
July 1989 Report No. STAN-CS-89-1267

A Really Temporal Logic

bY

Rajeev Alur and Thomas A. Henzinger

Department of Computer Science

Stanford University

Stanford, California 94305

SECLiPlTY CLASSlhCATiOrj 0; THIS P A G E

REPORT DOCUMENTATION PAGE Form Approved
OMB No 0704-0188

l a R E P O R T SECclRlTY C,ASSIFICATION 1 b RESTRICTIVE MARKINGS

2a SECUR I TY CLASS I F ICAT ION AUTHOR I TY 3 D I S T R I B U T I O N i AVAILAB IL I TY OF REPORT

2t, 3ECLASSIFICATION D O W N G R A D I N G S C H E D U L E

C PERFORMING ORGANIZAT ION REPORT NUMBER(S) 5 MONITOR ING ORGANIZAT ION REPORT NUMBER(S)

STAN - CS- @?- ~67
6a NAME OF PERFORMING ORGANIZAT ION 6b OFF ICE SYMBOL 7a NAME OF MONITOR ING ORGANIZAT ION

3kT. OF cm’3um ScrCrae
(If apphcable)

I

6c ADDRES; (Oty, State, and ZIPCode) 7b ADDRESS (City, State, and ZIPCode)

SJ-AN-i= WV *
-wwau, CA v-w5 Nm73y - w-c - oaf

8a NAME OF FUNDING I SPONSORING 8b OFF ICE SYMBOL 9 P R O C U R E M E N T I N S T R U M E N T I D E N T I F I C A T I O N N U M B E R
ORGANIZAT ION (I f Jpp/KJble)

zPJwrt

8c AaDQESS (Oty, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS
,

PROGRAM PROJECT T A S K W O R K U N I T

WINGTON I V’A 22204
E L E M E N T N O N O NO ACCESSION NO

1 1 TsTLE (Inc lude Securfty Classrfrcatron)

13a TYpE O F R E P O R T 13b T I M E C O V E R E D 14 DATE OF REPORT (Year, Month, Day) 15 PAGE COUNT
FROM T O

‘6 S U P P L E M E N T A R Y N O T A T I O N

‘7 COSATl CODES 1 18 SUBJECT TERMS (Corm-we on reverse rf necessary and rdentlfy by block number)
F IELD 1 GROUP i SUB-GROUP 1

‘9 AbSTRACT (Contrnue on reverse rf necessary and rdentjfy by block number)

-4bstract. We introduce a real-time temporal logic for the spec-
ifica.tion of reactive systems. The novel feature of our logic,
TPTL. is the adoption of temporal operators as quantifiers over
time variables: every modality binds a variable to the time(s) it
refers to.

TPTL is demonstrated to be both a natural specification lan-
guage as well as a suitable formalism for verification and synthe-
sis. iVe present a tableau-based decision procedure and model-
checking algorithm for TPTL. Several generalizations of TPTL
are sho\vn to be highly undecidable.

:o 3 S’RIBL-ION AVA,LAB L TY OC A B S T R A C T 12 1 ABSTRACT SECUR I TY CLASS I F ICAT ION
0 JNCLASSIFIED VxLL~~~TE~ C l SAME A S R P T 0 DTIC U S E R S

-7&cd ‘,A’i”E OF FJES30:JSIB-E X3 “IDUAL 22b TELEPHONE (Include Area Code) 22c OFFICE SYMBO L

-&ttAI2 ,WtJflk (QI,) 723 - 2273
DD Form 1473, JUN 86 Prevrous edltrons are obsolete

S/s 0102-LF-014-6603
SECUR I TY CLASS I F ICAT ION OF TH I S PAGE

A Really Temporal Logi&”

Rajeev Alur Thomas A. Henzinger
Depa.rtment of Computer Science

Stanford University

July 21, 1989

Abstract. We introduce a real-time temporal logic for the spec-
ification of reactive systems. The novel feature of our logic,
TPTL, is the adoption of temporal operators as quantifiers over
time variables; every modality binds a variable to the time(s) it
refers to.

TPTL is demonstrated to be both a natural specification lan-
guage as well as a suitable formalism for verification and synthe-
sis. We present a tableau-based decision procedure and model-
checking algorithm for TPTL. Several generalizations of TPTL
are shown to be highly undecidable.

1 Introduction

Linear temporal logic has been demonstrated to be a suitable specificatiou
formalism for reactive systems and their behavior over time ([Pn77], [OL8’2].
[MP89]). The tableau-based satisfiability algorithm for its propositional
version, PTL, forms a proven basis for the verification and synthesis of
finite-state systems ([LP84], [MW84]).

PTL is interpreted over models that abstract away from the actual times
at which events occur, retaining only the temporal ordering information.
The analysis of systems with hard real-time requirements, such as bounded
response time, calls, however, for the development of formalisms with es-
plicit time.

‘This research was supported in part by an IBM graduate fellowship to the second
author, by the National Science Foundation under grant CCR-8812595, by the Defense
Advanced Research Projects Agency under contract N00039-84-C-0211, and by the United
States Air Force Office of Scientific Research under contract 88-0281.

‘An abbreviated version of this paper appears in the proceedings of the 30th IEEE
Symposium on Foundations o/ Computer Scrence (1989).

Several attempts have been ma.de to introduce time esplicitly in PTL.
and interpret it over models that associate a time with every state ([BH81],
[KVD83], [Os87], [Ha88], [NA88], [PHSS]). Even though the logics devel-
oped there have been shown to be useful for the specification of real-time
systems, most of the important decidability and complexity questions have
not been answered. In particular, the class of timing constraints that may
be permitted, in the finite-state case, without sacrificing (elementary) de-
cidability has not been identified.

Our objective is to develop an elementary real-time extension of PTL
that allows us to generalize the PTL-based verification and synthesis tools.
To begin with, a notational extension of PTL is required to be able to re-
late the times associated with different states. One commonly proposed
method is to employ first-order temporal logic, with one of the state vari-
ables representing time ([Os87], [HZ&~]). FF‘e c aim1 that the unconstrained
quantification of global variables allowed by this approach does not restrict
the user to reasonable and readable specifications.

We propose a novel, restricted, form of quantification - we call it tem-
pod qwzntificntion -, in which every variable is bound by a temporal op-
erator and ranges over the times of the states to which the operator refers.
This makes the presence of a dynamic time variable superfluous. Temporal
quantification identifies, so we argue, precisely the subclass of “natural,”
intended specifications, and it leads to a concise and readable notation. For
instance, a typical bounded-response property (that every p-state is followed
by a q-state within ten time units) can be simply stated as

clz.(p - Oy.(q A y 5 x + 10)).

Secondly, we need to identify how expressive a theory of time may be
added, in this fashion, to PTL without sacrificing its elementary complexity.
Our main results are twofold; we develop a near-optimal decision procedure
and model-checking algorithm for real-time PTL, by restricting both the
syntax and semantics of the time component, and show that these restric-
tions cannot be relaxed without losing decidability.

In particular, adding the theory of the natural numbers with succes-
sor, 5, and congruences to PTL, yields an EXPSPACE-complete real-time
t em pod logic - TPTL. The tableau method for PTL can be generalized
to TPTL. However, allowing either addition over time, or dense models,
thus still combining two decidable formalisms, results in highly undecidable
(II: -complete) logics.

