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Abstract

In this paper we use interior-point methods for linear programming, developed in t,he
contest of sequential computation, to obtain a parallel algorithm for t,he bipartite matching
problem. Our algorithm runs in 0*(,/E)  time I. Our results extend to the weighted bipartite
matching problem and to the zero-one minimum-cost flow problem, yielding O*(  filog C’)
algorithms?. This improvk’previous  bounds on these problems and illustrates the importance
of interior-point methods in t#he contest of parallel algorithm design.

1 Introduction

In this paper we use interior-point methods for linear programming, developed in the contest,
of sequential computation, to obtain a parallel algorithm for the bipartite matching problem.
Although Karp, Upfal, and Wigderson [20] have shown that the bipart,ite  ma,tching  problem is
in RNC (see also [25]), this problem is not known to be in NC. Special cxes of t,he problem are
known to be in NC. Lev, Pippenger, and Valiant [23]  gave an NC algorithm to find a perfect
matching in a regukr bipartite graph. (This algorithm is based on a sequential a~lgorithm of
Gabow a.nd Kariv [ 121;  see also [.5] .) M-111 er and Naor [24]  gave an NC a.lgorithm to find a perfect
matching in a. pla.na,r  bipartite graph (if one esists)  and other special  cases are considered in [lci].

The previous best deterministic algorithm for the problem. due to Cioltlberg,  Plotkin, and
Vaidya. [ 131, runs in O*(?z213)  time. This algorithm is based on combinatoria.1 xlgorithms for the
maximum flow and bipartite matching problems [G, 7, 8, 14, 171 and on a paxallel connectivity
algorithm 1261.  In this pa.per we describe an 0*( fi) algorithm for the bipa.rtite  matching problem
that is based on an interior-point algorithm for linear programming and on Gabow’s a.lgorithm  [ll]
for edge-coloring bipa.rtite  graphs. For graphs of low-to-moderate density. this bound is better
than the best previous bound mentioned above.

The significa.nce of the bipa,rtite matching problem has been well-recognized in the contest of
sequential computation, combinatorics, and graph theory. More recently. the importa.nce of the
problem for pa.ra.llel  computation has been recognized as well. The efficiency of several parallel
algorithms depends on the parallel complexity of the bipartite matching problem. For example,
Agga.rwa.1 a,nd Anderson [l] and Aggarwal, Anderson, and Kao [2] show, respectively, tha& an
NC a.lgorithm  for bipartite matching implies NC algorithms for the problem of constructing a
depth-first search tree in undirected and directed graphs.

The results presented in this paper extend to the maximum-weight matching problem a.nd to
the zero-one minimum-cost flow problem. The resulting algorithms run in O*(filog C) time.
The previous best algorithm for the zero-one minimum-cost flow problem runs in O*((r~m)*i~ log C.l)
time [13]. The new algorithm is better for both the zero-one ma,simum  flow and the zero-one
minimum-cost flow problems for all graph densities.

‘Throughout t,he paper, n and m denotes the number of nodes and edges of the input graph. An algorithtll runs
in O*(~(TL)) time if it runs in O(f(n.)logk(n))  time for some constant k.

2Throughout  t,he pa1,er we assume that all cost,s and weights are integers in t-he range [-C. . C], where C > 1.
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An interior-point algorithm works as follows. The algorithm starts with a point in the int.erior
of the feasible region of the linear program. In its ma,in loop, the algorithm moves from one
interior point to another, decreasing the value of a I)ote72ticr.l f:rr.nction  at each it,eration.  Whcm
this value is small enough, the algorithm termina.tes  with an interior-point solution t,ha,t  has a
nea,r-optimal  value. The finish-zip stage of the algorithm converts this near-optimal solution into
a,n optimal basic solution.

Karmarka,r’s  revolutionary paper [ 191  spurred the development of the area. of interior-point
linear programming algorithms, and many papers have followed his lead. Karmarkar’s a.lgorithm
runs in O(NL) iterations.3 Gonzaga [1.5] d’iscovered  a simple variation of Karmarkar’s a.lgorithm
that uses an affine transformation instead of the projective transformation used by Iiarma,rkar.
Renegar [28] was the first to give a.n interior-point algorithm that runs in 0( fiL) iterations.
A different O(fiL)-itera.tion  algorithm was developed by Ye [:33], which is a,n improvement of
Gonzaga.‘s  algorithm (a similar algorithm is described in [lo]). Tlle matching algorithm discussed
in this paper is based on Ye’s linear programming algorithm. The fastest linear programming
algorithm currently known is due to Vaidya [32]. This algorithm is based on Renegar’s method
and terminates in the same number of iterations, but reduces the time per iteration using fast
matrix multiplication, rank-one updates, and careful balancing. See [30]  for a. survey of the
interior-point algorithms.

