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Chapter 1

Introduction

The “Data Sheet” for the course, including a statement of each of the course problems,
appears on the following pages. This material was handed out on the first day of class. In

liar with the particular problemthe problem discussions we assume that the reader is fami
statement.

1.1 Data Sheet

Class: CS304, “Problem Seminar.” Meets 2:454:00  Tuesdays and Thursdays in room
301, Margaret Jacks Hall.

Discussion leader: Don Knuth. Office is 328 Jacks, phone 723-4367. [Please see Phyllis
Winkler, 326 Jacks, if you want to talk to him outside of normal class hours.]

Teaching assistant: Ken Ross. Office is 450 Jacks, phone 723-3088; computer address
KAR (0 POLYA. Office hours on Tuesdays, lO:OO-ll:OO, and Fridays, 11:15-12:15.

Problems: There are five problems and we will take them in order, spending about two
weeks on each. Also, there will be a special two-day Trivia Hunt. Students should work in
teams of two or three on each problem, and also when participating in the Trivia Hunt. No
two students should be members of the same team more than twice; this way everybody
will get to know almost everybody else. We stress cooperation and camaraderie, not
concealment and competition! (Exception: The Trivia Hunt will be a contest to see which
team can score the most points.)

Computer use: You may use any computer you can steal time on. Problem 5 may be
done in the Macintosh Lab in Sweet Hall.

Grading: You should hand in a well-documented listing of your computer programs for
each problem, along with a writeup that describes the approaches you took. This writeup
should include a discussion of what you did that worked or didn’t work, and (when ap-
propriate) it should also mention what you think would be promising approaches to take
if there were extra time to pursue things further. Your written work will be graded on the
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basis of style, clarity, and originality, as well as on program organization, appropriateness
of algorithms, efficiency, and correctness of the results. These grades will be given on an
A-E scale for your own information, but your overall grade for the course will be either
‘A’ or ‘nothing’.

Class notes: Classroom discussions will mostly involve the homework problems, but we
will try to emphasize general principles of problem solving that are illustrated by our work
on the specific problems that come up. Everyone is encouraged to participate in these
discussions, except that nobody but Knuth will be allowed to talk more than three (3)
times per class period. After class, the TA will prepare notes about what happened;
therefore you will be able to participate freely in the discussions instead of worrying about
your own note-taking. These class notes will eventually be published as a Stanford report;
similar reports from previous years can be found in the library [CS606 (Michael J. Clancy,
1977); CS707 (Chris Van Wyk, 1979); CS863 (Allan A. Miller, 1981); CS989 (Joseph S.
Weening, 1982); CS990 (John D. Hobby, 1983); CS1055 (Ramsey W. Haddad, 1985);
CS1154  (Tomas G. Rokicki, 1987).

Special dates: The Trivia Hunt will begin at 4:OOpm on Tuesday, January 24, and it will
end at 2:45pm on Thursday, January 26. The Great Races for Problem 5 will be held on
March 21 (possibly in Sweet Hall).

Caveat: This course involves more work than most other 3-unit courses at Stanford.

Problem 1, due January 24: Late-binding solitaire.

This problem is based on a game of solitaire that can be habit-forming: Shuffle a deck
and deal out 18 cards, cl c2 . . . cl& Then try to reduce these 18 piles to a single pile, using
a sequence of “captures” in which one pile is placed on top of another pile. A pile can
capture only the pile to its immediate left, or the pile obtained by skipping left over two
other piles. Furthermore a capture is permitted only if the top card in the capturing pile
has the same suit or the same rank as the top card in the captured pile.

For example, consider the following deal:

A+ 74 34 44 104 W 40 Q+ 34 100 Ao J+ 60 84 94 Qv K+ KQ.

There are fifteen possible captures, which can be denoted by

74 x A+ Q4 xx 104 60 xx 100
34 x 74 34 x Q4 94 x x  J4
104 x 44 100 xx 40 94 x 84
40 x x 44 Av x 100 Qvxx6v
40 x 90 J4 xx 34 KvxxKh

Some captures make others possible. For example, the sequence 94 x x J+ x x 34 x
Q+ x x 104 can be followed by 9v x 94.

If the leftmost capture is performed repeatedly in this example, the sequence of cap-
tures is 74 x A+, 34 x 74,104 x 44, 40 x 90, 34 x x 104 x 34, Av x x 40, 94 x x J4,
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KV x I(4 x x 60. This “greedy algorithm” corresponds to a standard solitaire game
called Skip Two. But it leaves a configuration of 8 piles

34 Av Q4 100 94 Kv 84 Qv

in which no further moves are possible. If we hold back until all 18 cards are dealt in this
example, we can find a sequence of 17 captures that reduces everything to a single pile.

Well, actually, a good Skip Two player would have captured in a different order when
the 34 was played; after 34 x Q4 x x 34 and 104 x 34, the 100 would be able to make
a double capture. But there still would have been 5 piles left after all 18 of the cards had
been dealt.

.

[This game is an interesting way to waste time if you ever get lost with a pack of cards
on a desert island. If you succeed in reducing the original 18 piles to a single pile, you
can continue by dealing 17 more cards and trying to reduce the new 18 piles. And if you
succeed also at that, you have 17 more cards left for a third try, since 52 = 18 + 17 + 17.
Three consecutive wins is a Grand Slam.]

The object of Problem 1 is to try to discover something about the chances of winning
the game when 18 cards are dealt at random. Write a computer program that determines
whether victory is possible or not, given a starting configuration. Speed will be important,
as it will be desirable to run your program on as many different deals as possible in order
to estimate the probability of success; computer time is limited.

Problem 2, due February 7: Toetjes II.

This problem was suggested by Sape Mullender, who described it as follows:

In Amsterdam, where I grew up, dessert is usually referred to as “toetje”
(Dutch for “afters”). The problem of allocating a left-over toetje to one of the
children in my family became the Toetjes Problem. The algorithm was the follow-
ing: First my mother would choose a secret number between one and a hundred.
Then the children, in turn, youngest to oldest, could try to guess the number.
After the last guess my mother would tell whose guess was closest to her secret
number and the winner would get the toetje.

It quickly became clear to us kids that a clever strategy for choosing the
number would help to increase one’s chances of winning. In a family of two
children, for instance, the first child would have to choose the middle number,
50, and the other child could then choose either 51 or 49. Years later, when our
reasoning skills were more developed we could even do the optimal choice for
three kids. (Naturally, we assumed that each child would attempt to maximize
his or her chances without resorting to conspiracy with one of the others.) The
first child had to choose 25 (or 75) the second 75 (or 25), and the third could
choose any number between 26 and 74, influencing the other two kids’ chances,
but not his or her own.

Now that I have a degree in mathematics, the problem still puzzles me:
Given that the secret number is chosen randomly from the interval [ 0, 11, what
is the optimal strategy for choosing a number for the i th child in a family of n
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children? The i th child knows what the first i - 1 children chose, and knows
that all the children choose optimally ( i. e., choose to maximize their own chance
without consideration for the chances of any other child in particular).

I grew up in a family of five children, and I never worked out the optimal
strategy for n = 5. Fortunately, I was the oldest, so choosing optimally was easy
for me. But I don’t think it mattered very much what I chose; I think my mother
cheated. I think she chose the number after we had all announced our guesses,
because I can’t remember anyone ever winning two times in succession.

CS304 students investigated the Toetjes Problem two years ago [I]; unfortunately, the
problem turned out to be much harder than it looked at first glance. We weren’t even able
to find a good formulation for the infinite case where real numbers, not integers, are to be
chosen. But Tom&s Feder made considerable progress after the course was over; he wrote
a beautiful paper about Toetjes [2], solving several variations of the problem, although he
left some fundamental quest ions unresolved. We will try to obtain further information by
determining the optimum solution for as many n as possible when the following additional
rule is added to Mullender’s incomplete formulation:

A player who has more than one optimum move must choose between them
uniformly at random.

An optimum move is one that maximizes the player’s expectation of winning the toetje,
in a sense that will be further clarified below

The basic theory in [2] gives us a handle on this problem; we can formulate it as
follows: Given a sequence of k 2 0 distinct real numbers ~1,. . . , xk E [0 . . l], a completion
of these numbers is a tuple (xk+l, . . . ,x,; r) where the x’s are arbitrary elements of [O.. I]
and where 7r = 7ri;~r2  . . . ;r~, is a permutation of {1,2,. . . , n} with the property that

For example, if k = 2 and n = 6, one of the completions of (t, $) is (& 4, $, $; 512634).
A completion represents a potential “limiting play” in the game of Toetjes. For example,
if there are six players and if the first two plays are $ and 2, this completion indicates that
player 3 chooses a number slightly more than 2, then player 4 chooses $, then player 5
chooses a number slightly less than 5, and player 6 chooses a number between $ and the
choice of player 3.

Let (xk+l,  . . . ) xn; X) be a completion of (xl,. . . , xk). we define the payoff function
Pj(xl, - - * , Xn ; 7T) as fOllOWSI

i

Cxj + xr2)/2~ i f j  =7r1;

Pjcxl  7 - - - 7 xn;  T, = Cxrr+~  - xm-~  )I27 ifj=7rl,l<l<n;

1 - (Xj + Xrnw1)/2, if j = 7rn.

For example, the respective values of pj( f, $, $, $, i, $; 512634) as j varies from 1 to 6 are
1 1 1 4 1g’, g’, 15’ 15’ 3, 0. It’s easy to check that pj(xi, . . . , x,; r) is the limit of the probability that
player j wins the toetje, if a limiting play corresponding to (xk+i, . . . , Xn; 7r) is performed.
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The players in this game are required to make only “optimum” moves, but there
usually isn’t any optimum move! For example, if n = 2 and if the first player chooses $,
the second player should choose a number as close as possible to $; but there is no “closest
possible” choice. Instead, we require the players to choose optimum near-plays when the
optimum payoff is obtainable only as a limit. For example, if n = 2 and if the first player
chooses a number xi = x < 5, the second player’s optimum strategy is to choose the
number x + E, where E is an arbitrarily small positive value. This leads to the continuation
(x; 12)) and the second player’s limiting payoff will be pz(x,x; 12) = 1 - x. If xl = x > i,
the second player should choose x - E, getting payoff pz(x, x; 21) = x. And if x1 = k, the
second player has two optimum choices, namely f - E and i + E; a random selection should
be made between these two choices, with probability 50% of going either way. The payoff
will be $pz( +, $; 21) + $pz(& +; 12) = f.

In this problem we wish to determine the optimum strategy for each player k + 1,

-

.

given each sequence of opening moves (xl, . . . , xk), for 0 5 k < n and for n as large as we
can handle. The optimum strategy in each case will be a random variable f (xl,. . . , xk)
whose value is either a finite set of points (perhaps including +e or -E), or a finite set of
open intervals. In the first case xk+l should be selected from the given points, with equal
probability; in the second case xk+r should be uniformly distributed in the intervals. For
example, the optimum strategies for n = 3 are tabulated in Appendix B.

Problem 3, due February 21: Label placement.

Consider n points on a page and n corresponding boxes of text. We want to place the
boxes of text so that (a) no two boxes overlap; and (b) the boxes don’t get closer than E to
any of the points, where E is a given radius. Furthermore, subject to these conditions, we
want each box to be as close as possible to its corresponding point, and as far as possible
from all other points, in some loosely defined sense; then a viewer will know which box
goes with which point.

The data set for this problem consists of 128 city names and locations, defined by three
integer coordinates (w, x, y). The name of a city fits in a box of width w and height 50; the
city is located at point (x, y). For example, San Francisco has (w, x, y) = (634,70,1659).
The value of E is 20.

When coordinates for the lower left corners of the city names have been specified, T@
will be able to typeset a map of the United States and Canada, where the vicinity of San
Francisco might look like this:

S a n t a  R o s a , C A S a c r a m e n t o ,  C A
0 l

S a n  F r a n c i s c o ,  CA. ‘S t o c k t o n ,  C A

S a n  Josh, CA’

l Salinas, CA

(The data for all 128 cities appears in Appendix C.)
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Problem 4, due March 7: AND-OR tree formulas.

An AND-OR tree of order k is an arrangement of 2” - 1 gates in a complete binary tree.
The root of the tree is either AND or OR; the two gates leading into each AND are ORs
and vice-versa. The leaves of the tree are either variables x; or the constants 0 or 1.

For example, here’s an AND-OR tree of order 3:

I
- OR -

I \
AND AND

I \ I \
OR OR OR OR
I \ I \ I \ I \

Xl 52 x3 x4 Xl x3 x2 24

This function turns out to be equal to the “threshold function” &(xl, x2, x3, x4), where

If we interchange AND and OR the resulting function is &(x1, x2, x3, x4).
Leslie Valiant [Journal of Algorithms 5 (1984)) 363-3661  has proved that, for all n,

there is an AND-OR tree with O(n5e3) gates for the function 0,/2(x1,. . . , xn). His method
was to choose the 2” leaves of a k-level tree at random, setting a leaf equal to xi with
probability p;, to 0 with probability po, and to 1 with probability p,, where po +pl + - - - +
Pn+Poo  = 1. Given a random tree function f (xl,. . . , xn) chosen in this way, it’s not difficult
to compute the probability that f(xi,. . . ,z,) = 1, for any given (xl,. . .,x,). Valiant
showed that probabilities can be chosen in such a way that, for every fixed (x1,. . . , x,),
the probability that f(x1,. . .,x,) # Bn,2(x1,. . . ,xn) is less than 2-“, if k is suitably
large. Hence the probability that f(xi, . . . , xn) = Bn/2(xi,. . . ,xn) for all 2” choices of

(Xl,-**, xn) is > 0. Hence, an AND-OR tree must exist!
Valiant did not determine the constant of proportionality in his formula O(n5e3). Since

2” is less than n5e3 when n < 25, it would be nice to know whether Valiant’s method is
likely to be of any practical use.

The purpose of this problem is to find the sharpest results obtainable by Valiant’s
method. Let

Oa,b(Xl,...,Xn)=  il i:zlI:::I:n  ::
1 1 n .

(This is a partially unspecified function;
u 5 x1+*.*+x,  < be) G’

we don’t care about the values of ea,+ when
lven values of k and n, our goal will be to find probabilities p; such

that a random AND-OR tree of order k has positive probability of being oa,b(xl,.  . . , xn),
where a 5 n/2 < 6 and b - a is as small as possible.

Write a computer program to determine the best values of a and b, given k and n.
Then try to find the best possible constants c and CI! such that Valiant’s method can be
used to prove the existence of a formula for Q2(x1,. . . , xn) using at most cnCY gates.
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Also try by heuristic means to construct economical circuits for 6+(x1,. . . , xn) built
entirely from AND and OR gates, when n isn’t too large.

Notes: It can be shown that

94(x1,... ,x8) = f (123415678) V f (125613478) V f (127813456)

where  f(www&b2W4) = e2(%1,xa+%3,xa4)  A e2(xb1,xb2,xb3,xb,). Since the func-
tion &(x1,22,23,24)  can be computed with 7 gates, &(x1,. . .,x8) can be computed
with 47 gates. This construction doesn’t seem to generalize to an efficient formula for
en/2(x1, * * * , xn) when n is large; the best upper bound known is Valiant’s O(n5m3). Pip-
penger,  Paterson, and Peterson have shown that formulas of length O(n3e4) are possible
if NOT gates are allowed as well. Knuth’s best formula for 68(x1,. . . ,216) has 767 gates.
On the other hand, if circuits are allowed to have multiple fanout, i.e., with outputs used
repeatedly as inputs to other gates, constructions with O(n2) gates are not difficult to find.

.

Problem 5, due March 21: Antomology.

The purpose of this final problem is to design the brain of an ant. A colony of ants sharing
your design will be released into an environment that contains particles of food; their task
will be to locate the food and bring it to their nest as soon as possible.

We’re not dealing with real live ants here; these are artificial, discrete, synchronous,
two-dimensional, low-tech ants that can more properly be called antomata. An antomaton
is a finite state device that can move, carry, sniff, and leave scents on a cellular grid
according to rules specified below. The problem is to design it so that your team’s colony
of antomata will fetch the food fastest, during the Great Ant Races of March 21, 1989.
On that day your design will be tested in challenging environments that won’t be revealed
beforehand. Each race will feature ants of a single design, whose performance will be
measured by a simulated clock; there will be no direct confrontations between antomata
of different species.

An antomaton’s environment is an m x n grid surrounded by barrier cells. The values
of m and n may be as large as 100. Some interior cells of the grid may also be barriers,
representing obstacles that the ants must avoid. At least one interior cell is a nest, from
which an unlimited number of ants may emerge and into which an unlimited number of
ants may retire.

Cells that are neither barrier nor nest contain at most one ant each. Such cells may
also contain morsels of food, possibly several morsels in a single cell. Moreover, there
are four scents called S, T, U, V, each of which may or may not be present in a given
non-barrier, non-nest cell.

Ants have four orientations called up, down, left, and right. (We think of the environ-
ment as an upright computer screen.) They can move at most one step at a time, according
to this orientation; they can also sense whet her the cell they’re facing is a barrier or a nest,
or whether it’s occupied by an ant and/or food. And they can smell any scents that may
be present in the cell they face.

Each nest cell has a “top ant ,” which has the same capabilities as ants in ordinary
cells. When the top ant moves out of the nest, another top ant materializes there, initially
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facing upward. Ants carry no food when they leave the nest, but they acquire a morsel of
food as soon as they enter a cell where food is present. From then on they carry this morsel
with them, until they move into a nest cell-at which time they effectively disappear.

The ant’s brain is a computer program in a special machine language. The program
consists of up to 1024 instructions, each 32 bits long. Every ant in the system has a
program location I representing its current “state of mind”; the ant’s behavior at a given
time depends on 2 and on what the ant can see or smell.

Here’s how the mechanism works: The first 8 bits of each instruction denote values
of sensory inputs, and the next 8 bits denote a mask. The instruction applies to a given
situation if the ant’s actual sensory inputs match those of the instruction wherever a 1
occurs in the mask. These 8 bits have the following significance, from left to right:

a: 1 if the cell ahead contains another ant.

-

b: 1 if the cell ahead is a barrier, or if it contains an ant bearing food.
f: 1 if the cell ahead contains food (in addition to what an ant may be carrying).
r: a random bit, which is 1 with probability $. These bits are generated independently

for every ant at every unit of time.
s, t, u, w: 1 if the cell ahead contains the scents S, T, U, V, respectively.

The three bits abf will never be 011, but the other seven combinations of these bits are
all possible. These bits will be respectively 101 if and only if the cell ahead is a nest
cell. (A nest cell always contains a top ant that’s not bearing food; a nest also has food
hidden below. A non-nest cell with an ant and food is possible only if that ant is carrying
additional food, in which case ab f = 111.)

The last 16 bits of an instruction define the ant’s actions when an applicable instruc-
tion is found. There are 6 action bits followed by 10 bits of ‘next address’. The action bits
are

ds, dt, du, dv: 1 if the current occurrence of scents S, T, U, or V is to be complemented,
respectively.

m: turn 90” counterclockwise.
p: turn 90” clockwise.

For example, if an ant is facing left in a cell containing the scents T and U but not S or V,
and if the six action bits are 110010, the ant will begin the next cycle facing down, in a
cell containing the scents S and U.

If mp = 11, the ant moves ahead instead of turning (because its legs on both sides
go into action). In this case the ds . . . dv bits complement the scents of the new cell into
which the ant now moves; the old cell retains its former odors.

Moves are slightly complicated because there are three situations in which an instruc-
tion can have mp = 11 but the ant will stay where it was: (1) If the cell ahead is a barrier.
(2) If the cell ahead is not a nest and it contains an ant. (3) If an ant of higher priority is
moving to the same cell at the same moment. (Priority is determined from top to bottom
and from left to right within a row.) In these three cases the move fails; the ant stays put,
and no scents are complemented. Otherwise the move succeeds.

All actions for all ants are performed simultaneously. When an ant’s state of mind
is determined by location I, the environment simulator decides what to do by computing
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the relevant sensory bits abfrstuv and then finding the first applicable instruction that is
present in locations 2 1. (Applicability is based on the first 16 bits of the instructions, as
explained earlier.) Then the specified action is performed (based on the next 6 bits), and
Z is reset to the binary value of the last 10 instruction bits. Exception: If the action was
a move that failed, for one of the three reasons in the previous paragraph, the new value
of Z is one less than the address in the last 10 bits.

-

All cells are initially scent-free, and all ants are initially confined to the nests. The
initial value of I, when an ant first appears on the scene by becoming a new top ant (either
when the race starts or when the old top ant has left a nest), is 0. We assume by convention
that locations -1 and 1024 both contain the all-zero instruction 00. . . 0; this instruction
applies to all sensory inputs (since its mask is zero), hence it denotes a unconditional jump
to location 0.

A simulator will be provided for testing your constructions and for administering the
Great Races. An ant brain must be specified to the simulator in an ASCII file that adheres
to the following rigid format: (1) The first line of the file must contain the name of this
ant colony, for display purposes; the name can be up to 12 characters long. (2) The
second line of the file must contain 16 characters to be used as symbolic screen-display
representations of the 16 possible combinations of scents, in “binary” order STUV, STUV,
%!UV, . . . . STUV. (3) The next lines of the file must contain the instructions for
locations 0, 1, 2, . . . , one instruction per line, as a sequence of eight hexadecimal digits
followed by optional comments. (4) The final line of the file must begin with ‘*‘. All
subsequent instructions in the ant’s brain will be zero.
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Here, for example, is a simple ant brain that uses only scent S:

0
1
2
3
4
5
6
7
8
9

A
B
c
D
E
F

10
11
12
13
14

RANDY ANTY
.???????S???????
10100800 INIT half the time, turn left
OOE88C03 otherwise leave nest for an empty, scentless cell
00000000 repeat forever
00000004 GO goto ALF
10100808 ALF half the time, turn left
00000006 get a new random bit
10100409 ALFl half the time, turn right
00000009 goto ALF3
10100809 ALF2 half the time, turn left again
OOE88C04 ALF3 move to an empty cell and scent it
08E80C04 move to an empty cell already scented
20EOOCOD move to a cell with food in it
00000004 ALF! go back to ALF
OOOOOOOE BET- goto BET
10100812 BET half the time, turn left
00000010 get a new random bit
10100413 BET1 half the time, turn right
00000013 goto BET3
10100813 BET2 half the time, turn left again
08C88COE BET3 move to empty cell and remove scent
OOOOOCOE move if possible
* END OF DATA

The idea here is to leave the nest (INIT) if there's an empty unscented cell to start on;
then to make a random walk (ALF) while laying down scent, until finding food; then to
make another random walk (BET) w 1 e erasing scent, until finding the nest. This brainh’l
design works-albeit slowly-in many environments; but it has a fatal flaw that’s not too
hard to rectify.