Thus we lay out a theoretica, basis for the verification and synthesis of
finite-state real-time systems and, simultaneously, identify a fundamental
boundary between the decidability and undecidability of finite-state for-
malisms with explicit time.

2 Timed Temporal Logic

We define timed PTL, TPTL, and demonstrate its adequacy and naturalness
as a real-time specification la.nguage.

2.1 Syntax of TPTL

We are given infinite sets P and 11 of propositions (p, Q, . . .) and variables
(2, y, . . .), respectively.

As atomic formulas we permit propositions and atoms of the (0, S, 5, Ed)
fragment of arithmetic, where x --c y denotes that x is congruent to y modulo
the constant c. Atomic formulas are combined by propositional connectives
and temporal quantifiers - that is, temporal operators that bind variables.

DEFINITION [Syntax]. The terms ;lr, atomic formulas o, and formulas
4 of TPTL are inductively defined as follows:

n := x IO 1 SCn

; := := 0 p 1 1 Al false 5 7r2 1 41 1 7rl - SC 42 R2 I 0 2.4 I [x1- 41]~[~2. $21

for x E V, p E P, and c = 1,2,. . . l

We abbreviate Ox. 4 to OC#I if x does not occur freely in 4; U is handled
analogously. The abbreviations =, <. >, 1, true, A, V , and f--, are defined
as usual; informally we often write 2 + c and c for Sex and SO, respectively.
Also, Ox. C$ and Oz. 4 stand for trueU[x. +] and -0x. -4, respectively.

2.2 Semantics of TPTL

The formulas of TPTL are interpreted over timed state sequences - that
is, state sequences whose states are associated with times from the discrete
time domain TIME = N.

.4t this point, a few words about our model are in order. We do not use
time simply as a state counter (and, thus, not as a notational variant for
the next-operator 0 of PTL). The time between successive states is only

required not to decrease; it may remain the same, or increase by an arbitrary
amount . While strictly increasing time is sufficient to model synchronous
systems. all of whose events occur at discrete clock ticks, the events of
asynchronous systems take place over a dense time domain. VV’e show, in
a later section, that reasoning about truly dense time is, however, highly
undecidable.

So we still adopt a discrete model of time, but we allow7 instead, state
changes to occur between clock ticks; successive states may be observed
in a particular order, yet at the same (discrete) time. This can be viewetl,
alternatively, as constraining TPTL to observe the real, dense time of events
only with finite precision. Let us be more formal.

DEFINITION [Timed state sequence]. A state sequence CT = 000102.. .
is an infinite sequence of states Ui & P, i 2 0.

A time sequence r = r0717i . . . is an infinite sequence of times ri E TIME,
i 2 0, such that

(i) [initinlity] TO = 0,
(id) [monotonicity] Vi > 0. Ti 5 Ti+r, and
(iii) [progress] Vt E TIME. 3i > 0. Ti > t.-

A timed state sequence p = (a, r) is a pair consisting of a state sequence
a and a time sequence r. =

The initiclfity condition ensures that the term 0 refers to the initial time,
thus prohibiting specifications from referring to absolute time values.3 The
progress condition is also sensible for any real-time specification language.
Only monotonicity, however, is required for the complexity results we obtain
in later sections.

By & [r*] we denote the suffix of the state [time] sequence 0 [r] that
starts at state gi [time I-,]. Furthermore, let p’ = (a’, ri).

DEFINITION [Satisfiability]. The timed state sequence p = (a,~) is
a model of the TPTL-formula 4 iff p” kf,, 4 for the initial environment
& : V ---) {Q}, where the truth predicate k is inductively defined as follows:

P'I=EP iff PEai
p' I=E XI 5 x2 iff Wh) I WZ),

for Cc(O) := 0 and ,C(S%) := I(r) + c

3The expressiveness of
initial time in closed formu
*Vow. In fact, Now would

the constant 0 and condition (:), which
,las, could, alternatively, be obtained by a
have to be the only temporal quantifier.

all0
new

w reference to the
temporal operator

p’ I=8 ~1 =C 7r2 iff f(~1) - C(7r2) modulo c
pi kc false
P’ l=ic 41 - 42 iff pi]=p $1 implies pi]=b 42
p’ I=,c Ox. 4 iff p*+l I=E[~~~,+~~ 4
p’ I=f [XI. &]U[Q. $21 iff p-1]=~[zz+rJ~ 49 for some j > i and-

Pk l=Lr[Zl Hk] &foralli<k<j.

(Here c’[s - t] denotes the environment that agrees with Cc on all variables
except CC, which is mapped to t E TIME.)

The formula b is satisfiable [valid] iff some [every] timed state sequence
is a model of d. n

Intuitively speaking, every temporal operator acts also as a quantifier
and binds the associated variable to the time(s) it refers to. For i:lstance,
Ox. 4(x) holds in a model p iff $(7,) holds in some suffix pi, i >_ u, of p;
that is, 0 binds x to the time of the state at which 4 “eventually” holds.
Similarly, Ox. 4(x) holds in p iff #(T*) holds in every suffix pi, i 2 0, of p.

2.3 TPTL as a specification language

We demonstrate how TPTL improves, by linking its time references to tem-
poral operators, the readability of real-time specifications.

A typical hard real-time requirement for a reactive system is that a
switch p has to be turned off (represented by the proposition (I) within, say,
ten time units of its activation. In TPTL this condition can be expressed
by the formula

as.(p - PU[Y. (q A Y L 2 + WI). (1)
IJsing conventional temporal operators and a dynamic (state) variable T

that assumes the value of the current time in every state, this specification
is usually written as follows ([Os87]):

O(p A T = x --) pU(q A T = y A y 5 x + lo)). (‘2)

Here z and y are auxiliary, global variables ranging over TME.
The meaning of this formula depends, not surprisingly, on the quantifi-

cation of 2 and y, which is left implicit. The very fact that the quantification
is often omitted ([Os87], [PH88]) suggests that the authors have some par-
ticular quantifiers for z and y in mind, whose force, location, and order are
considered to be so obvious that they are not worth mentioning. If any
quantifiers are given, they form a prefix to the entire formula ([HaMI).

We claim that the following quantification is the (only) “intended” one:

q Vx. (p A T = cc - pZA[3y.(q A T = y A y 5 x + lo)]). (3)

Note that (:3) is, if interpreted over timed state sequences, equivalent to (l),
but not to (2) with any quantifier prefix; in particular it does not imply the
stronger condition

Vx. 3~. O(p A T = x - pu(q A T= y A y 5 x+ 10)). (4)

The difference is subtle: while (3) asserts that every p-state of time x is
followed by p-states and. eventually, a q-state of time y 5 x+10, (4) demands
more; that if there is a* p-state of time x, then there is a time y <_ x + 10
such that every p-state of time x is followed by pstates and, eventually, a
q-state of time y. For instance, the timed state sequence p = (a,~), where
a = {p}, {q}, {p}, {q}, {}, {}, . . . and r = 0, 0, 0, 1,2,3,. . ., satisfies (3) but
not (4).

