July 1989 Report No. STAN-CS-89-1273

Sirpent ™ : A High-Performance
I nter networking Approach

by

David R. Cheriton

Department of Computer Science

Stanford University
Stanford, California 94305

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

form Approved
OMB No. 0704-0188

1 a REPORT SECURITY CLASSIFICATION

1 b RESTRICTIVE MARKINGS

2a SECURITY CLASSIFICATION AUTHORITY

3 DISTRIBUTION /AVAILABILITY OF REPORT

2b DECLASSIFICATION /DOWNGRADING SCHEDULE

4 PERFORMING ORGANIZATION REPORT NUMBER(S)

STAN- CS- 89- 1273

5 MONITORING ORGANIZATION REPORT NUMBER(S)

6a NAME OF PERFORMING ORGANIZATION

STANFORD UNI VERSI TY

6b OFFICE SYMBOL
(If applicable)

7a. NAME OF MONITORING ORGANIZATION

6c ADDRESS (City, State, and ZIP Code)

STANFORD, CA 94305

7b ADDRESS (City, State, and ZIP Code)

8b OFFICE SYMBOL
(If applicable)

8a. NAME OF FUNDING /SPONSORING
ORGANIZATION

DARPA

9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

N00039-84-C~0211

8¢. ADDRESS (City, State, and ZIP Code)

10 SOURCE OF FUNDING-NUMBERS

WORK UNIT
ACCESSION NO

PROGRAM PROJECT
ELEMENT NO , INO

TASK
NO

11 TITLE (Include Security Classification)

Sirpent™: A High-Performance Internetworking Approach

12 PERSONAL AUTHOR(S) David R. Cheriton

13a TYPE OF REPORT 13b TIME COVERED

14 DATE OF REPORT (Year, Month, Day) |15 PiCéE COUNT

FROM TO
16 SUPPLEMENTARY NOTATION
17 COSAT!I CODES 18 SUBJECT TERMS (Continue on reverse If necessary and identify by block number)
FELD | GROUP SUB-GROUP

19 ABSTRACT (Continue on reverse if necessary and identify by block number)

A clear target for computer communication technology
is to support a high-performance global internetwork. Cuz-
rent internetworking approaches use either concatenated
virtual circuits, as in X.75, or a ““universal’ internetwork
datagram, as in the DoD Internet IP protocol and the ISO
connectionless network protocol (CLNP). Both approaches
have significant disadvantages.

This paper describer SirpentTM(Source Internetwork
Routing Protocol with Extended Network Transfer)® a new
approach to an internetwork architecture that makes source
routing the basis for interconnection, rather than an op-
tion as in IP. Its benefits include simpic switching with
low per-packet processing and delay, support for account-
ing and congestion control, and scalability to a global inter-
network. It also supportr flexible, user-controlled routing
such as required for security, policy-bared routing and real-
time applications. Wc also propose a specific internetwork

protocol, called VI'.PERTM’, as a realisation of the Skpcnt
approach.

20 DISTRIBUTION /AVAILABILITY OF ABSTRACT

[UNCLASSIFIED/UNLIMITED ~ [T] SAME AS RPT] DTIC USERS

2 1 ABSTRACT SECURITY CLASSIFICATION

22a NAME OF RESPONSIBLE INDIVIDUAL

22b TELEPHONE (Include Area Code)|22c¢ OFFICE SYMBOL

DD Form 1473, JUN 86

Previous editions Jre obsolete

SECURITY CLASSIFICATION OF THIS PAGE

S/ N0102-LF-014-6603

Sirpent™: A High-Performance Internetworking Approach

David R. Cheriton
Computer Science Department
Stanford University

Abstract

A clear target for computer communication technology
is to support a high-performance global internetwork. Cur-
rent internetworking approaches use either concatenated
virtual circuits, as in X.75, or a “universal” internetwork
datagram, as in the DoD Internet IP protocol and the ISO
connectionless network protocol (CLNP). Both approaches
have significant disadvantages.

This paper describes SirpentTM(Source Internetwork
Routing Protocol with Extended Network Transfer) a new
approach to an internetwork architecture that makes source
routing the basis for interconnection, rather than an op-
tion as in IP. Its benefits include simple switching with
low per-packet processing and delay, support for account-
ing and congestion control, and scalability to a global inter-
network. It also supports flexible, user-controlled routing
such as required for security, policy-based routing and real-
time applications. We also propose a specific internetwork

protocol, called VIPERTM’, as a realization of the Sirpent
approach.