The simulator is also able to read ASCII files that define an environment. The first
line of such a file contains two values ‘m n’ that specify the number of rows and columns
in the playing field. The next m lines of the file contain n characters each, where the
allowable characters are

B barrier cell
N nest cell
. empty cell
1 cell with one morsel of food
2 cell with two morsels of food

. . . 9 cell with nine morsels of food
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For example, here’s a simple environment specification:

7 19
. . . . . . . . . . . . . . . . . . .
. . . . . . . BB.B...123..
BB...... .B.B..244..
BB..BB.....B...2..B
. . . BBBN..BB.B....B.
. . . . B..B..BB...BB..
. . . . . . BB...........

(Barrier cells are also implicitly present at the top, bottom, and sides.) Further details of
the simulator-including facilities for, ahem, debugging-will be available later.

The environments used in the Great Ant Races will include only one nest cell. More-
over, all of the food will appear in a “connected” region of cells. (At least this will be true in
the initial races. Tie-breaking competitions may violate these conditions; the environments
might even change dynamically.)

Appendix A: Data for Problem 1.

(Here ‘T' means ‘ten’; ‘C’ means ‘clubs’, etc.)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24



Appendix B: The case n = 3 in Problem 2.

The optimum play or near-play f (x 1, . . . , xk) is given either as a finite set or as a finite
union of open intervals. We also list the random variable g(xl, . . . , xk) whose values are
continuations (xk+r,. . . , x,; X) that correspond to all optimum limiting plays; the possible
valuesof  g(xr,. . . , xk) are shown here as a sum or integral of continuations multiplied by the
appropriate probabilities. For example, if f(x1,. . . , xk) = {a + e, b} then g(xr,. . . , xh) =
$(a, lime+0 g(q). . . y xkt a + E)) + $%~(?t~. - - , xk, b)). The continuations g(xr, . . . , xk)
can be used to calculate the payoffs, which are the expectations E(pj(xl,  . . . , xn; T)).

-

k = 2,0 5 x1 = x < x2 = y 5 1:

Case 1, x + y > 1 and 3x > y: f(x, y) = x - q g(x, y) = (x; 312).
Case 2, 3x 5 y and 2 + x 5 3y: f (x, y) = (x . . y); g(x) y) = S,“(t; 132) dt/(y - x).
Case 3, x + y < 1 and 2 + x > 3y: f (x, y) = y + c; g(x, y) = (y; 123).
Case 4, x+y = 1 and x > a: f(x, y) = {x-q y+~}; g(x, y) = ;(x; 312)++(y; 123).

k = 1,O <_ x1 = x 5 $:

Case 1, 2 5 a: f(x) = y; g(x) = J (2+x’/3( ?$Z, t) &/( y _ x)a
X

Case 2, $ < x < $: f(x) = 1 -x + e; g(x) = (l- x,x;312).
Case 3, x = i: f(x) = {i - E, i + E}; g(x) = $( i, $; 213) + i( $, i; 312).

k = O :  f()={a,;};g()= ~~~;~(~&t;132)dtJ(~)+;S,3j,4(~,~,t;231)dtl(~).

The expected payoffs are $ $, a for players 1, 2, 3.
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Appendix C: Data for Problem 3.

Ravenna, OH (458,4188,2166)
Reading, PA (430,4719,2041)
Red Bluff, CA (492,88,2019)
Regina, SA (385,1847,3555)
Reno, IV (336,331,1920)
Rhinelander, WI (569,3370,2838)
Richfield, UT (466,1103,1807)
Richmond, III (478,3823,1966)
Richmond, VA (498,4567,1623)
Roanoke, VA (445,4318,1582)
Rochester, HB (511,3066,2595)
Rochester, BY (499,4551,2466)
Rockford, IL (435,3402,2332)
Rock Springs, WY (635,1389,2230)
Rocky Mount, UC (623,4532,1383)
Rosnell, EM (435,1859,1002)
Rutland, VT (440,5015,2533)
Sacramento, CA (558,163,1780)
Saginaw, HI (426,3918,2506)
Saint Augustine, FL (697,4180,475)
Saint Cloud, HP (583,2895,2827)
Saint Johnsbury, VT (715,5110,2655)
Saint Joseph, HI (583,3664,2307)
Saint Joseph, HO (613,2828,1957)
Saint Louis, HO (566,3293,1785)
Saint Paul, MB (534,3002,2734)
Salem, OR (368,9,2733)
Salida, CO (375,1712,1771)
Salina, KS (362,2551,1818)
Salinas, CA (403,147,1492)
Salisbury, MD (488,4752,1747)
Salt Lake City, UT (655,1124,2106)
San Angelo, TX (549,2268,711)
San Antonio, TX (586,2462,405)
San Bernardino, CA (695,581,1108)
San Diego, CA (508,597,898)
Sandusky, OH (484,4041,2209)
San Francisco, CA (634,70,1659)
San Jos\'e, CA (459,124,1593)
Santa Ana, CA (520,525,1056)
Santa Barbara, CA (658,342,1155)
Santa Fe, BM (474,1717,1344)
Santa Rosa, CA (547,40,1758)
Sarasota, FL (441,4059,93)
Sault Sainte Harie, HI (789,3877,2965)
Savannah, GA (490,4203,804)
Schenectady, KY (579,4917,2415)
Scottsbluff, MB (530,1946,2272)
Scranton, PA (455,4745,2203)
Seattle, VA (412,79,3132)
Sedalia, HO (423,2989,1798)
Selma, AL (357,3610,855)
Seminole, OK (472,2644,1276)
Sheridan, UY (483,1616,2712)
Sherman, TX (459,2651,1038)
Shreveport, LA (527,2937,868)
Sioux City, IA (494,2673,2365)
Sioux Falls, SD (528,2639,2523)
South Bend, 11 (536,3687,2244)
Spokane, VA (456,571,3142)
Springfield, IL (498,3347,1962)
Springfield, KA (547,5053,2307)
Springfield, MO (549,2983,1575)
Springfield, OH (537,3931,1980)

Staunton, VA (465,4405,1714)
Sterling, CO (433,1990,2085)
Steubenville, OH (584,4250,2046)
Stevens Point, WI (624,3355,2670)
Stockton, CA (464,183,1686)
Stroudsburg, PA (570,4793,2140)
Sumter, SC (393,4277,1080)
Snainsboro, GA (553,4078,882)
Syracuse, KY (462,4697,2449)
Tacoma, WA (439,69,3078)
Tallahassee, FL (536,3884,559)
Tampa, FL (381,4067,184)
Terre Haute, IB (548,3571,1912)
Texarkana, TX (515,2907,1006)
Toledo, OH (394,3958,2239)
Topeka, KS (396,2745,1849)
Toronto, OK (435,4374,2539)
Traverse City, HI (605,3749,2706)
Trenton, HJ (416,4835,2026)
Trinidad, CO (459,1861,1567)
Tucson, AZ (394,1215,825)
Tulsa, OK (353,2721,1416)
Tupelo, MS (396,3441,1131)
Tuscaloosa, AL (526,3555,973)
Twin Falls, ID (500,865,2376)
Tyler, TX (345,2782,844)
Uniontoan, PA (521,4339,1977)
Utica, BY (347,4789,2458)
Valdosta, GA (462,3984,616)
Valley City, BD (545,2511,3030)
Vancouver, BC (514,0,3382)
Vicksburg, HS (503,3224,844)
Victoria, TX (439,2611,313)
Vincennes, IB (480,3559,1794)
Uaco, TX (345,2598,724)
Ualla Ualla, WA (591,479,2902)
Warren, PA (402,4398,2269)
Washington, DC (565,4609,1825)
Uaterbury, CT (519,5007,2224)
Uaterloo, IA (445,3078,2367)
Uatertonn, UY (536,4720,2589)
Uatertonn, SD (524,2601,2727)
Uaukegan, IL (474,3529,2346)
Uausau, UI (421,3348,2736)
Uaycross, GA (482,4077,675)
Ueed, CA (345,73,2205)
Uenatchee, VA (540,280,3105)
Vest Palm Beach, FL (748,4307,0)
Uheeling, UV (500,4240,2002)
Uichita, KS (420,2578,1645)
Uichita Falls, TX (618,2463,1077)
Uilliamson, UV (567,4084,1644)
Uilliamsport, PA (601,4612,2179)
Uilliston, BD (478,1950,3214)
Uilmington, DE (563,4757,1954)
Uilmington, EC (565,4520,1128)
Uinchester, VA (537,4496,1870)
Uinnipeg, XB (500,2597,3474)
Uinston-Salem, UC (679,4287,1407)
Wisconsin Dells, VI (698,3335,2536)
Uorcester, MA (514,5132,2332)
Yakima, VA (430,261,2982)
Yankton, SD (438,2573,2424)
Youngstown, OH (578,4247,2157)
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1.2 The Participants
Professor

DEK Donald E. Knuth

Teaching Assistant
KAR Ken Ross

ESC
RC
AG
UH
DK
RK
PL
SM
AM
SJP
DQ
DS

M Y

Students
Edward Chang
Roland Conybeare
Adam Grove
Urs Hoelzle
Dinesh Katiyar
Robert Kennedy
Patrick Lincoln
Sanjoy Mahajan
Arul Menezes
Steven Phillips
Dallan Quass
Dan Scales
R. Michael Young

MA
ADG

AH
AL
RM
DP
NS
BT

ANT

Auditors/Others
Knut Almgren
Ashish Gupta
Andy Hung
Alon Levy
Rebecca Moore
Dan Pehoushek
Nirmal Saxena
Becky Thomas
The Ant Colony
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Chapter  2

Late-binding Solitaire

Tuesday January 10
DEK arrived in suit and tie, his traditional dress for the first class. (He wore a dark suit,

in fact, because it was also his birthday.) He gave a brief history of the course, describing
how George Polya originated the idea of a problem solving course many years ago, and how
George Forsythe had promoted the idea in the computer science department. The course
existed 21 years ago, when DEK joined the department, and DEK has taught it every other
year since 1977.

Four years ago, the class was videotaped, and the tapes were disseminated to various
parts of the globe. Similar courses at other institutions, such as CMU, have recently been
set up following the success of CS304 at Stanford.

DEK then started discussing the mechanics of the course. Most of the information
discussed can be found on the “Data Sheet” that was handed out (see Chapter 1). DEK
emphasized that he will try to make CS304 a “world-class course for world-class students”;
the department has always given this course special status. DEK stressed cooperation rather
than competition, except for the trivia hunt which will be every group for itself. (The trivia
hunt questions will be handed out at the end of class on Tuesday January 24, and the answers
will be due in class the following Thursday.)

As far as machines go, we have special permission to use polya for work on this course.
For Problem 5, we will be using the Mac II’s in Sweet Hall, where there is a development
lab full of them.

DEK then started getting to know the class by proceeding around the room and asking
students to give a brief description of themselves. He observed that in 1977 about 60%
of students in the course played musical instruments, but that recently almost none of the
students do so. The popular hobbies in the class this year seemed to be volleyball, reading,
and backpacking.

After all this DEK raced out of the room and returned a short time later with a deck of
cards. He proceeded to discuss Problem 1, by demonstrating a game of late-binding solitaire.
Having not previously rigged the cards, he “cheated” a little in order to demonstrate all the
rules. However, he discouraged students from cheating in their programs, saying “it’s not
official St anford policy.” DEK said he knew that this version of solitaire had not been
investigated before, since he had made up the game himself.

The original game requires one to make a legal move whenever possible. There are
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still choices involved, as there may be several possible moves at any particular time. DEK
described the original game as using a “greedy algorithm”.

In order to make it more interesting, DEK once tried laying out all 52 cards and, after
seeing all the cards, begin to make moves. In this version, he found he could almost always
win by arranging to get four cards of the same rank on top of the rightmost piles, and then
proceeding methodically. But with only ten cards laid out, it was hardly ever possible to
win. In between these extremes, with 18, it was usually interesting.

The statement of Problem 1 requires a program that will determine (as quickly as
possible) whether a winning sequence of moves exists, and if so to demonstrate one. We
are not interested if the cards can be reduced to 2 or 3 piles, although this may be an
interesting extension of the problem.

DEK asked if there were any simple conditions that would demonstrate the impossibility
of winning. DQ said that one such condition is whether there is a visible card which has
no match in suit or rank. DEK agreed, and suggested that students look for early tests
for failure. He also suggested looking for “restricted” sequences of moves that would be
sufficient, rather than all possible sequences.

Some quotes from this class:
“This is a class on how to do research. In this class we do intimate problem solving.” -

DEK.
“It is fun to go all out for a limited amount of time on challenging problems.” ~ DEK.
“I will try to only ask a person’s name ten times during the quarter.” __ DEK.

“You asked me about twenty times last quarter!” - SJP.
“Yes, Steven, but I get ten more tries this quarter.” - DEK.

“Computers are a great time-saving device for playing solitaire. You can say ‘Play me
100 games and tell me how many I won.’ ” - DEK.

“When you start a PhD thesis you take baby steps, but soon enough you are taking giant
steps, and you are the only person in the world who understands the problem domain as well
as you. It is then your responsibility to solve all of the related problems before you forget it
all.” - DEK.

Thursday January 12

DEK arrived and asked whether anyone had found a solution to the solitaire position
in the handout. Nobody had, although some students had practised  playing the game. No
groups had been organized, so DEK dealt out one card to each student, and mused about
how they could be used to allocate groups. The allocation was finally done by ad hoc means,
grouping people with “similar” cards subject to dividing the non-camp-takers evenly among
the groups. The groups chosen were:

l AG, ESC, MY, RK

. DQ, RM, SJP, UH

l AM, DK, RC

. AL, DS, SM



It was decided to use initials rather than full names in these notes to preserve a degree
of anonymity in case somebody said something incorrect. When it was pointed out that
DEK hardly could claim his initials ensured anonymity, he replied that it doesn’t matter
if he makes mistakes, since he already has tenure. A key of names to initials appears in
Chapter 1.

DEK remarked that the data generated for Problem 1 was random. He had no idea
whether there was a win or not, except for the first set, for which he knew there was a win.
The data is available on polya . (There are actually more deals there than are listed in the
Data Sheet .)

At this point DEK decided to take a closer look at the sample deal from the second
page of the Data Sheet. The first obvious thing to notice was the absence of any 0’s. AM
suggested that the 44 would never be the topmost club, because it is leftmost. After some
discussion it was agreed that it may be improbable, but certainly not impossible without
further analysis of the other cards. DEK then divided up the cards according to suit, noting
matching ranks between suits.

0 only: 6
4 only: 7
4 only: J 8
V&4: QT94
V&h: A K
4&b: 3

DEK introduced his student Pang Chen, and described Pang’s method for estimating
the number of nodes in a tree. We may construct a search tree for our present problem by
assigning a nodes to positions. The root node is the initial 18-card position, and the children
of this node will be all the 17-card  positions that can be reached by a single legal move from
the initial position. For example the initial configuration given in the data sheet allows 15
possible moves, and so the root node of the corresponding tree would have 15 children.

The trick that Pang uses is to identify nodes that are somehow “approximately the same”
and thus simplify the counting process. We say that such similar nodes “have the same color”
or “belong to the same stratum.” The colors are ordered; all children of a node N must
belong to a “lower” color than N does. At one extreme, all nodes on a particular level could
be considered the same color, but this might give a poor estimate of the tree size. At the
other extreme, all nodes could be considered a different color, which would mean we would
end up traversing the whole tree.

In our case, we may identify the color of a node by the ordered pair (2, y), where x is
the number of visible cards in the configuration, and y is the “mobility”, i.e., the number of
legal moves from this position. So, our initial position would have the color (18’15))  and all
its children would be of the form (17, y>, for various y.

Using this coloring system, we may fill out a 3-column table. There’s one row for each
color. The first column contains its “weight ,” and the second contains a typical example of
a position with this color. The weight is intended to estimate the number of nodes in the
tree with the given color.
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There’s also a third (boolean) column, which says whether or not this color has been
expanded.’ Initially, the table looks like this:

color weight example expanded?
18’15 1 Ah71, . . . KV no

all others 0 no

To update the table, we find an unexpanded row of non-zero weight having the highest color
among all such rows. The example column of that row represents a node N of the tree.
Suppose the weight of that row is w. Then for each child N’ of N, in any order, we do the
following:

Let the color of N’ correspond to a row with weight w’; change the example
column in that row to N’ with probability --$$, using a random number genera-
tor. (Thus, if w’ = 0 the example is always changed to N’; if w’ = w, the example
is changed half the time, so we could flip a coin; in general we can generate a
random real number r in [0, 1) and change the example to N’ if r < 5.) Then
replace the weight w’ by w + w’.

Once this has been done for all children N’ of N, mark the original row as “expanded.”
Proceed in this way until all rows are expanded. Pang Chen has proved (among other
things) that the expected values of the weights in the resulting table are the actual numbers
of nodes having a given color. So the total size of the tree can be estimated as the sum of
all the weights.

DEK began to construct the table, flipping a coin when he got to the second node of
color (17,14).

SM noted tha we can’t just flip a coin to determine whether to replace the typicalt
example, as this would tend to favor nodes that were encountered towards the end. DEK
agreed, saying that the actual probability rule & was the secret that made Pang’s method
work.

RC then suggested that the representation of the game as a tree may not be best, since
many of the subtrees  are actually identical. (You can get the same sequence of piles by
making captures in different ways.) DEK replied that this was a good point, and that we
could reduce the size of the problem by taking commutativity into account.

DEK had actually implemented Pang’s method for this problem, and in 3 runs had
obtained the estimates

678,206,500,000
1) 454,101,000)  000
1,335,456,000,000

for the size of the tree. These numbers were much too big for an exhaustive search.
DEK asked under what conditions we could ensure commutativity. If we knew two moves

commute, we could insist on doing one of them first and thus prune our search space. AM

‘The  “expanded” column can actually be eliminated and replaced by a pointer to the “current” color,
because all rows above the current row being expanded will have been expanded (unless their weight is zero).
Thus, after the example node of the current color has been fully expanded, the current color is decreased to
the next color whose weight is nonzero; then the example node of the new current color is expanded, etc.
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suggested that, apart from the skip-two move, all moves commute. RC quickly refuted this
with the example 44949Q.

RK backtracked a little by asking whether we care about the positions of the non-visible
cards. We agreed that the hidden cards do not affect winning in any way.

SM suggested that moves would commute if they were separate. DEK then introduced
the notion of a “dividing line”, to be placed somewhere in the sequence of cards. If one move
lies entirely to the left of the line, and another entirely to the right, then the two moves
commute. So, we can always choose to do one of them (say, the leftmost) first.

AM wondered whether a backward search rather than a forward search (starting with the
final card and going to the two that preceeded  it, then to three etc.) would have a smaller
branching factor, but this line of discussion was not pursued.

The dividing line approach to commutativity implies that we can assume every sequence
of moves has the following property: The card that makes a capture equals, or lies to the right
of the card that made the previous capture. Any sequence of captures that doesn’t follow
this rule can be converted by commutativity into a sequence that does, because we can do
the leftmost captures first when they don’t overlap. DEK said he tried Pang’s method with
this variant, and he obtained three estimates of tree size:

157’960,849
99’217,842

330,153,554

The interesting thing about the second estimate was that the method actually found a
winning sequence of moves.

So it seems that commutativity saves about a factor of 5000. We should actually be
careful here, as not all cornmutativity has been considered, for example the commutativity
in 4&9*Q&.

What is needed is more heuristics to cut off the search early. For example, in one of
the above searches there is a node with color (8’1)) and weight 1’824,580 with the position
7~3~3&Q&4VJ&9/KV.  For this position, the hearts cannot be combined with the rest of
the cards, since there are no other 4’s or K’s, and so there is no need to explore further. It
should be possible to get the search tree down to size l,OOO,OOO  or perhaps even thousands.

It was suggested by DP that we make more complex moves, by composing two ordinary
moves. That way, the tree would have half the depth. DEK pointed out that this could
square the branching factor, and the likelihood of any gain is unclear.

RC commented that all cases of commutativity could be recognised  if we kept track of
every position we’d seen before. There may be too many of these, but we could perhaps get
most of the benefit by keeping a cached hash table of some sort.

Tuesday January 17

The class began with DS revealing a solution to the configuration in the data sheet. His
solution is as follows (using the terminology of the data sheet)

3hx7hxA4,  KVxK& 60~x100,  96xShxJ& 34xQ ~xxlO+x4~x3&
AVx6Vx4V,  9~xx3&9Vx9~,  KVxQVxAVx90
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The idea behind this solution was to get the problem down to two suits, by wiping out the
spades as soon as possible. With only two suits, there is a better chance of a win. DS was
the only one to come up with a winning sequence; SM said that he tried doing it in his head,
but by the time there were only a few piles left he had forgotten the moves he used.

MA then approached the blackboard and outlined a tree construction method for which
all non-interacting moves are performed simultaneously. This would lead to a higher branch-
ing factor - he stated that in the worst case there could be 9! children of a node. DEK
pointed out that in the previous class we had considered eliminating certain move orders on
the basis of commutativity. MA’s method does essentially the same thing, but with a less
simple control mechanism.

ESC said that our example above suggested that it is not sufficient to consider the first
four or so cards alone; one has to look at all the cards. DEK then posed a question:2  Can
we deal four cards that will allow us to conclude that no win exists, no matter what cards
come after?

“Extremal examples” such as 2V3&4450 and 20242420 were suggested, but it was
quickly realized that these would not suffice, unless further restrictions were placed on the
cards that appeared after the initial four. DEK suggested 2V242420 with all subsequent
cards being hearts. When it was pointed out that there were not enough hearts to make a
total of 18 cards, DEK suggested allowing either hearts or clubs. Is it possible to win then?

At first we thought it would be impossible. But then DK came up with a winning idea.
Suppose we get down to 20242~20303Q. We can then win after 2Qx24, 30~x20,
34x x30.

KAR asked what is the minimum number n of cards such that there is an initial sequence
of length n for which no win exists for any continuation of this sequence. The group convinced
itself that n 2 17, and it seemed that n 5 15 might be provable (because some configurations
appeared “penetrable” at most 5 places from the right); but this question was not pursued
further.

The discussion meandered along until SJP changed the subject by announcing that he
had implemented Pang’s method with the following additional heuristic: Prune a node for
which the “suit/rank graph” is disconnected. DEK reviewed the heuristics for early pruning
discussed in the previous class. DK pointed out that even if we know a node does not “work,”
we haven’t proved anything since we are dealing only with a single example from the class of
all nodes having a given color. DEK agreed, saying that this was only a heuristic applied to
a statistical process. One makes certain simplifying assumptions about how representative
the examples are of their respective classes, just as the Gallup poll tries to infer things about
millions of people after interviewing only a few thousand.

SJP stated that the “suit” graph (formed by associating nodes of the same suit) is
connected if and only if the “rank” graph (formed by associating nodes of the same rank)
is also connected. This is because both graphs are “compressions” (of cliques) of the
“suit/rank” graph, the graph in which no groups of cards are identified. SJP observed a
reduction in the size of the tree by a factor of 10, which was less than he had hoped (since
the time to test connectedness might increase the computation per node by more than a
factor of 10). On the brighter side, Pang’s method seems to find a solution (for the first

2“Research  is the art of asking questions.” - nl?r(,
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problem) approximately one third of the time.
DEK had done a similar thing; the estimated tree size was still about 40 million. After

200 tries of Pang’s method, 44 of them had turned up a solution.
Having considered some necessary conditions for losing, DEK asked whether there are

any necessary conditions for winning. PL suggested a Hamiltonian path in the suit/rank
graph. “Not quite,” said DEK, and gave the example of AV xKV followed by AV x QV. UH
suggested the simple condition of whether all remaining cards are of the same suit. Thus,
we can stop as soon as there’s a suit with no connections to other suits. (Either this suit is
the only suit left, and we win; or the graph is disconnected and we lose.)