Thus, TPTL may, alternatively, be viewed as a first-order temporal logic
with a dynamic time variable T and global variables that are employed in
a very restricted way: every global variable is bound to the (“current”)
value of T immediately upon introduction; it is associated with a temporal
operator, and refers to the same set of states (i.e., their times). In particular,
ox. 44 ox. 6 [XI - 411 qx*. $217 and Ox. (b have exactly the meaning of

oVx.(T = x - d),
03x.(T = x A 4),
[vxl.(T = x1 - &)]u[3x2. (T = x2 A 42)1,

and @x.(T = x A #), respectively. Note that the choice of universal
versus e?cistential quantifiers is a matter of taste, since Vx. (T = x - 4) is
equivalent to 3x. (7 = x A 4).

In fact, TPTL alIows us to express timing constraints by concise and
readable specifications (compare (1) with (3)) and yields to a tableau- based
decision procedure in an extremely straightforward way (as we shall see)
precisely because alI of its global variables are associated with operators
and, thus, “temporal” sets of states.

3 Timed Tableaux

We present a doubly-exponential- time, tableau-based decision procedure for
TPTL, and show that the satisfiability problem for TPTL is EXPSPACE-

(i

complete. We then demonstrate how the tableau techniques can be applied
to verify TPTL-properties of real-time systems.

3.1 Decision procedure for TPTL

Let us sa,y that a timed state sequence p = (a, T) is Ii-bounded, for a constant
I< E TIME, iff

that is, the time increa.ses from a state to its successor state by no more than
I<. To begin with, we restrict ourselves to I<-bounded models for checking
satisfiability.

This case has finite-state character: the times associated with states can
be modeled by finitely many new propositions CLOCK2, 0 5 t 5 ii, which
represent the time differences t between successive states. In particular, we
capture the (state and) time information in p by the state sequence & with

Iu, = 01 u {CLOCK,,+,-.,}

for all i >, 0, which allows us to adopt the tableau techniques for PTL.
Later, we show how we can find an appropriate constant K for any given
T PTL-formula 4.

Following the usual presentation of the tableau-based decision proce-
dure for PTL ([Wo83]), we show how to construct the initial tableau for 4.
Checking the satisfiability of 4 may then be reduced to checking whether
the finite initial tableau for 4 contains certain infinite paths. The tableau
method for PTL is, in fact, included in our procedure as the special case in
which 4 contains no timing constraints.

We use. for the sake of simplicity, a single free variable. T, to denote
the initial time; this can be easily achieved by renaming, in 4, all bound
occurrences of T, and then replacing all occurrences of free variables and 0
by T.

We also assume that 4 is built using the connectives A, V, and the
temporal operators 0, 0, and 0 over atomic formulas and negated atomic
formulas. All atoms are either propositions, or of one of the forms x 5 S’y,
Scz 5 y, and z +I Sty, for c’ > c > 0. Any TPTL-formula can clearly be
transformed into this form by at most doubling its length. The extension of
the method to accomodate the until-operator U should be obvious.

3.1.1 Updating timing constraints

The ,‘.v observation underlying the tableau method for PTL is that any
formula can be split into two conditions: a non- temporal requirement on
the initial state and a temporal requirement on the rest of the model (i.e.,
the successor state). Since the number of conditions generated in this way
is finite, checking for satisfiability is reducible to checking for satisfiability
in a finite structure, the initial tableau.

The splitting of TPTL-formulas into a present and a future (nest-state)
condition demands more care; to obtain the requirement on the successor
state, all timing constraints need to be translated appropriately to a.ccount
for the time increase t from the initial state to its successor. Consider, for
example, the formula Ox. Q(x, T), and recall that the free occurrences of T
are references to the initial time. This eventua.lity can be satisfied either
by having the initial state satisfy 4(T, T), with all free occurrences of x
replaced by T, or by having the next state satisfy the updated eventuality
Ox. 4(x, T - t).

For t > 0, a naive replacement of T by T-t would, however, successively
generate infinitely many new conditions. Fortunately, the monotonicity of
time can be exploited to keep the tableau finite; the observation that x is
always instantiated, in the “future,” to a value greater than or equal to T,
allows us to simplify timing assertions of the form T 5 Six and Sex < T
to true and false, respectively. We define, therefore, the formula # that
results from updating all time references T in 4 as follows.

DEFINITION [Translation of time references]. Given a TPTL-formula
p and t E TIME, the formula # is defined inductively: 8 = 4; and #+I is
obtained from 4’ by replacing all terms of the form S”T (c > 0) by SC-‘T,
and all subformulas of the form ‘T 5 Sex, Sex 5 T, and T ~,t Sex (c > 0)
by true, false, and T -cl S(c+l)modc’x, respectively. l

The following lemma shows that this translation has the intended effect.

LEMMA [Change of initial time]. Let p = (0,~) be a timed state
sequence, I : V + TIME an environment, i 2 0. and t E TIME such that
t 2 7; and t 5 C(z) for all x E V. For any TPTL-formula 4, p’ /=~[T+~I 4
m’ l=E[Tt-T,] v+- ’

PROOF. The proof proceeds by a straightforward induction on the struc-
ture of b. =

3.1.2 Closure of a TPTL-formula

The closure of a formula q5 collects all conditions that may arise by recur-
sively splitting C$ into its present and future parts.

DEFINITION [Closure]. The closure CI(q5) of a TPTL-formula Q is the
smallest set containing 4 that is closed under the operation Sub, which is
defined as follows:

Sub(41 A $2) := {h,$2}

SUWl v d2) := {41,@2}

53(0x.$(x)) : = {d’(T) 1 o 5 t 5 I<}

Sub(ax. 4(x)) : = {O(T), 00x. $(x)}

s;‘ub(Ox. #(x)) : = {$(T), 00x. 4(x)}. m

The size of the closure of 4 clearly depends on the constants contained in
4. We say that a constant c > 0 occurs in a TPTL-formula @ iff q5 contains
a subformula of the form x < ScB1y or SC-lx 5 y, or the predicate symbol
=--L‘.

LEMMA [Size of closure]. Let r-l - 1 be the number of connectives
(propositional and temporal) in 4, and k the product of all constants occur-
ring in 4. Then 1 Cl($)1 5 2nk. H

PROOF. Given a formula 4, we define, by induction on the structure of 4,
the set D4 of formulas that contains q5 and is closed under updating timing
constraints: the set Cd is, in addition, closed under subformulas:

C, = D, := (p)
Ct$sCy = Dz<s=y := (x 5 S’y,x 5 P1y,*..x 5 y>
c Z=-c’ = D,= ,scy := (x s,t SC-y,x z,r Sc’-2y,. . .x -,I y)
c -fQ =“‘;,, I=-:&
Cdlw2 :=C41~C~~D4,r\91rD41~92:=D41AD4?
CO+.4(t) := Cd(T) u Doz. d(X)? Doz. 4(z) := ox- D,(z)
c Oz.f#+) := Cd(T) U Doz. +(L) U Doa,. +(z)Y DCJT. 4(z) := OX- Dd(=)-

(Here -E = (14 I# E E} for any set E of formulas; the oti&t3r connectives
are applied to sets in an analogous fashion.) The cases Sex 5 y, +r v 42,
and OZ. q5(x) are treated similarly. Furthermore, let E’ = E U {true, false}.

Observe that Dd C Cd. It is straightforward to show, by induction on
the structure of 4, that

(i) 4 E Dd and. hence, 4 E C4:

(ii) for all t > 0, &(2?) E Dj(,) and, therefore, @(IV) E cl&,+
(iii) Ca is closed under Sub (use (ii)).