1 Introduction

A high-performance global internetwork is required to
support the next generation of computer communication
and distributed systems. Current internetworking ap-
proaches use either concatenated virtual circuits (CVC), as
in X.75, or a ‘universal’internetwork datagram, as in the
Internet IP protocol and the IS0 connectionless network
protocol (CLNP). The CVC approach requires a circuit
setup between endpoints before communication can take
place, introducing a full roundtrip delay. It also requires
a significant amount of state in the gateways to maintain
connection state. (However, the circuit provides a basis for
access control, accounting, resource reservation and efficient
addressing.)

The highly bursty traffic characteristic of most com-
puter communication makes the CVC approach ill-suited

L Sirpent is a trademark of Stanford University.
2VIPER is a trademark of Stanford University.

for computer networks. Either the circuit setup cost is in-
curred frequently or else circuits are held and not well uti-
lized over long periods of time. The latter incurs a connect
time cost forced by the costs of switch state and band-
width reservation associated with a circuit. This traffic is
expected to become burstier as the data rates of networks
move much higher than that sustainable by computer pe-
ripherals and that required by the applications. For ex-
ample, an 8 Mb data stream appears as periodic bursts of
packets on a gigabit channel, using less than 1 percent of
the bandwidth. Moreover, increases in transactional traf-
fic, such as credit card transactions, make the logical con-
nections even shorter. Performance improvements in data
rates, processing speeds and software leave the roundtrip
time a dominant factor in response time.

Datagram-oriented internetworking requires no connec-
tion setup and little state in the gateways, avoiding the
problems of the CVVC approach. However, the IP approach
does not provide for access control or congestion control
and requires a significant amount of per-packet processing
in the routers. In particular, each router must (or at least,
is supposed to) determine the next hop of the route from
the destination address, update the Time To Live (TTL)
field, possibly fragment the packet and update the header
checksum before sending on the packet. As a consequence
of this processing, each packet suffers a reception, storage
and processing delay at each router.

The cost and complexity of these internetworking ap-
proaches are growing concerns because of the increasing
speed of networks, the increasing demands for functional-
ity, and the growing scale of internetworking. Local and
wide-area networks are progressing into 100 megabit data
rates and soon gigabit data rates. Requirements for conges-
tion control and policy-based routing [6] appear to require
even more per-packet processing and mechanism in each
router. Thus, these problems are expected to become far
more pronounced.

This paper describes Sirpent (Source Internetwork

Routing Protocol with Extended Network Transfer) a new
approach to an internetwork architecture that makes source

3The name Sirpent is also supposed to be suggestive of the
way a packet ‘snakes’ its way through the network using cut-
through switching. Cut-through routing or switching (18] refers
to switching the packet out the outbound port before the entire
packet has been received, eliminating the delay for packet recep-
tion and storage that arises with conventional store-and-forward
switching.

routing the basis for interconnection, rather than an op-
tion as in IP. Its benefits include simple switching with
low per-packet processing and delay, support for account-
ing and congestion control, and scalability to a global inter-
network. It also supports flexible, user-controlled routing
as required by security considerations, policy-based routing
and real-time applications. We argue that source routing
is the correct fundamental basis for an internetwork archi-
tecture, showing that IP-style addressing can be viewed as
a restricted special case. We also argue that the Sirpent
design is a result of further application of the end-to-end
argument [21]. Function is moved out of the lower lay-
ers, making them simpler and providing the higher layers
with more functionality. The lower layers only provide this
functionality (routing in this case) when beneficial as a per-
formance enhancement.

The next section describes the Sirpent approach, its re-
alization in a high-performance gateway, the handling of
access control, accounting and congestion, and its scala-
bility. Section 3 discusses the extension of internetwork
directories to provide a routing service in support of Sir-
pent. Section 4 describes some implications for transport
protocols that use Sirpent. Section 5 describes a specific
protocol proposal, VIPER, for realizing Sirpent. Section 6
provides some preliminary performance analysis of the Sir-
pent approach using the VIPER protocol specifics. Section
7 relates Sirpent and VIPER to prior work. We conclude
with a brief assessment of the approach and an indication
of the future directions.