SJP then suggested looking for a spanning tree for the suit/rank graph in which each
child is captured by its parent. DEK then proceeded to draw the spanning tree corresponding
to DS’s earlier solution. The tree can be described in LISP-like fashion thus:

-

(KV (Kb QV AV (60 (100)4V)9V (94(84 J4 34 (624104 44 34 (74
AWN)

AG pointed out that every connected suit/rank graph has such a spanning tree, so the
existence of a spanning tree per se didn’t tell us anything we didn’t already know. DEK then
described a refinement of the method in which cards are assigned a subscript corresponding
to the position (from left to right) in which they start. The tree given above then becomes

(KVls (K1r7 QV16 AVll (6013 (10%) 4%) 9% (9415 (8414 J412 349 (Q4s
1045 444 343 ( 7 4 2 Ml))))))

DS conjectured that every child of a node must have a smaller subscript than the node itself.
This hypothesis did not strictly hold, as demonstrated by the 90 and 94 in the constructed
tree.

Although it seemed not to work, DEK said that the idea was good. After all, we do
capture from right to left. To patch up the conjecture, we can say that the “value” of the
root of a subtree is the minimum value of all its descendants. Alternatively, we could require
the capturing card to inherit the value of the captured card. Then each card must have an
initial subscript higher than the values of its children.

With the extra value information, we can find connected suit/rank graphs that may be
proved unsolvable. The configuration . . .8494. . .8094. . . ( in which all the cards not shown
are clubs) is such a case.

Here’s the proof: Since the only card which matches the 94 is the 94, the tree must
contain the 9rl, as either a parent or child of the 94. The second alternative, in which the
9rl, is a child of the 94 is impossible, according to our restriction on node values. Hence the
94 is a parent of the 94, and the 94 is the root of the tree. A similar analysis holds for
the 80 and 84, demonstrating that the 80 is also the root of the tree! This contradiction
demonstrates the non-existence of a win.

This tree condition is a necessary, but not sufficient condition for our game. It is actually
a necessary and sufficient condition for a different game: “Skip-any Solitaire.” (A question
that DEK posed to be answered off-line was whether there exist any simpler necessary and
sufficient conditions for the skip-any game.) The connectedness condition is necessary and
sufficient for “Skip-any both-ways Solitaire.”
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DEK described an observation he made when using Pang’s method on these problems.
Big search trees tend to have solutions; conversely, small search trees, which tend not to
have solutions, are small enough to be exhaustively searched. SM suggested looking at the
highest mobility children first, in order to get to a solution fastest.

UH wondered what advantage Pang’s method had over exhaustive search, i.e., what was
“magical” about the method. DEK’s response was that we don’t know exactly why, but
Pang’s method is very good at finding different parts of a tree, and described its success on
a chess problem that he had previously spent many CPU hours on. In a search tree with
more than 1 Or0 nodes, only 6 of which were on level 36, Pang’s method found one of these
on its third try (!).

DEK finished by asking how one can check connectedness efficiently. Standard garbage
collection type algorithms could probably be improved upon by taking into account the
particular structure of this problem.

Thursday January 19

ESC started the discussion by suggesting that we use a table to store the configurations
with, say, 7 cards in them. Whenever we get down to 7 cards, we then simply look up this
table “in constant time.” He mentioned in passing that there would be about 150,000 entries
in such a table.

RC objected to this procedure on the grounds that when looking for a single solution we
are only going to see a very small number of positions.

DEK picked up on the figure of 150,000, and suggested that we would have to calculate
the number as 18 x 17 x . . . x 12 = 1.6 x 10s (We only use the cards from the initial 18,
choosing seven in any order.)

PL made the comment that there are many symmetries that we could exploit to save
time. At this point ESC revealed that he had already taken into account such automorphisms
when calculating this number 150,000. DEK then said that you can reduce to considering
graphs on seven vertices, with nodes adjacent iff they can capture each other. But this still
apparently requires 2 2’ slots.0

ESC described how he calculated the number 150,000. He first chose a card, and labelled
it with a variable for its rank and a variable for its color. Say the first card is RrCr. Then
the second card can be one of RlC2, R2Cl or R2C2, and we may continue this process for
subsequent cards. The actual number of non-isomorphic configurations obtained for various
sizes are given in the following table.

1 1
2 3
3 15
4 113
5 1101
6 12657
7 162863
8 2.28 x lo6
9 3.42 x lo7

10 5.46 x lo8
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Based on the (seemingly) manageable value of 162,863,3 ESC had chosen seven-card
positions for his lookup table. DEK realized that his earlier figure was an overestimate
because he had not taken into account that there are only four suits.

DEK then returned to ESC’s earlier statement about using “constant time” to look up
the table. What he really meant was “a short time.” One has to be careful when using the
O(1) notation that the context is clear. Everything we will see in our lifetimes will take O(1)
seconds. Even the U.S. National Debt is O(1) do11 ars, although we don’t have enough time
to examine a search tree that big.

RC wondered whether it was worth all the effort to reduce our tree to a dag (directed
acyclic graph) by identifying all equivalent nodes. 4 It was unclear to him whether there was
much more “fat to trim” from our search. He suggested a variant of Pang’s method in which
we keep track of the number of parents of a node in order to help the search.

.

DEK then asked how one may determine the parents of a given configuration. RC
said that one would need to know the original configuration. RK pointed out that in this
framework we would have to distinguish positions on the basis of the hidden cards. RC
still thought it was a nice idea, and accepted DEK’s suggestion to program it on a smaller
problem to see how it fares.

SJP changed the subject by suggesting replacement of the table of strata by a hash table
to determine the amount of duplication. Doing this for, say, lo-card configurations might
give an idea of how much commutativity is left.

DEK then commented on an idea that AH had brought up after the previous class.
His suggestion was to use as a heuristic the prompt elimination of a whole suit; perhaps it
wouldn’t even matter which suit is eliminated first. DEK could not solve the problem from
the data sheet by eliminating clubs first, but he did manage to find a solution whose final
card was the K&

AG then reported on the results of a program he wrote to find solutions. He described
the program as a simple depth first search, and observed that it solved between a third and
a half of the configurations given in the Data Sheet. For example, its solution to number 20
was

Q4xxJ4,AVx90,60 x xAV, 44~ x40, A4x xQ4,8bx4&  60~ x60, K4x xA4,
J~xx8&3~xxJ~, 20~x60, Khxx34, KVxKhx2&  74~x70, K4x74,
KOxK4.

DEK seemed relieved that some of the random deals did in fact have solutions; he had not
been sure what the chances of winning would be, or whether the first (constructed) deal was
just a fluke.

DEK then turned the discussion to the topic of connectedness. SJP began to describe a
method that he and RC had come up with independently. He suggested representing cards
as a bitmap, in which the third bit would be set, for example, if the card was a three. There
would be thirteen bits for cards, and four for suits, giving the (unfortunate) total of 17 bits.
Now one card can capture another if and only if their bitmaps have a nonzero  intersection.

3DEK  said “That number looks familiar . . . ,” and proceeded to factor 162,864 into 24 . 33 . 13 -29. He
then remarked “I guess not.” RK remarked that 13 -29 = 377 is 28 - 1 in octal . . . .

4As observed by QD , we do not have a general dag, but a variety in which nodes are on successive strata.
DEK compared this feature to a similar feature of modular lattices.
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In order to get a representation of the cards in a suit, all the cards of the same suit may
be combined together using a logical or. By comparing the bitmaps for suits, using a logical
and, one can determine connectedness using at most six comparisons.

DEK then asked if it would be possible to optimize further by only considering those
comparisons that are relevant given the suit and rank of the card just captured. This may
be a significant saving, if this component of the program is in the “inner loop.”

-

He went on to describe how “if-then” comparisons tend to be the bottleneck in parallel
machines, as processing has to be held up until the result of the comparison is known. He
told the story of how he wrote a merge sorting routine for one of the early Cray computers,
which employed a pipelined architecture. An ordinary merge sorting routine would have to
do three comparisons: one on the keys to be compared, and two to determine if the input
buffers had been exhausted. When such a routine was run, there were fast floating point
processors sitting idle. He rewrote the program so that in parallel with normal computation
those processors were multiplying differences between the buffer pointers and manipulating
the variables to give a result that was either zero or nonzero. If nonzero,  which was the
normal case, the loop could be executed once more without further tests. Otherwise, some
other section of code was executed. Since this other section did not have to be executed very
often, he gained a factor of almost three in performance.

AG then described how he tested connectivity. He used a pre-compiled suit graph, and
maintained counters for the number of links between suits, a counter for each suit, and one
overall counter. Connectivity holds then if the following two conditions are true:

l Every suit has degree at least 1.

l If there are n suits then there are at least n - 1 links.

AG stated that it was easy to maintain these counters, and the graph did not have to be
altered at each step. (The condition can fail when n = 5, but we have n 5 4.)

AM disagreed with the statement that the graph did not have to be changed at each step,
giving the following example. Suppose there are three sixes, the 60, 60, and 64. Suppose
that the first move is 74 ~64 which should decrease the spade link count by 2. If the second
move is 50 ~60 then, unless we have modified our graph, we will further decrement the
spade link count. This is not sound, as by this stage the 60 has no connection with the
spades. AG was convinced by this argument, and concluded that things were more complex
than he first thought.

SM described how he maintained a connectivity graph using four types of edges. An edge
was labeled with a two digit binary number; 00 signified that neither suit had a card of this
rank, 11 signified that both suits had a card of this rank, 10 and 01 signified that only the
first (or second, respectively) suit had a card of this rank. Such a mechanism makes it easy
to update the graph. He also maintained counts of the links. AG said that you could get
away with fewer counts by taking advantage of his observations mentioned above.5

DEK then said it may be better to check for an isolated suit, rather than for connected-
ness. The condition is weaker; but maybe it is strong enough, in the sense that the ext’ra
tests for connectedness may cost more than they gain.

SM said that his different types of link allow us to test just that.

5 “If my method had worked, it would have been faster . . . , ” - AG
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At the end of class, a delegation lobbied DEK to have the deadline for Problem 1
extended, since the applications comprehensive exam will take place the night before. After
careful consideration of the alternatives, it was decided to move the due date back one week,
but to otherwise leave the schedule as it was. There will therefore be a five-day period in
which we’ll be working on both Problems 1 and 2.

Tuesday January 24
DEK entered, and in show-and-tell style asked “What did you all learn over the weekend?”
AG, who did not have the camps  to worry about, described how he did some further

commutativity testing, which reduced the size of the tree by about 25%. It was quite easy to
implement, with additional gains for configurations of the type 243444  where all cards are
of the same suit or the same rank. For example, from . . .2&3&4& . . one can move 34x.24
followed by 44 x 34, or 44 x 34 followed by 44 x 24 with the same result. We eliminate, say,
the second possibility from consideration. This type of commutativity is not eliminated by
the dividing line approach. He also was able to avoid extra work in cases like 2434JVKV44.

DEK then asked whether AG had considered positions like 24JVKV344f in which the
commutativity involved a “dual” skip-two move. AG said that he hadn’t, but that it would
be easy to implement along the same lines as in the previous case.

RK then wondered whether you could make similar observations with skip two on both
sides, for instance on the clubs in the configuration 24JVKV34QhAV4JJC. It was quickly
realized that it doesn’t work in this case, as once the 34 takes the 24, the 44 can’t take
the 34. RK then said that it was a stupid idea?

AG then pointed out an additional feature of his approach, which is illustrated by the
following example. Remember that with the configuration 243444..  .84 we ruled out
the sequence of moves 44x34,  44x24. Suppose that we play 44x34,  and then make
several other moves, whose net effect is to capture the 44 with the 84. Then we are still
not permitted to play 84x24 for the same reasons as before. AG implemented this by
maintaining a table of bits, one for each card, saying whether capture of the left neighbor
was permitted.

DEK then demonstrated another case in which there were two equivalent ways to reach
the same position. Consider the position abcde j, where the following captures are possible:
j x x c, e x x b, and d x x a. Then the sequence of moves (as just given) is equivalent to the
sequence e x x b, d x x a, followed by j x c. DEK thought that this observation wouldn’t save
very much time, as it was one uncommon case, among (not too many) such equivalences.7

SM, who also hadn’t been bothered by camps, then described his experience searching
for solutions to the deals in the Data Sheet. Without the dividing line, his program could
not solve the problem in hours. With the dividing line, the program solved all the examples
in thirty to forty minutes. Augmenting his program with a test for isolated suits resulted
in a running time of 2 minutes to solve all of the examples. SM mentioned that he tried
rightmost moves first in his dividing line strategy, since these moves seemed to affect other
moves the least. The class speculated that this was largely responsible for the fast running

‘DEK  objected to calling such ideas stupid - it is part of the normal problem solving process to make
conjectures that don’t pan out. RK replied that “stupid” was not such a perjorative term. DEK then asked
what was; “brain damaged”?

7“A good idea can save you several orders of magnitude. Other good ideas can cost you.” - DEK
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time of SM’s program.
SM’s results are as follows: the deals which have wins are 1, 3, 4, 5, 6, 8, 16, 18, 19,

20, 21, 22, 24. (DEK had f ound all but 18, 20, 22 and 24 using 100 repetitions of Pang’s
algorithm.) For the deals without solutions, it seemed that Pang’s method had estimated
the size of the tree quite well. The following table summarizes this data.

Deal Number Actual Size (SM) Pang’s method estimate (DEK)

43K
261K
553K

93
15K*

89
5K

481K
64K
27K
6K

2 56K
7 265K
9 579K
10 93
11 0
12 79
13 3.8K
14 447K
15 6OK
17 30K
23 5K

Deal 11 is interesting because it has a card that’s disconnected from the rest, and so it’s
easily seen to be unsolvable. SM’s programs checked for disconnectivity at the start, and
after each iteration; DEK’s only checked after each iteration, and then only on the rank/suit
involved in the capture. Hence DEK missed the early cutoff and estimated a large tree size.

DEK then described how, back in the good old days of punched cards, he once constructed
a program to solve the original solitaire puzzle.’ After having waited all night for the machine
to punch out an answer, DEK stopped it at 8am to find it hadn’t backtracked past the first
24 moves. He later calculated that it would have taken 35,000 centuries to run to completion.
The moral of this story is that instrumenting a program is a good idea, to obtain knowledge
on how it is performing.

RK then returned to the apparently good estimates given by Pang’s method, and pointed
out that we don’t know how many nodes it actually expanded, and so it could have seen
quite a lot in 100 iterations. (The estimates above were averages over 100 runs of Pang’s
method.) DEK concurred, saying he wished he had time to instrument his program better.
Other statistics he wanted to see were the estimates given by Pang’s method for the number
of nodes on each level of the tree, not just the total. The level by level statistics typically
have an approximate “log-normal” distribution; this means that the number of digits in these
numbers tends to make a bell-shaped curve.

DEK also pointed out one interesting point about methods that are proved to give the
correct expected value. He described how an algorithm could generate many underestimates,
and with a very small probability generate a huge estimate. This would give the correct
expected value, but would have a large variance. Pang’s method has a relatively small
variance, compared to DEK’s earlier method in which all nodes at the same level had the
same color.

8The  one with the pegs in which the aim is to capture the pegs one by one, leaving only one peg at the
end.
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SM announced that of the fifty random deals in the supplied data file, twenty-four
were wins. So it looks as if the game can be won about half the time. DEK expressed
disappointment that he never seemed to win nearly that often when he tried it by hand. AM
remarked that he had played the first deal for two days, and still didn’t find a win!

DEK then returned to the “skip-any” version of the game, in which moves still had to be
from right to left, but any number of cards could be skipped. The simple connectivity test is
necessary but not sufficient. But in the two-suit case, connectivity is sufficient except when
there’s only one link between the suits, and one of the link cards is the leftmost, and that
card isn’t the only one of its suit. For example, you can’t win from 44.. .44.. . when the
cards not displayed are all clubs or spades, with at least one spade, and with no two cards
of the same rank.

RC suggested a strategy of choosing “destination piles” for each suit, and then moving
“connectors” onto these piles at the last minute. The connectors could then themselves be
joined.

DEK wondered whether one could reconstruct from the final piles how the game had
been played. It was agreed that this was not possible. DEK then described another problem
in which all cards had the same suit; he tried to count how many possible orderings would
occur in the deck after the rules of skip-two solitaire were used to reduce everything to one
pile in all possible ways. (For example, starting with A020304050  you can get five final
orderings, two of which have the 30 on top.) He was unable, though, to solve the recurrence.
He justified looking for answers to such esoteric problems on the grounds that he’s always
looking for instructive questions to put on exams.

In solving this problem, most of the groups had written programs to do an exhaustive
search of the non-redundant parts of the game tree. SM and DS ran their program (which
was judged by KAR to be the fastest) for deals from 2 cards to 35 cards. Their results were
as follows.
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Cards Deals Chance of Winning
2 2000 29.7 %
3 2000 9.9 %
4 2000 6.3 %
5 2000 4.7 %
6 2000 3.4 %
7 2000 3.2 %
8 2000 4.1 %
9 2000 4.8 %
10 1000 4.8 %
11 1000 8.2 %
12 1000 9.0 %
13 1000 12.6 %
14 1000 16.3 %
15 1000 21.2 %
16 1000 26.9 %
17 1000 38.1 %
18 1000 45.4 %
19 500 55.6 %
20 500 65.4 %
21 500 73.4 %
22 500 83.6 %
23 500 88.4 %
24 500 93.0 %
25 200 95.5 %
26 200 97.0 %
27 200 99.5 %
28 200 100 %
29 200 100 %
30 200 100 %
31 100 100 %
32 100 100 %
33 100 100 %
34 100 100 %
35 100 100 %

Given this information, DEK’s choice of 18 cards seems remarkable. DEK maintains,
though, that it was only the appealing property 18 + 17 + 17 = 52 that influenced this
choice.
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Chapter  3

Toetjes Revisited

Tuesday January 31
Before the start of class, DEK presented certificates, typeset with a historic system called

POX, to the trivia hunt participants. He noted that this may well be the last time that POX
would ever be used, since it will disappear when the machine SAIL is decommissioned.

Having spent the previous Thursday discussing the trivia hunt solutions, today was the
first occasion that Problem 2 was discussed. It was pointed out that the references in the
Data Sheet did not have matching entries in the bibliography (and in fact that there was no
bibliography). DEK told the class that [l] refers to Tech Report STAN-CS-87-1154, while [2]
refers to Tech Report STAN-CS-88-1208. The latter of these was written by Tom& Feder,
who was present in class at DEK’s request.

DEK then presented the notation used in the Data Sheet. The function j(xr, . . . , xk)
represents the optimum move for the k + lst player. The random variable g(xr, . . . , xk)
takes values that are “optimal continuations.” We need to include a permutation 7r in the
continuation to be able to tell which of two (or more) choices at the same point in the interval
is greater.

This notation is obtained by taking the limit of guesses arbitrarily close to a certain-
number x. Consider, for example, the two player game in which the first player chooses the
point +. The second player would like to choose either $ + e or i - c. The smaller 6, the
better the move; however we cannot let E = 0, since i is already taken. Hence we take the
limit as E -+ 0, preserving the relationship

This generalizes to the many player case. DEK stated that we shouldn’t worry too much
about the epsilons. Tomas pointed out that the intuitive results are obtained by taking these
limits “last player first.”

AM wondered whether there would ever be a situation in which a player was “boxed
in,” i.e., had players choosing numbers e below and e above his choice. DEK said that we
couldn’t discount this possibility at this early stage, but that it could well be possible that in
an optimal game, boxing in does not occur. It certainly does happen, though, that optimal
games have two players choosing points c apart.

DEK then started on an extended example.
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In the above scenario, we can calculate the payoff for each player as follows:

PI = ELI22

P,= ;
= 0.25

x 3 - 2 1 = 0.25
P3 = x4--22

p4 = &$E4
= 0.3
= 0.2

In general, with n players, moving at x1 < x2 < . . . < x,, we have

Pl = T
xk+l-xk+l l<k<n

RK observed that the formula for 1 < k < n would work also for k = 1 and k = n if we
imagined “mirror image” players who have chosen x0 = -xl and x,+1 = 2 - x,.

Now suppose that we have one extra player, who must choose a number given the
configuration above. Player 5 can seem to get a payoff of 0.2 in two different ways: anywhere
in the interval (0.3..0.7), or by choosing arbitrarily close to 0.2 (approaching from below).
PL and RK pointed out that the latter of these alternatives can be discounted since the
problem statement forces us to choose numbers uniformly over all optimal numbers, and
(0.2) is a set of measure zero.

DEK added that there was another reason to avoid the second choice above. The second
alternative involved choosing a point arbitrarily close to 0.2. But no matter how close we
get (except in the limit), this choice will be strictly worse than the first alternative. Thus
DEK proposed to allow the choice of “limit moves” only if all the moves with the optimal
payoff are limit moves.

DEK suggested that an infinite set of optimal points could be represented as a finite
union of disjoint intervals. He said open intervals would suffice, since the endpoints could
only occur with probability 0.

In the example above, the random function g may be represented as the integral

g(O.2,0.3,0.7,0.9)  = Joe7 (t; 12534) &
0.3 .

Based on this move, the second player may estimate his payoff as

If players 3 and 4 had swapped their choices (i.e., player 3 chooses 0.9 and player 4 chooses
0.7) then the payoff for player 4 would be
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In both cases the integral is evaluated by considering it at the midpoint 0.5, since the integral
is linear.

RC suggested that we may not need such a complex representation of f and g as integrals.
He said that based on a preliminary analysis of the problem, f is a piecewise linear function.
RK pointed out that this function need not be continuous.

DEK went on to describe the analysis of the three person game in Appendix 2. He
mentioned in passing that the order of the previous moves does not affect the choice of
the current player. Suppose player 1 plays at 2, and player 2 at y. Since the order is not
important, we assume without loss of generality that x 5 y. Suppose that player 3’s choice
is denoted by x. Then the payoffs for various moves are summarized in the following table.

Region Range Best Choice Payoff
I: z<x X - C X - -%

II: x<x<y Any y--a:
III: Y<X Y+c 1-;+

We may then compare the relative merits of each of these moves based on the actual
values of x and y . It is easily shown that region II is better than region I precisely when
y > 3x; when y < 3x, region I is better. Similarly, region I is better than region III when
y > 1 - 2, and region III is better than region I when y < 1 - x. Finally, region II is better
than region III when y < 9, and region III is better than region II when y > F. This
information is summarized in the following diagram.

32



X

The enclosed areas of this graph are labelled with the best region for player 3. AM
wondered whether we had to consider whole areas, or whether we could restrict ourselves to
only consider “corners.” Tomas replied that you do need the full generality of areas, since
every move can be optimal in some regions.