From (i) and (iii) it follows that CI(+) C Ci.
Thus. it suffices to show that ID41 5 k and IC,l 5 2nk, which may again

be done by induction on the structure of 4. l

3.1.3 Initial tableau of a TPTL-formula

Tableaus for TPTL are finite. directed state graphs (Kripke structures) with
local and global consistency constraints on all states. The states are repre-
sented by sets of formulas that are closed under “subformulas,” espressing
conditions on the current state and the successor states. Every state con-
tains, in addition, a proposition CLOCKt, 0 5 t 5 I<, which denotes the
time difference to the successor states. Both requirements are incorporated
in the following definition of local consistency.

DEFINITION [Consistency]. A set + of TPTL-formulas is consistent
iff it satisfies the following conditions:

l CLOCKt is in ip for precisely one 0 5 t 5 K; this t E TIME
is referred to as Clock(@).

0 false is not in Cp.
l At most one of p and lp is in Cp.
l If & A 42 is in @, then so are 41 and $2.
l If $r v $2 is in a, then so is at least one of 41 and 42.
l If Ox. 4(x) is in ‘P, then so are 4(T) and 00x. 4(x).
l If Ox. 4(x) is in Cp, then so is at least oneof 4(T) and 00x. 4(x).
l If T N ScT is in a, then 0 N c holds in N (for m one of 5, 2,

=-c’ 3 or its negation). m

,Now we are ready to define the initial tableau of a formula in a way that
ensures the global consistency of both temporal and real-time constraints.

DEFINITION [Initial tableau]. Let WI($) = CZ(4) U { CLOCKt 1 0 5
t 5 K}. The initial tableau I(@) for the TPTL-formula 4 is a directed graph
whose vertices are the (maximal) consistent subsets of TC@), and which
contains an edge from G to 4! iff $ “ock(4)(T) E KD for all Ox. $(2) 6 0. m

The significance of the (finite) initial tableau 7(4) for the formula 4 is
that every model of 4 corresponds to an infinite path through 7(4) along
which all eventualities are satisfied, and vice versa. This implies a finite-
model property for TPTL, in the sense that every satisfiable TPTL-formula

10

0 is satisfiable by a model whose state part. estended by the new propo-
sitions CLOCKt, consists of only finitely many distinct states. Let us be
more precise.

DEFINITION [$-path]. An infinite path Q = @0@1@2.. . through a
tableau satisfies the progress condition for time iff c’lock(@i) > 0 for in-
finitely many i > 0. The path Qi is a d-pclth iff, in addition, 4 f @O and
for every i 2 0, Ox. $(x) E @i implies tit(T) E aJ for some j 2 i with
t = Xi<k<l Clock(@k). m

We can characterize the length of +-paths by reducing every +-path to
a special form. This will prove to be important to obtain an upper bound
for the complexity of TPTL.

LEMMA [Length of &paths]. If cl tclbleuu with m vertices contains a
&path, then it contains a &path of the form

&) - @1 - . . . - @If - (@k+l - . . . - @‘I)w

for 1 5 (2n + 1) m, where n is the number of connectives in 4. w

PROOF. Consider the (infinite) $-path <p = Qo<pI . . ., and choose k to be
the smallest i such that @i occurs infinitely often in @. Now @k contains at
most n eventualities $J~, each one of which is satisfied by some vertex \kj of
@k@k+l - - -

Let a0 = GO. . . @k, Q2J-’ = +k. . .9,, and (B2J = 9, . . . @I, (1 5 j 5 n)
be finite segments of <p that contain no other (i.e., inner) occurrences of @k.
Delete any loops in every ai, thus obtaining ii, 0 5 i 5 2n, each of length
at most m + 1. It is not hard to see that the result of deleting duplicated
states (i.e., @k) from

i”(&‘32.. . 02yw

is a &path of the desired form. l

3.1.4 Tableau decision procedure

The following main lemma suggests a decision procedure for TPTL: to de-
termine if the TPTL-formula 4 is satisfiable, construct the initial tableau
7(#) and check whether it contains any @-paths.

LEMMA [Correctness of initial tableau].

(u) [soundness] If 7($) contains a &path, then (a is satisfiable.
(b) [completeness] If 4 is satisj&zble (in a K-bounded model),

tllen I(4) contains a q-path. l

The proof makes essential use of the change-of-initial-time lemma, and is
more tedious than enlightening. Together with the length-of-&paths lemma
it implies, in fact, that every satisfiable TPTL-formula is, in the sense men-
tioned a.bove, satisfiable in a doubly exponential model.

PROOF. (n) Given a +-path @ = <p&l.. . through 7($), define the
timed state sequence p = (0,~) such that, for all i 2 0, p E 0; iff p E <pi, and
r,+l = r, + C’lock(Q;). Note that r satisfies the progress condition because @
does. We show that, for all i > 0, 11, E @i implies pa b-(Ter,l $, by induction
on the structure of $. Since 4 E <PO, it follows that p is a model of 4.

For a proposition p E @*, we have p E ai, and hence pa I= p. If lp E @*,
then p 4 @i because of the consistency of ai; therefore p 4 0; and p’ I= lp.
If T w S”T E $, t h e n 0 w c by the consistency of ai, and therefore
p I= T N S”T. This completes the base cases.

If $q A ~2 E <p;, then also +~l, $2 E Qi because of the consistency of
Qt. By the induction hypothesis, p’ I=(T.+J q!~l and p’ +[T+~,I $2; hence
p’ I=[T+~,I $1 A $9. The disjunctive case is established similarly.

NOW assume that OX. $(x) E @i. Let t = Clock(then I/J’,‘(T) E @;+I
a n d Ti+l = Ti + t. By the induction hypothesis, pl+l ki~-~,+,l I/J’(T),
that is, p‘+l I=[T,~+,-,+~I $‘(.d, and therefore PI+’ l=p-+,,~+-r,+l~ $(x> by
the change-of-initial-time lemma. Hence we can conclude that pa I=[T+
ox. VW.

For the case that Ox. e(x) E a,, we first show, by induction on j, that
ox. lyJ--‘I (x) E @I for all j 2 i. Note that T, - Ti = Ci<k<jClOCk(@k) by
our choice of T. So suppose that Ox. $J~~I”<J~‘~~‘(@~)(x) < @j; then, by the
consistency of @j, also 00x. Q’~<~<~~‘~~‘(‘k)(x) E 9, and, since 7(Q) is a
tableau, Oz. 11) ~~~k<~+lC~~~~(@k)(x) E +J+L.

We conclude therefore, again because of the consistency of @j, that
q’~-‘i(T) E 9, for all j > i.- Applying the induction hypothesis, we ob-
t a i n p’ I=IT-~J IFJ+~(T), t h a t i s , p7 I=[T,~+~~I q!~~~-‘l(x), f o r a l l j 2 i.
By the change-of-initial-time lemma it follows that p’ +[T+~,,~+~~J $J(z)
for all j 2 i, thus letting us infer that p’ I=[T-~,I Oz. $(I). In the case of
eventualities the proof proceeds similarly.