2 Sirpent Design

Each Sirpent packet is structured as a sequence of
header segments followed by user data, followed by the Sir-
pent trailer. Each header segment corresponds to a Sirpent
router along the route and contains the following informa-
tion:

port - identifier of the output port that the packet should
take in the router to which the header corresponds.

type of service - priority and handling of the packet
when it is blocked at the router, namely preempt, save
or drop.

portToken - authorization for the outport port. The port
token may also provide authoriration to return through
this port.

portinfo - potentially network-specific field that specifies
information required as part of transmission through
the specified output port. This field includes a tag field
indicating the format of the rest of the packet. In partic-
ular, it indicates the protocol for interpreting the next
header, if any.

The portToken and portinfo fields are variable-length so an
actual header contains length fields as well, which are not
shown here for brevity. The portInfo field commonly con-
tains a network-specific header that has additional network-
specific information. The portToken is optional. For exam-
ple, a packet routed to an Ethernet without a port token
would contain as next header segment:

[port,tos,enetHdr]

where “tos” is the typeOfService field. The ‘enetHdr’ field
is a standard Ethernet header consisting of two 48-bit ad-
dresses, for source and destination, and a 16 bit protocol
type field. The protocol type field serves as a tag field spec-
ifying the format of the rest of the packet. In particular, if
the packet requires at least one more hop to reach its des-
tination, the protocol type field contains a value associated
with Sirpent indicating that the following portion of the
header is another Sirpent header segment. Alternatively,
the type field could designate a transport protocol if the
destination Ethernet address is that of its final destination.

On transmission, a Sirpent packet has an initial header
segment that corresponds to the type of network on which
it is being transmitted, so the initial header segment format
is implicit from the network type. For example, on trans-
mission of a Sirpent packet on an Ethernet that is to be
routed through router R on to another Ethernet, the initial
portion of the packet would look as follows:

[enetHdr1,port,tos,portToken, enetHdr2,data]

The ‘enetHdr1’ field specifies as the Ethernet source address
the address of the sending host, and the destination address
of the router R. Its protocol type field is set to the value
reserved to designate the Sirpent protocol on the Ethernet.

On reception of a Sirpent packet at a router (and de-
multiplexing the packet to the Sirpent module, based on
the network-specific protocol type field), the router removes
the network header from the front of the packet as well as
the port, typeOfService and portToken fields. It checks the
authorization provided by the portToken, if present, and
aborts the transfer of the packet if not authorized. Other-
wise it then revises the network-specific portion, if any, so
that it constitutes a correct return hop through this router
and appends the return port and network header fields to
the end of the packet. For example, with an Ethernet
header, the destination and source addresses are swapped.
The packet is then forwarded out though the port specified
by the port field. If this port is connected to a point-to-
point link, the next router (or destination) is the node at
the other end of the link. Otherwise, the portinfo field is
a network-specific set of fields that include specification of
the next recipient on the link. The format of the portinfo
field is determined by the type of the port designated by the
port field. For example, if the port field specifies an Eth-
ernet, the Ethernet header (in the portInfo field) specifies
the next node on the Ethernet attached to this port. So,
continuing the previous Ethernet example, the forwarded
Sirpent packet looks as follows.

[enetHdr2,data,returnPort,tos,portToken, rEnetHdr1]

The “rEnetHdrl1” matches the original Ethernet header
“enetHdr1” except that the source and destination fields
are reversed. A length field (not shown) indicates the size
of the Ethernet header, allowing network-independent ma-
nipulation of the header/trailer segments*. In this example,

4The network-specific portion for an Ethernet need not con-
tain the full Ethernet header. For example, by agreement be-
tween the router and sources, the network-specific portion may
contain only the destination and type fields, in which case the
router would be responsible for supplying the Ethernet source
address to form a full Ethernet header before forwarding the
packet. It would also replace the datination address with the
source address when moving the origind header segment infor-
mation to the trailer.

the portToken is actually a link Token, authorizing trans-
mission of packets back through this port as well. Other-
wise, the destination must provide different tokens for the
return route.

This process is repeated at each Sirpent router, so the
packet is source-routed by the sequence of header segments
from source to destination. The packet arriving at the final
destination contains only the last header segment at the
start of the packet with the rest of the original header con-
tained in the trailer, modified so that it can be easily made
into a return route to the source of the packet. In partic-
ular, to generate the return route, the receiver locates the
beginning of the trailer of (former) header segments and
copies each segment into a separate return address area in
reverse order, swapping the port fields and updating the
length fields as appropriate. Because the network-specific
portions of the header segments have been modified as re-
quired by the routers along the original route, the reversal
process is entirely network-independent.

