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1 The Prefix Operation

We begin by reviewing the basic definitions necessary to understand the prefix and segmented
prefix operations. These operations were first introduced by Schwartz, where they are
referred to as “summing” and “‘summing by groups” [14].

Let & denote a binary associative operation mapping X x X to X', for some domain X. Given
n values zq, ..., z,_1 belonging to &', the Prefix operation computes each of the partial sums
Yi= Xx0$-. & z;, 0 <1< n. For example, assume that & is addition, n = 5, g = 5, z; = 2,
2y = 6,23 = 4 and z4 = 9. Then the output of Prefix is yo = 5, y3 = 7, y2 = 13, y3 = 17 and
y4 = 26.

Given an additional n boolean values ay, . . ., a,_1, we can partition the n given x; values into
contiguous intervals in the following manner: an interval begins at each : such that a; = true
and extends up to, but not including, the next highest integer j such that a; = true. The
first interval begins at processor 0 regardless of the value of ag, and the last interval ends
at processor n — 1. The segmented Prefix operation executes a prefix operation over each
interval. Extending the example of the preceding paragraph, assume that a, and a4 are true
while ag, a; and a3 are false. Then the z; values are partitioned into the intervals {zo, z,},
{z4, z3} and {z4} and the output of the segmented Prefix operation is yo = 5, y1 = 7, Y2 = 6,
y3 = 10 and y4 = 9.

When we give implementations of the Prefix operation in Section 2, it will be convenient to
assume that there is an identity element for @ in &', which we denote Og. This assumption
can be made without loss of generality because if no such element exists, we can simply
augment the set X with an identity element Og by defining Og @ x = x and x $0, = x for
all x € X.

Definition 1.1 For all pairs of boolean values aq, a; and all zy, z; € X, let @' denote the
binary operation

(a0, o) @' (al, z1) = (ao or al, if a; then z; else zo & z1).
The operation @' will be referred to as the segmented & operation.
Remark 1 The operation @' has identity Og = (false, Og).
Remark 2 The @' operation is not commutative, assuming |X’| > 1.
Remark 3 The @’ operation is associative.
Remark 4 For k > 0,

(ao, zo) @ -+ @& (ak, xx) = (@o or - - - or ay, ; @+ - + D ),

where 7 is the highest index less than or equal to k such that a; = true, or 0 if there is no
such index.



Remark 1 is an immediate consequence of Definition 1.1. For Remark 2, let zq, 1 be distinct
elements of X and note that (true, zo) @' (true, z1) = x; while (true, z;) @(true, o) = To.
Remark 3 follows from the observation that for all boolean values ag, al, a; and zg, 1, 22 € X
we have

((ao, mo) &'

(a1, 1)) @' (az, z2)

(ap or al, if a; then z; else zo & z,) &' (ag, )

= (ao Or ay or ay, if a; then z; else if a; then =1 @ z; else zo & 1 B z2)
= (ao or (ay or ay), if (a3 or az) then X else zo & X)

= (a0, o) & (a1 0r ay, X)

= (ao,z0) @' ((a1,21) &' (az,22)),

where X denotes the conditional expression: if a; then z, else z; & x,. Finally, Remark 4
may be easily established by induction on k.

Remarks 3 and 4 demonstrate that any segmented Prefix computation with operator &
mapping X x X to A is equivalent to an ordinary Prefix computation with operator @'
mapping (Bx X)x (BxX) toBx X,where B denotes the set of boolean values {true, false}.
The second component of each output pair is the result of the desired segmented Prefix
computation, and the first component indicates whether or not that processor belongs to
an “undefined” interval; it is false at processor @ if and only if ag, . . . , a; are all false. By
making use of the fact that segmented Prefix is equivalent to ordinary Prefix, we can avoid
coding up a potentially messy direct implementation of segmented Prefix.

2 Network Implementations

In this section, we develop efficient implementations of the Prefix operation for the complete
binary tree, hypercube and shuffle exchange families of networks. We will be concerned
with p-processor network implementations of the Prefix operation where processor : initially
contains the value z;, 0 < i < p, and n = p. The computation is considered to be complete
when the partial sum y; = 2o @ . . . @ z; has been computed at processor i, 0 <i < p.