DEK then suggested reviewing (or learning) a little linear programming. His favorite
book is one by Dantzig.

PL reported that he had analysed the four player game, and had calculated a payoff of
$ for the first player. DEK said he was looking forward to going through the four player
game next class, and he wished everybody fun playing with inequalities.

The groups for Problem 2 are:

l PL, DQ, DS

. RC, UH, RK

l SM, AM, SJP, MY

l ESC, AG, ADG, DK
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Thursday February 2
The class started with PL describing his analysis of the four-player game. He said that

the first player should choose to play at i or g; the second player should then choose the
other. The third player should then choose i, with the fourth player playing in either of the
two intervals of length 5. This gives player 1 a payoff of &.

PL conjectured that in the five-player game, the first player should play at i, and said
that he was in the process of writing a program to handle the five-player game. DQ went
further, and conjectured a formula for the general case. Suppose there are n players. Then
the first player should play at &, which we denote by x. The second player should play
at 1 - x and the third at 3x.

At this point, DEK paused to emphasize the need for proofs of these conjectures.i  It
is appealing to suggest symmetric strategies simply by following one’s intuition; stronger
arguments are required.

.

DQ thought that, apart from the last player, there would probably be only one or two
optimal moves. DEK replied that such an observation would make a program to solve the
problem easier to write.

SJP then mentioned that Tom& had analysed a version of the game where the ends were
already taken.2 Hence his analysis of the case n = 7, when the random-choice rule seemed
to diverge from the deterministic rules considered in his paper, doesn’t hold for the version
we are looking at.

RK discussed his analysis of the four-player game, commenting that some of the inequal-
itites that are generated are redundant, i.e., they are implied by other inequalities.

DEK said that his intuition at this point was to go general rather than to consider a
number of special cases. He highlighted two subproblems to finesse: handling symbolic
inequalities and symbolic integration.

PL suggested that by choosing “representative” points in an interval, one could avoid
the need for symbolic integration. DEK said that the crucial situation to avoid is the case
where there are two optimal intervals of different lengths. If this situation occurs, then we
need to evaluate an integral of the form

s
b + Jcd * * *

(b “‘a; + (d - c)’

This would lead to problems since a, b, c and d would be variables from higher level integrals.
But he suspects that we can get by with cases where the inteval sizes are commensurable
with each other.

At this point, AG said that in “real life” there would be interaction amongst the children,
such as a spiteful move by a later player made to punish an earlier player. DEK then
compared this to the game of Risk, in which the optimal strategy seems to be to wait until
most of the opposing forces have annihilated each other, and then to pounce.3

‘He actually conjectured that computer scientists recognised  different standards of proof twenty years
ago, although he didn’t offer a proof of this.

21n  fact there were a number of different variations on the game considered in CS304  two years ago, such
as playing on a ring rather than an interval. See that technical report for further details.

3The  discussion then degenerated into various strategies for playing Risk. It was amusing to see how
many avid Risk players there were in the class.
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SJP then brought up an interesting example, which was based on the notes for CS304
two years ago. Consider a five player game, in which the first two players play at i and
i. One may suggest (as does DQ above) that the third player play at g. After this move,
player 4’s best move is at i, and player 5 should play in any of the three intervals of size $.
This gives player 3 a payoff of &.

However, consider the situation if player 3 plays at t - E. Player 4’s best move is now
at i- $. Player 5 will now play in one of the two intervals of length $ + 5. The important
difference, as far as player 3 is concerned, is that when he plays exactly at $, there is a
$ probability that player 5 will take some of his space; but when he plays at P - E the
probability drops to i. The payoff for player 3 in the latter case is 5 - g.”

Note that we don’t want to take e all the way to the limit here, because at the limit
the payoff is worse. In the discrete case, say choosing integers between 1 and 1000, player 3
would want to choose the smallest possible non-zero 6. For example, if the first two players
choose 125 and 875, then player 3 should choose 374.

KAR pointed out that if RC’s intuition about the payoff being a (possibly discontinuous)
picewise linear function was correct, then the case illustrated above may be visualized as a
line segment in the graph of the payoff function whose higher endpoint is a “hole.” A simple
example of this is the function f defined by

f0 {
x x&x = za x22

RC suggested using a symbolic language such as LISP to write a recursive program, and
hope that you can get the answers that way. He thought that this was more promising that
using C, for example.

RC then asked a question about handling the max function in linear programming. DEK
suggested the following: Suppose we want the constraint a < max( f,g). Then we add an
auxiliary function h, and new constraints a < h, h > f, h > g. We then minimize h in the
objective function.

So suppose we are trying to minimize 3a + 4b. Then after adding h as above, we now
try to minimize 3a + 4b + ooh. The coefficient of 00 ensures that h is minimized ahead of
3a + 4b.

PL gave a reference to a paper by Hodes in IJCAI 1971, describing methods to handle
such inequalities. DEK pointed out that various algorithms perform differently on different
applications, and so one cannot expect to have a method that is best for all problems.
He referred to his “Sorting and Searching” volume, in which he included 25 different sorting
methods because no one of them was completely dominated by any other for all applications.

Tuesday February 7

DEK opened the class by asking what the consensus was on the Toetjes problem. Silence.
DEK proceeded from group to group to find out what they had done. It soon became

clear that the problem was very hard, despite its apparently simple formulation.
ESC described his group’s attempt at formulating an algorithm, although they had

nothing that worked.

4Note that Torn& considers a version of the game in which, given intervals of equal length, a player
chooses to play nearer the earliest players, and so this type of situation does not arise.
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DQ and PL described a program their group had written which worked for n = 2, and
for n = 3 (modulo some “junk”), but did not work (yet) for larger n.

UH described how his group got part way to writing a LISP program to generate the
whole game tree.

SM and SJP described  how their group attempted to write a program to solve the problem
for general n. Their main obstacle was formulating E-moves symbolically.

The g function in the problem statement didn’t preserve enough information. It gave
the limiting value, but did not discriminate between cases where the limit is never actually
achieved.

-

Namely, suppose g(xi, . . . , xk) = (xk+i, . . . ,x,; ;lr). The limiting payoff to player k if he
plays at xk is pk(xl,...,x& ;rr), some linear combination of xi, . . . , x,. But E-moves might
make the actual payoff strictly less or greater than this.

For example, suppose n = 3 and k = 1. If x1 = i then player 2 will play at $ + 6, after

which player 3 will play at $ - 8; we have g( $) = ($, i; 312) and pl( i,$, f; 312) = i since

Pl(Xl,  ~2~x3;  312)  = $( x2 - x3). But the actual payoff to player 1 will be

Pl$’ 12 lj + 6, Tj 1 1 1 1-
8; 312) = -6 + 2~ + Z~‘,

always slightly more than $. Another move for the first player that gives a payoff 5 i must
be non-optimal. (If the payoff had been $ + $6 -
since e’ + 0 faster than 6 + 0.)

ie’, we still would have claimed it was > i,

Our discussion concluded that this problem could probably be resolved by keeping track
of which variables xk+i, . . . , x, are equal to their limits, which are slightly higher, and which
are slightly lower; for example, g( 5) = ($+, f-; 312). Variables with a “+” or “-” adornment
are called “tainted.” To decide whether p&i,. . . ,x,; 7r) is attained exactly, multiply the
adornment of the first tainted variable with a nonzero  coefficient in p&i,. . . , x,; r) by the
sign of that coefficient. If this quantity is positive, then we are slightly higher than the limit,
and if it is negative then we are slightly below; $&(x1,. . . , x,; r) is attained exactly if no
tainted variables have nonzero  coefficients. In the example pl(xl, x2, x3; 312) = $(x2 - x3),
the variables with nonzero  coefficients are x2 and x3, and the first tainted one is x2.

While discussing the apparent intractability of the Toetjes problem, DEK referred to
Marshall Hall’s axiom, which says that if you can solve a combinatorial problem of size n
by hand, then a computer might just be useful for a problem of size n + 1. Hall said this in
1960; modern computers might be able to go to n + 2 before combinatorial explosion takes
over.

DEK then brought up the topic of linear programming. SJP had approached him during
the week about handling strict inequalitites. The simplex method is only applicable if the
given inequalities are not strict. SM explained that in order to get around this problem they
had kludged the inequalities by using non-strict inequalities, shifted by some small amount
c.~ SM had tried e x &. This was interesting, because DEK had just asked a colleague of
his, whose main area of research is also algorithms, how he would solve a linear programming
problem with constraints like x + y < 1. His colleague replied that he would probably try
2 + y _< 0.999?

5This  c is not to be confused with the variety of epsilon discussed previously.
‘This colleague remains anonymous, as he does not yet have tenure.
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RK wondered whether we were dealing with ordinary real numbers, or what he termed
the “hairy” reals, i.e., the reals augmented with various &. DEK replied that he was just
thinking about the ordinary reals, although the interested student may want to read his
book “Surreal Numbers.”

The simplex method is good at solving systems of the form

or deciding that no solution is possible. (Here A is a matrix, and Ir: and “b are vectors.) Can
we also do

AZ>&?

It seems that the strict form has a solution if and only if the set of solutions to the non-strict
form has a positive “enclosed volume”. It is not immediately clear whether there is a simple
algorithm to test whether the volume is positive.

DEK went on to describe the Fourier-Motzkin elimination method for solving strict
inequalities over the reals. Consider the system of inequalities given by

8a +4b < 9
2a -3b > 1
4a + 6c > 0

a + b - c  >  2

We may rearrange the third and fourth inequalities to get

2
a+b-2>c>--a

3

after which we can eliminate c leaving a system with one fewer variables:

8a +4b < 9
2a - 3b > 1
;a+b > 2

We may write this in the form

5
2--a<b<

3

Eliminating b gives

or

which has a solution. So there’s a solution to the original set.
That worked pretty well, but in general the method can lead to a large system of

inequalities. If there are k inequations of the form f; < c, and I of the form c < gj then
eliminating c will yield a system with kl inequations (in addition to those from before that
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did not involve c). RC and RK noted that they had used this method themselves, but were
appalled at the combinatorial explosion that resulted.

DEK then switched the topic to the circular version of the game, which is more symmetric
since there are no longer any special endpoints. PL said that he had derived an optimal
strategy for the last three players in such a game; their moves depend only on the relative
sizes of the largest three intervals after the (n - 3)rd player has moved.

According to PL, in the four player game on a circle the second player should play $ - e
of the way round from the first player, in either direction.7  The third player should then
play at J - i exactly. The final player will play in one of the two largest remaining intervals.

There are a number of other geometries which could be considered. We briefly considered
extending the problem to higher dimensions, by playing in a square, or on a sphere for
instance. (If the first player chooses the north pole and the second player chooses the south
pole, it seems that the third player may always control i of the globe.8)

PL suggested that in 2 dimensions the children should be choosing lines rather than
points, and that the winner should be the child with the closest perpendicular distance
to the mother’s point. RK objected, saying that the mother should also choose a line;
RC suggested a “least-squares” measure of closeness, while UH suggested using the angle
between lines as the measure.

Like many interesting problems, this one was easier to generalize than it was to solve.
Having failed to make much progress in two goes at the problem, DEK wondered whether
he should use it again for his next CS304 class; perhaps this class could be renamed!

We finished by dividing into groups for Problem 3. The groups are

ESC, UH, SM

RC, DQ, MY

AG, PL, SJP, DS

DK, RK, AM

There once was a team of programmers
Who became ardent don’t-give-a-damners.
They quit their Symbolics’
for haunts more bucolic
then went after their TA with hammers. ~ MY

There was a TA for Knuth
Whose students wrote lim’ricks, forsooth!
He graded their projects
Devouring their toetjes
And ended up losing a tooth. - KAR

70bviously  by symmetry, it does not matter where the first player plays.
8This remihded us of Risk again.
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Chapter  4

Label Placement

Thursday February 9

DEK began by announcing that TFX macros for Problem 3 would be made available on
polya.

DEK stated that the wording of Problem 3 is deliberately vague. He said that when doing
research, it is always legitimate to change the problem specification into a form that is more
interesting or more interesting to solve. In the case of Problem 3, part of the problem is to
specify what is required. Two possible avenues are formal methods, and heuristic methods,
although given that this is a practical problem, the proof of the pudding will be in the
pictures.

RK had earlier suggested an interactive approach, in which a user could say, for example,
“this subset of cities is too cluttered,” and the program would then compensate. DEK said
that it is not always necessary to have a totally automated system, although for this problem
automation would certainly be desirable.

AM wondered if it was legitimate to change the font size. DEK said that this was only
justified if the labels just wouldn’t all fit at the given font size. He pointed out that five
point type is not exactly 5 the size of seven point type; a small correction is added so that
human eyes can read it. AM then suggested varying the font from city to city, in order to
fit the names in. DS said that residents of cities with small type may get offended if the size
of the font was based on something so trivial.

Even for remote cities, there may be some interaction. For example, the configuration

would not be as good as

1 San Diego 1 l .lSpringfieldl
although UH did not think that such optimizations were relevant.

KAR wondered whether the fact that English-speaking readers scan from left to right
makes any difference for our placement of labels. DEK thought not, since this does not tell
us whether the labels should be to the left or right of their corresponding points. Some
others suggested, though, that there may some benefit in attempting to be consistent in this
regard. No consensus on this point was reached.

39



MY then suggested a method based on an artificial potential field. If we imagine the set
of points as a physical system, then we may invent “forces” between points and labels. In
our situation, we would like points to repel all labels except their own. They should attract
their own labels, but only until the labels are sufficiently close; when they are too close, the
labels should be repelled since we don’t want a label overlapping its point.

Once such a system is set up, it can be iterated, with the positions of the labels changing
in proportion to the forces on them. RC and PL discussed the utility of iterating one label
at a time rather than once for all labels, although nothing could really be proven without
some empirical results.

DEK likened th’is approach to what has been called “simulated annealing.” The idea of
this type of method is to formulate some combinatorial problem as a physical process, with
some measure of “energy” or “temperature” determining the mobility of the current state.
As the temperature is reduced, the state stabilizes into some crystal-like structure; hopefully
the order inherent in this structure represents some desired minimum-energy solution to the
original problem.

DEK then described a problem he had worked on as an undergraduate. Suppose you
have a circuit with arbitrary connections between components. The aim is to arrange the
components in a linear fashion in such a way that the total length of wire is minimized. For
example, consider the circuit

3 4

It may be linearized as
1 2 3 4 5 6

which would give a total wire length of 10. Using the “force” idea, we may say that node
2 is being pulled to the right for this linearization, as it is connected to nodes 4 and 6 by
relatively long wires. Longer wires are weighted higher, since it is the total length that we
want to minimize. We iterate by computing the “center of attraction” of all nodes according
to the forces on them, and then sorting the nodes so that their centers of attraction are in
ascending order.

This method seemed to do well for the first few iterations, but subsequent iterations
tended to alternate between the same configurations. In retrospect, DEK said that intro-
ducing some sort of randomness, as exemplified by the temperature in simulated annealing,
would have been a good idea to help avoid local minima that are not global minima.’

DEK went on to describe the “memistor,” which was invented in the 60s by a professor
at Stanford. The purpose of this device was to predict whether it would rain at a certain

‘This layout problem was later shown to be NP-complete, although for some special cases such as the
n-cube efficient algorithms are known.
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location based on the barometric pressure measured at a grid of points in the vicinity. The
memistor worked by combining the barometric pressures according to some linear function,
the coefficients of which were stored in the machine. If this linear function was greater than
a certain threshold, the memistor would say “rain,” otherwise it would say “no rain.” The
memistor was fed a moderate amount of data, and its predictions were compared to actual
outcomes. The crucial feature of the device was that it could learn; when it was wrong, it
would tweak its coefficients slightly to make it right next time.2

-

Before allowing any further discussion of Problem 3, DEK wanted to tell one more
anecdote, this time concerning the travelling salesman problem. Back in the 60s) AT&T
had an application involving punching holes in metal plates. Each plate may have needed up
to 200 holes, and a good ordering of the holes to punch would save time and hence money.

.

This is the classical travelling salesman problem, which is known now to be NP-complete.
Shen Lin, working for AT&T, found the first good heuristic for solving this problem. His
technique was basically as follows. Suppose there are n points. Let k be a small number
(Lin used k = 3)) and start with some arbitrary path. Consider all possible improvements
in the path length that may be made by permuting up to k pairs of points in the original
problem. Choose the permutation that gives the smallest improvement, and change the path
accordingly.

We repeat this procedure until reaching a local minimum. Doing the computation several
times with different (random) starting points, and taking the best solutions, would show
cetain edges e common to all the best solutions known. At this point, we include all such e
in the final path, and recursively solve the problem for the remaining graph.

This method has running time of order nk-‘. Of course, it is possible to construct
examples for which this method fails to find the correct tour; however, at the time nobody
could do better3

RC then explained the phenomenon known as histeresis, which is encountered sometimes
with the simulated annealing process. At low temperatures, points don’t want to move,
and so it is hard to converge on a good solution, or even to avoid local minima. At high
temperatures, there is a lot of random variation, and so convergence in the general sense is
not possible.

AM wondered about how one would format the labels of two points directly above one
another. RK suggested

1 San Diego 1

LSpringfield)

DEK remarked that we should have taken vertical separation into account in our earlier
example, so that one city would be higher, and the other lower.

We considered the case with four points in a vertical line. Should the items alternate
left /right /left /right, or should they be all on one side ? If the points are close together then

2At the time, the memister  actually outperfomed the weather bureau.
3When  this method was discovered, AT&T placed numerous advertisements in various journals advertising

the fact, and so Shen Lin became somewhat famous.
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alternation is required. It isn’t clear when, if ever, alternation begins to lose when the points
are moved apart.

DEK then turned the discussion to data structures. If we represent a rectangle by a 4-
tuple consisting of its upper, lower, left, and right coordinates, then how can we tell whether
two rectangles overlap ? It was suggested that one may look for a corner of one rectangle
being enclosed by the other. However, DQ came up with the counterexample

-

It was conjectured that in our case this cannot happen since all boxes have the same
height. RK complained that this was “easy,” and that we should spend our class time on
the hard parts.

RC suggested the use of k-D trees, which have been used extensively in VLSI design.
By total coincidence, DEK just happened to have brought a reference on a related method,
which is mentioned below.

A k-D tree is an ordinary binary tree whose nodes are k-tuples, except for the following
feature: at the top level, the partitioning is according to the first coordinate; at the second
it is according to the second, and so on, cycling around at depth k + 1. This representation
allows efficient search for regions as well as points. RC pointed out that rotation within
this structure was difficult, since the two subtrees  of a node (x0, yo) are not compatible, as
illustrated by the diagram

X0
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Using a 4-D tree, we can choose one of a subtree’s branches if the region we are interested
in appears totally to one side of the root of that subtree;  otherwise we have to explore both
branches.

DEK mentioned a paper by McCreight4  that appeared in the SIAM Journal of Computing
14 (1985) on pages 257-276. This paper solves the problems alluded to above by placing an
ordering on the nodes in the tree of the following form: the root node of a given subtree,
which branches on the coordinate x, must have the smallest y-coordinate of all remaining
nodes.

-

Tuesday February 14

DEK asked what progress had been made on Problem 3.
DK said that his group had decided to implement the idea of forces, with partitioning of

the data set into components which strongly affect one another.
DEK asked how we can tell when two cities are sufficiently close that they should be in

the same component, or “cluster.” He said that given a set of pairs of points which interfere
with one another, one can use the union-find method to obtain the connected components
(which are cliques).

In order to determine whether two points interfere, we can define the “possible label
placement area” as the region surrounding a point that may contain a label under some
reasonable positioning of the label. DEK gave a simple geometric argument to show that
this region is a BTEX oval5 and is illustrated below!

SJP argued that using the union-find method may be an overkill; it may not be necessary
to construct an equivalence relation. For example, in the situation

we want to say that the middle point affects the two side points, but we may not want to
say that the end points affect each other. This information could be stored easily in a simple
graph data structure. KAR noted that one could investigate the benefit of, say, looking two
edges away rather than just one edge away, and tune the program accordingly.

4Pronounce d “MacWrite.”
‘This is not quite true, as in a BTEX  oval the curved parts are made as large as possible subject to the

dimensions of the oval.
‘For computational uses, a rectangle is probably sufficient.
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AG mentioned that his group was using a force approach, and that it may not be necessary
to consider far-away labels, as the force would be small compared to those of points closer
to the 1abels.7 His group seemed to be using the idea mentioned by KAR above.

AM noted that the graph would need to be constructed only once, at the start of a run,
since the points themselves do not move.8

DEK then remembered about something he had discussed earlier with KAR regarding
test data. We decided that each group should submit a data set corresponding to some (real
or imaginary) map, in the same format as DEK’s data set in the Data Sheet. All groups will
then run (a single version of) their programs on all the data sets. No “tweaking” is allowed
on the “mystery” data sets. The data sets will be available to test the programs at about
loam on the day the project is due. Hence, data sets must get to KAR by 9am on Tuesday.

.

DEK described how he transcribed his data set from an atlas in the library. It took him
less than two hours, including the time spent converting coordinates. SJP, who had earlier
stated that this data set was going to be almost impossible to draw acceptably, said that
he now saw some room for improvement, and that things were not so bad. Others were
not so optimistic.g According to SJP, the hard part was not to separate the boxes from the
points and from each other, but to be able to associate points with their correct labels on
the map. UH mentioned that using landscape mode for output may give a less cluttered
result, because we could scale x and y.

RK then described a “random temperature” approach he had tried, which used a complex
evaluation function involving distances from the label under consideration to all other points
and labels. He said, though, that this method would probably not do as well as the force
method, since you can’t tell how to make a reasonable solution better, even if you do have
a good estimate of how good it is.”

SM pointed out that, strictly speaking, no group was “doing forces” correctly, as they used
no concept of velocity. PL countered that they were, but in a system with infinite friction.
DEK said that it was not really necessary to model a real system so closely, preserving laws
such as F = mu. Many forms of potential energy reduction would suffice.

AM thought that it may be reasonable to do horizontal positioning and vertical position-
ing separately. This is motivated by the asymmetry between them: labels are of constant
height but varying width. He also suggested considering only a limited set of positions
around a point at which a label may be placed.

KAR suggested that, in the worst case where labels for some points just won’t fit, numbers
could be assigned to these points, with the label being made explicit in a footnote. (This
suggestion was greeted with hisses, for some reason.) PL said that another possibility was
generating arrows pointing to such congested points so that labels may be placed in more
open areas.

DEK then brought up the topic of random numbers, and conjectured that every good
program uses a random number generator. He was mildly embarassed when somebody
pointed out that TI$ did not have one. “But METQFONT  does,” he retorted.

7“So  there’s a weak force and a strong force.” - DEK
8SJP  noted that this property holds only if one does not have a buggy program.
“‘The East Coast is a disaster when looked at in a formal sense.” - AM

“DEK did not think this was necessarily important; after all “Even though you’re stirring scrambled eggs
non-uniformly, they seem to get evenly done.”
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He suggested using a pseudo-random number generator with a user-selectable seed. This
is essential when it comes to reproducing results, which is why pseudo-random number
generators are sometimes preferable to “real” random number generators.

