first term is bounded by O(\/NL). The difficulty is to
guarantee that the second term is fairly close to the N log N lower bound. A good initial solution
is one where the terms s(i)z(7) are almost equal. As mentioned in [3], Ye proposed a way to
obtain an equivalent formulation with such an initial solution. This uses the usual definition of
L, but can aso be shown to work for the definition of L that we use in this paper. In the nest
section we provide a dightly simplified construction for the bipartite matching problem.

3 Finding a Near-Optimal Solution

In this section we show how to convert the Matching-1 linear program into a linear program that
is in the form required by Ye€'s algorithm and has an initia solution with small potential function



value. Then we show how to compute a near-optimal fractional matching from this initial solution.

We restate the matching problem as follows:

Matching-2:  minimize —wtf 4 “ C ]
subject to: Z fle)+ (n—d(v))g(v )— z = 1 for each v € V,
e€5(v) (2)
+m+1, ()

where 1 denotes the vector all of whose coordinates are 1. We denote the objective function of this
linear program by c. The number of variahles in this linear program is m + n + 2 = N. We denote
a feasible solution to Matching-2 by @ = ( f, g, v, z), and a feasible solution of the corresponding
dual problem by = and s, where 7#(2) for ¢ =1, ..., n is the dua variable corresponding to the
primal constraint for node v;, and =(n + 1) is the dual variable corresponding to the constraint
(). Note that for this linear program, L = O(log(n()).

Intuitively, the transformation works as follows. Variables g( v) are the dack variables intro-
duced to replace inequality constraints by equality constraints. The positive multipliers (n — d( v))
scae the dack variables so that there is a feasible solution with all origina and slack variables
equal. The coefficient of z in the objective function is large enough to guarantee that = = 0 in
an optima.l solution. The constraint (*) does not affect the primal problem since y is not in the
objective function and. as we have just mentioned, in an optimal solution z = 0 and therefore
gil + f'1 < n is automatically satisfied. This constraint, however, allows us to obtain an initial
solution for the dual problem such that the dua slack vaaiables corresponding to the primal vari-
ables f, ¢ and y are roughly equal. A natural dual solution is to set the vector = to 0, and set
the dual dack variables equal to the prima objective coefficients. Even if this were feasible, the
coefficients are very different (the coefficients of g are zero, the others are not), and so this is not
a good starting solution. However, by setting the coordinate of 7 corresponding to the additional
constraint to be a large negative number (while keeping the others equal to 0) the dacks (except
for the one corresponding to z) are made feasible, and roughly equa to the dual variable for ().
The variable = is introduced to make it possible to have a dtarting prima solution with coordinates
of f, g and y equa (for example, to 1). We choose the dua variable corresponding to () so that
for the initial primal solution mentioned above, the a(i)s(¢) terms are all roughly equal. As we
shall see, this results in a small initial value of the second term of ® (written as in (1)).

We define initial primal and dua solutions as suggested by the above discussion. The initial
primal solution zg is defined by

f:l’gzl’y:]ﬂ::n—l
The initid dual solution (7, sg) is defined by
m(¢) = 0, for 1 <1t < n,

m(n+1) = -N2C,
i) = c(i) + N2Ca(i) for 1<i< N,

6



where a( ¢) is the i-th coefficient of the equation () in the definition of the Matching-2 LP.

The following two lemmas formalize the above intuition.

Lemma 3.1 If (f,g, y, z) is an optimal solution of Matching-2, then f is an optimal solution to

Matching- 1.