Interior-point algorithms have proved to be a,n important t,ool for developing efficient sequential
algorithms for linear programming, its special cases, and quadratic programming (see e.y. [IS]).
In this paper we apply these tools in the context paxallel computation. For the purpose of parallel
computation, an important fact is that the running time of an iteration of an interior-point,
algorithm is dominated by the time required for matrix multiplication and inversion. Therefore,
an iteration of such an algorithm takes O(log3 N) time on a PRAM using N3 processors [26].

Roughly speaking, every fi iterations of an 0( fiL) ‘ti era.tion interior-point algorithm de-
crease the gap between the current value of the objective function a,nd the optimum va,lue by a
constant factor. The bipartite matching problem can be formulated as a. lineax program with an
integral optimum value. Therefore, the size of the masimum matching is known as soon as this
gap is below one. Furthermore, the gap between the value of an initial solution and the optima.1
value is at most N. In Section 3, we give such a formulation with N = O(m) and L = 0( log II).
This suggests that an interior-point algorithm can be used t.o find the value of the maximum
matching in a bipartite graph in O(Jmlogn) iterations, or 0*( fi) time. In this paper we
develop an algorithm running in this time bound that finds a maximum matching as well a.s its
value.

For this we need to overcome two difficulties. First, we need to find an initial interior point
with small potential function value, so that the number of iterations is small. The second diffi-
culty comes from the fact that standard implementa.tions of the finish-up stage of interior-point
algorithms either are inherently sequential or perturb the input problem to simplify the finish-
up stage, which makes L, and therefore the number of iterations of the main loop, superlinear.

3N and L denote the number of variables an d the size of the linear program. See Section 2 for formal definitions.
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For the special case of the bipartite matching problem, we give a pa,rallel implementation of the
finish-up stage that runs in O(log2  n) time using m processors. This implement,a.tion is based on
Gabow’s edge-coloring algorithm [ 111.

Our techniques apply to the more general masimum-weight matching problem. The algorit.hm
and its analysis are only slightly more involved in this more general case. and for brevity, we foclls
on it. The results for bipartite matching are obtained as a simple corollary of the results for
weighted bipartite matching. The main loop of our masimum-weight matching algorithm runs in
O*(filogC) time, and the finish-up stage runs in O*(logC) time. Therefore, the algorithm runs
in O*(JmlogC) time. A sta,ndard reduction between the weighted matching and the zero-one
minimum-cost flow problems (see e.g. [4, 201) gives O*(Jmlog C) algorithms for these probleins.

This paper is organized as follows. Section 2 introduces definitions and terminology and
reviews Ye’s linear programming algorithm. Section 3 gives a linea,r programming formulation of
the bipartite matching problem that has an initial interior-point with a small potentia.1 functlion
value, and shows how to use the linear programming algorithm to obtain a near-optima.1 fractiona.
matching. Section 4 describes a parallel procedure that, in O*(logC) time, converts the near-
optimal fractional matching into a,n optimal zero-one matching. Section rj contains concluding
remarks.

2 Preliminaries

In this section we define the matching problem and the linear programming problem, and review
some fundamental facts about them. For a detailed treatment, see [27, 291. We also give a.11
overview of Ye’s algorithm.

The bipartite matching problem is to find a maximum cardinality matching in a bipartite
graph G = (V, E). The maximum-weight bipartite ,matching  problem is defined by a bipartite
graph G = (V,E) and a weight function on the edges w : E ---+ R. The weight of a* ma.tching  M
is CeEIVI w(e). The problem is to find a ma.tching  with maximum weight.

We use the following notation and assumptions. G = (V, E) denotes the (bipartite) input
graph, n denotes the number of nodes in G, m denotes the number of edges in G, and C denot,es
the maximum absolute value of the weights of edges in G, which we assume to be integral. To
simplify the running time bounds, we assume, without loss of generality, that nz 2 n - 1 > 1,

a.nd C > 1. We denote the degree of a node v by n(v), and the set of edges incident to node 17 by
6(v).  For a vector x, we let x(i) denote the ith coordinate of m. We use a CRCW PRAM [9] as
our model of parallel computation.