The model of computation that we adopt for our networks may be defined as follows. Each
processor has an infinite local memory configured in O(logp)-bit words and can perform
the usual set of CPU operations in constant time on word-sized operands. Processors
communicate with one another by sending packets over the links provided by the network.
A packet consists of a single word of data. The complexity of our algorithms will be stated
in terms of time steps. Unless otherwise stated, running times should be assumed to be
accurate to within an additive constant. In a single time step, each processor is allowed
to send and/or receive at most one packet (lI-port communication), and execute a constant
number of CPU operations on local data. We will assume that the x;’s, as well as all partial
sums of the z;’s, are word-sized quantities.

All interprocessor communication in our programs is specified using the pair of routines Send
and Receive. Send takes two arguments: the first specifies the word of data to be transmitted,
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Figure 1: An inorder complete binary tree.

and the second specifies the id of the destination processor. Receive is a function with one
argument, which specifies the id of the source processor. Once a packet arrives from the
source, the word of data contained in that packet is returned as the value of the function.
In order to comprise a valid source/destination pair, two processors must be adjacent in the
network.

2.1 Binary Tree

The first implementation of Prefix that we consider is the standard two-pass algorithm for
the inorder complete binary tree. Assume that we are given a tree of size p = 2¢ — 1,
with processors numbered inorder from 0 to 2¢ — 2. An example of such a network is
given in Figure 1, where the processor ids have been written in binary, and d = 4. Our
code for this algorithm assumes that each processor has initialized the variables Root, Leaf,
LeftChild, RightChild and Parent in the following manner. The boolean variable Root (Leaf)
is true if and only if the processor represents the root (a leaf) of the tree. The integer
variables LeftChild, RightChild and Parent hold the ids of the neighboring processors, and
are undefined whenever such a neighbor does not exist.

begin Prefix(&, x)

(1) @, « if Leaf then Og else Receive(LeftChild);
(2)  xr «— if Leaf then Og else Receive( Right Child);
(3)  if not Root then Send(zy, @ x & zg, Parent);
(4)  yL «— if Root then Og else Receive( Parent);
(5)  Yre—yL O L D T;
(6) if not Leaf then Send(yy,, LeftChild);
(7) if not Leaf then Send(yr, RightChild);
(8)  return(ygr);
end Prefix

As mentioned above, the program makes two passes over the tree. The first pass is upward,
from the leaves to the root, and the second pass is downward. For every processor p, let T(p)



denote the subtree rooted at processor p. Note that the ids of the processors in T(p) form a
contiguous block of integers. During the upward pass, each processor receives the sum of its
left and right subtrees (z1, and zr), computes the sum of T(p), and passes the result to its
parent. During the downward pass, each processor receives from its parent the sum over all
processors with ids less than those in T(p) (yL), computes the sum over all processors with
ids less than those in its right subtree (yg), and sends the appropriate values to its left and
right children (y;, and ygr). The correctness of the program is easily established by induction

on the depth of the tree, and it runs in 4 log p (all logarithms in this paper are base 2) time
steps.

Note that in any given time step, only two of the levels of the tree are active, implying that
the algorithm can be pipelined level by level. By initiating a new prefix computation every

second time step, it is possible to perform k Prefix operations on the inorder complete binary
tree in 2k + 4 log p time steps.

2.2 Hypercube

For the hypercube, the following FFT-like computation executes Prefix in logp time steps:

begin Prefix(®, z)

1) ye—u
(2) fori«——0tod—1do
(3) Send(y, i);
4) if Myld, = 0 then
(5) y «—— y @ Receive(i);
(6) else
(7) temp «— Receive(i);
(8) T «— temp & z;
9) y «— temp @ y;
(10) end if
(11) end for
(12)  return(x);
end Prefix

The variable Myld holds the id of the processor, and Myld; denotes the ith bit of the id
(the least significant bit is bit 0). The source and destination arguments of Send and Receive
specify the bit position in which the two communicating processors differ.

The program runs in logp time steps, and functions in the following manner. In addition
to the partial sums demanded by the Prefix operation, the total sum is computed at every
processor. The local variables x and y accumulate the partial and total sums, respectively.
For a hypercube consisting of a single processor, the computation is trivial. Given p = 2¢,
d > 1, processors with associated z; values, the program first recursively computes partial
and total sums for the upper and lower halves of the values independently, and then exchanges
the total sums between halves. This enables the revised partial sums for the upper half to
be computed, as well as the new total sums.
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Figure 2: Embedding the inorder binary tree in the hypercube.