Proof’: It suffices to show that every optimal solution to Matching-2 has = = 0. Consider a feasible
point z; = (fi, g1, =1, y1) With z; # 0. Since f; satisfies Zees fi(e) <1+ z for every node
v, decreasing f; on some edges, by a total of a most zn, converts f1 into a vector f, that is a
fractiona matching. Note that any fractional matching f can be extended to a feasible solution of
Matching-2. Let 24 denote a feasible solution extending f,. If we replace z; by z,, the decrease in
the objective function value caused by the reduction in z is z ’Zif > 7z N(C. The increase due to
the change in f is bounded by z,nC < z, NC. Therefore, the value ctz, is smaller, which implies

that any optimal solution must have z = 0. |

Lemma 3.2 The vectors xg and {mg, Sg) are interior-point solutions of the primal and the dual
problems, respectively. The value of the potential function ® (g, sp) is at most O( V' N log(nC)).

Proof’: The first clam of the lemma is easy to verify. To verify the second claim, consider the
potential function written as in (). The first term is a most O( v/ N log( nC’)) We show that the
second term is a most N log N 4+ O( 1). Firstwe show that for every i, stz/(s(i)z(i)) < N +O(1).
Recal that N = n + m 4+ 2 and note that

so'to = nN2C + mN2C — w1 + 2N2C.

consider each type of variable separately.

o For variables s(7) and x(¢) corresponding to z, y, and ¢, we get

ot

Vzc <N+ O(1).

shzo/(so(i)z0(i)) = N *j- M+ 2 ~

o For variables (i) and x(i) corresponding to f, we get

w'l + nw(t) + mw(z) + 2w(i)

NG — () <N+ 0 ().

S(t):ro/(SO(i)izo(i)) =n+m+2-
Since log(1 + h) < h for h > -1, the above calculations imply that

Zlog ‘0 to 5 < < Nlog(N + O(1) < Nlog N + O(1).
2 T(J 1

-1



Now we are ready to give the O*(\/mlog C)-time algorithm to compute the weight of an
optimal matching and to find a near-optimal fractional matching. In the nest section we show
how to find an optimal matching.

The following lemma is based on the fact that the objective coefficient of > has been chosen
large enough to ensure that any near-optimal solution to AMatching-2 can be rounded to a nearby
feasible solution to Matching-I.

Lemma 3.3 A fractional bipartite matching with weight at most 1/2 less than the weight of an

v

optimal matching can be computed in O*(\/mlogC) time on a PRAM with m3 processors.

Proof': Lemmas 2.1 and 3.2 imply that, after O( v/V log(nC)) = 0( v/mlog(nC)) iterations of the
LP agorithm, we obtain a point (x, 7, s) with duality gap x‘s < 1/4. Hence we have

T2,

, 1 .
— 1: +wif* < T (3)

- wtf—}- -
n

where f* is an optima solution to Matching-1. Since z > 0, this implies that wtf* — w'f < 1/4.
As in Lemma 3.1, we can argue that f can be converted to a feasible solution of the Matching-
1 problem by decreasing its value on some of the edges by a total of at most zn. Therefore,
wtf* > wif — znC. From (3), this implies that :S¥2 < 1 /4 + znC. Thus,

n-1 < 1
T4C(N2=n?+ )  4mC’

z

Now round all values of f and g down to have a common denominator 4mC, and denote the

rounded solution by f, g;. Clearly, w!f * —w' f; <1/4 + (mC)/(4mC) < 1/2. After the rounding,
we have:

S Al +(n—d)g(v) < 14z

e€(v)

The left-hand side is an integer multiple of (4C'm)~! and 2z < (4Cm)~!. This implies that

Y At (n = dv)gi(v) < 1

e€8(v)

Hence, the resulting vector f; is a fractiona matching whose weight is within 1/2 of the optimum.
I

Corollary 3.4 A fractional bipartite matching with cardinality at most 1/'2 less than that of the max-
imum cardinality matching can be computed in 0*( ,/mlog (') time on a PRAM with m3 processors.
The cardinality of the maximum matching can be computed within the same bounds.



4 The Finish-Up Stage

In the previous section we have shown how to compute, in O*(\/inlog C) time, a fractional bipar-
tite matching with weight at most 1/2 less than the optimum. In this section we give an 0*( log ()
algorithm for converting any such fractional matching into a masimum-weight matching. Note
that for the unweightecl bipartite matching, this algorithm runs in polylogarithmic time.