DEK went on to describe how he had tried varying a set of fonts by changing a small
number of bits in the character images, at random. He found that a little randomness
actually makes the letters more attractive; a standard deviation of about .005  em in the
positions of key points looked best.

-

DEK then turned the discussion to minimum spanning trees. The method of generating
a minimum spanning tree is to iterate as follows: Include the smallest remaining edge that
does not join nodes already connected by some path. If there are n nodes in the graph, then
the spanning tree will contain n - 1 edges. We can use this method to generate partitions
of the data into clusters. Instead of iterating to n - 1, iterate to n - k to get k different
clusters.

.

A discussion of annealing, and “simulated annealing,” then followed. It was stated by
DQ that using simulated annealing techniques, people have been able to solve the traveling
salesman problem efficiently within an empirically measured accuracy of 1%.

DEK then asked RK about the cost function he used in the method he described earlier.
The denominator of the individual terms of the cost function for city x looked like

I+ (d(x) z(x)) - XQ2;

here d(x, Z(x)) was the distance from x to its label. RK chose this because it could not be zero
and it tended to force d(x, y) towards 20. DEK described how he used a similar “badness”
factor in T@ to measure whether lines of text were either too sparse or too cluttered. It
was not essential what precise form the calculation for the badness took, as long as it had
the desired properties of being small for “good” spacing, but high for “bad” spacing. This
flexibility allows for a choice of cost function that is easy to evaluate.

DK wondered whether one could improve the convergence behaviour of the force method
if one chose a good starting position. He suggested a method of ordering the points from left
to right and placing the labels on the opposite side of the “middle.” DEK said that the idea
of choosing a good starting position was good, and that there may be even better methods
for constructing initial positions if we use other orderings besides left-to-right. He likened
this process to processes in numerical analysis where the order of operations is carefully
selected in order to keep matrices sparse.

Thursday February 16

RK began by describing his attempt at plotting the east coast as “somewhere between not
very good and completely invalid.” Referring to RK’s evaluation function from the previous
class, DEK said that it did not distinguish between labels which were one unit too close to,
and one unit too far away from their points. He said that it was a worse “sin” to get too
close than to be the same amount too far away.

RK then described his idea of starting with only the points initially “out there” and
letting the labels out of a “corral” one by one, from the middle point outwards.

This was followed by a discussion of worst-case scenarios on grids of points. AG claimed
that we can’t have the best of both worlds; we can7 have both long range interaction between
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isolated points and short range interaction within clusters. He said that these two aims are,
to an extent, incompatible.

DEK then said that you could still have some relatively small long range interaction even
in the presence of the more local interactions. He went on to describe the difference between
“arbitrarily small” and “zero,” giving several examples.

The first example was physics, where different mathematical models arise depending on
whether a particle is thought to have some positive (but unmeasurably small) mass, or
thought to be massless.

The second example was related to insurance, where more convenient mathematical
models arise from assuming a nonzero  probability of a person reaching the age of 500 years.

His final example was in METAFONT where he was experimenting with methods to draw
curves through points in such a way that perturbations in one or two of the points would
only affect the curve in the immediate vicinity of the change. Trying for a zero change
on all non-local regions, he managed to prove mathematically that no such method exists.
However, he did find a method that perturbed non-local parts of the curve by about 10W2’
units, an amount negligible for the particular application.

DS mentioned that being close to its point is not necessarily the most important goal

.

for a label, since this often results in overlapping labels. AG concurred, saying that it takes
some effort to read their maps, working from the outside in to determine which labels go
with which points.

The discussion then returned to the topic of labelling points consistently. It seems far
easier to read labels that are placed in a similar orientation to their points, slightly further
away, than labels placed as close as possible to their points. This becomes particularly
noticeable when the points are congested.

SM expressed frustration with the annealing process,” saying “it has a mind of its
own.” He said he couldn’t get it to stop where he wanted. Somebody added that simulated
annealing does not tell us where the constraints are breaking. PL added that it is possible
to satisfy many of the constraints, and yet get an unpleasant result.

In passing, DEK asked how much time the programs were taking. DS said that his group’s
program did 200 iterations in one minute of (elapsed) time. DK said that his group’s program
took 20 minutes to do 250 iterations.12

AG expanded on his group’s formula for calculating the force on a label. The force F is
proportional to

1 6 0 0 0 0  d2
- - J r - - '

where d is the distance from a point to its label. This expression gives a zero force at
d = 20, and pushes the labels towards d = 20 from either side of 20. AG remarked that this
expression for the force performed better than a quadratic expression.

RC then returned to the phenomenon of bouncing. He said that this problem could be
alleviated by reducing the time-step so that objects pushed by large forces don’t get moved

“RC noted that the force method being implemented was not, strictly speaking, simulated annealing,
since there are built-in heuristics in our problem. Such observed phenomena as “bouncing,” where labels
seem to bounce off one another as the iteration progresses, are not typical of simulated annealing.

12There followed a discussion of elapsed time versus computer time. DEK reminisced, “If it weren’t for
timesharing I would be a healthy man today.”
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too far. The principle he had in mind was similar to the one used to draw the Mandelbrot
set on personal computers. The idea is simple to state: Spend extra time on calculations
that are critical, and do the calculation in “chunks” where they are not critical.

DEK was unclear which of Mandlebrot’s many contributions to the theory of fractals RC
was referring to. RC explained as follows. Consider the iteration scheme

over the complex numbers. Let 1M denote the Mandlebrot set. For a given initial value 20,
x0 E M if and only if the iteration given above does not diverge.

This reminded DEK of the fractal globe problem that he set for CS304 in 1983. The
interested reader is referred to the report of that class. Our class then diverged into a
discussion of fractals, Peano sets, Pascal’s triangle and the Cantor ternary set.

Eventually, the discussion returned to Problem 3. SM described how he might do this
problem by hand. Put the labels near their points, one by one, in any vacant space. If no
vacant space exists, then adjust some neighboring point (and recursively adjust its neighbors)
until there is space. Of course, there are common-sense heuristics about label placement that
would be hard to code. DQ argued that there were more heuristics in this problem than
annealing was designed to cope with.

DK came up with an interesting idea. He suggested forming the convex hull of all the
points. Labels could be placed for all points on the convex hull, and then the remaining
points could be solved recursively. DS said that this method may need partitioning in order
to be useful, in order to avoid grouping different clusters within the same hull. KAR pointed
out that after building up the sequence of convex hulls it may be better to attach the labels
from inside to outside, since the points closer to the outside are likely to have the most room
around them.

Tuesday February 21

The first ten minutes of class were spent voting on the outputs from Problem 3. KAR
arranged the outputs of the three groups that had submitted in time in random fashion, so
that the votes would be “blind.“13 See Appendix B for some of the “winning maps.”

DEK asked whether there were any concluding remarks about Problem 3. RK and UH
said that each of their groups turned off the randomness altogether, since it did not seem to
improve the performance at a11.14

ESC compared his approach to that used by the Waltz algorithm? The Waltz algorithm
is a method for recognising three dimensional figures from two-dimensional edge drawings.
ESC’s group’s method is a form of constraint propagation. They classify the neighborhood
of a point into a small number of regions; testing membership in these regions may be
done efficiently using binary operations. Those labels that cannot be placed in this way are
handled in a second pass that uses forces.

13As pointed out by SJP, these votes aren’t really blind, since most group members were able to recognise
their own outputs.

14RK  qualified his statement, saying that the randomness did in fact help an earlier version of his program
that still had bugs.

15This algorithm was on the comprehensive exam reading list; refer to Rich’s book “Artificial Intelligence”
for further details.
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DS said that, in contrast to ESC’s description, his group used a first pass with the force
method, followed by a second pass in which labels are brought back near their points. These
two passes were iterated.

DEK wondered how the groups debugged their programs. DS had written a previewer,
which allowed his group to observe the movement of cities in real time on a Sun workstation.
MY, RC and DQ had done a similar thing on a Symbolics  machine.

DEK was impressed by this, and said that he would like to see these previewers working
some time. He went on to describe how, in the early days of timesharing, a video display was
made showing how the scheduler performed: which jobs were making progress and which
jobs were thrashing. The display immediately provoked a number of good heuristics that
could be implemented, and when implemented they did improve performance considerably.

.

This problem three programming team
knows Common Lisp, Pascal and Scheme
Our problem arose
because none of us knows
how to program in all of the threeme. - MY

I once met a CSD chap
Whose task was to draw well a map
Annealing and forcing
Heuristic contorting
Did not leave a big enough gap. - KAR
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Chapter  5

AND-OR Tree Formulas

At this point, it was time to decide the groups for Problem 4. In order not to make sure
the constraint of no pair working together more than twice was not violated, groups for
Problem 5 were worked out at the same time. The groups are

Problem 4 Problem 5
UH PL AM RC RK PL SJP

ESC DK SJP ESC SM MY
RK SM DQ UH DK DS

RC AG DS MY AG AM DQ

DEK quickly moved on to Problem 4, expanding on the material from the Data Sheet.
He described how complexity theorists have tried to answer questions on circuit building
from basic logical gates.

For n inputs, determining whether all inputs are 1, or whether some input is 1 is easy:
Simply use n - 1 AND or OR gates respectively. The problem of determining whether half
the inputs are 1 is a harder problem; the function that is 1 precisely when at least half the
inputs are 1 is called the majority function for n variables.

DEK described a sorting network, which consists of a series of parallel lines joined by
pairwise comparators in such a fashion that no matter what the inputs to the lines, the
output is in sorted order. For example, the four-element sorting network looks like

To calculate the majority function, construct the sorting network of the appropriate size’
and check whether the center wire2 contains a 1. The difference between this and the type
of circuit we will be looking at is that we are interested in trees, while the circuit above is

‘This can be done with O(n  log n) comparators.
20r the wire ‘ust below the center if n is even.J

49



a directed acyclic graph (dag). In a dag, outputs from a circuit may be used many times
(arbitrary fanout)  as inputs to other parts of the circuit.

To simplify the problem, we assume, by symmetry, that

p1 = p2 = . . . = p, = p

so that po + np + p, = 1. We also adopt the convention of numbering nodes level by level,
from top to bottom, and left to right within a level. The root will be numbered 1, and the
rightmost leaf will be numbered 2” - 1 where the tree has depth k.

So consider an AND/OR tree of depth 4, whose root node is an AND gate. There are
15 nodes altogether, with the leaf nodes each being 0, 1 or one of the n inputs. Define
P j  = Pr(f(xi,.  ..,X,) = 1) where f is the function being computed at node j. It is not
difficult to see that we can express Pj recursively. For example, PI = P2 . P3 and (1 - P2) =
(1 - P4) * (1 - Ps).

The probabilities at the leaves are given by

�8 = * * l  = p15 = plxl  +  - - * +  PnXn +  pm  = p(X1 +  .  .  .  +  5,)  +  pm.

If m of the n inputs are 1, then we write this expression as ~(“1.
So suppose x = ~(“1. Then Ps = x, P4 = x2, P2 = 1 - (1 - x2)2 = 2x2 - x4, and

PI = (2x2  - x4)2, which we abbreviate by t(x).
Given this, we can list the possible configurations of bits with their associated probabil-

ities of being # Q2(xl, . . . , xn) as follows. (We suppose for this table that n = 6.)

000000 t(p(O) )
000001 t(p(l))
000010 t(p(l)  )
000011 t (PC2) )

000111 1 - t(p@))

If the sum of the probabilities in the second column is less than 1, then there is a nonzero
probability that the computed function is in fact the majority function. Note that the sum
of probabilities is actually a conservative estimate of the function not being the majority
function, as the rows are not independent.

We may make the recursion more uniform by considering AND and OR gates as duals,
writing POND  = Pr(f = 1) and POR = Pr(f = 0). In this case, for both AND and OR gates,
p = (1 - pCHILD>2~ Thus the P function at the root of a k-level tree is g&c) for k even,
g& - x) for k odd, where go(x) = x and g&r) = (1 - gk-1(x))2 for k > 0.

The graphs of Sk(x) for various depths reveal an interesting pattern. See the graphs in
Appendix C. At a critical point a, the function changes from near 0 to near 1 very rapidly.
The slope of this change increases with k.

One may wonder where the fixpoint  a of such a recursion lies. The fixpoint  is simply the
solution of

(1 - x)” = x

50



between 0 and 1. It turns out to be l/4” where 4 = v is the golden ratio. One can show
that

dew  = -w - 4SLlW

For a graphical representation of gk(x) see Appendix C.

Thursday  February 23

DEK began by reviewing some of the material from the last class. Something that
somehow escaped the notes last time was that for trees of even depth (where depth is
measured to the last AND or OR gate; not to the nodes which take on the input values) the
AND/OR tree is equivalent to a tree in which all nodes are of one type. In particular, an
AND/OR tree with an AND root can be replaced by a structurally identical tree in which
all nodes are NOR gates. Similarly, an AND/OR tree with an OR root can be replaced by
a tree consisting only of NAND gates. (You have to complement the leaves if they’re at an
odd dist ante from the root .)

If we take p = 1 Jn (we use the terminology from last class) then we get

Suppose n = 100, so that 38 < na < 39. If k is even, then the probability of f not being
the en, function is

38
gkiiij$

when exactly 38 of the inputs are equal to 1, and

39
1 - skim)

when there are 39 inputs of 1. If k were odd, then the arguments of g” would be $$ and s
respectively.

DEK was waiting for a certain observation to be made.3 The observation was that every
AND/OR tree must necessarily be a monotone circuit. Changing a 0 to a 1 at the bottom
level can only result in O’s becoming l’s at higher levels; the transition from 1 to 0 cannot
occur as a result. This means that we can get away with looking at the cases 38 and 39.
Therefore, a conservative estimate of the probability that f (xl,. . . , x,) is not the function
e 7x2 is obtained by summing the failure probabilities over all cases with 38 and 39 input l’s,
namely

when k is even.
DEK gave a brief summary of previous work on the problem. Leslie Valiant proved that

the existence of a circuit could be guaranteed in O(n”+‘)  gates, where 6 > 0 and

In 2
V =2+

ln(&- 1)
= 5.27056.

31t had in fact been made in passing last class, but nobody was pursuing it at the moment.
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The 6 comes from the observation that the exponent of n in Valiant’s paper is (2 + 2 log,, 2)
where y < 4cu, and a is as before.

Boppana stated that Valiant had “implicitly proved” that the number of gates is O(nv).
But DEK didn’t believe this.4 Boppana went on to prove that the number or gates needed
is actually fl(n”) using any Valiant-type argument. (DEK was ecstatic over this part of
Boppana’s paper, but he said it wasn’t required reading for Problem 4.) Our challenge is to
find the smallest constant C for which we can say that the number of gates 5 Cn”.

One approach is to write a program to compute

This may give some intuition of what the problem is like so that an appropriate theorem
may be postulated.

The number that we want to keep below unity in this case, for k even, is

( )a:1 gk(b-l)p+Pm)+  ; (l-gk(bp+p,)).0
Given n and k, this function is easy to compute; the only thing to watch for is loss of
significant digits due to rounding. And we have to choose the probabilities so that np+p, 5
1.

PL then described a general method for building the majority function for n inputs out
of the majority functions for fewer inputs. He described his method for n = 8.

Let C be the set containing the eight input variables xi,. . . , xs. Divide C into two disjoint
subsets A and B of four inputs. Then e,(C) is

@iA>  Ae4(B))  v (WA)  A e3u3>>  v Q32(A)  A e2(B>>v  (e3(A>A  h(B))V  (e,(A)A  80(B))

The function e. is trivial; el and e4 may be calculated using 3 gates each, and 02 and 0s need
7 gates each. Adding up all the gates needed according to the above expression gives a total
of 47 gates, which agrees with DEK’s prior calculation (of another circuit).

Using this method, PL was able to construct circuits for 0s(xi,. . . , xi6) using only 479
gates,5 and for &6(x1,  . . . , ~32)  using 8639 gates. In general, the recurrence for circuits of 2”
inputs constructed in this manner is

tn(k) = 2(tn-l(0)  + -. . + tn-l(k))  + 2k - 1

f o r  k  < 2n-?- Rewriting this with t;(k) = tn(k) + 2 simplifies things slightly, but the
recurrence still looks difficult.

DEK remarked that this was a nice, systematic method for small n, but that the
recurrence might be exponential, and so could not be as good as possible for large n. PL said
he thought he could show a growth rate of at most nl”sn. If that’s the true rate of growth,
the circuit cannot be optimum for large n, and it will be interesting to find a crossover point
where Valiant’s method begins to win.

4Valiant’s  published proof do& not rule out the possibility of the complexity being n” logn, for example.
‘This convincingly beat DEK’s circuit, which needed 767 gates. And it’s a good thing too, because DEK

said he lost his notes about how to achieve 767.
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Tuesday February 28

DEK started by remarking that it might not be too difficult, given a, b,n and k, to
determine whether there exist p and p, such that

g”ib-l)p+pm)+ (l-g”(bp+p,)) -c 1

and np+p, 5 1. Exactly how this would help us in our situation was unclear. DQ suggested
taking b = [tl and trying to e a as close to b for any given n and k. SJP later describedg t
his method of setting a = b = [tl and finding the best k for a given n.

DEK then said he wanted to talk a little bit about Schrijder functions? Schrijder functions
are analogous to eigenvectors encountered in linear algebra. For a function f whose power
series expansion for small 1 x 1 is of the form

.

f(x) = px + f2x2  + f3x3  + * ’ *

where IPI # 1, we can construct a Schrijder function S(x) such that

S(f (x)) = W(x) (5 1).

for Ix I sufficiently small. Furthermore, SW1 (x), the functional inverse of S(x), is well defined
in this range. The expansion of S(x) looks like

S ( x )  = x + s2x2 + 53x3  + * * *

from which it is not too difficult to show that S-‘(x)  has the form7

S-l(x)  = x + t2x2 + t3x3 + * - -.

Equation 5.1 implies that f(x) = S-l(pS(x)),  and more generally,

fk(x)  = s-‘(p”s(x)) (5 2).

for all integers k. In fact, Equation 5.2 makes sense even when k is not an integer! Note
that we only need to know that a Schrijder function exists - we don’t need to know one
precisely.

In our case, we may write g(x) = (1 - x)~ = a + f(x - CY), with gk(x) = a + fk(x - a).

f( )X = g(x+a)-a
= (I/$ - x)2 - 114”
= x2-7 = x(x + p>

‘Schroder  was a not-so-famous mathematician who wrote two large books about Boolean algebra, a topic
that was not in the mainstream of mathematics at the time. He did not, as far as DEK knows, link Schrijder
functions with Boolean algebra, so it is ironic that we are using them now on Boolean circuits.

7For those wondering about how to manipulate the series expansions, see Knuth’s “Seminumerical
Algorithms,” Section 4.7.
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where p = -2/4 is about -1.2. For this f(x), DEK h as calculated the first eight terms in
the power series for S(x):

1
s2 = -

P - P2
2P

s3 =
IP - P2)(P - P”>

429p21 + 165/?’ + . . .
2+3  =

(P - P”> - ” iP - p”>

He noticed that the exponent of p in the leading term of the numerator for Sk was the
(k - l)St triangular number, and that the coefficient of this term was the (k - l)St Catalan
number.”

SJP then returned to the program he wrote to find the best k for a given n where
a = b = [:I. One thing he noticed was that k never seemed to be odd. In order to satisfy
the constraints mentioned above, he chose p in the same way as Valiant, i.e., such that

i
n- -
2 l)p < a < ;p.

DEK noted that odd k requires a different formula, so it was no wonder SJP got only even
answers. We should set p, to 0 when k is even, and p. to 0 when k is odd.

RK observed that Valiant actually tries to achieve an overwhelming probability in his
paper, not just a positive one. In other words, he chooses k so that a large portion of the
circuits in the class being considered actually compute the majority function.

There followed a discussion of probabilities, with DEK describing probabilistic primality
testers that can say that a number p is nonprime with probability of the order of 2-100.
Nevertheless, this is not a “proof,” although p being nonprime is considerably less likely
than anything we could imagine. DEK added that somebody recently compared the risks
of smoking and flying: Apparently, flying will become more dangerous than smoking when
there are three major plane crashes per day.

RK returned to SJP’s calculations, asking whether he had considered accumulated round-
off errors. SJP replied that he considered that he should have considered them, but didn’t.
It turns out that the iteration

tk = (1 - t&1)2
is very bad numerically when tk-1 is close to 0 or 1; many significant digits are lost every
two steps. However, by composing two iteration steps one gets

tk = t;&! - tk-2)2

which performs better. The relative error doubles every two iterations, so we still have to
be concerned about it, but we are still much better off than before.

8DEK  joked that since such beautiful relationships held for the first 8 values, God wouldn’t want it to be
any different for the rest. DS referred to this argument as “proof by appeal to a higher authority.”
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SJP realized that his results suffered from the rounding error problems; it was not long
before his iterates became either 0 or 1. He hoped, however, that his early iterates were still
reasonable, since he did use double precision. Here are the initial results:

n k 2”ln”
2 1 .05
4 8 .17
6 12 .32
8 14 .28
10 16 .35
12 18 .54
14 20 .95
16 22 1.89
18 22 1.02
20 22 0.58

The row where n = 16 indicates that 222 - 1 gates are sufficient, despite PL’s construction
of a circuit with only 479 gates. One difference is that PL’s circuit was not a full tree; it
has possibly different numbers of nodes on each branch of a gate. It effectively simplifies
gates with inputs of 0 or 1, and makes other simplifications (such as a gate with identical
children). AG noted that we could do better by observing that po knocks out a number of
the gates. From Valiant’s results, p. = 1 - np a 1 - 2a z 25%.

If we could find some bound for the probability that there are more than ~2’” gates left
after simplification, then we could add this term into our conservative estimate for the failure
probability and we might get a sharper inequality.

RK noted that our assumption of the inputs being independent is probably oversimpli-
fying it because one intuitively expects an approximately equal number of each input in a

circuit that computes the majority function.
DEK said that another opportunity for improvement might be to find an alternative

construction, perhaps using threshold functions, which gives a steeper graph than the one
we have now.

SJP wondered how Boppana’s trees, which use read-once inputs, related to our trees in
which inputs may be repeated. DEK replied that using read-once inputs was just a way of
abstracting away independence of the leaves. Effectively, we assign a probability for each
read-once input being one of our given inputs. Independence was necessary for Boppana, for
instance to substitute whole circuits at the leaves of other circuits without having to worry
about similarly substituting for the same input appearing as another leaf.

Thursday  March  2

DEK continued from last class by considering the double iteration

g2(x) = x2(2 - x)2.