Multicast can be supported in Sirpent by three mecha-
nisms. First, port values can be reserved to specify multiple
ports, rather than just one port. Designating one of these
values as a port field causes the packet to be forwarded on
each of these ports. A simple case of this approach is using
a value as the broadcast port, causing transmission out all
ports.

A second approach is to allow a tree-structured speci-
fication of the multicast route, as proposed with Blazenet.
Effectively, there are multiple header segments specified for
a routing point, with each header segment causing a copy
of the packet to be routed according to the port it specifies.

Finally, one can use multicast agents at various points
and route packets to these agents for explosion” In this
case, the portInfo field specifies the multicast agent proto-
col and contains the information required to explode the
packet. This approach differs from the previous scheme
primarily in that the full header is delivered to each of the
multicast agents, rather than only delivering its portion of
the route.

A combination of these approaches can be used. For
example, the tree approach might be used for a source
to route a packet to several wide-area broadcast networks
which then deliver the packet simultaneously to a number
of multicast agents, which in turn then handle local deliv-
ery.

Sirpent does not provide for fragmentation and re-
assembly. When a packet arrives that is too large for the
next hop, this situation is only discovered when a portion
of the packet has been transmitted, assuming the router is
doing cut-through. We assume that the router has enough
lookahead to realize this situation has occured before that
actual maximum has been achieved. It then appends a
special segment on the trailer (which is not a legal Sir-
pent header segment) indicating that the packet has been
truncated. Thus, the receiver can detect packet truncation
even when it only affects the packet trailer. As described in
Section 3, the routing service provides the maximum trans-
mission unit (MTU) along with the route to the client so
there is no need to do MTU discovery in the same sense as
conventional IP.

It is useful to compare the Sirpent approach to IP to
show that Sirpent design does adequately cover the issues
recognized in the IP design. Sirpent does not provide ver-

sion or packet length fields. The network needs to be able to
determine the end of a packet so the length is not transmit-
ted explicitly by Sirpent. For instance, an Ethernet trailer
sequence indicates the end of packet on the Ethernet?. Sir-
pent does not provide fragmentation and reassembly, elim-
inating the need for the associated fields. Sirpent does not
provide options but does explicitly provide source routing
and the “record route” facilities by its basic mode of opera-
tion. The other options, for security and timestamping are
not supported as being too expensive to warrant inclusion.
Secure handling of the packet can be ensured by the source
selecting a secure route for the packet to take*.

The Sirpent header does not include a time-to-live field
or other explicit means to limit packet lifetime. A Sirpent
packet cannot loop infinitely at the Sirpent level because
the header is finite and is reduced by each router. Infi-
nite looping within a network can be handled by network-
specific information if necessary, which can be provided in
a Sirpent header segment as a network-specific version of
the portInfo field. Each transport protocol be prepared to
reject packets whose packet lifetime in the internetwork ex-
ceeds that which the protocol can handle correctly. (See
Section 4)

Absence of checksum means that the header can be
corrupted without that fact being detected immediately.
As a consequence, the packet may be misrouted rather
than dropped immediately, as done with IP. However, we
note that the header is normally a small percentage of the
full packet so, assuming random sources of corruption, the
header has a low probability of corruption. Also, the proba-
bility of a packet with a corrupted header successfully rout-
ing further in the internetwork is quite low. So, with the
low error rates expected for current and future networks,
header corruption is a low probability event and the in-
creased load on the internetwork of routing packets further
after corruption is insignificant. With Sirpent, the trans-
port layer must deal with misdelivered packets, as described
in Section 4.

The advantages of Sirpent are further illustrated by
considering a high performance realization (following some
of the techniques of Blagenet [11, 13]), techniques for re-
source management and scalability, as described in the fol-
lowing three subsections.

2.1 High-Performance Routing

A high-performance Sirpent router uses cut-through
routing as follows. As the packet header start to arrive, the
router strips the header off to a loopback register. Placing
the port field first allows the router to make the switching
decision while the typeOfService, portToken and portlnfo
fields are being received. During this time, the router de-
termines which of the following three actions is applicable:

e Route onwards.

e Route to = blocked packet handler.

BA packet can be padded with null bytes between the end
of the actual data and beginning of the Sirpent trailer without
confusion.

SHowever, the selection of a secure route is purely to reduce
exposure to insecure portions of the network because errors in
header information can cause a packet to be misdelivered into
an insecure portion of the network. Security must be (and can
be) provided by packet encryption.

e Route local.