Unfortunately, the above program does not lead to a pipelined implementation of the Prefix
operation because it uses all of the processors at every time step. To achieve pipelined
speedup we can make use of the dilation 2 inorder complete binary tree embedding [5].
Figure 2 gives this embedding for the case p = 16, where the “extra” processor (with id
p — 1) has been added as an extra level above the root. The edges depicted in Figure 2
are physical hypercube edges. The left child of a non-leaf processor is connected directly to
its parent, while the right child is connected to its parent via the left child. It is easy to
verify that the pipelined algorithm given for the inorder complete binary tree in Section 2.1
can be modified to run in the same time bound on the dilation 2 inorder complete binary
tree embedding. In particular, note that processor p — 1 is in an appropriate location to
receive the sum over all of the other processors. To summarize, we have shown that k Prefix
operations can be performed in 2k + 4 logp time steps on the hypercube.

2.3 Shuffle Exchange

The hypercube code given in the preceding section for performing a single Prefix operation
can be easily adapted to the shuffle exchange:

begin Prefix(&, x)

(1) ye—ua

(2) repeat d times

(3) Send(y, Exchange):

(4) if Myld, = 0 then

(5) y «—— y & Receive(Exchange);
(6) else

(7) temp «— Receive( Exchange);
(8) X e temp @ X;
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9) y «— temp D y;
(10) end if
(11) Send(x, Unshuffle);
(12) x «—— Receive( Shuffle);
(13) Send(y, Unshuffle);
(14) y «— Receive( Shuffle);
(15) end repeat
(16)  return(x);

end Prefix

The above program runs in 3 logp time steps. As we saw for the hypercube, however, a
different approach is needed in order to obtain a pipelined implementation of the Prefix
operation. Unfortunately, it is not possible to embed the inorder complete binary tree in
the shuffle exchange with constant dilation. Instead, we make use of the dilation 2 complete
binary tree embeddings depicted, for the case p = 16, in Figures 3 and 4. The leaves of the
tree in Figure 3 are the high-numbered processors (those with ids in the range p/2 to p — 1),
numbered inorder. In this embedding, the id of the left child of an internal processor is the
shuffle of the id of its parent, and siblings communicate via the exchange connection. The
embedding of Figure 4 is defined in a similar fashion, and has the low-numbered processors
(0 to p/2 — 1) at its leaves.

We can make use of these embeddings to obtain a pipelined implementation of k Prefix
operations as follows. First, use the embedding of Figure 3 to compute the k sets of partial
sums over the high-numbered processors. This takes 2k + 4 logp time steps. Similarly,
the embedding of Figure 4 can be used to perform k prefix sums over the low-numbered
processors in 2k + 4 logp time steps. At this point, all that remains to be done is to
broadcast, in a pipelined fashion, the k total sums over the low-numbered processors to
the p/2 high-numbered processors, and to add these values to the partial sums computed
earlier. This last phase can be performed in 2k + 2 log p time steps using the embedding of
Figure 4 (note that the desired sums are already available at the root), so k Prefix operations
can be executed in 6k + 10 logp time steps on the perfect shuffle.
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Figure 4: A shuffle exchange embedding for the low-numbered processors.

2.4 A Useful Variation

In Section 4 we will make use of a variant of the Prefix operation, Prefix, defined as follows.
Rather than computing zo®- . -@x; at processor i, 0 <i < p, Prefix outputs Og at processor 0
and zo®- . . b x;_y at processor i, 1 <i < p. This is sometimes more convenient, particularly
when the operator @ is not invertible. Note that all of our implementations of Prefix may be
trivially modified to implement Prefix’ with precisely the same time bounds. For example, in
the complete binary tree program of S&ion 2.1, it suffices to change the return value from
YR to yL @ zi.

3 Data Distribution

Consider the binary associative operator @& defined over X' by z®y = x, for all x, y € X. This
is sometimes referred to as the Copy operator. Observe that the effect of applying Prefix with
the Copy operator is to perform a broadcast of a single value from processor 0 to all other
processors. Of course, there are simpler techniques for broadcasting a single value over the
processors of any of the networks we have considered. However, combining this observation
with the results of the previous section immediately implies that k segmented broadcasts
can be executed in 2k + 4 log p time steps on the tree or hypercube, and in 6k + 10 log p time
steps on the perfect shuffle.