The right hand side is a quartic, and so the iteration should have four fixpoints. It is easy
to see that 0, 1 and a must all be fixpoints. Let r be the fourth fixpoint. Then

x(x - 1)(x - a)(x - r> E x4 - 4x3 + 4x2 - x
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and so --ar = -1, i.e., r = l/a z 2.6.
Previously, we had g(x) =.a + f(x - a). For g2(x) there are four possible arrangements

corresponding to the four roots. For example, expanding about the root 1, we get

g ” ( x )  =  l- f(l - x )
* f ( x )  =  -g2(x+  1) +  1

= -(x + 1)2(1 - x)2 + 1
= 2x2 - x4

for sufficiently small x. So, we have

f0 {X
4x2 - 4x3 + x4, near 0;=
2x2 - x4, near 1.

Note the asynnnetry  in the two cases: The leading coefficient near 0 is twice as big as the
coefficient near 1.

DEK then began talking about “generalized Schrijder  functions.” Suppose we can write

f (2) = px2  + f3x3  + * . *

where IpI # 1 and the leading term’s exponent of x is 2. Then a generalized Schrijder
function will satisfy

S(f(x))  = W(x)“.

(We can do similar things if the leading exponent of x is bigger than 2 too.)
For f defined as above, it is not difficult to show that the generalized Schroder function

leads to the iteration formula

S(f”(x))  = p2k-1s(x)2k

for all integers k .
So, near 0, e becomes +(4~)~“(1  + O(C)).  Similarly, 6 becomes +(2~)~~(1  + O(E)) near 1.

Given this apparent asymmetry, DEK thought that it might gain us something to skew the
initial estimates somewhat.

DQ did not agree, saying that he had chosen 32 evenly spaced values for p in the interval
i s..?), and had found the sharpest decrease at the middle of the interval, at least when
n is 20 or so.

DEK then started describing the concept of zones. Suppose we start our iteration at
a - E. Our theory around QI (call this “zone 1”) tells us that we will iterate from cy - E to
a - p2c to a - p4c up to CY - p2k1 E (plus lower order terms). The iteration stops when we
are out of zone 1. Zone 1 has a fixed boundary, say at 0.38, so it is possible to test when we
are no longer in zone 1.

Let’s skip zone 2 for the moment, and consider what happens in zone 3, which is a fixed
neighborhood of 0. Once we enter zone 3, say at point 6, then our theory around 0 tells us
that we iterate from S to (4~!7)~/4  to (46)4/4 and so on up to (46)2k3/4. We will talk more
about k3 shortly.

Zone 2 is simply the region between zones 1 and 3. There is some fixed bound (say, k2
steps) so that we always get through zone 2 within k2 steps. Our total number of steps, k is
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then equal to kl + k2 + kg. How large does k3 have to be? Large enough so that the (4~5)~~~
is sufficiently small to wipe out the Cysl) term in our conservative probability estimate.

Well, by-l) e 2” /@, so we want

(44

2k3 m 2 -n

so, 2”” m cn

for some constant c.
Now, how about ICI? Well, first remember that p = 5 and so :p R 5 = a - 5.

Hence 6 z z. Suppose the boundary of zone 1 is at 0.380 (recall that a z 0.382). Then

a  - P2k1c  FZ 0 . 3 8
SO) p2k1E = 0 . 0 0 2

log ni . e . ,  ICI x c’log(l/e)  z -
log P2

Since k2 is bounded, we have an expression for k that is O(log n). Note that k2 is an
upper bound on the number of iterations needed to get through zone 2, so that for some
initial zone 2 points IF2 - 1 iterations may suffice.

AG said that we still need some rigorous inequality for the Schrijder function. With
Taylor series, say

f(X) = f (CL) + (X - U)f’(U) + l . ’ + (x i,a)n ftn)(a) + Rn(X).
we can calculate the remainder Rn using

Rn(x) = $ Jx tnf(n+l)(a: - t>, dt.
i > . a

RK pointed out that in the case p = 2, the Schroder function for 2x + x2 is

S(x) = ln(1 + x) = x - ix2 + ix3 + . . . .

Then S(f(x)) = ln(1 +2x +x2) = 21n(l + x).
SM wondered what happened on the other side of QI, when the iterates approach 1. DEK

said that it would have analogous zones near ok, near 1, and in between, and that a similar
analysis holds there too; some of the minuses become pluses, and the factor near 1 is 2 rather
than 4, but the principle is still the same.

DEK asked whet her anyone had developed the idea of threshold function modules to
use for constructing larger circuits. Nobody had. RK said that he and SJP thought
that it may be too restrictive to only use threshold functions as building blocks. Perhaps
using asymmetric circuit modules (threshold functions must be symmetric  on all inputs, by
definition) would yield smaller circuits overall. As RK put it, “There are lots of monotone
circuits that are not threshold functions.”
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Tuesday March  7

PL and UH had plotted a log-log graph of the numbers of gates obtained from the
recurrence mentioned last week. It was not a straight line, so the solution w a s  not a
polynomial. However, they estimated that Valiant’s method becomes superior only when
n > 1600. To obtain this crossover point, they used empirical observations of the convergence
of the iteration (up to n = 180) to estirna.te  the asymptotic complexity of Valiant’s approach
as 0.472”.

There must have been some inter-group collaboration, because the reason that UH
stopped at n = 180 was “That was as far as SJP went.” SJP said that this was the point
at which the floating point arithmetic broke, probably due to some very small quantity
vanishing below the machine’s smallest represent able number.

DEK said that in this type of circumstance it makes sense to extend the possible range
of numbers by representing numbers explicitly as pairs. The first component is an ordinary
floating point number, and the second component is an integer exponent for an additional
power of some base. Since machine exponents tend to be limited to of the order of 8 bits,
this can gain a lot of expressive power. Of course special routines need to be written to
handle addition, multiplication, output, and so on, but these are easy.

DEK went on to describe other problems that plagued floating point arithmetic until only
recently. Before an IEEE standard was set in about 1980, computer manufacturers gave no
guarantees that their floating point arithmetic was reliable. Fundamental mathematical laws
such as

vt, u, x : t < u + (t + x < u + x) and (tx 5 ux when x > 0).

.

were violated.
SM said that an alternative to maintaining pairs for real numbers was to work in logs.g
SJP mentioned that after he fixed his program following our observations on numerical

error, the results did not noticeably change. There followed a brief analysis of the single-step
iteration, from which we concluded that it probably only made a difference over the final
three or four steps.

RK then announced that his group lo had proved a rigorous (although probably conser-
vative) bound of 256n”.

DEK seemed pleased at this, and even hinted at the possibility of publishing their result,
given the gap in the literature. He went on to describe how it was becoming unfashionable to
maintain high standards of rigor in computer science. (An example from his own experience
was deriving a recurrence for the complexity of a program from the program itself; everybody
might agree that it’s the correct recurrence, but how can you get a machine to check such
an assertion?)

“How did you get the rigorous bound?” DEK asked.
“Taylor series ,” SM answered, as if that was enough to convince everybody. When pressed

for further details, he explained as follows.

‘Why  do snakes mate inside tree trunks? Because adders can only multiply in logs.
“The  “group” actually was formed by a merger of two groups. Since the two groups had worked so closely

together, they got KAR out of bed at midnight the previous evening to ask if they could submit a joint
report. I said OK, but that I would demand a higher standard than otherwise.
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Let g(x) = x2(2 - x)2 = a + f(x - cu).  Then the Taylor series expansion for f(x) is

Px - (-x2 + . . .

where c is positive. Letting C be slightly greater than c, we have

px 2 f(x) 2 px - cx2

within a sufficiently small neighborhood of 0. Using this inequality, we can iterate to get the
more general inequality

pkx > gk(x) 2 pkx + &x2-
where Ah = C(~f$~l pi).

AG said he had come up with essentially the same argument to show that such a constant
exists, but that due to time constraints he had not actually calculated the constant. (Of
course, doing the calculation of the constant is the easy part.)

There followed an energetic discussion, in which the results of the various groups were
compared, and discrepancies (such as apparently different observations of the rate of growth
of the number of gates) were (hopefully) explained.

PL interjected with the comment, “All this talk is futile because my method is better for
up to 1016 gates!”

PL’s method reminded DEK again of sorting networks. Given two sorting networks of
equal size, there is a standard merging operation (due to Batcher)  to give an network of
double the size. For example, two 4-element networks may be merged as follows:

A A A

Constructing networks recursively using this method uses approximately n(lg 7~)~/2  com-
parators.

DEK together with Bob Floyd had tried hard to prove that R(n(logn)2)  was a lower
bound, but couldn’t. It was not surprising that they couldn’t, given that Ajtaj, Kom.l&
and Szemeredi (AKS) later proved the existence of sorting networks requiring only O(n lg n)
comparators. Nevertheless, this asymptotically better method had a constant of about 100,
which meant that it only became better than Batcher’s in(lgn)2 method when n > 22”?

AG observed that we could obtain a tree from a sorting network by duplicating inputs
to comparators that are used more than once. Thus a method of depth d gives a formula
of size 5 2%. The AKS network therefore implies a polynomial circuit size for threshold
functions, but the exponent is much higher than Valiant’s.
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Chapter  6

Antomology

With only a few minutes left, DEK switched the discussion to Problem 5. PL wondered
what degree of competition was going to be maintained, and what amount of secrecy was
appropriate. DEK said that we could discuss general methods of solving ant problems
without giving away too much of the algorithms. He said the discussions would raise the
level of competition, since he assumes it will be hard for anybody to keep their good ideas
to themselves.

“Besides,” somebody said, “it may not influence the final runs much anyway, since most
of the work seems to get done between the Thursday and the final Tuesday.”

Thursday  March  9

DEK started the class by discussing Randy Anty, the simple ant program from the Data
Sheet. He drew diagrams on the blackboard corresponding to the state of the simulation (on
the small board in the Data Sheet) at times 100, 200, and 400; the ants got all the food at
time 451.

It was moderately clear that the ants weren’t very clever. They would wander around
randomly, laying scent, until they found food. At this point they would wander around
randomly, erasing scent, until they found the nest. Since ants only came out of the nest onto
an unscented square, only a small number of ants (at most 4) initially left the nest.

RK observed that an ant coming home can just wander by the nest, clearing the scent,
so that another ant comes out. This can happen many times, leading to more and more
ants on the field. Furthermore, an ant will never go into the nest until it has found food.
SJP observed that on a slightly larger field there was a minor population explosion, with an
ant carrying food blocked in by its neighbours. Eventually, though, it got home. DEK said
that it was not hard to imagine a situation in which one or more ants would get hemmed in
permanently, never being able to return home.

In order to fix this apparent bug, DEK wrote Randy Anty II. This version attempts to
control the population as follows: If an ant sees another ant ahead of it, turns right and sees
another ant, then it decides to go home even if it does not have any food. DS said that this
may actually be a slight overkill, since such an ant may be observing another “suicidal” (or
should we say altruistic?) ant. There was a more obvious flaw than this, though. When
an ant returned to the nest for this reason, it erased the scent as it went, thereby releasing
another ant (or perhaps several if it wandered around the nest). The result was an even
greater population explosion.
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Randy Anty III then followed. This fixes the bug in Randy II by not allowing empty-
handed ants that return to the nest to erase scent.

There followed a discussion of how the ant programs would be tested in the Great Race.
Certainly multiple nests, separated food, and arbitrarily hard fields were fair game for the
tie-breaking tests. Other tests, such as random perturbations of scents, would probably be
interesting but could not be done by the present version of the simulator. SJP suggested a
“spider” that ate unwitting ants stumbling on its square. RC thought that this wouldn’t be
fair, since the ants can’t do much about it.

DEK wondered how many neurons there were in an ant. RC happened to know that
there are about 50000 in a grasshopper. DEK mentioned that Tom Binford  had recently
told him that a neuron was more correctly thought of as a microprocessor than as a gate.

PL had asked the following question before class: “Why not generate a new random
bit after each unsuccessful test of a candidate instruction, rather than using the same
bit throughout?” AM said that using different random bits would allow many different
probability levels, not just probability i.

DEK’s  first response was to say that getting a new random bit each time would signifi-
cantly slow down the simulator. However, there is a more technical reason to use the same
bit.

The reason is that you might want consistent values of the random bit in the instruction
tests in order to determine whether a previous instruction did not apply because the random
number did not match, or for some other reason. It is not difficult to see that each method
can be simulated by the other, although probably not in the same number of locations.

DEK asked how an ant might know it has food. PL answered that it can tell it gets
food when it moves successfully onto a pile of food. If having food is important to the ant’s
behaviour, then the ant had better branch to a separate part of its code at that point. (Of
course, it is possible to write ant brains in which the ant doesn’t know it has food.)

AM conjectured that the type of ant that is good for the single nest case would not do
well when there are multiple nests. This was not clear to most of the class, although any
species of ant will have its favorite type of terrain.

PL noticed in his early implementation that on the larger board from the Data Sheet,
turning right performs better than turning left. More precisely, he had implemented a
method that went straight ahead if it could, and then turned one way or another (so all ants
turned right or all ants turned left). Using the “right turn” method gets to the food quickly,
while the “left turn” method does not.

DEK then brought up the topic of how to solve a maze, given that you can leave a trail
of where you’ve been. He thought it was called the Tremaux procedure for planar mazes.

The Tremaux procedure is designed for a single entity in a maze. One possible imple-
mentation is to send out one ant and let the others follow its trail. However, several ants
cooperating should be able to do better.

DEK then asked what the best way of solving some simple situations would be. For
example, on an empty board apart from a nest and a pile of food, what would be the best
mode of attack. AM suggested two parallel paths, one for ants heading to the food, and the
other for ants returning from the fo0d.r Our ants can’t drop food, or pass it to each other,

‘AM called this a “Side of the road convention.”
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or climb over each other, so there is no possibility of a “bucket brigade” type approach. It
was quickly realized that four parallel paths would do twice as well, although as SM pointed
out, this is probably the best you can do given that the nest has at most four openings.

According to the specifications, it is impossible to have a dense trail of ants. More
precisely, if all the ants are to move in lockstep, then there must be a vacant square in front
of each ant.

-

Having run out of time, DEK left until next time the topics of how to handle turning
corners, and how useful a “way station” might be.

Tuesday March  14

The class opened with a discussion of how the Great Races will be run. The first test of
an ant brain is whether it does in fact get all the food for a given field. (The test will be
repeated with different values of the random number seed, and with different fields.) Among
those that always get all the food, faster is better. We aren’t going to wait forever, so there
will be some (large) threshold T so that any ant not succeeding by time T gets a score of T.

PL had suggested allowing groups to choose one of several ants to use depending on the
particular field. “After all, the ants in Texas are different from those in California, which
are in turn different from those in Brazil.” This was an unpopular suggestion. AM thought
that PL’s motive was to be able to choose between “left turning” and “right turning” ants
depending upon the board. PL defended his motives, saying that a strategy that works when
there is lots of food is going to be inefficient when there is, say, only one unit of food. A lot
of the overhead marking trails would be wasted.

DEK gave an assurance that the Great Races will take place on large boards with lots of
food.

It seemed that groups were running into space problems for their ant brains. As AM
pointed out, every bit of “memory” doubles the amount of code for which that memory item
is critical. The main complaint seemed to be that ants can’t see the scent on their own
square. Remembering the scent on the basis of what they saw on the preceding move to that
square necessitates significant duplication.

RK remembered a technique he had seen used on a 280 processor for dealing with a very
limited memory: If one procedure could make use of part of another procedure’s code, it
would execute a jump to the appropriate place in the middle of the code. In principle, we
could do this with the ants, too, but DEK did not seem impressed with this technique of
software engineering.

Somebody mentioned self-modifying code, and this led DEK to change the subject for
a moment. He said that the normal programming environment for software development
should have automatic profiling, so that the programmer can see where the machine cycles
are being used most. He described how he profiled TEX in this manner, logging all users’
statistics for a year on SAIL. The results showed where the program usually spent most of
its time, which helped DEK later streamline the code. He also learned which error messages
were most commonly generated, etc. Efficient profiling needs modified hardware support
where counters are stored in correspondence with each procedure to indicate how often it is
called. Unfortunately, such hardware is not available; self-modifying code is not at present
approved of.

Returning to the problem at hand, ESC asked whether it is possible to get more than
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one ant out of the nest every two ticks. SJP said that the following sequence gives two out
of every three ticks, assuming that there are no other ants interfering.

Time Action
1 Top ant moves upwards out of nest.
2 Ant on nest rotates right, while ant above nest moves away.
3 Ant on nest moves rightwards, revealing an up ant on the nest.

From the resulting state, this sequence of moves may be repeated, again assuming that no
stray ants block an opening. SJP proved this to be an upper bound on the ant throughput,
by justifying that there cannot be any three consecutive ticks at which an ant emerges.2

.

DEK asked how an ant might follow a tortuous path. PL wondered to what extent
technology should be proprietary. DEK mused that when he wrote T@ he had no qualms
about making it public domain, since “he already had some theorems to his name.” He was
not sure what he would have done had it been his first contribution. Anyway, he encouraged
people to be open about their ant-brained ideas.

To get the discussion going, DEK then brought up the subject of navigating to or from
the nest. He asked how an ant might behave if, at every square, it knew from the scent how
far it was (by a shortest path, measured in terms of physical distance rather than time) from
the nest. If it was trying to get home, then the thing to do would be to look for an adjacent
square that is closer to the nest. It is not difficult to convince yourself that the adjacent
squares can be at most one unit further or nearer the nest than the current square. Further,
since there are no odd-length paths from the nest to itself, it is impossible for two adjacent
squares to be at the same distance from the nest.

We can’t represent all the integers using scents, but we could represent them mod 3, and
still know which squares were getting us closer to and which were getting us further from
the nest. As DQ pointed out, getting the ants to construct such a pattern of scents is hard.3

DEK asked how else an ant might represent the information, “This way to the nest.”
RC suggested arrows. We have to distinguish between relative and absolute arrows, since
(unless the code is written in such a way that the ant knows which way it’s facing) an ant
does not know up from down. A problem with this, which motivated the earlier complaint,
is that an ant can’t sense the scent of its own square. This makes it hard to follow paths,
for example, without branching to 16 different parts of the code depending on the scent of
the square to which a move is made.

RC also suggested a scheme with six kinds of tiles, one for each pair of distinct directions,
telling how to turn; for example, the tile {N,E} means “go East if you come from the North,
go North if you come from the East.” Such paths can be traversed in both directions. DEK
suggested that ants could perhaps come and go on the same path, stepping aside politely to
let others get by (as cars do on mount ain roads).

2After  an ant emerges, the new ant faces upwards; if that ant also emerges, he’ll be in the way at time 3.
3But  a single ant could do it, given enough time: First paint “1” on all cells at distance 1, then “2” on

cells at distance 2, then “0” on cells at distance 3, etc. On each round, traverse the scented squares, finding
all unscented squares adjacent to color x and color them (x + 1) mod 3, for x = 0, 1,2,0,1,2,.  . . until you
don’t find any more. This (slow) operation could prepare the field for (fast) subsequent processing.
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Thursday  March  16

KAR announced Version 2,OO.of the simulator. The major embellishment is the addition
of an extra bit that determines whether the abfstuv bits are for the square the ant is on, or
the square it is facing. This greatly reduces space requirements for the ant brain logic.

A few suggestions from the audience for still more changes were silenced when DEK said
that one of the most important general principles of computer science is “fitting within the
constraints of the machine you’re using.”

-

The other recent development was the arrival of DEK’s  (real) ants from LA. He had put
them into the ant farm the previous evening, and they were beginning to dig tunnels.4

DEK started the discussion by describing Tarjan’s algorithm for dissecting a graph into
biconnected components. A (sub)graph is &connected  if between any two vertices there are
at least two disjoint paths. This may be relevant in our context, as an ideal method for
moving ants between the nest and the food would be along two disjoint paths.

The algorithm uses a form of depth first search of the graph starting at any node. DEK
could not remember all the details, but described roughly how it used “back-links” to identify
biconnected components.

DEK said that a choice evident in Problem 5, and pertinent to AI in general, is whether
to try to emulate nature or to try to find a better way. (Should a chess-playing program
emulate Kasparov or should it use new alpha-beta pruning algorithms?) On one hand, it
seems that following the patterns observed in nature may be too restrictive; on the other
hand there are good evolutionary reasons why these methods have persisted and not others.

PL observed that “pre-empting is hard when we re-use code.” DQ said, though, “We
can’t re-use code.”

AM reported an interesting bug in his ant code. When an ant sees too many other ants,
or a certain pattern of scents, it may become “comatose” and just stay put. Unfortunately,
it was possible for the top ant on the nest to become comatose itself. (It thought it had
moved out of the nest, but the move actually failed.) This ant would never leave the nest
thus preventing any further ants from emerging. He noted that this could be avoided now
that ants could sense the scent on their own squares.

RC reported another bug that occurs when two ants try for the same pile of food. One
succeeds, while the other gets pre-empted and does not progress. The ant with food expects
the other ant to get out of the way, while the empty handed ant stays put, transfixed by the
food under the ant in front of it.

This story reminded DEK of the first machines to share disk drives, which at that time
(1958) resembled juke-boxes. Once every few days, the machines would hang, effectively
saying to each other, “After you, Sir.”

The room for the Great Races has been reserved from 2pm to 6pm next Tuesday.
Everybody should show up at 2pm, although the real action will begin at 2.30. (There
is an exam in the classroom until 2pm, so don’t get there too early.) DEK indicated that
the Great Race fields will be biconnected with respect to the ants and the food, at least
in the initial trials. (There may be cul-de-sacs.) DQ noted (somewhat ruefully, given the
workings of his ant brain) that biconnectedness does not necessarily mean that all paths are
two squares wide.

4 Within a number of days, the ants had built an impressive network of tunnels in the sand. Sever al
them died, unfortunately, probably due to the poor food they serve in the baggage section of the plane.

of
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DEK wondered what style of ant to expect on Tuesday. “How necessary is the random
bit,” he asked. DQ said that-his ant was deterministic, and so didn’t use the random bit
at all. But the class agreed that random bits were often helpful as tie-breakers in parallel
algorithms that have a lot of symmetry.

DEK then asked, “How well would the ants do if I perturb the scents a little? After all,
error recovery is an important task.” RK thought that such an expectation was not fair,
since the machines being used are not fault-tolerant. PL was optimistic that his group’s
ant would be somewhat robust in this fashion. DS and AM thought that it would be more
reasonable to expect ants to cope with a few cleared scents rather than replacing scents with
other scents having other meanings.

DEK asked whether having all the food together helped. The consensus was “Yes.” DEK
wondered how the food remained connected when some of it was taken. Most groups seemed
to scent the intervening emptied squares.

DEK reminded the class that reports for this project are still required, and would be due
Thursday March 23.

Tuesday March  21

The Great Races

At 2pm, DEK and KAR arrived at Sweet Hall. KAR was wearing a bow-tie and jacket;
DEK looked the part in his referee’s costume, complete with whistle. While the technical
formalities of collecting the groups’ brains5 was going on, DEK played a tape he had procured
especially for the Great Races from Michael Mauldin at CMU. The gist of the music was,
“Ants, Ooooo. Ants, Ooooo. . . .” (The Ant Song by Ronnie Wasp, WDVE.)

The races began at 2.30, by which time there was quite a crowd in the room. The CSD
had been invited to witness the event, and friends and relatives also showed up. The live
ants made it too, but didn’t seem too impressed by their electronic counterparts?