It is well known that the node-edge incidence matris of a bipartit.e  gra#ph is totally unimodular.
Therefore, any optimal solution of the following linear program is the convex combination of
maximum-weight matchings, and hence the optimal value of this linear progra.m is equa,l  to the



masimum weight of a matching.

Matching-l: maximize WV
subject to: CeCS(v) &I 5 17 for each v E ir,

f 2 0.

A feasible solution to the system of above linear inequalities is called a Jiactioncll mtrtchillg.  W’c
denok an 0ptima.l solution of the linear program by f*.

Ye’s a.lgorithm  handles linear programs in the following form:

Primal LP: minimize ctx
subject to: Ax = b,

x 2 0,

where.-4 is a ma’tris,  and b, c and x are vectors of appropriate dimensions. We assume  that the
ma.tris rl a(nd the vectors b and c are integral. We use N to denote the number of va,riables in the
linear programs we consider. A vector x is a feasible solution if it satisfies the constraints kc = b
a,nd x > 0. A feasible solution x is optimal if it minimizes the objective function value ctx, and is
a,n interioya  poi72t if it is in the interior of the feasible region, i.e., if coordinat,es  of x a,re positive.

The linea,r progra.mming duality theorem states that the minimum va.lue of the Prima.1 LP is
equal to the ma’ximum value of the following Dual LP:

Dual LP: ma,timize b%r
subject to: A% +.s = c,

s > 0:

where T a.nd s a,re the variables of the Dual LP, the dimension of r is equa,l to the dimension of b,
and the dimension of s is equal to the dimension of x. Feasible and 0ptima.l solutions and interior
points for the dual problem are defined in the same way as for the prima.1.

Let :c be a feasible solution to the Primal LP, and let (n, s) be a fea.sible solution to the Dua,l
LP. The value ctx is an upper bound, and btn is a lower bound, on the common optimal value of
the two problems. Hence the difference ctx - btn = stx measures how far the current solutions
are from being optimal. This quantity is called the duality gap.

Ye’s algorithm is based on algorithms of Gonzaga [15] and Todd and Ye [:31].  Freund [ 101
describes a very similar algorithm, and gives a detailed discussion of a good choice of q (defined
below). The algorithm is applied to a pair of primal and dual linear programs in the above form.
It starts with a vector (x0, ~0, so), where x0 and (~0, so) are interior points of the primal and dua.1
linear problems, respectively. At each iteration of the main loop, the algorithm moves either from
the current interior point of the primal problem to another interior point of the problem, or from
the current interior point of the dual problem to another interior point of the problem. Progress
is mea,sured by a, potential function

N
@(XT, s) = qlog(x%) - c log(x(i)s(i))  - N log 3’.

i = l
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where q = ,V + &V. Each iteration reduces this potential function by a, constant.

The number of itera,tions  of interior-point algorithms depends on a parameter L that is related
to the size of the input numbers. This parameter is often defined to be the total number of bits
in the binary description of all coefficients in A, b and c. We use a different definition [19, 321,
which leads to a much smaller value of L in the case of the bipartite matching problem. Let D(A)
denote Ohe maximum absolute value of a subdeterminant of A, and let B denote the ma.simum
a.bso1ut.e  value of the coefficients of b and c. Then L is defined by

L = log D(A) + log N + log B.

With this definition, L = O(log(nC)) for linear program Matching-l.

\,\%en the value of the current feasible solution x is less then 2-L awa,y from the optima.1 value,
a sta,nclard  (sequential) rounding procedure yields a,n optima,1 solution.

The following lemma is the ba.sis for the analysis of Ye’s algorithm.

Lemma 2 .1  [33] If we have an initial solution (‘x0, ~o,so)  such that @(zo,so)  5 O(Ji\rL), then
after 0( JSL)  iterations the duality gap T~.S < 2-L.