In order to fully illustrate the techniques discussed in Section 1, we now study the
implementation of segmented Prefix with the Copy operation in greater detail. As stated
in Section 1, processor i initially holds the boolean value a; and z; € X, 0 < i < p. Note

that under the Copy operation the only relevant z;’s are those for which the corresponding
a; is true.

Clearly, there is no identity element for the Copy operation in X. To remedy this situation,
we extend the domain of Copy from X to B x X and define every pair with first component
false, say, to be an identity element. In practice, this corresponds to prepending a single bit



b; to each of the z;’s. Formally, we have

(bo, o) ® (b1, 1) = (bo or by, if by then z, else 1),
for all by, by € B and zo, z; € X.

In order to reduce segmented Prefix with operator @& = Copy to ordinary Prefix with operator
@' = Copy’, we define @’ as follows:

(ao, (bo, .’EO)) @’ ((tl, (bl, -Tl)) = (ao or ay, if a; then (bl, .’171) else (b(), 330) ©® (bl, 1:1))
Dropping the inner parentheses and simplifying, this amounts to

(a'07 bO)xO) EBI (ah bl)'rl) = (‘10 or ay,
if a; then b; else by or by,

if a1 or not by then z; else x;).

Note that the above formulation allows bit pipelining in the sense described by Blelloch [6].
In other words, as each bit of the two operands is received, the next output bit can be

computed. This holds not only for the Copy operator, but also for any other single-pass
operator, as defined in [6].

Finally, we observe that the data distribution operation defined by Ullman [16] is equivalent
to a segmented Prefix operation with the Copy operator. Thus, the techniques outlined in
this paper immediately lead to efficient pipelined implementations of this primitive for the
complete inorder binary tree, hypercube and shuffle exchange network families.

4 Sorting on a Pipelined Hypercube

In this section, we describe a simplified implementation of the optimal merging algorithm of
Varman and Doshi [17], and show how this can be used to develop a pipelined version of the
sorting algorithm of Nassimi and Sahni [10] for a pipelined model of the hypercube.

The Sort operation is defined as follows. Given n O(logp)-bit values, with |n/p]| or [n/p] at
any processor, rearrange the n values so that every value in processor i is less than or equal
to every value in processor 7 whenever 0 < i < j < p. In addition, we require that there
be |n/p|] or [n/plalues at any processor, and that the set of values within any particular
processor be sorted. There has been a great deal of previous research related to the problem
of sorting on the hypercube. For the I-port model of the hypercube that we have been
considering thus far, see [1], [4], [7], [9], [L0] and [12]. For examples of results based on other
assumptions, we refer the reader to [13], [15], [17] and [18].

The time bounds for the merging and sorting algorithms described in this section do not
apply to the I-port model of computation that we have been considering up to this point.
Instead, we will make use of a restricted form of the less realistic d-port model, in which
a processor can send and/or receive a packet from each of its logp neighbors in a single
time step. This model, which we refer to as the pipelined hypercube model, was originally

8



defined by Varman and Doshi [17], and we refer the reader to their paper for both the strict
definition as well as the hardware implementation details.

We only need the pipelined model of the hypercube for performing pipelined inverse
concentration routes. It is interesting to note that we do not require pipelined concentration
routes, nor do we require the pipelined inverse concentration with copy operation of Varman
and Doshi. Concentration and inverse concentration routes were defined by Nassimi and
Sahni [10], and it is easy to show that k such operations can be performed in k + logp time
steps on the pipelined hypercube model. Furthermore, there is no hope of achieving this
asymptotic time bound on the I-port model since there is a lower bound of Q(k logl/2 p)
time steps in this case. To prove this lower bound, consider a set of k monotone routes for
which the source processors are exactly those with strictly more O% than I% in their ids and
the destination processors are those with more 1% than 0’s. In such a case, Q(kp) packets
must pass through the O(plog_1/2 p) processors with an equal number of O% and 1% (or one
more 0 than 1, say, if log p is odd), which implies a lower bound of ( k logl/2 p) time steps
for performing k monotone routes. Since a monotone route is equivalent to a concentration
route followed by an inverse concentration, and these operations have equal complexity, this

lower bound applies to the pipelined concentration and inverse concentration operations as
well.