(b) Let p = (a,~) be a {c-bounded model of 4; the subsets ai, i > 0, of
TCI(4) are defined as follows: CLOCI\‘,,+,-,, E 9; and, for all + E Cl(4),
II) E ‘Pi iff pi +IT-~,~ +. We show that Cp = +o<pl.. . is an #-path through
W#+

By inspecting the consistency rules, it is evident that every @i is (maxi-
mally) consistent. To prove that <p is an infinite path through I(#), we also

have to show that there is an edge from @i to @‘;+I for all i 2 0.
S u p p o s e t h a t Ox. $(z) E @ii t h a t i s , pi +[TkT,l 0.x. $7(z) a n d

P1+l l=[T -L---?+*I $+4. Let t = T,+I - 7;; then p*+’ l=[~~~,,~~~,+t] (I+).
By the change-of-initial-time lemma, pI+l I=[T,~+~,+~I uyt(;c), and therefore
P 1+1 i=[T +r*+tJ ?qT). s ince also CLQCKt E ‘Pi, the initial tah1ea.u for 0
contains an edge from +i to @;+I.

We now show 7 hat the infinite path Q is indeed a. &path. It satisfies the
I-‘rogress condition because r does. To see that 4 E Qro, observe that p is a
model of 4. It remains to establish that all eventualities in <p are satisfied
“in time.”

S u p p o s e t h a t O x . $(x) E @ii t h a t i s , pi I=[T--r,) 0.x. ILIT(.C) a n d
p’ I=[Tcrt,Zcrl] d’(x) for SOme j > i. Let t = T] - 7-i; thus

t = s,<k,j clock(@k). Then p3 ~[TcT,,Zcr,+t~ 9(x>, md, by the change-
of-initial-time lemma, @ /=[T,zcT,+tl ?j’(x). Hence p’ I=[T--r,l $‘(T) and
q+(T) E aj. m

The usual techniques for checking whether a tableau contains an infinite
path along which all eventualities are satisfied, can be straightforwardly
adopted to check whether the initial tableau contains a &path: first mark
all eventualities that are trivially satisfied, and then repeatedly mark the
eventualities that are satisfied in successor states. This procedure is poly-
nomial in the size of the initial tableau, which contains 0(I< . Znk) states,
each of size O(nk).

Thus, 7(b) can be constructed and checked for &paths in deterministic
time esponential in nk.

3.1.5 Bounding the time stepwidth

Given a TPTL-formula 4, we finally determine a bound Ii on the time
increase between two successive states, such that the satisfiability of 4 is
not affected. Let c be the largest constant in 4 that occurs in a subformula
of the form z 5 ScW1y or SC% < y, and E~~,. . . s,,.,, all the congruence
predicates occurring in 4.

If the time increase t between two states is greater than or equal to c,
it obviously suffices to know the residues of t modulo cl, . . . c, in order to
update, in a tableau, all timing constraints correctly. Indeed, for checking
the satisfiability of #, the arbitrary stepwidth t can be bounded by taking
the smallest representative for each of the finitely many congruence classes.

LEMMA [Bounded time increase]. 1’4 is satisfiable, then p + d for

so’me p = (0. r) with rl+l 5 rt t k for all i 1 0, ([There k is the prohct of n.11
constants occurring in 4. n

PROOF. We can, in fact, derive the tighter bound c+ k’ 5 k, for the least
common multiple k’ of all ci, 1 5 i < m. Given a model p = (0, T) of c3, let
the time sequence r’ be such that, for all i 2 0, r,+l = r: + (Ti+l - Ti) if
7,+1 - r, < c: else choose q’+l to be the smallest t 2 ri + c with t =k/ ~~+l.
It is easy to see that p’ = (0, T’) is also a model of 4. n

Combining this result with the tableau method developed above, we
arrive at the following conclusion.

THEOREM [Deciding TPTL]. The satisfiability of a TPTL-formula 4 is
decidable in deterministic time exponential in nk, where n- 1 is the number
of (propositional and temporal) connectives in C$ and k is the product of all
constants occur&g in d. l

Note that the length I of a formula whose constants are represented in
binary, is 0(n + log k). So we have a decision procedure for TPTL that
is doubly exponential in 1 (although only singly exponential in n, the “un-
timed” part, and thus, singly exponential for PTL).

The algorithm outlined here can, of course, be improved along the lines
of [Wo83]. In particular, we may avoid the construction of the entire initial
tableau by starting with the initial state, containing 4, and successively
adding new states only when needed. This does not, however, lower the
doubly exponential deterministic-time bound; in fact, as we show in the
following subsection, TPTL is EXPSPACE-hard.

3.2 Complexity of TPTL

THEOREM [Complexity of TPTL]. Satisfiabilityfor TPTL is EXPSPACE-
complete (with respect to polynomial time reduction). m

The proof proceeds in two parts; we first show that TPTL is in EX-
PSPACE, and then that it is EXPSPACE-hard. The first part follows the
argument that PTL is in PSPACE, which builds on a nondeterministic ver-
sion of the tableau decision procedure ([Wo83]); the hardness part is pat-
terned after the proof of [HU79] that the universality problem of regular
expressions with exponentiation is EXPSPACE-hard.

PROOF. [EXPSPACE] We s h ow that satisfiability for TPTL is in nonde-
terministic EXPSPACE, and hence, by Savitch’s theorem, in (deterministic)

14

EXPSPACE. In particular, it can be checked in nondeterministic singly es-
ponen tial space whet her I(4) contains a $-path of the form stated in the
length-of-&paths lemma.

In trying to construct such a d-path nondeterministically, at each stage
only the current state, the “loop-back” state, and a state counter have to be
retained in order to construct a successor state, loop back, or, if the state
counter exceeds the maximal length of the loop, fail. Since both the size
of each state and the length of the loop have, by the size-of-closure and
length-of-q&paths lemmas, respectively, (singly) exponential representations
in the length of 4. it follows that this nondeterministic decision procedure
requires only esponentia.1 space.

[EXPSP.4CE-hardness] Consider a (deterministic) 2”-space-bounded Tur-
ing machine M; for each input X of length n, we construct a TPTL-formula
6,~ of length 0(n . 109 n) that is satisfiable iff M accepts _Y. By a standard
complexity-theoretic argument, using the hierarchy theorem for space, it
follows that there is a constant c > 0 such that every Turing machine solv-
ing the satisfiability problem for TPTL-formulas 4 of length 1 takes space
S(1) 2 pPJ9 1 infinitely often.

Thus it suffices to show, given ,Y, how to construct a sufficiently succinct
formula 4-x that describes the (unique) computation of M on ,Y, as an
infinite sequence of propositions, and requires it to be accepting. We use
a proposition pi a.nd a proposition qJ for every tape symbol i and state j
of Al, respectively. In particular, po and ~0 correspond to the special tape
symbol “blank” and the initial state of M. Let

@i = Pi A At'fi 'PiI A A 'Q,,
Ti,j = Pi A QJ A Ast+i ‘PiI A ~,‘fj ‘q,t,
S = A ‘pit A A ‘ql.

We represent configurations of M by &state sequences of length 2n,
which are separated by s-states; the position of the read-write head is marked
by an r-state. The computation of M on ,Y is completely determined by
the following two conditions:

(i) it starts with the initial configuration, and
(ii) every configuration follows from the previous one by a move

of M.

The computation is accepting iff, furthermore,

(iii) it contains the accepting state F.