In the first case, the portion of the packet after the packet
header is routed out the appropriate port (in real-time)
and the looped back portion is appended to the end of the
packet after being delayed in the router until the end of the
packet. That is, the packet is switched using cut-through
routing to the output port. (The field-swap of the network-
specific information is performed as part of the loopback
process.) As part of routing onwards, the switch may abort
a packet already in transmission on the given port if the new
packet is of a preemptive priority and the current packet in
transmission is not.

In the second case, the packet is deferred to a subse-
quent time, or dropped (depending on the networking tech-
nology and the type of service specified). Deferral may be
accomplished by storing the packet, looping it back to a
previous node (as done in Blasenet) or entering it into a lo-
cal delay line to store the packet for some period of time. In
any case, the original packet header can be easily retained
by switching the rest of the packet to follow the header
into the loopback register. The header segment can also
be stripped off at this stage if appropriate. Local delivery
can be handled as a special outgoing port that feeds into a
local reception (memory) buffer or as a special case in the
routing switch.

The type of service field determines whether a packet
is retained when it is blocked and, if retained, the order
of transmission of the currently blocked packets. That is,
higher priority packets are retransmitted first.

If a portToken is present (and required), the router
looks up the token in its token cache and checks authorisa-
tion. Because the token is an encrypted capability that may
be difficult to fully decrypt and check in real time before
the packet is forwarded, the router retains a cached version
of the token such that it can check and authorise packet
forwarding in real time from the cached version. A packet
arriving with a token that has not been previously cached
can be handled in several ways. First, it may be allowed
through, deferring enforcement of full authorisation to sub-
sequent packets, which are authorised by the cached token
created from the first packet. This approach, what might be
called optimistic authorization assumes that, in the worst
case, one or a small number of unauthorised packets can be
allowed through without significant problems’. Second, the
initial packet can be handled as a blocked packet, the same
as if the outgoing port is unavailable. The blocking action
allows some time for the token to be processed, just as the
blocking normally allows some time for the port to become
free. Finally, the packet could be dropped. This approach
might only make sense in a router in which blocked packets
are dropped, thus reducing to the previous approach. In
any case, the new token is decrypted, checked and cached
(using the encrypted value as the key) to prepare for subse-
quent packets using the same token. If the token is invalid,
the cached entry is flagged indicating a problem with pack-
ets carrying this token value. Subsequent packets using this
token are then blocked. Cache entries are also used to main-
tain accounting information such as packet or byte counts
to be charged to the account designated by the token.

7"Malicious attacks of unsuthorized packets with many dif-
ferent invalid tokens could be handled by the router switch-
ing to blocking authentication when excessive invalid tokens are
received.

With this design of router, the delay through the router
is reduced to the switch decision and setup time (if the out-
put port is available and the token is cached). The switch
decision and setup time can be made significantly less than
a microsecond, given the simplicity of the switching deci-
sion. In any case, the “store” delay of conventional store-
and-forward is eliminated so the packet delivery delay is
basically the transmission time, propagation delay and sum
of the queuing delays incurred at each router on the route
taken by the packet. The real-time switching also preserves
the gaps introduced by the sender using a rate-based trans-
port protocol, such as VMTP (2] and Netblt [7]. (When a
packet blocks, the gap is increased unless several packets
going to the same source are similarly delayed, which we
assume to be an unlikely event.) Finally, the type of ser-
vice field allows the network to support a variety of types
of traffic ranging from real-time video to file transfer while
still only imposing the overhead of examining and acting on
the type of service field when the packet is blocked. That is,
if a packet can be routed immediately out its outgoing port
with no contention from other sources, there is no need to
examine its type of service field. With contention, the type
of service field provides for preemption of interfering pack-
ets as well as prioritized queuing. Controlling the queuing
delay and contention is the subject of the next subsection.
Note that cut-through routing is only applicable when the
input link and the output link are the same data rates.
Because of the benefits of standardising on data rates, we
expect this to be the case in significant portions of future
internetworks.

2.2 Resource Management

Sirpent provides for access authorisation, accounting
and congestion control using tokens and rate-based feed-
back control.

Authorization and Accounting Each token is an
encrypted (difficult-to-forge) capability that identifies the
port and type of service that it authorises, the account to
which usage is to be charged, optionally a limit on resource
usage authorised by this token, and whether reverse route
charging is authorised (That is, the token can be used for
the return route as well.). A source can only use those
portions of the internetwork for which it can acquire valid
tokens, and only within the type of service and resource
limitations provided by the tokens. Thus, the internetwork
can limit resource demands on a per-router basis by limit-
ing the tokens issued to users. This approach is particularly
appropriate for very high priority traffic for which signifi-
cant queuing delay is not acceptable. (Using preemption,
this traffic is not delayed by any lower priority traffic so
contention only occurs between comparable priority traf-
fic.)