We now describe a pipelined algorithm for merging two sorted lists X and Y, each of length
pk, on p processors. The algorithm is similar to that proposed by Varman and Doshi [ 17],
but is somewhat simpler. The optimal merging algorithm of Anderson, Mayr and Warmuth
for the EREW PRAM also takes a similar approach [2]. For expository purposes, we make
the (avoidable) assumption that all of the 2pk input values are distinct. For both X and
Y, the values with ranks (numbered from 0) in the range ik to (i + 1)k — 1 are initially
stored at processor i, 0 < i < p. The two ordered sets of k values located at processor i will
be referred to as X; and Y;, respectively. Let z; denote the least element of X;, and let y;
denote the greatest element of Y;, 0 < i < p. Let X~ and Y’ denote the set of all z;’s and
y;’s, respectively. Let Z denote the sorted list of length 2pk that results from merging X and
Y. Those elements of Z with ranks in the range 2:k to 2(¢ + 1)k — 1, denoted Z;, must be
routed to processor i by the end of the computation, 0 < i < p, and must be sorted locally.

Our approach is to first merge X”and Y7 and then use the resulting list to guide the merging
of X and Y. Let Z’ denote the sorted list of length 2p that results from merging X and Y~
Let z; denote the value with rank j in Z’, 0 < j < 2p. Let Z; denote the set of k values
associated with zj, that is, either z; = z; for some z; € X” and ZJ'. = X;, or z; = y; for
some y; € Y”and Z; = Y;. Note that if z; € X” then the rank of z; in Z is between jk and
(7 + 1)k — 1, inclusive. The exact rank of z; in Z can be determined by computing its rank
in the set Y;, where y; is the least element of Y~ exceeding z;. Similarly, if z; € Y~ then the
rank of z; in Z is between jk and (j + 1)k — 1, and the exact rank of z; in Z depends upon
the set X;, where z; is the largest element of X~ that is less than z;. Furthermore, it is easy
to check that the set Z; is contained in the union of Z;,, Z;,,,, the set X; corresponding to
the largest x; that is less than zz;, and the set Y; corresponding to the smallest y; that is
greater than z,;41. These observations lead to the following pipelined merging algorithm.



Algorithm Merge

1. Reverse the list Y7 that is, route y; to processor p — i — 1, 0 <i < p. This takes log p
time steps.

2. Merge X” and Y~ by simulating a bitonic merge over 2p processors. Record the data
movements to facilitate the “unmerge” of step 3. This takes 2 logp time steps.

3. Route the rank of each value in Z’ back to the processor which originally held that
value. This can be done in 2 log p time steps by following the paths recorded in step 2
in the reverse direction.

4. Route each set X; to the processor that held z; after step 2, 0 < i < p. The id
of that processor can be computed from the rank received by processor i in step 3.
The routing can be performed in 2k + 2 log p time steps using a pipelined inverse
concentration. Route the Y;’s in a similar fashion, for a total cost of 4k + 4 logp time
steps.

5. Assuming the set X; was routed to processor j; in the previous step, broadcast X; to
all processors with ids in the range j; + 1 to j;41, 0 < i < p. This can be done in

2k + 4 logp time steps with a single application of the Prefix operation, as described
in Section 2.

6. Assuming the set Y; was routed to processor j; in the previous step, broadcast Y; to
all processors with ids in the range j;,_; to 3;, — 1, 0 <i < p. This can be done with a
single application of a ““backwards™ version of Prefix’, and takes 2k + 4 log p time steps.

7. At this point, processor j contains a copy of Zgj, §j+1, the largest X; with z; < z,; and
the smallest Y; with y; > Z25+1, 0 < j < p. As observed above, the union of these sets
contains the desired set Z;, and the values to be discarded (i.e., those not belonging
to Z;) can be determined by computing the exact rank of either Z9; Or 23;41. These
sets can be merged, and the rank computation performed, with O(k) local operations.
Our definition of a time step allows these local operations to be interleaved with the
computations of steps 5 and 6 at no extra cost.