By the toss of a coin it was decided which order to present the ants. “Diligant,” a product
of UH, DK, and DS, was introduced by DS. The colony of Diligants started by sending out
three scouts to look for food. These scouts search in a random fashion, but are biased to
walk straight more often than turn. Each scout uses an independent scent and is oblivious
to the other two scouts. Once one of the scouts finds food, it returns to the nest along the
trail it set up as it searched, and (hopefully) tells lots of other ants to follow that trail to
the food.

Diligant was then demonstrated on the first of the initial fields:
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5Ant brains, that is.
‘You should have seen them dance to the ant music though!
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This field is based on an example from the CMU race of 1987. The CMU rules were rather
different. For example, they had many nest cells with only one ant per nest.

Using the projector, everybody was able to see what the ants were doing. Diligant seemed
to be marching along pretty well, until a bug manifested itself. After about 350 iterations,
with only one unit of food to go, the ant carrying that food item became deadlocked. It did
not move from its square facing another ant, and this other ant did not move either.7

-

The next ant was “Newanto,” written by ESC, SM, and MY. SM gave the introduction.
This colony also starts by sending out some scouts but the scouts leave “reference trails”
that use three different scents so that the direction of the trail can easily be established.8
Once an ant discovers food on an adjacent square, it starts laying a new reference trail (using
different scents) back towards the nest. Once such a “returning” reference trail hits the nest,
ants follow it to pick up the food.g

.

Unfortunately, this ant also displayed some problems. It got all but six units of food
back home on the first field, but then deadlocked. SM explained how they had changed their
whole approach at 4am that morning, and so it was not surprising that bugs still appeared.”
MY repeated the simulation with seeds of 19 and 31. The ants got all the food in 1276 and
1062 time units respectively. It was unclear whether he had actually tried all seeds between
0 and 31, though.

RK then introduced “Puissant ,“rl a creation of RC, RK, PL, and SJP. This is a complex
ant. At first, many ants leave the nest to go looking for the food. Each leaves a trail that
(hopefully) points towards the food.r2 When an ant hits food, it builds a “highway” back
to the nest along the path it took initially. This highway is then the main thoroughfare for
ants returning to the nest.

There is also a system of “frontage” roads that border the highway. When an ant without
food bumps into one with food, it tries to leave the highway for a frontage road (building
frontage road if there is none already), thus clearing the way for the food to get back to the
nest. When there is space on the highway, an ant at the end of the frontage road turns onto
the highway and proceeds towards the food.

Puissant was run on the first field, which it successfully cleared in 763 units of time.
(Applause.)

The final entry was “Newdeterminant ,” written by AG, AM and DQ. DQ explained that
their ant was deterministic, not using the random bit except in one case to decide between
left and right. He claimed that on any field having a path from the food to the nest, and for
which the food is connected, Newdeterminant would eventually find the food and return it

7When  the-field wastwice  repeated with different random number seeds, the ants got all the food back
home both times.

8These  trails made nice-looking plaid patterns on the screen; DEK awarded Newanto the “Beauty Prize.”
Five scents were actually used (two for corners), in such a way that the path remained traversable in both
directions.

‘The returning ants could not carry food themselves, just in case they found a dead-end and became
stuck.

loIn fact all of the groups were busy hacking out their ants right up until 2pm. DEK repeated something
Geoff Phipps  had earlier said that he’d learned the hard way: “Never change the demo code within 24 hours
of the demonstration.”

l1 French for “powerful.” There may also be some alliterative reason for this name.
12This group used their own resource file, displaying appropriate arrows for directional scents.
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all to the nest.
Newdeterminant initially sends out as many scouts as there are exits from the nest. These

proceed straight as far as possible, turning only when reaching a barrier or a square already
visited.r3 If a scout reaches a square having no unvisited neighbors, usually by spiralling
into a region of the field, it backtracks, marking all such squares as “uninteresting,” so that
other ants don’t bother looking there.

When a scout does find food, it rushes back to the nest along the path it took initially,
which may be relatively long (given that the search tends to spiral around). When this ant
returns to the nest, an “optimizing ant” emerges. This ant follows the path to the food, but
on the way back it takes short cuts, cutting off unnecessary loops. Once this ant reaches the
nest, a stream of ants emerges to march along the optimized path towards the food. When
they return with food they have priority, so that ants without food will step out of their
way. If there is nowhere to step, these ants will head back to the nest too, empty-handed.

.

When run on the first field, Newdeterminant took a little while to find the food. DQ
said that the ants have most trouble on open fields, where the ants tend to search a large
portion of the field. However, the search takes linear time. Once the food was found, the
troops marched out and brought it home relatively quickly. To get all the food back took
1760 time units on the first field. (More applause.)

The second field F2 was taken from a classic paper in the psychology literature about
mazes for mice (C. J. Warden, “Distribution of practise in animal learning,” Comparative
Psychology Monographs 1, 1922):
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Diligant and Newanto took forever to get into the top left corner, and we feared deadlock
after they finally would succeed, so we turned them off. Newdeterminant and Puissant solved
it in about 3000 steps - pretty good considering the 36 units of food.

131t  leaves scents along its trail, with special scents at the corners corresponding to left or right turns.
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The third and fourth fields were sort of dual to each other in food layout:
. . . . . . . BIIIB . . . . . . . 1 . . . . . . B B. . . . . . . . . l
. . . . . . . BIBlB . . . . . . . 1 . . . . . . B.B.B . . . . . . I
. . . . . . . BlBIB . . . . . . . I . . . . . . B.B.B . . . . . . I
. . . . . . . BIBIB . . . . . . . 1 . . . . . . B.B.B . . . . . . I
. . . . . . . BlBlB . . . . . . . 1 . . . . . . B.B.B . . . . . . I
. . . . . . . BIBIB . . . . . . . 1 . . . . . . B . B . B . . . . . .I
. . . . . . . BIBIB . . . . . . . 1 . . . . . . B.B.B . . . . . . I
. . . . . . . BlBlB . . . . . . . 1 . . . . . . B.B.B . . . . . . I
. . . . . . . B . B . B . . . . . . . 1 . . . . . . B.B.B . . . . . . l
. . . . . . . . . E . . . . . . . . . 1 . . . . . . . . B . . . . . . . . 1
. . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . 1
. . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . 1
. . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . 1
. . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . 1
. . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . 1
. . . . . . . . . . . . . . . . . 1111111111111111111

Puissant got deadlocked on the second one, being overwhelmed by the variety of easily
reached treats.

AG submitted a larger field, F5, whose solution was especially fun to watch:
. . . . . . . B B B B B . . . . . . . . . . . . . B B B B B . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . BB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . BBB . . . . . . . . .
. . . . . . . . . . . . . . . . . B B B . . . . . . . . . . . : : : : : : : : : : : : : : : : : : :
. . . . . . . . . . . . . . . . ..BBB . . . .
. . . . . . . . . . . . . . . . . . . B B B . . . : : : : : : : : : : : : : : : : : : : : : : : : :
. . . . . . . . . . . . . . . . . . BBB . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . BBB . . . . .BBBBBBBBBBIii”“:::::
. . . . . . . . . . . . . . . . . . BBB...:::l?3BB...........i)EjJi  it
. . . . . . . . . . . . . . . . . . . B B B . . . . . . . B B B . . . . hiid :
. . . . . . . . . . . . . . . . . . BBB...........BBB.:::::::hiBB
......................................

BB;............BBBBBBBBBB
. . .

. . . . . . . .
. . . . . . . . . . . . . . . B B . . . . . : : : : : : : : : : : : : : : : : : : : : : : : : : : :
. . . . . . . . . . . . . . . . .

B
BB...............99 . . . . . . . . . . . . . .

. . . . . . . . . . . . . B . . . .

. . . . . . . B
BB...........999999999 . .

. . . . . . . . . B . . .
B~“:~:.;:::: B

BB...........g........:::::::
. . . . . . . . . . . . BB . . . . . .

. B . . B . . . . . . B  B
..99m;9 . . . . . . . . . . .

. . . . . . . . B h:.............bh::::::..9::::::::::::. . .

. . B . . . . . . . . . . . . . B
B

. . . . . . . . . . . . BB......9 . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

B
B B . . . . . . . : : : : : : : : : :

. . . . . . . . . . . . . . . . . B . . . . . . . . . . . . . . BB . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
B B

BBBBBBBBBBBBBBB
. . . . . . . . . BBBBBBBBBBBBBBBBBBBBBBBBBB.B.B.B.B.B.B.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
BBBBSB~BB:BBBBBBBBBBB.BBBBBBBBBBB.BBBBBBBBBBBBBBBB
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
BB:BBi388BBB:BBliBSB~~~~~~:~~~:~~~~~~~~~:~~~~~~~~~~:
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
:BBBB:BBB~:li~PIB:BB~~:~~~~:~~~~:~~~~:~~~~:~~~~:~~~~
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .n
. . ..f) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . B . . . . . . . . . . BBBB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . .
. . . . . .

fjBBBBBBBBB....BBBB....BBBB....BBBBBB
. . . . . . . . . . . . . . . . . BBBB....BBBB . . ..BBBBB. . . . . . . . . . .

. . . . . . . . . . . . . . . . . . .

. . . . B
B B B B B . . . . . B B . . . . . . . : : .

.._ . . . . . BBBBBBB.................BBBBBi)::::::::
B~ddl~:.::::::::::::::::::::::idS~~d:~ . . . . . . . . . . . . .

. . . . . . . . . . B B B B B . . . . . . . . . . . . . . . . . . . . . . : : : : : : : : : : : : :

. . . . . . . . . . . . . . . . . .
3--

. B . . . . . . . B . . . B . . . .
. . . . . . . . . . . . . . . . . . . . . . . . v-**-

~--*
. . . . . . .

. . . . . . . . . . . . . . . . . . k----E$......B.......B...BII***
; . . . .

. . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .

. . . .
. . . . . . . . . . . . . . . . . . B . . . . . . B . . . . . . . B . . . . . . . B B. . . . . . .

The time measurements are not reliable estimates (except in the case of Newdeterminant)
since only one run was performed, with a single random number seed. A value of co indicates
that the ants didn’t get all the food back on the first run attempted. A dash indicates that
the run was not attempted (probably because it was clear from previous races that the ants
wouldn’t get all the food back).
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The Initial Races
Diligant Newanto Newdeterminant Puissant

Fl 00 00 1760 763
F2 oo 00 2927 3144
F3 oo 00 938 559
F4 oo 00 832 00
F5 - - 11244 13516

The tie-breaking races were tougher. Field Tl had multiple nests (this was our “authen-
tic” CMU example):
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T3 was not biconnected:
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The results were:

The Tie-Breaking Races
Diligant Newanto Newdeterminant Puissant

Tl co 639 939 604
T2 oo 00 2068
T3 - - 1;5 2099

Newdeterminant failed on T2 because it found food in each corner and went to sleep.
When the food in the lower corner was removed, Newdeterminant finished in 12572 iterations.

From the results above it is clear that Newdeterminant and Puissant are the winners. I
don’t think that there is any scientific way to declare one better than another, since there is
no objective way to select “typical” fields. The judges declared Newdeterminant the winner
because of its elegant simplicity. Puissant received an honorable mention for graphics and
originality.

PL described some ants that his group had implemented but not fully debugged, and so
did not use in the Great Races. One idea was the “Zipper” ants. These ants proceeded in
single file until they reached a barrier. From there, ants in this column alternately turned
right or left, exploring the rest of the field.r4 When they found that all the neighbours

1 1 l 11had been visited (or were barriers) they began to backtrack, marking tnese squares as
“uninteresting.” It was quite impressive to see, on a big field, a large number of ants
“cordoning off” the uninteresting areas. The path to the food was effectively the only
interesting area left. This partial ant brain won the judges’ Choreography Prize.

Newanto’s designed by the gang
of Mahajan, Young and E. Chang.
But since all our code
went down the commode
the credit should go to ANTS! - MY

141t  W-&S  not clear how they navigated around barriers, but PL assured us that this was not a problem.
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The class closed with DEK congratulating the students on making it through the course,
and thanking them for making it so enjoyable to teach. The students thanked DEK for
teaching such a fun course. RK remarked that he had been worried that as a grad student
he was getting too old to stay awake all night on homework; he said CS304 was so interesting
that the worry became a myth.

As Teaching Assistant for the course, I must say that I enjoyed it too. Everybody was
enthusiastic, and the problems were challenging enough to make for interesting reports.
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Appendix A

The Trivia Hunt

TRIVIA HUNT ANSWERS CS304, January 1989

1. Who were the winners of the first Computer Science Trivia Hunt at Stanford? 5 points each
What did they win? 10 points

Tom& Feder, Barry Hayes, Tom Henzinger,  and Alex Wang. (Reference: CS1154, Appendix A.) They received certificates
(printed with POX, a historic computer typesetting system); they were also treated to dinner at Late for the Train restaurant
by Don and Jill Knuth on 10 March 1988. (Source: The team members.)

2. What computer scientist was born on 23 June 1912?
Alan Mathison Turing. (Ref:  Hodges, Alan Tting: The Enigma, p. 5.)

15 points

3. In what house did Bill Walsh live when he was a Stanford coach? Who lives there now? 15 points each
He was coach in 1977-1978. According to the Stanford Faculty/Staff Directory, 1978, he lived at 903 Cottrell  Way, Stanford
CA 94305;  this is con&n&  by the present owner, Prof. Thomas J. Hughes (chair of Mechanical Engineering). [A plausible, but
false, answer wm also submitted: Inquirers at the Athletic Department were told that Walsh lived in Menlo Park; and there is
a Wm. D Walsh living in Menlo Park, listed continuously in local phone books since 1977. However, that Bill Walsh was a high
school football coach, not college or pro; the “real” Bill Walsh lives on Valparaiso  Avenue and has an unlisted phone number.
Incidentally, Walsh’s announcement of his retirement was front page news on Trivia Hunt day.]

4. What Stanford mathematics professor wrote one of the first papers ever published about the Tower of
Hanoi? What were the dates of his birth and death? What is his relationship to Professor Floyd of our
department? 15 points each

Robert Edgar Alla&ice WM coauthor  of “La Tour d*Hanoi,” Proceeding8 of the Edinburgh Mathematical Society 2 (1884),
50-53; he was born 2 March 1862, came to Stanford in 1892, became emeritus in 1927, and died on 6 May 1928. (Reference:
Poggendorf’s Handw&terbuch;  Proceedings  of the Royd Society of Edinburgh 48 (1927-1928),  209-210.) Floyd lives at 895
Allardice Way.

5. What Stanford computer has its name displayed in stained glass?
The SUMEX-AIM computer in Stanford Medical School. people also found ‘Solomon’, ‘charity’, ‘thing’, ‘sheep’, ‘how’, and
‘why’ on the windows in Stanford Memorial Church; these are all names of computers at stanford, according to /otc/hosta.]

6. What are the common names of Formica rufa Linnaeus?

15 points

10 points each
The fallow ant, according to Wheeler, Ants, p. 8, or McCook,  The Agriculturd  Ant of Texss, p. 152; also called hill ant, wood
ant, horse ant, and Waldameise  (German), according to Donisthorpe,  British Ants, p. 248; also md ant, Grizmek’s  Animal  Life,
vol. 2.

7. Problem 4 in this year’s CS304 is based on an article by Leslie Valiant. Find all published papers that
refer to his article and give a full citation for every such paper in the following style: L. G. Valiant,
“Short monotone formulae for the majority function,” Journal of Algorithms 5 (19&l), 363-366.

10 points each
The following can be found via Science Citation Zndex: Joel Friedman, “Constructing O(n log n) sis monotone formulae for
the kth threshold function of n boolean variables,” SIAM Joumd on Computing 15 (1986), 641-654. David S. Johnson,
“The NP-completeness column: An ongoing guide,” Joumd of Algorithms 7 (1986), 289-305. Havi  B. Boppana, “Threshold
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functions  and bounded depth monotone  circuits,” Journal  of Computer and  System Sciences 32 (1986),  222-229. S. A. Lo&in
and A. A. Semenov, “On construction  of a complete  system of compression  functions  and on complexity of monotone realization
of threshold  boolean functions,” Lecture  Notes in Computer Science  278 [Fundamentals  of Computation Theory,  proceedings
of FCT87  in Kazan, USSR] (1987),  297-300.  And,  there are  two other  references  in publications  that (unfortunately) are not
yet covered  by Science  Citation Index:  Ravi  B. Boppana, “Amplification of probabilistic  boolean formulas,”  Proceedings  of
the 26th Annual Symposium on Foundations  of Computer Science  (1985),  20-29.  (This one,  unknown  to Knuth before  the
Trivia  Hunt, is quite  relevant  to Problem 4.) M. Karchmer and A. Wigderson, “Monotone circuits  for connectivity  require
super-logarithmic  depth,” Proceedings  of the 20th Annual Symposium on Theory  of Computing (1988),  539-550.

8 . What identification numbers and dates are stamped on the following Bench Marks of the U.S. Coast
and Geodetic Survey on Stanford’s campus? (1) near a monumental horse; (2) near a mosaic; (3) near
a potted umbrella tree; (4) near the 9th fairway. 25 points each

Bench  Marks  are shown  on the  Palo Alto  quadrangle  of the U. S. Geological  Survey  maps  in Branner  Library.  (1) B151,  1933,
at the base  of the statue  of Sherwood,  near the Old Red Barn  on Fremont  Road. (2) R875,  1954, embedded in the NE corner
of the Stanford  Art Museum building.  (3) A151,  1933,  in concrete  steps  by the main  entrance  to the Carnegie  Institution
of Washington Plant Biology  building.  (4) C151, 1933, on top of a granite  rock outcropping  between  the  fairway  and  San
Fraucisquito  Creek,  not  far from  the 9th tee of Stanford  Golf  Course.  Another one  (D151,  1933) appears  near  the 7th fairway.
Still  another  (UllO, 1932) is embedded in sandstone  in the  main  quad,  on a corner of building  310 facing  the rear of Memorial
Church.  Several  of us searched  fruitlessly  for yet  another  near  the Children’s  Hospital.  According to the  Geological  Survey  in
Denver,  the Army  Corps  of Engineers  came  to Stanford  in 1938 to determine  the horizontal  locations  of the bench  marks  whose
vertical  elevations  had been  previously  determined.

9. What artist made a painting of Jane Stanford’s jewel collection, before she sold it to help pay faculty
salaries? What were the dates of his birth and death? 10 points each

Astley David Montague Cooper’s painting  entitled  Mrs. Stanford’s  Jewel  Collection  hangs  in the  Stanford Museum, and  it says
he lived  1856-1924.  Further  research  via the Master Index  of biographical  reference  books leads  to Artists of the American
West, where his  death date is given  as 10 September  1924  in San  Jose.  The San Jose Mercury Herald for 11 September  1924,
p. 11, gives  his birthdate as 23 December 1856. According to A. Nagel,  Iron W i l l :  The life  and  letters  of Jane  Stanford,
Mrs. Stanford  used  money  from the  sale of the jewels  for an endowment  whose  income  was “to be used  exclusively  for the
purchase  of books  and other  publications”; hence,  the  use  of jewel money  to pay  faculty salaries  is apparently  a myth,  although
there was definitely  a period when she  contributed  her own funds  to help the faculty while her husband’s estate  was  tied up in
court.

10. What three faculty members of Stanford’s Computer Science Department were born on the same day
of the month (but not necessarily in the same month)? 30 points

The lookup  program  on polya or the find program  on SAIL gives  Charles  Bigelow  on July 29,  David Cheriton  on March 29,
and Gene  Golub on February  29;  also Consulting  Professor  Joe Halpern  on May 29, and  Visiting Professor  John  Sowa  on March
29.  If we exclude  professors  of the  latter type, there are no two with  the  same  birthday,  although  the  “birthday  paradox”  says
that there  probably should  be.  Another answer,  using  a different  database:  John Hennessy,  22 Sep 1952; Yoav Shoham,  22 Jan
1956; Jeffrey  Ullman, 22 Nov 1942.

11. What were the date and place of the first battle in the war between Mexico and the United States?
10 points each

8 May 1846 at Palo Alto  battlefield, Cameron  County,  Texas. (First  blood was  drawn  on April 24 when an American reconnoi-
tering  party was  attacked  and  captured;  but the Palo  Alto  battle involved  thousands  of troops.)

12. Identify the author and source of the following quotations: 10 points for each author
15 points for each source

a. He teaches him to hick and to hack, which they’ll do fast enough of themselves. . . -fie upon you.

Shakespeare,  Merry
has this  online.

Wives of Windsor; Act IV, 1, line  60 (or line numbers in other sources). The Next computer

b. As a slow-witted human being I have a very small head and I had better learn to live with it and
to respect my limitations and give them full credit, rather than try to ignore them, for the latter
vain effort will be punished by failure.

Dijkstra, in Structured Programming,  Academic Press,  1972, p 3.

c. My thesis is that high-performance systolic arrays can be used effectively by providing to the user
a simple machine abstraction supported by optimizing compilation techniques. The user sees the
systolic array as an array of sequential processors communicating asynchronously.

Monica Sin-Ling  Lam, A Systolic  Array Optimizing Compiler (thesis), CMU-CS-87-187,  p. 2.
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13. Obtain xerographic copies of the title pages of the journal articles in which (1) Binet published “Binet’s
formula” for Fibonacci numbers; (2) Chebyshev published “Chebyshev’s inequality”; (3) Vandermonde
published “Vandermonde’s convolution”. 15 points each

(1) J. Binet, “MCmoire  sur 1’intCgration  des equations  linCaires  aux  diff&ences  finies,  d’un ordre quelconque,  & coefficients
variables,” Comptes Rendus  hebdomadaires  des se’ances  de I’Academie des Sciences (Paris)  17 (1843),  559-567. (2) P.-L.
TchCbyshef,  “Des  valeurs  moyennes,” Journal de Mathrnatiques  pures et applique’es,  series  2, 12 (1867),  177-184;  that’s a
translation  of the  Russian  original,  which  was “0 srednikh  velichinakh,”  Matematicheskil’ Sbornik’ 2 (1867),  1-9. Stanford’s
library  doesn’t own that journal, but copies exist  at Berkeley,  Brown,  Columbia, Duke, Illinois,  Penn,  and  Yale, as well as the
Library  of Congress,  according  to the  National Union  Catalog. With a friend  at one  of those  places  it would  have  been  possible
to fax  the  page  (but nobody did). Karl Pearson,  in Biometrika  12,  p. 285, said that  he couldn’t trace  the  Russian  original
“at all.”  The French  version  was  reprinted  in Chebyshev’s  (l3uvres, volume  1, 685-694;  the Russian  original  was  reprinted  in
his  Polnoe Sobranie  Sochinenil’,  volume  2, 431-437  (and  Stanford  does  own that). (3) A. Vandermonde, “M&moire  sur  des
irrationnelles  de diff&ens o&es  avec  une application  au cercle,” Histoire  de Z’Academie  Royale  des Sciences (1772))  part  1,
71-72;  Me’moires  de Mathematique  et de Physique,  Tires  des Registres de l’Acad&nie  Royale  des Sciences  (1772),  489-498.