Proof’: Recall that the a.lgorithm  decreases the potential function by a constant per iteration.
Thus after O( fiL) ‘t1 erations ia(z, s) < - fiL. The potential function can be rewritten as
follows:

f&x, s) = ~log(stm) + 5 log StZ N log N.
1=1 s(i)x(i)  -

Note that the second term is minimized when the values of s(i)x(i) are the same for all i, and
therefore this term is at least N log N. Therefore, if the potential function value is at most -flL,
then J;\;log(slz) < -flL. Hence we have xt..s < 2-L. m

To obta,in an 0( JFL) bound on the number of iterations, one has to provide an initial solution
(x0, TO?  SO) with @(x0,  so) 5 flL. Consider the potential function @ written as in (1). It is easy
to find an initial solution for which the first term is bounded by O(JNL). The difficulty is t,o
gua,rantee that the second term is fairly close to the N log N lower bound. A good initial solution
is one where the terms s(i)z(i)  a,re almost equal. As mentioned in [3], Ye proposed a way to
obta,in an equivalent formulation with such an initial solution. This uses the usual definition of
L, but ca.n also be shown to work for the definition of L that we use in this paper. In the nest
section Lve provide a slightly simplified construction for the bipartite ma.tching  problem.

3 Finding a Near-Optimal Solution

In this section we show how to convert the Matching-1 linear program into a linear progra*m that
is in the form required by Ye’s algori thm and has a,n initial solution wi th small potential function



value. Then we show how to compnte a nea.r-optima.1 fractional matching from this initial solution.

We restate the ma.tching  problem as follows:

lVIatcllirly-2: minimize -u+f f sz
subject to: c f(e)t(n-cl(v))g(v)-z  =  1  forea.ch v~1/‘,

&S(v) (2)
ltf+ltgty = ntmtl, (*I

fJ,&Y 2 0,

where 1 denotes the vector all of whose coordinates are 1. We denote the objective function of this
linear program by c. The number of vaxiables in this linear program is m + n + 2 = N. We denote
a feasible solution to Matching- 2 by x = ( f, g, y, z), and a feasible solution of the corresponding
dual problem by 7r a.nd .s? ivhere x( i) for i. = 1, . . . , n is the dual variable corresponding to the
primal constraint for node t:i, and ~(n + 1) is the dual variable corresponding to the constraint
(*). Note tl1a.t for this linear progra,m?  L = O(log(nC)).

Intuitively, the tra.nsforma.tion  works as follows. Variables g( vj are the slack variables intro-
duced to replace inequality consbraints by equality constraints. The positive multipliers (n - d( 11))
scale the slack variables so that there is a fea.sible solution with all original and slack variables
equal. The coefficient of z in the objective function is large enough to guarantee tl1a.t z = 0 in
an optima.1 solution. The constraSint  (*) does not affect the primal problem since y is not in the
objective function and. as we have just mentioned, in an optimal solution s = 0 and therefore
gtl + f’l 2 n is automatically satisfied. This constraint, however, allows us to obtain an initial
solution for the dual problem such tha,t the dual slack vaaiables corresponding to the primal vari-
ables f? 9 a,nd y axe roughly equal. A na.tural dual solution is to set the vector T to 0, and set
the dual slack variables equal to the primal objective coefficients. Even if this were feasible, the
coefficients axe very diRerent,  (the coefficients of g are zero, the others are not), a.ncl so this is not
a good starting solution. However, by setting the coordinate of YT corresponding to the additional
constra.int  to be a0 large negative number (while keeping the others equal to 0) the slacks (except
for the one corresponding to Z) are ma,de feasible, and roughly equal to the dual variable for (4).
The variable s is introduced to make it possible to have a starting primal solution with coordinates
of f, g a,nd y equal (for example, to 1). We choose the dual variable corresponding to (*j so tha.t
for the initial primal solution mentioned a.bove, t,he x(ijs(ij terms are all roughly equal. As we
shall see, this results in a small initial value of the second term of ip (written as in (1)).

We define initial primal and dual solutions as suggested by the a,bove discussion. The initial
primal solution ~0 is defined by

.f=1,g=l,y=172=n-1.

The initial dua.l solution (~0, so) is defined by

T(i) = 0,
~(n + 1) = -N*C,

for 1 5 i 5 72,

s(i) = c(i) + N*Ca( ;) for 1 5 i 2 11’.



where n( 1.) is the i-th coefficient of the equa,tion (*) in the definition of the Matching-2 LP.

The following two lemmas formalize the a,bove intuition.