Note that only step 4 uses the power of the pipelined model. The total running time of Merge
is 8k + 17 logp time steps. Now consider the case in which 2p processors are available to
perform the merge, where we assume that X; is initially stored at processor i, Y; is initially
stored at processor 2p — i — 1, and Z; is to be output at processor j, 0 <i<p, 0 <j < 2p.
In this case, step 1 is unnecessary, and the cost of each of the steps 2, 3 and 4 is halved,
while the cost of the remaining steps is unchanged. Thus, the total cost of Merge with 2p
processors is 6k + 12 logp time steps. Note that for k = Q(log p), this running time is within
a constant factor of optimal. Furthermore, as observed by Varman and Doshi, this optimal
merging routine immediately implies an optimal algorithm for sorting when the number of
values to be sorted, n, exceeds the number of processors, p, by a factor k that is Q(log p).
The idea is to sort the set of k values at each processor locally, and then to merge sorted
subcubes repeatedly until the entire hypercube has been sorted. At each level, even subcubes
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are sorted in ascending order and odd subcubes are sorted in descending order. The running
time of this algorithm, which we refer to as MergeSort, is

> (6k + 12i) = 6klogp + O(log’ p).

0<i<logp

As mentioned above, this running time is optimal for k = Q(logp).

We now describe a pipelined version of the multi-way merging procedure of Nassimi and
Sahni [10] that runs on the pipelined hypercube. The input consists of 2 sorted lists of
length k2™, and the output is a single sorted list of length k2™ The merging is performed
in O(k + log p) time steps on a hypercube with p = 22+m processors. Let the ith input list
be denoted X, 0 < i < 2!, and let the set of k elements of X with ranks between jk and
(i + 1) k = 1 (inclusive) be denoted Xj, 0<j<2” The set X} is initially stored at processor
12™ + j. Let the output list be denoted X. At the end of the merging process, the elements

of X with ranks between j k and (j + I)k — 1 (inclusive) should be stored at processor j,
0<j< 2™

It is useful to view the processors of the given hypercube as forming a 2' by 24™ array,
where the processor in row i and column j has id ¢2"+™ + j (row-major order). Note that all
of the X}’s are stored in row 0. In fact, each processor in row 0 contains exactly one set X;-.

Our algorithm makes use of pipelined broadcast and sum operations over entire subcubes.
Formally, a pipelined broadcast operation takes k values stored at a single processor and
broadcasts them over the entire subcube. For a pipelined sum operation, processor i initially
holds k values a;;, 0 <i < p, 0 < j < k. The output is the k sums 3 oc;cp@ij, 0 < j < K,
all of which are output at a single designated processor. Although suck operations can be
performed using Prefix, other implementations exist which are more efficient by a constant
factor. For example, using the multiple spanning binomial tree (MSBT) embedding of Ho
and Johnsson [8] it is possible to perform k broadcasts in k + logp time steps. Similarly,
k sums can be performed in k + logp time steps. Note that although these operations are

pipelined, they run on the I-port model and thus do not require the additional power of the
pipelined model.

Algorithm MultiWayMerge

1. Broadcast Xj to all of the processors in column 2™ + j, 0 < i <2, 0 << 2”. Each
of the columns is an independent subcube of dimension [. Thus, the broadcasts can be
performed in k + [ time steps using an MSBT embedding within each column.

2. Replicate list X* across the ith row, 0 < i < 2!. In other words, route a copy of X} to
each column of the ith row that is congruent to j mod 2”’. This amounts to performing
pipelined broadcasts over subcubes of dimension [, which can be done in k + [ time
steps using the MSBT embedding.

3. Merge the lists X* and X7 using the jth block of 2’ processors of row i (i.e., columns
§2™ to (j + 1)2™ —1),0 <, j < 2',i # j. This takes 8k + 17m time steps.
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4. In the jth block of 2 processors of row i, “‘unmerge” the rank of each element of X" in
X7 (this is the rank of that value in X* U X7 minus its rank in X;), 0 < i, j < 2!, i # j.
In other words, route the rank of each value back to the processor that contained the
value before step 3. This is a pipelined inverse concentration, and can be performed
in k£ + m time steps. Where i = j, simply label each value with its rank in X,

5. Compute the rank of every value in X. The processors of row i are used to perform this

computation for the elements of the set X*, 0 < i < 2. For each set Xj , we perform
a pipelined sum over a subcube of dimension [, adding the ranks computed in step 4
and routing the results to the first block of 2 processors in each row. This takes k + [

time steps using the MSBT embedding.