14. What are the next two numbers in the sequence 1, 1, 2, 5, 12, 35, 108, 369, . . . ? Who first computed
them? Who first computed the values 108 and 369? 10 points each

Sloane’s  Handbook of Integer  Sequences  identifies  this  as sequence  #561,  the  number  Pn of polyominoes made  from  n squares
(possibly  enclosing  one  or more  blank  squares).  Sloane  refers  to a paper by W. F. Lunnon,  “Counting polyominoes,” Computers
in Number Theory (Academic Press,  1971),  347-372;  Lunnon  discusses  the history  on pp. 356-357.  Chasing  down  his references,
we find that R. Read computed Pg = 1285  in “Contributions  to the  cell growth  problem,” Canadian  Journal of Mathematics 14
(1962),  l-20, where an incorrect  value  Plo = 4466 is stated; the correct value  Plo = 4655 must therefore  have  been  computed
first  by T. R. Parkin,  L. J. Lander,  and D. R. Parkin  in unpublished  work announced  at the SIAM fall  meeting  in 1967 (according
to Lunnon). Going back from Read, we  find  an article  by Frank  Harary, “Unsolved problems  in the enumeration  of graphs,”
Magyar Tudomdnyos  Akad&nia,  Matematikai Kutato  Intezetenek,  K&lem&yei 5 (1960),  63-95,  where  he states  that Golomb’s
incorrect  claim  P7 = 109 was  corrected  by Stein,  Walden,  and Williamson,  who also  computed Pg. They did their  calculations
on the MANIAC  II at Los Alamos,  according  to Read. Incidentally,  the  calculation  of Pn seems  to be fraught  with  difficulty,
since  Lunnon  claims  that Parkin  et al. had  P15  wrong.

15. Who coined the term ‘Artificial Intelligence’? What was research in that field called previously?
15 points each

John McCarthy  chose  it late in 1955, and used  it in his  grant  application  to the Rockefeller  Foundation  for the 1956 Dartmouth
Summer  Research  Project on Artificial  Intelligence.  Minsky drafted  his  essay “Steps  toward  artificial  intelligence”  after  that
key conference.  Previously  the subject  had been  called  ‘automata  studies’;  see  the book Automata  Studies, edited  by McCarthy
and Shannon,  in which  W. Ross  Ashby writes  about  ‘machines  with “synthetic”  intellectual  powers’. Another term, proposed
by Newell  and  Simon,  was  ‘complex information  processing’  (RAND report  P-850); see  their book Human Problem Solving,
883-884.  McCarthy’s  recollections  are  documented in Machines  who think by Pamela McCorduck,  p. 96.

16. Who wrote the report STAN-CS-M-1233? What is that author’s favorite color? 10 points each
Ken Ross,  our friendly  TA,  likes  sky blue  best  (finger  kar (P polya).

17 . Suppose the words of English were alphabetized from right to left instead of from left to right, so that all
words ending in a would come first, then all words ending in b, etc. What would be the last word in the
dictionary? What words would immediately precede and follow trivia? Note: Abbreviations, proper
nouns, and hyphenated words do not count. If your words are not commonly known, you must state
their meaning and give the name of a standard English dictionary that lists them. 15 points each

According  to the  ‘Normal and  reversed  word list.  . . ’ in the Math/CS  library  (PE1680  N6), which  is based  on Webster’s
Second  Unabridged  and  other  dictionaries,  the last  word is bruzz, a wheelwright’s  corner  chisel.  That  dictionary  contains  the
sequence  parathyroprivia,  trivia, Opiconsivia,  plenalvia,  salvia.  The proper  name  Opiconsivia  doesn’t count; according  to
Webster’s  Second,  parathyroprivia  is a disease,  a deficiency  of hormones  from  the parathyroid glands;  according  to Chambers’s
Technical  Dictionary,  plenalvia  is “impaction  of the rumen  of cattle”; and salvia  is a genus  of herbs  that includes  sage.  Of
these  words,  only  salvia  can  be found  in Webster’s  Third Unabridged.  But  there are better answers:  The Oxford English
Dictionary  contains  vuzz, a southern  variant  of furze  (an  evergreen  shrub); the Official  Scrabble  Players’ Dictionary  mentions
lixivia,  the  plural  of lixivium-solutions  obtained  by lixiviation  (also  in OED).

18. Identify the computer language in which each of the following program fragments is written:

a .  +/O=lOOIVxV>O
10 points each

APL  (from Gilman and  Fbse, APL, exercise  8H).

b. procedure Innerproduct(a,  b) Order:(k,  p) Result:(y); value k; integer k,p; real y, a, b;
begin real s; s := 0; for p := 1 step 1 until k do s := s + a x b; y := s end Innerproduct

Algol 60 (from  the original  report,  CACM 3 (1960),  311);  reprinted  in Horowitz, Programming languages: A grand tour.
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c. stacks+(Array  new:3)collect:[:eachiOrderedCollection  new].
(height to: 1 by: -l)do:[:eachl(stacks  at: 1)addFirst:
(Character value:($A asciivalue) + each - I>].

Smalltalk (from KaehIer  and  Patterson,  A Taste  of Smalltalk, p. 45).

d. linkage class link;
begin procedure out ;
if sue =/= none then begin suc.pred :- pred; pred .suc :- sue; sue :- pred :- none end . . .end

SIMULA 67 (from Helmut RoIfing,  SIMULA, p. 165).

e. 10100800
OOE88C03
00000000
00000004

The ant language  of Problem 5. (It also disassembles  into  valid but uninspiring  68000 code,  but it is definitely  not  VAX  code.)

f. IF DAY EXCEEDS 31 THEN SUBTRACT 31 FROM DAY;
MOVE "APRIL" TO MONTH; OTHERWISE MOVE "MARCH" TO MONTH.

COBOL (from CACM 5 (1962),  210).

g. Procedure Mguvar (x,y)
Begin Includes(x,y) ==> Return(False),

Return( Cx/yl)
End

Demonstration language  in Genesereth  and Nilsson,  Logical Foundations  of Artificial  Intelligence, p. 68.

h. top y2 = top y3 = .45 bot yo; z2 = whatever [xl, .qT];
METRFONT (from Knuth’s  MLWFONTbook,  p. 164)

i. R2 J60
70 58
40 HO
40 HO

R2
12 HO

J65 568
IPL-V  (from Sammet,  Programming Languages,  p. 392).

j. : SQUARE DUP *;
: CUBE DUP SQUARE *;
: FOURTH DUP CUBE *;

FORTH (from Churlian,  Beginning  FORTH, ~37); note  also : BETTERFOURTH  SQUARE  SQUARE;

k. Fur j=I(l>n :
hj-i+(aijXbjk)='hj
Ende Index j

From  Heinz  Rutishauser,  Automatische  Rechenplanfertigung.. . (1952),  p. 26.

1. picnic(Day) :- holiday(Day,july,4), !.
picnic(Day) :- weather(Day,fair), weekend(Day).

Prolog  (from Jean  Rogers,  A Prolog Primer, p. 118).

m. Node = pointer to Object;
Object = record key, 2, y: integer; left,  right: Node end;
Rectangle = pointer to RectObject;
Rect Object = record(  Object) w, h: real end;
. . . if p is Rectangle then area := p(RectangZe).w  t p(RectangZe).h; . . .

Oberon  (see  N. Wirth, “From  Module  to Oberon,” So ware---Practice & Experience 18 (1988),  66-77). But  in Oberon oneft
must type the reserved  words all in uppercase  letters.
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n. /increase-x(xpos  radius add /xpos exch defldef
/doCircle(xpos  ypos radius 0 360 circ strokeldef
(xpos pagewidth le (docircle increase-x)(exit)ifelse>loop

PostScript (from Adobe  Systems, PostScript Language Tutorial  and  Cookbook, pp. 69-70).

0. testr[z,p, f, u] t if p[z]  then f[x] else
if atom[x] then u[] else
testr[cdr[z],p, f, A:testr[car[z],p, f, u]].

McCarthy’s  publication  language  for LISP (corn  Wexelblatt,  History of Programming Languages,  p. 180); it is properly  called
M-language (see  p. 177  of that  book).

Scores:

Rajeev Alur Adam G
Tom Henzinger* Urs H
Sherry Listgarden Sanjoy M

Problem Alex Wang* Daniel S
1 30 30
2 15 15
3 30 10
4 60 20
5 35 15
6 30 10
7 43 30
8 80 120
9 35 26

10 50 30
11 25 25
12 75 50
13 40 40
14 30 35
15 30 15
16 20 1
17 30 40
18 62 72

Totals 720* 584t

*Successfully defending their championship performance of 1987
iThe  winning score from this year’s CS304  students

Eddie C
Dinesh K
Patrick L
Michael Y

30
15
30
20
20
50
10
25
35
40
25

0
30
10
30
20
40
22

452

Arul M
Steven P
Alon L
Robert K
Roland C

18
15
30
60
10
10
10
75
16
30
25

0
20
20
20
20
45
51

475
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Appendix B

Maps from Problem 3

l widforsr  Point

Temph.

l Bldbr

*Cotton

Temple

,Toret  of Set l Cbeop’r  Pyramid . Zoraarcr’~  Temple

The Grand Canyon according to ESC, UH, and SM.
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Jammu*
Amrltsar,

Jullundur’ :
Srmla

Chandigsrh .Dehra D u n

Saharsnpur*M,,,,t
NEW DELH,.* . Moradabad

l Bsre~lly

J11pur.
l Aligsr h Luc k no w

Mathurt .. .Gorakhpur Oauhrti

AJ~~~GWd*O: K.%llplI1 .

l Jhansi Aliahabad l Patnr

Udsipur* l Imph.l

A h m a d a b a d UjJain* l Bhopal
l

. Jsmshedpure C A L C U T T A
Indore Ho-h0

Porbanda: SkIrat
.

N;gPur  l

Amratati
RGpur

l Na sik Ctctrck

B O M B A Y .  ‘p, na
0

l .
l Vishakrprtnam

Sciundcrabad H y d e t a b a d

Trrvandrum.

Ktnyrkumari

India according to DK, RK, and AM.
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ScattIc.  W A. .Spokmc.  W A Williacon, ND’
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.

\‘akama.  M’A
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l W.ll. Wall&. WA Slant C l o u d .  hlN Rhinelamdcr. WI
.
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North America according to AG, PL, SJP, and DS.
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Appendix C

Graphs ofg&)

k= 1:

k = 3:

k = 5:

k = 7:

k = 9:

k = 2:

k = 4:

k = 6:

k = 8:

k = 10
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Appendix D

The ANTS! Simulator

Version 2.02, April 1989l

D.l Introduction
This writeup explains how to use the ant colony simulation program written for CS304 1989.
The code was initially written by Don Knuth in WEB, then extended and modified by Ken
Ross to run with color graphics under Lightspeed Pascal2 on a Macintosh II system. Please
notify kar(bcs.  stanf ord. edu of any bugs. Requests for copies of the software (which is not
copyrighted) should also be sent to karats.  Stanford. edu. We assume that the reader is
familiar with the “antomata” specifications given in the Data Sheet.

New File Format
At the request of the class, the capabilities of ants were extended beyond those specified in
the Data Sheet in one important way.

The brain file has a new format. The first eight hex digits are precisely the same as
before, but now there is an extra ninth digit. Let the binary expansion of this digit be wxyz.
Then the following meanings are attached to these bits:

l z = 1 means that the bits abf stuv are taken from the ant’s current location. x = 0
means that these bits come from the square the ant is facing, as before. Note that this
allows ant ant to tell whether it is on the nest, whether it has food, and whether it is on
a square with food. The status line only reports the bits for the traced ant’s adjacent
square; perhaps if there is yet another version, the current square will be displayed
too.

l y = 1 means that the instruction applies only during a solar eclipse.

l x = 1 means that the instruction applies only if the power is off.

l w = 1 means that the instruction applies only if the ant sneezes.

‘This manual is synthesized from the manual for version 1.00 and the upgrade notices given thereafter.
2Lightspeed  Pascal (version 2.0) is necessary only if you wish to change the source code.
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As usual, having multiple bits set to 1 corresponds to the logical AND of the above conditions.
I reserve the right to change bits 20, J: and y without notice. (Actually, I think my present
implementation is buggy, since it seems to ignore the values of w, x and y.)

D.2 Using the Program
The simulator package contains several items. There is the ANTS! application itself, which
is the simulator. The file pal. rsrc, whose icon contains a jack-in-the-box, is a resource file
that is accessed by the simulator. In addition to containing the information about colors
and patterns (which you can change - see below) it also contains other information about
windows etc. that are used by the program. (These you should not change.) Finally, there
will be several sample ant brains and fields for you to play around with.

.

To start up the program, click on the ANTS! application icon. The simulator will read
the default board from a file called field. default and a brain from brain. def ault.3 Note
that both these files (and all other field and brain files) must adhere strictly to the required
format as specified in the Data Sheet and Section D.l. The simulator will not recover after
reading a badly formatted file.

Once both the files have been read in, the board will be displayed, and there will be five
menus from which you can select commands. There are a number of keyboard equivalents
to the menu-selectable commands; they appear with the funny clover leaf symbol next to
the corresponding item in the menu.

The Load Menu
This menu allows you to load in a new brain or a new field. As mentioned above, the formats
of these files must be strictly adhered to.

The Commands Menu
The “go” command starts the simulator running at the current point. The menu bar will
then display the word “Pause.” Click on this word to pause the program. If you release the
mouse button without selecting a menu item, the program will resume. Alternatively, select
the “stop” option to stop the simulator. Note that the state will be saved, and that you may
resume later even if you stop at a certain point. Typing “g” together with the funny clover
leaf key is equivalent to selecting “go” from this menu.

The “single step” command may be also invoked by typing “s” together with the funny
clover leaf key. It iterates a single step of the simulator. Note that a single step may be
more that one time unit - see the Update Menu description below.

The “restart” command re-initializes the board to run the simulation once more. Note
that restart increments the random number seed, so that you will get a different run from
the previous one. To manually change the seed see the Options Menu below. The option
“repeat” is like restart, except that the random number seed is not incremented, so that the
subsequent run will be exactly the same as the previous one.

31f  these are not present, the simulator will crash.
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The “quit” command does the obvious.

The Update Menu
This menu allows you to select the step size for a single-step command. It also sets the
frequency of screen updates for the go command; because the simulator can work a lot
faster than the I/O it generates, you should increase this number if you are not interested
in detailed movements. Setting this to infinity will cause the program to update the screen
only when all the food is gone. Note that single stepping when the step-size is infinite does
nothing.

The Options Menu
The “scented backgrounds” option allows you to select whether to have black backgrounds
(actually, the background color you can change - see below), or backgrounds of the same
color as the scent of the square. Try experimenting with this, and see its effect on food and
ant symbols. Unless you have defined special symbols for scents, the simulation looks nicer
with scented backgrounds, although using black backgrounds may be helpful in locating ants
within a multi-colored board.

The “change seed” option allows you to enter an arbitrary seed. By default, the seed
starts at zero. Note that changing the seed will reset the board. Warning: the seed should
be in the range 0 to 32767.

You may redraw the screen by selecting this item from the menu. Hopefully you won’t
need to do this too often because the screen should be correct if the simulator is working.

Finally, you can hide the status display. This is useful on large fields for which the status
information encroaches onto the field.

The Breakpoints Menu
The ants simulator allows you to set breakpoints. A breakpoint is a memory location within
the ants’ brain. When the simulator is running, either because “single step” or “go” was
selected, the program will pause when an ant reaches a breakpoint. (This means that the
instruction at the breakpoint location applies, as defined in the Data Sheet.) There are two
ways breakpoints can be used:

a If an ant is being traced (see below) then the simulator will break when this ant reaches
a breakpoint. If the traced ant returns to the nest without ever reaching a breakpoint
(and there was in fact some breakpoint set), then the simulator will break when the
ant enters the nest.

l If no ant is being traced, then the simulator will break as soon as any ant reaches the
breakpoint. When this occurs, an ant that reached the breakpoint will be automatically
selected as traced, and thus highlighted.

You may set a breakpoint, show breakpoints or clear all breakpoints using this menu.
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The State Menu
The simulator allows you to manipulate the state directly. You can save and restore, and
also edit the current state. Don’t try to edit the state files, since there is only rudimentary
error checking built in to the routine that restores state files. (This part of the code was
written in a hurry!) Besides, it is probably easier to make changes by using the edit feature.

One important note is that the state file does not include the ant brain information.
Hence you must load the appropriate ant brain before restoring the state. The simulator
will refuse to restore a state if the title of the ant brain does not match the title stored in
the state file. For this reason, you may want to change the title of the brain every time you
make a change, say by incorporating a version number. Of course, you can fool the simulator
by keeping the same name. You should do this only if you are 100% sure that the program
counters of the saved ants still correspond to the same instructions, or if you plan to change
all the program counters manually.

To edit the current state, select “Edit” from the “State” menu, or type “e” together
with the funny clover leaf symbol. The menu bar will change to give you the “Edit” menu,
and the cursor will change too. There are five different ways that you can edit the state,
depending on which item from the edit menu is selected. Clicking outside of the field will
do nothing.

l If “Change scent” is selected, you may click on a square to increment its scent mod
16. You can’t change the scent of a barrier, which always has scent 0.

l If “Toggle ant” is selected, then clicking on a square will remove an ant if one is present
(except at a nest), or create an “up ant” if the square does not contain an ant (and is
not a barrier). The PC of a newly created ant is 0.

l If “Rotate ant” is selected, then clicking on a square with an ant will rotate it ninety
degrees counter-clockwise.

l If “Set ant PC” is selected, then clicking on a square containing an ant will result in a
box appearing on the screen, asking you to supply a PC in hex. The current PC will
be displayed as the default.

l If “Toggle ant food” is selected, clicking on a square with an empty handed ant will
give it some food. Clicking on an ant with food will take it away.

Selecting “Exit edit” will take you back to the main menu.
In order to place food, barriers and nests, you have to edit the initial field file, as before.
Note that the edit feature allows us to perturb scents. If your ant brain is robust with

respect to perturbed scents then say so, and we may incorporate this into the tie-breaking
tests.

Tracing Ants
While the simulator is not iterating, you may click the mouse on any ant appearing on the
screen. The color of the ant will change, indicating that this ant is being traced. Its program
counter (in hex) and the remainder of the comment line in the ant brain file will be displayed
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at the top left corner of the screen. Also displayed are the input bits (apart from the random
bit) corresponding to the square the ant is facing. This display will be updated after every
step, until the ant returns to the nest, or until the trace is disabled. Clicking on another ant
will trace that ant instead; you may trace only one ant at a time. Clicking any place where
there is no ant will turn off the trace.

D.3 Changing the Display
The colors and shapes used by the simulator to draw the various objects may be changed.
Please bear in mind the following suggestions:

When Debugging, use a different color for each scent, and don’t try to get too fancy with
the display. Once you are convinced that your ants are doing what they should, you
can then worry about the display.

For the Presentation, use the same color for different scents only if they have the same
meaning. Use different shades of the same color only when there is some semantic link
between the two scents. The aim here is to give an onlooker the ability to comprehend
your colony easily.

In either case, make sure that all symbols are clearly distinguishable from one anot her,
either on the basis of color or pattern. In particular, make sure that ants don’t get “lost” in
their background, and that ants with food are distinguishable from those without.

Standard colors and patterns are supplied with the program in the resource file pal. rsrc.
Don’t edit this directly; make a copy first. You will need to use ResEdit to modify a resource
file; such files cannot be changed from within the simulator itself. Double-clicking on the
icon for pal. rsrc should invoke ResEdit.

To modify a pattern, select a particular pattern (of type “PAT”) using the mouse. (More
on knowing which pattern is which later.) A pattern is an 8 by 8 grid of pixels. Clicking on
a particular pixel will toggle its value. You can even paint or era,se a region by holding down
the mouse button while you move the mouse.

Modifying the colors is more of a hassle. You basically have to do it using a hex editor.
Click onto the resource of type “pltt” that has the resource number given in Figure D. 1.
Each entry in the palette consists of eight 4-hex-digit fields. The first entry contains the
number n of colors in its first field, and zeroes elsewhere. Subsequent entries correspond to
the colors 0’1, . . . , n - 1.

A color entry consists of three values between 0000 and FFFF for the red, green, and blue
components of the color, respectively. The remaining five values are reserved, and should all
be zero. If you want to play around with various colors, select the “monitors” item in the
control panel.4 Make sure your monitor is set to enable color, preferably in the 256-color
mode.

What is a resource? Well, one of the things that the Macintosh computers emphasize is
the use of resources, i.e., data to be input from a standard library. Resources can have a

4You get this by p ulling down the menu labelled  with the apple symbol. Click on the “change color”
space to get the color wheel.
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#  Lot. d e f a u l t function
0 010
1 020
2 030
3 040
4 050
5 060
6 070
7 080
8 090
9 OAO
10 OBO
11 oco
12 ODO
13 OEO
14 OF0
15 100

black background
dark grey barrier
yellow normal ant
orange ant with food
fawn ant on nest
maroon ant being traced
mid grey color of text
pink one unit of food
dark pink two units of food
dark pink three units of food
dark pink four units of food
red five units of food
red six units of food
red seven units of food
red eight units of food
red nine units of food

Figure D.l: Object colt

# Lot. d e f a u l t function
16 110
17 120
18 130
19 140
20 150
21 160
22 170
23 180
24 190
25 1AO
26 1BO
27 lC0
28 1DO
29 1EO
30 1FO
31 200

white
mauve
purple
dark purple
light blue
mid blue
*sky blue*
navy blue
turquoise
bright green
light purple
khaki
off green
green/grey
terracotta
brown

Drs: resource id is 27773.

scent 0
scent 1
scent 2
scent 3
scent 4
scent 5
scent 6
scent 7
scent 8
scent 9
scent 10
scent 11
scent 12
scent 13
scent 14
scent 15

variety of types. For example the type “pltt” is a color palette resource, the type “PAT”
is a pattern resource, the type “WIND” is a window resource, and so on. The idea behind
resources is to separate most of the user interface from the inner workings of the program,
so that it may be changed without affecting the logic of the program.

So the palette and patterns (among other things) used by the simulator are kept in the
resource file pal. rsrc. How do you know which color or pattern is which? By looking it up
in the tables in Figures D.l and D.2.
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id function

18937 background
10337 barrier
32173 ant facing up
29469 ant facing right
26280 ant facing left
31575 ant facing down
30620 one unit of food
31846 two units of food
18503 three units of food
9456 four units of food

31112 five units of food
6694 six units of food
10284 seven units of food
11876 eight units of food
28094 nine units of food’

id function

31257 scent 0
30467 scent 1
5198 scent 2
7026 scent 3

20924 scent 4
31607 scent 5
22445 scent 6
17236 scent 7
28221 scent 8
18666 scent 9
19894 scent 10
6551 scent 11

30271 scent 12
19154 scent 13
27488 scent 14
31058 scent 15

Figure D.2: Resource id numbers for various patterns.
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