Lemma 3.1 If (f,s, .3/. 5) is an optimal solution of bfatching-2, then f is an optimal solution to
Matching- 1.

Proof’: It suffices to show that every optimal solution to Matching-2 has z = 0. consider a feasible
point x1 = (fi, s/l, ~1, ~1) with ~1 # 0. Since fl satisfies Ce,-+~ fi( e) 5 1 + z1 for every node
~1, decrea.sing fl on some edges, by a total of at most zln, converts fl into a vector fz that is a
fractional matching. Note that any fractional matching f ca,n be extended to a feasible solution of
Matching-2. Let ~2 denote a, fea.sible solution extending f2. If we replace x1 by x2? the decrease in
the objective function value ca,used by the reduction in z is ~1 s > z~JYC.  The increase due to
the cha.nge in f is bounded by ~lnC < ZINC. Therefore, the value ctx2 is smaller, which implies
that a.ny optimal solution must have z = 0. 1

Lemma 3.2 The vectors ;cg and (~0,  so) are interior-point solutions of the primal and the dual
problems, respectively. The value of the potential function +(x0,  SO)  is at most O( J11’1og(nC>>.

Proof’: The first claim of the lemma is easy to verify. To verify the second claim, consider the
potential funct,ion written as in (1). The first term is at most O( filog(nC)). We show that the
second term is at most N log N + O( 1). F’1rs we show that for every i, dx/(s(i)x(i)) 5 N +0(l).t
Recall that N = n + m + 2 and note that

SCJ’XO  = nN2C + mN2C - dl + ‘zN”C’.

consider each type of va,riable separately.

l For variables .5(i) a.nd x(i) corresponding to Z, y, a.nd y, we get

sbx0/(s0(i)xo(i))  = n •j- m + ‘2 - $$ 5 iV f O(1).

l For variables s(i) and x(i) corresponding to f, we get

s~x~/(s~(i)x~(i))  = n + m + ‘2 -
~91 f nw(i) + mw(i) + 2w(i)

NW - w( 2)
5 N + 0 (1).

Since log(1 f h.) 5 11 for h > -1, the above calculations imply that

s

c log
S&X()

< Nlog(N + O(1)) < NlogI\‘+ O(1).
i=l so(i)xo(i)  -

‘i



Now we acre ready to give the O*(filog C)-time algorithm to compute the weight of an
optimal matching and to find a nea.r-optin1a.l fractional matching. In the nest section we show
how to find a,n optimal matching.

The following lemma is based on the fact that the objective coefficient of z has been chosen
large enough to ensure that any near-optimal solution to hlntchi~,g-2  can be rounded to a nea,rby
feasible solution to Matching-l.

Lemma 3.3 A fractional bipartite matching with weight at most l/2 less than the weight of an
optimal matching can be computed in 0*(\/17LlogC)  t ime on a PRAM with 7123 processors.

Proof‘: Lemmas 2.1 and 3.2 imply that, after 0( Jr\;log(nC))  = 0( filog(nC)) iterations of the
LP algorithm, we obtain a point (x, OTT,  -5) with duality gap xt.s < l/-I-. Hence we have

where f* is an optimal solution to Matchillg-1. Since z > 0, this implies tha,t wtf* - atf 5 l/4.
As in Lemma 3.1, we can argue tha.t f can be converted to a feasible solution of the Mcitching-
1 problem by decreasing its value on some of the edges by a total of at most zn. Therefore,
wtf* 2 wtf - znC. From (3), this implies t1la.t zs 5 I/-k + znC. Thus,

11 - 1z< 1
4C(P - I$ f n)

<-
4mc -

Now round all values of f and g down to ha.17e a common denominator 4nzC,  snd denote the
rounded solution by fl, gl. Clearly, &f * - tL:t fl 2 l/4 + ( naC)/(3r72C)  5 l/2. After the rounding,
we ha,ve:

The left-hand side is an integer multiple of (-2c’n~)-~  and z < (4Cm)-‘.  This implies tl1a.t

c flk) t (12 - +))gl(v) < 1
eE6( u)

Hence, the resulting vector fi is a fractiona. makching whose weight is within l/2 of the optimum.
I

Corollary 3.4 A fractional bipartite matching with cardinality at most l/2 less than that of the max-
imum cardinality matching can be computed in 0*( Jmlog C’) time on a PRAM with m3 processors.
The cardinality of the maximum matching can be computed within the same bounds.