6. In row i, route the elements of X, to the correct output column (given by the floor
of the rank computed in step 5 divided by k), 0 <i < 27 This is a pipelined inverse
concentration in a subcube of dimension [ + m, and takes k + [ + m time steps.

7. Each column of the array now contains k values. Route these values to the top of
the column (row 0). In terms of data paths, this is essentially an inverse pipelined
broadcast operation over a subcube of dimension [, and it can be performed in k + [
time steps using the MSBT embedding.

Only steps 3, 4 and 6 require the power of the pipelined model. Summing all of the costs
stated above, the total running time of MultiwayMerge is readily seen to be 14k + 5/ + 19m
time steps.

By repeatedly applying MultiwayMerge on successively larger subcubes, we can obtain a fast
sorting algorithm for the case n < p logp. The running time of this algorithm, which we
refer to as MultiwayMergeSort, will be shown to be O(log? p/ log((plogp)/n))), as opposed to
O(log? p/ log(p/n)) for the sorting algorithm of Nassimi and Sahni. For the interesting case
n = p, the running time of MultiwayMergeSort is O(log? p/ loglogp), a slight asymptotic
improvement over that of Batcher bitonic sort. It must be emphasized, however, that
MultiwayMergeSort only runs on the pipelined model of the hypercube.

We now give a more formal description of the MultiwayMergeSort algorithm, and analyze
its time complexity. The algorithm is designed to sort n = k2™ values on a hypercube with
p = 2™ processors. It is useful to view the processors as being arranged in a 2” by 2” array,
where the processor in row i and column j has id :2™ + j (row-major order).

Algorithm MultiwayMergeSort

1. Each column of the array contains k values. Route all of these to the top of the column
(row 0). As in step 7 of MultiwayMerge, this takes k + [ time steps.

2. At every processor in row 0, sort the set of k values using an efficient sequential sorting
routine. This takes O(klog k) time steps.

3. Repeatedly call MultiwayMerge. The length of the sorted lists increases by a factor of
2! after each call. Thus, after [m/[]iterations all of the values have been sorted. The
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cost of the ith iteration is 14k + 50+ 19:/ time steps, for a total cost of approximately
(14k + 41 + 12m)m/I time steps.

4. The values have been sorted, but they are not configured appropriately (i.e., all of the
values are in row 0). All of the values can be routed to the correct output locations
using k pipelined inverse concentration routes, which takes k + logp time steps.

Steps 3 and 4 make use of the power of the pipelined model. The total running time
of MultiWayMergeSort is minimized (to within a constant factor) by setting k = logp,
and for this choice of k the running time is dominated by the cost of step 3. Observing
that [ = log(pk/n) and m = logp — [ < logp, we find that for k = logp the algorithm
runs in %logzp/log((plogp)/n) + O(logp) time steps. For the case n = p, we can set
k = log p/ log logp and reduce the dominant term in the running time to % log? p/ log log p,
at the expense of increasing the error term to O((logp/ loglog p)?).

5 Concluding Remarks

In this paper, we have presented simple and efficient pipelined implementations for the Prefix
operation on the complete inorder binary tree, hypercube and shuffle exchange families of
networks. This led immediately to an elegant pipelined implementation of Ullman% data
distribution primitive. A variant of the Prefix was used to obtain a simplified implementation
of Varman and Doshi% optimal merging algorithm for the pipelined model of the hypercube.

In order to better assess the practical speed of the various algorithms presented in this paper,
we have computed the coefficient on the leading term of the running time in each case. It
is quite possible that one or more of the moderately large coefficients in Section 4 could be
improved with only minor modifications to the code.

It should be mentioned that for permutation routing, an important special case of the sorting
problem, there is a much simpler O(log? p/ loglogp) time algorithm for the case n = p than
MultiWay MergeSort [11]. The idea is to route packets in a greedy fashion over sets of log log p
dimensions at a time. Each set of routings produces a load balancing problem in which there
may be as many as logp packets at any one processor, and the objective is to redistribute
the packets so that there is exactly one at each processor. It is a worthwhile exercise to
show how this redistribution can be performed in O(logp) time on the pipelined hypercube

by making use of the pipelined prefix, broadcast and concentration operations discussed in
this paper.
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