These conditions can be expressed in TPTL; t,a.ke 6-y to consist of Oz. 0
y-y = x + 1, forcing time to resemble a state counter, and the following
three conjuncts, corresponding to (i)-(iii):

s A OTXl,OA
4INI TIA L = A2<i<n OX. (5 = i - b-y,) A

ox:{; < x 5 2” ----f $0)

Ox. (s - Oy. (y = x + 2” + 1 A s)) A
&WI VE = P A OQ A 02R -

Oy.(y=x+2”+2 A fM(P,Q,R)

4ACCEPT = ovTi,F

(P, Q, and R each range over the propositions $i, Ti,], and s, and f.b~(P, Q, R)
refers to the transition function of M. For instance, fM(@iy Ti/,,,$i,,) = fik

and fiM(T,t,j, @ill, fiillt) = Tit/,3 / if M writes, in state j on input i’, the symbol
IC onto the tape, moves to the right, and enters state j’.)

The lengths of 4INITIAL, 4MOVE, and 4 A C C E P T are O(n * k/n), O(n),
and O(l), respectively (recall that constants are represented in binary), thus
implying the desired 0(n . log n)-bound for 4,, . m

3.3 Real-time verification

We define finite-state real-time systems, and give an algorithm that checks
whether such a system satisfies a TPTL-specification.

This problem, of checking whether a TPTL-formula 4 is satisfied in
a given structure (“model checking”), is again EXPSPACE-complete, and
thus, in general, no simpler than determining if 6 is satisfiable at all. Its
complesity is, however, doubly exponential only in the size of 4, which is
usually much smaller than the size of the structure (on which the dependence
is singly exponential).

3.3.1 Real-time systems

A program may be abstractly viewed as a state-transition graph ([MPSS]).
IVe model real-time systems by such graphs each of whose transitions is
labeled by a subset of TIME, denoting the nondeterministic amount of time
that transition consumes.

DEFINITION [Syntax]. Let P be a finite set of propositions. A real-
time system S = (S, T, ae) over P is a finite. directed graph whose vertices
5’ are marked by subsets of P and whose edges T E S* x ZTIME are labeled
by subsets of TIME. The vertices and edges are called the states and the
trnnsitions of S, respectively; 00 E S is the initial state of S.

The real-time system S is finite-state iff all transitions cr _f, u’ are labeled
by (finite or infinite) time intervals I = [tl, t2], where tr E TIME and
t2 E TIMEu {IX)}. n

In accordance with the intuitive operational semantics of a real-time
system S, we define its denotational trace semantics [Sg to be a set of timed
state sequences, the runs of S. We say that S sutisfies the TPTL-formula
4 iff some sequence in [ISI is a model of p.

DEFINITION [Semantics]. For any real-time system S = (S, T, OO), the
timed state sequence p = (0, r) belongs to [S]l iff there is an infinite path
u() 3 (71 3 u* iz . . . through S such that r;+l - ri E Ii for all i 2 0. m

The problem of model checking is to determine whether a finite-state
real-time system satisfies a TPTL-formula. Model-checking algorithms can
be used to verify the property II) of the system S: in order to show that
$J holds over all runs of S, it suffices to check that [Sj does not contain a
model of +.

3.3.2 Model checking

By associating a tableau I(S) with a given finite-state real-time system
S, and applying our TPTL-tableau techniques, we may adopt the model-
checking algorithms for PTL ([LP84]). We only sketch the method; its basic
idea is that, in order to check whether S satisfies 4, we form the product of
both tableaux, 7(S) and I(@, and check the resulting tableau for &paths.

Let CLOCKt,,t,, tl E TIME and t2 E TIMEU{oo}, be new propositions,
representing the finite and infinite time intervals [tr , tz]. Accordingly, we add
the following rule to the definition of the (local) consistency of a set Q of
TPTL-formulas:

. If CLOCK,,,,, is in a, then 11 < Cfoclc(@) 5 t2 (where t < XI
for all t E TIME).

Using these interval propositions instead of edge labels, we obtain, from
the finite-state real-time system S over P, the following tableau I(S) over
P u { CLOCKt,,~, 1 t1 5 t*}.

Every state 0 of S is split into a finite set 7(a) of states, one for each
outgoing transition, while preserving all incoming transitions. If a state
has an outgoing transition labeled by [tl,tz], the corresponding proposition
CL OCK~, J2 is added to the state: all transition labels may then be deleted.
Since any state of S has at most one edge to any other state, the size of
I(S) is polynomial in the size of S.

Let us write 7 = (S, T) for the timed tableau with vertex set S and edge
set T. The product ‘71 x 72 of two tableaux 71 = (Sr, Tl) and 72 = (&, T2) is
the directed graph whose vertices are the consistent sets ~1 U 02, for czr E Sr
and 02 E S2, and which contains an edge from 01 U 02 to ai U a$ iff both
(or, ai) E Tl a,nd (02, a$) E T2. The size of (the tableau) 71 x 72 is clearly
linear in the product of the sizes of 7; and 72.

We obtain the following result immediately from the definitions, which
gives us an algorithm for model checking.

LEMMA [Correctness of tableau product]. For any finite-state
real-time system S = (S, T, 00) and TPTL-formula (6, S satisfies C#J if
W) x ‘W) contains a &path whose first projection starts in I(a~). n

For the previous lemma to go through, the bound K for 7(4) is chosen
to be greater than the largest constant t < 00 occurring in S. Thus, the size
of I(4), which contains 0(K. 2*‘) states, and therefore the running-time of
the model-checking algorithm, depend singly exponentially on the size of S
and doubly exponentially on the length I of 4.

According to different versions of fairness, various variants of the notion
of +-paths can be defined, and checked for, as in [LP84].

3.3.3 Complexity of model checking

THEOREM [Complexity of model checking]. Determining whether a
finite-state real-time system satisfies a TPTL-formula is EXPSPACE-com-
plete. m

Model checking is polynomial-time reducible to the satisfiability problem
for TPTL; the proof follows [SASS]. The converse holds trivially.

PROOF. [EXPSPACE] G iven the formula 4 and the finite-state real-time
system S = (S, T, GO), we show how to construct a TPTL-formula $s, whose
length depends polynomially on the sizes of both S and 4, and which is
satisfiable iff S satisfies 4 at 00.

For every state oZ E S, we introduce a new proposition, p;, and use the

abbreviation

Furthermore. let + assert that exactly one of the propositions p;, 0; E S, is
true. It is easy to see that the formula

6s = $ A PO A OX-($’ A A $‘i)
USES

has the desired properties.
[EXPSPACE-hardness] To reduce the satisfiability problem for TPTL to

model checking, it suffices to give a finite-state real-time system S of con-
stant size such that S satisfies the TPTL-formula 4 iff 4 is satisfiable. Simply
choose S to be the complete graph over all subsets of P, the propositions
occurring in 4, and label all edges by [O,oo]. n

4 Undecidable Extensions of TPTL

We consider two natural extensions of TPTL, a syntactic one (allowing addi-
tion over time) and a semantic one (interpreting TPTL-formulas over a dense
time domain). Both extensions are shown to be II:-complete, by reducing a
Xi-hard problem of 2-counter machines to the respective satisfiability prob-
lems. It follows that they cannot even be (recursively) axiomatized (for an
exposition of the analytical hierarchy consult, for instance, [Ro67]).

4.1 A S:-complete problem

.-\ nondeterministic 2-counter machine A4 consists of two counters C and D,
and a sequence of n instructions, each of which may increment or decrement
one of the counters, or jump, conditionally upon one of the counters being
zero. After the execution of a non-jump instruction, M proceeds nondeter-
ministicaJly to one of two specified instructions.