4 The Finish-Up Stage

In the previous section we have shown how to compute, in O*(filogC) time, a. fractional bipar-
tite matching with weight at most l/2 less than the optimum. In this section we give an 0*( log C)
algorithm for converting any such fractional matching into a masimum-weight matching. Note
that for the unweightecl bipartite matching, this algorithm runs in polylogarithmic time.

Let f be a fractional bipa.rt.ite  ma.tching which has weight at most l/2 less than the masimum
weight. First we construct a fra,ctional ma.tching f’, such that the values of f’ have a. relatively
small common denominator tl1a.t is a. power of two and the weight of f’ differs from t,he maximum
weight by less than 1. Define 4 by-

4 = g-hP~l+1 .

By definition, 4 is an integer power of 2 and 4 = O(mC).  Let f’ be the fract.ional ma,tching
obtained by rounding f down to the nea,rest multiple of l/4. Note that

Ill+ f - mCdf’l < a = mC 1
2pogmc1+1  < 2’

Therefore PCt f * - wt f’ < 1.

Nest we show how to construct from f’ a multi-graph that will allow us to find f’. Consider
a multi-graph G’ = ( I -, E’) with the edge set containing 4 . f’(e) copies of e for every e E E,
and no other edges. The following lemma shows a relationship betweeng this multigraph and
masimum-weight matchings of G.

Lemma 4.1 For any coloring of the edges of G’ with A colors, there exists a color class which is a
maximum-weight matching of G.

Pr-oaf‘: The proof is by a simple counting argument. The sum of the weights of the color classes
is equal to Awtf > 4( zdf’ - 1). Since there are 4 color classes, at least one of them has weight
above wff*  - 1. The claim follows from the integrality of 20. 1

The above lemma implies that, in order to find a maximum weight matching, it is sufficient to
edge-color G’ using 4 colors. Since G’ is a bipartite graph and its masimum degree is bounded
by 4, which is a power of 2, we can use a parallel implementation of Ga.bow’s algorithm [ll] to
edge-color G’ using 4 colors. However, G’ has O(mC) edges and therefore the algorithm uses
0 ( n2C) processors. In order to reduce the processor requirement, we use a8 somewhat different
algorithm. The algorithm does not use an explicit representation of the multigraph, but rather
uses a weighted representation of a simple graph. A divide-and-conquer a.pproajch is then used to
split the (implicit) multigra.ph so that the bound on the maximum weight of an edge is halved,
and then recurses on the part with greater weight. A subroutine to find such a. partitioning is
also the basis of Ga,bow’s  edge-coloring algorithm.

Figure 1 describes the algorithm to find a ma-*mum-weight matching given a near-optimal
fractional matching. The algorithm starts by rounding the fractional matching to a. small co~nmon
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procedure Round(E,  f);

;

t- ~[lognlC]+l .

- f rounded down to a common denominat,or of A;
d’ - A;
while c!’ > 1 do begin

Eo - {e 1 e E E, cl’ . f’(e) is odd};
(El, E-3)  - Degree-Spfit(  V, Eo);
Wl - w( El) ;
wz - w(&);
if WI 2 W:!

then begin
for e E El do f’(e) - f(e) + l/d’;
for e E Ez do f’(e) - f’(e) - l/d’;
end;

else begin
for e E E2  do f’(e) - f’(e) + l/d’;
for e E El do f’(e) - f’(e) - l/d’;
end;

d’ - d’/2;
end;
return ({e 1 f’(e) = 1))

end.

Figure 1: Rounding an approximate fractional matching to an optimal integral one

denominator as described above. Then it computes from the fractional matcliiug f’ with COI~I~OI~

denominator A? two fractional matchings fi and f2 such that f’ = i(Jr + fz) and both fi and fz
have common denominator A/2. This is accomplished with the help of the procedure Degree-split
that partitions the edges of a bipartite graph Ge = (V, Ee) into two classes Er and E2, so that
for every node ~1, the degree of v in the two induced subgraphs differs by at most one. Then
f’ is replaced by fi or f2 depending on which one has larger weight. This process is iterated
m%(W) t imes, until the current fractional matching is integral. This ma,tching  has an integral
weight that is more than wt f* - 1, and therefore the matching is optima.1.