Let T be a fractiona bipartite matching which has weight a most 1/2 less than the maximum
weight. First we construct a fractional matching ', such that the values of f' have a relatively
small common denominator that is a power of two and the weight of f' differs from the maximum

weight by less than 1. Define 4 by
A = 2[‘10ng'|+1‘

By definition, 4 is an integer power of 2 and 4 = O(m(C). Let f’ be the fractional matching
obtained by rounding f down to the nearest multiple of 1 /A. Note that

mC _ m(C 1

antF — ot < - -
|wF - w' f'| N STogmCTHT < 3°

Thereforew! T * — wt f/ <1.

Nest we show how to construct from ' a multi-graph that will alow us to find f*. Consider
a multi-graph G’ = (17, E') with the edge set containing 4 . f{e) copies of e for every ¢ € E.
and no other edges. The following lemma shows a relationship betweeng this multigraph and
maximum-weight matchings of G.

Lemma 4.1 For any coloring of the edges of G’ with A colors, there exists a color class which is a
maximum-weight matching of G.

Proof: The proof is by a smple counting argument. The sum of the weights of the color classes
is equal to Aw!f’ > A( wtf* — 1). Since there are 4 color classes, at least one of them has weight
above w!f* — 1. The claim follows from the integrality of w. |

The above lemma implies that, in order to find a maximum weight matching, it is sufficient to
edge-color G’ using 4 colors. Since G’ is a bipartite graph and its maximum degree is bounded
by 4, which is a power of 2, we can use a paralel implementation of Gabow’s agorithm [11] to
edge-color G’ using 4 colors. However, G' has O(mC) edges and therefore the algorithm uses
2 (mC) processors. In order to reduce the processor requirement, we use a somewhat different
algorithm. The algorithm does not use an explicit representation of the multigraph, but rather
uses a weighted representation of a simple graph. A divide-and-conquer approach is then used to
split the (implicit) multigraph so that the bound on the maximum weight of an edge is halved,
and then recurses on the part with greater weight. A subroutine to find such a partitioning is
also the basis of Gabow’s edge-coloring algorithm.

Figure 1 describes the algorithm to find a maximum-weight matching given a near-optimal
fractiona matching. The algorithm starts by rounding the fractiona matching to a. smal common



procedure Round(E, f);
A — 2[logmCl+1 .
f" — f rounded down to a common denominator of A;
d — A,
while d’ > 1 do begin
Ey—{elecE d.f(e)isodd};
(L1, E2) — Degree-Split( V, Ey);
VVI — EU( EI) '
Wo — w(E2);
if Wy > W,
then begin
for e £, do f'(e) — f(e) + l/d';
fore c E2do f'(e) — f'(e) - I/d';
end;
else begin
for e € £y do f'(e) — f'(e) + I/d?
for e € E, do f'(e) — f'(e) -~ l/d;

end;
d —d'/2,
end;
return ({e | fle) = 1))

end.

Figure 1: Rounding an approximate fractional matching to an optimal integral one

denominator as described above. Then it computes from the fractional matching ' with common
denominator A, two fractional matchings f; and f, such that ' = 3(/1 + f2) and both f; and f;
have common denominator A /2. This is accomplished with the help of the procedure Degree-split
that partitions the edges of a bipartite graph Go = (V, Fp) into two classes £, and E,, so that
for every node », the degree of v in the two induced subgraphs differs by at most one. Then
f’ is replaced by f, or f, depending on which one has larger weight. This process is iterated
O(log(nC)) times, until the current fractional matching is integral. This matching has an integra
weight that is more than w! ¥ — 1, and therefore the matching is optimal.

Lemma 4.2 The algorithm Round produces a maximum-weight matching.