We represent the configurations of M by triples (i, c, d), where 0 5 i < n,
c > 0, and d > 0 are the current values of the location counter and the two
counters C and D, respectively. The consecution relation on configurations
is defined in the obvious way. A computation of M is an infinite sequence of
related configurations, starting with the initial configuration (O,O,O). It is

19

called recurring iff it contains infinitely many configurations with the value
of the location counter being 0.

The problem of deciding whether a nondeterministic Turing machine has,
over the empty tape, a computation in which the starting state is visited
infinitely often, is known to be S: -complete ([HPS83]). Along the same lines
we obtain the following result.

LEMMA [Complexity of 2-counter machines]. The problem of de-
ciding whether a given nondeterministic Scounter machine has a recurring
computation, is Ci-hard. n

PROOF. Every C:-formula is equivalent to a S:-formula x of the form
3f. (f(O) = 1 A Vx.g(f(d, f(x + l))), for a recursive predicate g ([HPS83]).
For any such x we can construct a nondeterministic 2-counter machine M
that has a recurring computation iff ;y is true.

Let M start by computing f(0) = 1, and proceed, indefinitely, by non-
deterministically guessing the next value of f. At each stage, M checks
whether f(x) and f(3: + 1) satisfy g, and if (and only if) so, it jumps to
instruction 0. Such an M e?tists, because 2-counter machines can, being
universal, compute the recursive predicate g. It executes the instruction 0
infinitely often iff a function f with the desired properties e>tists. n

4.2 Encoding computations of Z-counter machines

We show that the satisfiability problem for several extensions of TPTL is
Zi-complete.

First, we observe that the satisfiability of a formula C$ can, in all cases,
be phrased as a Xi-sentence, asserting the existence of a model for 4. Any
timed state sequence p for 4 can be encoded, in first-order arithmetic, by
finitely many infinite sets of natural numbers; say, one for each proposition
p in 4, characterizing the states in which p holds, and one to encode state-
time pairs. It is routine to express, as a first-order predicate, that 4 holds
in p. We conclude that satisfiability is in 1:.

To show that the satisfiability problem of a logic is Cf-hard, it suffices,
given a nondeterministic Zcounter machine M, to construct a formula 4~
such that 4~ is satisfiable iff M has a recurring computation. We demon-
strate the technique of encoding recurring computations of M by showing
that the monotonicity constraint on time is necessary for the decidability of
TPTL.

20

THEOREM [Nonmonotonic time]. Relaxing the monotonicity con-
dition for time sequences renders the satisfiability problem for TPTL ISi-
complete. n

PROOF. We encode the computation I’ of M by the time sequence T such
that, for all k 2 0, rak = i, rak+l = 72 + C, and Tak+2 = n + d for the k-th
configuration (2’, c, d) of I. Now it is easy to express, by a TPTL-formula
4~, that a time sequence encodes a recurring computation of h/i.

First specify the initial configuration, by

411vITI~L = (T = 0 A OX. 2 = 0 A O'X. X = 0);

then ensure proper consecution by adding a O-conjunct & for every instruc-
tion i of M. For instance, the instruction 1 that increments the counter C
and proceeds, nondeterministically, to either instruction 2 or 3, contributes
the conjunct

(x = 1 --f 03y. (y = 2 v y = 3) A
41 = ax. ()y.O%.z=yflA

(yy. 03 z. t = y 1

The recurrence condition can be expressed by a OO-formula,

C$REC~JR = 002.X = 0.

Clearly, the conjunction 4~ of these
a recurring computation . l

nt2 formulas is satisfiable iff M has

Note that we do not require any propositions in the proof. It follows
that first-order temporal logic with a single state variable ranging over the
natural numbers is II;-complete, provided the underlying assertion language
has at least successor (in addition to equality) as a primitive.

4.3 Presburger TPTL

We show that a certain extremely modest relaxation of the syntax of timing
constraints leads to a highly undecidable logic. Consequently, TPTL with
addition over time is undecidable.

THEOREM [Presburger TPTL]. If the syntax of TPTL is extended to
allow multiplication by 2, the satisfiability problem becomes Xi-complete. m

PROOF. To encode computations of M, we use the propositions pl, . . . p,,
7g1, and ~2, precisely one of which is true in any state; hence we may identify

21

states with propositions. The configuration (i, c, d) of M is represented by
the finite sequence pi ri 7’$ of states.

The initial configuration (~0) as well as the recurrence condition (OOpu)
can be easily expressed in PTL. The crucial property that allows a temporal
logic to specify the consecution relation of configurations, and thus the set
of computations of M, is the ability to copy an arbitrary number of r-states.
In timed temporal logics, the times associated with a state sequence can be
used for copying.

With the availability of multiplication by 2, we are able to have the
k-th configuration of a computation correspond, for all k 2 0, to the finite
sequence of states that is mapped to the time interval [2k,2k+1). First, we
force the time to increase by a strictly positive amount between successive
states (Ox. 0 y. y > x), to ensure that every state is uniquely identifiable by
its time. Then we can copy groups of r-states by establishing a one-to-one
correspondence of r,-states (J’ = 1,2) at time t and time 2t; clearly there
are enough time gaps to accommodate an additional r,-state when required
by an increment instruction.

For instance, the instruction 1 that increments the counter C and pro-
ceeds, nondeterministically, to either instruction 2 or 3, can be expressed as
follows:

p1 - Oz. (2 = 2s * (Pa ” P3N A
O X . OYl- 0 Y24Y2 < ‘2X + 021. (21 = 2yl A 0~2. z2 = 2y2))A

Ai=1,2 •~. (y < 2~ A ri + O Z . (Z = 2~ A ri)) A
q Yl- 0 Y242 = ‘2s - 0-q. (21 = 2yl A 0-3. q A 02z3. z3 = 2~~))

The first conjunct ensures the proper progression to one of the two specified
instructions, 2 or 3; the second one establishes a one-to-one correspondence
between states in successive intervals representing configurations, while the
third and fourth conjuncts copy r,-states (j = 1,2). The last conjunct adds,
finally, an rl-state at the end of the successor configuration, as required by
the increment operation. l

We can modify th is proof by reducing t ime to a s ta te counter
(Ox. 0y.y = x + l), and letting all propositions be false in the resulting
additional (padding) states. Thus, the satisfiability problem for TPTL with
multiplication by 2 is C:-hard even if time is replaced by a state counter. As
a corollary we infer that the first-order theory of the natural numbers with
<, multiplication by 2, and monadic predicates is II:-complete. .4 similar
result has been obtained by [AHSS].

4 .4 Dense TPTL

Another possible direction to extend the expressive power of TPTL is to
relax its semantics by adopting a dense time domain (i.e., between any two
given time points there is another time point). We show that the resulting
logic is, again, highly undecidable.

THEOREM [Dense TPTL]. If TPTL is interpreted over the rationals
(i.e., TIME = Q), the satisfiability problem becomes Xi-complete. a

PROOF. The proof depends, once more, on the ability to copy groups
of r-states. This time, we are able to have the k-th configuration of a
computation of M correspond, for all k 2 0, to the finite sequence of states
that is mapped to the time interval [k, k + l), because dense time allows us
to squeeze arbitrarily many states into every interval of length 1.