Lemma 4.2 The algorithm Round produces a maximum-weight matching.

Proof: Consider the parameter d’ used in the algorithm in Figure 1. Initially d’ = A. Note tha,t
after iteration i we have d’ = A/2’. We show by induction that after iteration i:

0 f’ is a fractional matching,

0 ?df > df* - 1,

l coordina,tes  of f’ have common denominator cl’.

10



procedure Degree-SpZit(  V, E);
Construct a new node set V’ by replacing each node ZI E V by an independent set of size [cl(~)/21  ;
For each node in V, assign its incident edges to nodes in V’, so that each node v in I,-’ has n(z,) 5 2;
Edge-color the resulting graph using two colors;
Return the edges of each color class;

end.

Figure 2: Splitting the maximum degree of the graph

Initially all three conditions are satisfied. -4ssuming that all three conditions are satisfied after
iteration i - 1, we prove that they rema,in satisfied after iteration i. Let dl and fi denote cl’ a,ntl
f’ before iteration i and let d2 and f2 denote d’ and f’ after iteration 2’. The last cla,im follows
from the fact that the coordinates of fi that are odd multiples of l/d1 are adjusted by l/d1 in
this iteration, and so all coordinates of f2 are even multiples of l/dl,  and hence multiples of
l/d*. The second claim follows from the fact that the components of f2 that have been increased
correspond to edges of greater tota, weight than those that have been decreased. Now considex
the first claim. By the inductive a.ssumption,  ‘&S(vJ fl( e) 5 1. By the definition of Procedure
Degree-v&  ,&+) f2(4 I C&j(u) fi(4 + Wl 5 1-t l/4. 1-I owever, we have seen already that
f2 has a common denominator of d2. Ilencc. CeES(2,) f2( -)F is an integer multiple of l/d2 = ‘z/d1
and therefore at most one.

After log A iterations we construct an f’ that is integral and whose weight is above llTt f” - 1.
By the integrality of w, the set of edges where this f’ is 1 is the desired maximum-weight matching
of the input graph. 1

The Degree-Split procedure is described in Figure 2. The following two lemmas imply the
desired time bound.

Lemma 4.3 The procedure Degree-Split partitions the input graph into two graphs with disjoint
edge-sets, such that the degrees of any node c in the two graphs differ by at most one. The procedure
runs in O(log r~) time.

Proof: Observe that the graph constructed on V’ is bipartite, and the degree of a node is at most
two. Therefore the graph consists of paths and even cycles. Hence it can be two edge-colored in
O(log n) time using m processors [2 1, 221. The claim of the lemma follows from the fact that each
node v E V is an end point of at most one pa.t 11. 1

Lemma 4.4 The algorithm Round runs in O( log nlog nC’) time using m processors.

Proof: The number of iterations of the loop of the algorithm is O(logA) = O(log 72c’),  because
d is halved at each iteration. The running time of each iteration is dominated by Degree-Split.
which takes O(logn) time by Lemma. 4.3. 1
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Corollary 4.5 On unweighted bipartite matching problem, the algorithm Round runs in O( log’ 11)
time using m processors.

Theorem 4.6 A maximum-weight bipartite matching can be computed in O*( filog C) time using
m3 processors.

Proof: Immediate from Lemmas 3.3 and 4.4. 1

Corollary 4.7 A maximum cardinality bipartite matching can be computed in O*( fi) time using
?7z3  processors.

5 Conclusions

Interior-point methods have proved to be very powerful in the context of sequential computation.
In this pa.per  we show how to aapply these methods to the design of parallel algorithms. We believe
that these methods will find more a,pplications  in the context of parallel computa.t,ion, and would
like to mention the following two research directions.

One direction is to attempt to generalize our result to general linear progra,mming,  showing
that any linear programming problem can be solved in O*(flL) time. This would require a8
parallel implementation of the finish-up stage of the algorithm that runs in O*(fiL) time. A
related question is whether the problem of finding a vertex of a polytope with objective function
value smaller than that of a given interior point of the polytope is P-complete.

The other direction of research is to attempt to use the special structure of the bipartite match-
ing problem to obtain an interior-point algorithm for this problem that finds an almost-optima.1
fractional solution in less that O*(Jm)  t ime; an O*(l) bound would be especially int.eresting?
since in combination with results of Section 4 it would in KC.imply that bipartite ma,tching  is
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