Proof: Consider the parameter d° used in the algorithm in Figure 1. Initially d’ = A. Note that
after iteration : we have d = A/2'. We show by induction that after iteration i:

o T’ is a fractional matching,
o wtf > wifx— 1,

e coordinates of T have common denominator d'.
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procedure Degree-Split( V, E);
Construct a new node set V'~ by replacing each node v € V by an independent set of size [d(v)/2] .
For each node in V, assign its incident edges to nodes in V7 so that each node v in ¥/ has d(v) < 2;
Edge-color the resulting graph using two colors,
Return the edges of each color class,

end.

Figure 2: splitting the maximum degree of the graph

Initially al three conditions are satisfied. Assuming that al three conditions are satisfied after
iteration ¢ — 1, we prove that they remain satisfied after iteration i. Let dy and f; denote d’ and
f' before iteration ¢ and let d, and f, denote d and f' after iteration i. The last claim follows
from the fact that the coordinates of f; that are odd multiples of 1/d; are adjusted by 1/d; in
this iteration, and so all coordinates of f, are even multiples of 1/d;, and hence multiples of
1/dy. The second claim follows from the fact that the components of f, that have been increased
correspond to edges of greater total weight than those that have been decreased. Now conside:
the first claim. By the inductive assumption, ) .¢s,) f1( € < 1. By the definition of Procedure
Degree-split, 3~ces(v) f2(€) < Feesvy) S1(€) + 1/d1<1+1/d;. However, we have seen dready that
f2 has a common denominator of dy. Hence. 3 sy f2( €)is an integer multiple of 1/d; = 2/d;
and therefore at most one.

After log A iterations we congtruct an f’ that is integral and whose weight is above w! f* — 1.
By the integrality of w, the set of edges where this f’ is 1 is the desired maximum-weight matching
of the input graph. |

The Degree-Split procedure is described in Figure 2. The following two lemmas imply the
desired time bound.

Lemma 4.3 The procedure Degree-Split partitions the input graph into two graphs with disjoint
edge-sets, such that the degrees of any node v in the two graphs differ by at most one. The procedure
runs in O(log n) time.

Proof: Observe that the graph constructed on V' is bipartite, and the degree of a node is a most
two. Therefore the graph consists of paths and even cycles. Hence it can be two edge-colored in
O(log n) time using m processors (2 1, 22]. The claim of the lemma follows from the fact that each
node v € V is an end point of a most one pat h. |

Lemma 4.4 The algorithm Round runs in O( log nlog n(') time using M processors.

Proof: The number of iterations of the loop of the agorithm is O(log A) = O(log n('), because
d is halved at each iteration. The running time of each iteration is dominated by Degree-Split.
which takes O(logn) time by Lemma 4.3. |
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Corollary 4.5 On unweighted bipartite matching problem, the algorithm Round runs in O( log’ n)
time using M processors.

Theorem 4.6 A maximum-weight bipartite matching can be computed in O*( \/m log (') time using

3

m processors.

Proof: Immediate from Lemmas 3.3 and 4.4. |

Corollary 4.7 A maximum cardinality bipartite matching can be computed in O"( V1) time using
m3 processors.

5 Conclusions

Interior-point methods have proved to be very powerful in the context of sequentiadl computation.
In this paper we show how to apply these methods to the design of parallel algorithms. We believe
that these methods will find more applications in the context of parallel computation, and would
like to mention the following two research directions.

One direction is to attempt to generalize our result to general linear programming, showing
that any linear programming problem can be solved in O*(v/NL) time. This would require a
parallel implementation of the finish-up stage of the algorithm that runs in O*(\/WL) time. A
related question is whether the problem of finding a vertex of a polytope with objective function
value smaler than that of a given interior point of the polytope is P-complete.

The other direction of research is to attempt to use the specia structure of the bipartite match-
ing problem to obtain an interior-point algorithm for this problem that finds an amost-optima.1
fractional solution in less that O*(\/m) time; an O*(I) bound would be especialy interesting,
since in combination with results of Section 4 it would imply that bipartite matching is in NC.
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