Again, we identify every state with a unique time, and can then establish
a one-to-one correspondence of r,-states (j = 1,2) at time t and time t + 1.
In fact, we may simply replace all occurrences of multiplication by 2 in the
Presburger-TPTL formula encoding the recurring computations of M, by
a successor operation, in order to obtain the desired dense-TPTL formula

This proof goes through for any time domain (TIME, <, S) such that
(TIME, <) is a dense linear order, and S is a unary function over TIME
satisfying the first-order axioms Vx. x < S(z) and Vx, y. (a: < y --+ S(z) <
S(y)). To show that, for arbitrary dense time domains, the satisfiability
problem is in Si , a standard LBwenheim-Skolem argument is necessary to
infer the existence of countable models.

The proof technique outlined here can, in fact, be applied to many other
real-time logics, such as the logic of [KVD83], RTL ([JM86]), RTTL ([Os87]),
and GCTL ([Ha$8]). All of these formalisms admit addition over time as a
primitive, which renders them undecidable.

This suggests that we have been able to characterize an intrinsic bound-
ary between the decidability and undecidability of formalisms that combine
finite-state reasoning about state sequences with explicit reasoning about
time. Such logics are undecidable if they permit Presburger arithmetic on
time, as well as if they are interpreted over dense models of time.

5 Discussion

We have demonstrated a very natural way to extend qualitative temporal
reasoning over state sequences to quantitative temporal reasoning over timed
state sequences. We then identified the restrictions on syntax and semantics
necessary for achieving elementary decidability. The language TPTL is, so
we believe, a good real-time specification language, and its model-checking
algorithm can be used for the verification and synthesis of real-time systems,
along the lines of [LPP4] and [MW84].

5.1 Some comparisons with related work

Several researchers have proposed to add real-time modalities like O<I,
(“eventually within time k”) to PTL ([KVD83], [Ha88], [EMSS89]) ---a
notation that is easily seen to be subsumed by TPTL: O<k 4 is equiva-
lent to Ox. (x 5 k A 6). Others have argued for identifying “next-state”
with “next-time” ([EMSS89]). This approach is again a special case of ours
(Ox. 0 y. y = x + l), and fails for asynchronous systems, whose events can
occur arbitrarily close in time.

The solution of adding explicit time independent of the state-transition
relation, and thus admitting multiple successive states with the same time,
is usually pursued by adopting a first-order temporal logic, with a dynamic
time variable. For RTTL ([Os87]), the questions of appropriate quantifica-
tion and decidability have not been addressed. For GCTL ([Ha88]), it has
been shown that the satisfiability of the existential closure of quantifier-free
formulas is decidable. This result restricts the language to only one form of
quantification, and even then cannot be used for verification (i.e., proving
that an implementation implies a specification).

5 .2 Some directions for future work

We hope that the language TPTL will generate sufficient interest to warrant
the study of its applicability to the specification, verification, and synthesis
of real-time systems. Of particular importance is the development of a suit-
able, compositional modeling that yields to the tableau methods presented
in this paper.

We also plan to investigate the expressive power of TPTL, as well as the
consequences of extending TPTL to timed ETL ([Wo83]) and of introducing
past temporal quantifiers ([LPZ85]). Tlle classification of “really temporal”

properties into a hierarchy similar to the conventional safety-liveness dis-
tinction of PTL ([MP89]), and the addition of temporal quantification to
branching-time logics ([EC82]) remain to be studied.

Perhaps most importantly, the consequences of restricting arbitrary quan-
tifiers in first-order modal logics, to modal quantifiers that are associated
with modal operators, has to be pursued independently of the notion of
time.

Acknowledgements. We thank Zohar Manna, Amir Pnueli, and David
Dill for their guidance. Moshe Vardi and Joe Halpern gave us very helpful
advice for refining our undecidability results; in particular, they pointed out
to us the 2: -completeness of a problem on Turing machines.

References

[AH891 M. Abadi, J. Halpern, “Decidability and expressiveness for first-
order logics of probability,” 30th IEEE FOCS, 19S9.

[BH81] A. Bernstein, P.K. Harter, “Proving real-time properties of pro-
grams with temporal logic,” 8th ACM Symp. on Operating System
Principles, 1981.

[EC821 E . A . Emerson, E.C. Clarke, “Using branching time temporal logic
to synthesize synchronization skeletons,” Science of Computer Pro-
gramming 2, 1982.

[EMSS89] E.A. Emerson, A.K. Mok, A.P. Sistla, J. Srinivasan, “Quanti-
tative temporal reasoning,” presented at the Workshop on Finite-
state Concurrency, Grenoble, France, 1989.

[Ha881 E. Harel, Temporal Analysis of Real-time Systems, M.S. Thesis,
Weizmann Institute, 1988.

[HPS83] D. Harel, A. Pnueli, J. Stavi, “Propositional dynamic logic of reg-
ular programs,” J. computer and System Sciewes 26, 1983.

[HU79] J.E. Hopcroft, J.D. Ullman, Introduction to Automata Theory, Lan-
guages, and Computation, Addison-Wesley, 19i9.

[JM86] F . Jabanian, A.K. Mok, 5afety analysis of timing properties in
real-time systems,” IEEE Trans. on Soft ware Engineering ~~4.2,
1986.

[IiVD83] R. Koymans, J. Vytopil, W.P. de Roever, “Real-time program-
ming and asynchronous message passing,” 10th ACM POPL, 1983.

25

[LPS4] 0 . Lichtenstein, A. Pnuel i , “Checking that finite-state concurrent
programs satisfy their linear specification,” 11th ACM POPL, 1984.

[LPZS5] 0 . L’ h tIC enstein, *4. Pnueli, L. Zuck, “The glory of the past,” Conf.
on Logics of Programs, Springer LNCS 193, 1985.

[MPS9] 2. Manna, A. Pnueli, “The anchored version of the temporal frame-
work,” Linear Time, Branching Time, and Partial Order in Logics
and Models for Concurrency (J.W. deBakker, W.-P. de Roever, and
G. Rozenberg, eds.), Springer LNCS 354, 1989.

[MWS4] 2. Manna, P. Wolper, “Synthesis of communicating processes from

[NASS]

[OLS2]

[OsS7]

[PHSS]

[Pn77]

[Ro67]

[SC851

[Wo83]

temporal logic specifications,” ACM TOPLAS 6, 1984.

K.T. Narayana, A.,4. Aaby, “Specification of real-time systems in
real-time temporal interval logic,” IEEE Real-time Systems Symp.,
1988.

S. Owicki, L. Lamport, “Proving liveness properties of concurrent
programs,” ACM TOPLAS 4, 1982.

J.S. Ostroff, Temporal Logic of Real-time Systems, Ph.D. Thesis,
Univ. of Toronto, 19Si (to be published by Research Studies Press).

,4. Pnueli, E. Harel, “Applications of temporal logic to the specifi-
cation of real-time systems,” Formal Techniques in Real-time and
Fault-tolerant Systems, Springer LNCS 331, 1988.

A. Pnueli, “The temporal logic of programs,” 18th IEEE FOCS,
1977.

H. Rogers, Jr., Theory of Recursive Functions and Efective Com-
putability, McGraw-Hill, 1967.

A.P. Sistla, E.M. Clarke, “The complexity of propositional linear
temporal logics,” JACM 32, 1985.

P. Wolper, “Temporal logic can be more expressive,” Information
and Control 56, 1983.

26