Rate-Based Congestion Control For normal and
low priority traffic, Sirpent uses rate control to limit the
length of queues on a per-output port basis. In particular,
using cut-through techniques and source routing, a packet
is routed directly to the designated output port, avoiding
input queuing. If the port is busy and the packet can-
not preempt the currently transmitting packet, the packet
is added to the output (priority) queue associated with the
output port (assuming buffer space is available). The router
monitors the output rate of the port. If the arrival rate

to this port exceeds the output rate, the router signals to
those ““upstream” routers feeding this queue to reduce their
rate of packets being transmitted to this queue. Because
the upstream routers have access to the source route on
each packet, they can determine the packets destined for
this queue. Because the congested router has access to the
source route, it can easily determine the upstream routers
feeding the queue. Each router rate-controlled by such a
congestion point can further feed back rate control infor-
mation to routers feeding its queues, indicating rate infor-
mation based on packets going to specific congested router
queues. (Links not feeding the queue are implicitly limited
in rate and must progressively push the authoriaed rate up,
similar to Jacobson’ slow start approach [16], except ap-
plied at the network layer rather than the transport layer.)

In effect, the rate-limiting information builds up back
from the point of congestion to the sources, dynamically
generating soft state on flows®. The rate control state in
the routers is similar in some ways to circuit state except:
(1) as soft cached state, it can be discarded; (2) it arises per
route and not per user; and (3) it is created dynamically ac-
cording to need rather than explicitly when communication
is initiated.

Any non-empty output queue indicates a (possibly tem-
porary) mismatch between input rate and output rate. The
buffer space allocated to the output queue provides a mech-
anism to absorb temporary mismatches. The rate control
mechanism prevents there being a sustained mismatch. As
a feedback system, this rate control approach necessarily
oscillates. The degree of oscillation and its resulting effect
on the utilization of the congested output link depends on
the amount of output buffer space, the propagation delay
to the feeding routers and the variation in traffic going to
the output queue. Further determination of buffer require-
ments, control heuristics and performance trade-offs for this
scheme are part of on-going research. In this vein, we are
also exploring providing “feed forward™ load information
on packets transiting rate-controlled links. That is, pack-
ets include information on the number of packets queued
behind them at their previous router.

We expect certain critical links in an internetwork to ex-
perience significant load, requiring rate control while many
links operate with no queuing thus realising the low-delay
benefits of cut-through. The critical links can be reason-
ably augmented with additional capacity to avoid overload.
Dynamically load balancing across multiple links that pro-
vide this increased capacity is facilitated by the notion of
logical hops or links, as described below.

Logical Hops and Load Balancing A network can
use a port identifier to designate a group of links that are
all equivalent from the standpoint of the Sirpent source.
For example, a (logical) port in a San Francisco area router
may designate a (logical) link to a Boston router which may
in fact be implemented by many different physical links. A
packet routed through this logical port can be routed over
any one of the physical links by the router based on local

8 We attribute the terms and concepts of soft state and flows
to Dave Clark of MIT. Soft state refers to state that is easily
recoverable after router crash, thereby not conflicting with the
“stateless” philosophy for IP routers. The term flow refers to
a sequence of related packets, such as those constituting a file
transfer, which the router detects based purely on their dynamic
behavior.

load and availability. A port may also designate multiple
hops across multiple networks to some common destina-
tion, further allowing the source to be oblivious to the in-
tervening routing. This approach allows the network (and
even portions of the internetwork) to do fine-grain load-
balancing and rerouting around congestion and failures.

The hierarchical structure of recent internetworking in-
frastructure makes this type of approach attractive in coun-
tering the problem of slow route update using source rout-
ing. That is, a wide-area transit network could provide
single logical hops for the various destinations it serves and
the clients simply use those logical hops. Internally, the net-
work can be handling the routing to balance the load. For
example, a router connected to a Blaeenet might replace
the logical hop destination by a Blazenet source route as
the packet enters the Blaaenet network and remove it on
exit, at the cost of the packet delay of adding this routing
information (which need not cost more than the siae in bits
of the route divided by the data rate). Also, a very high
speed physical link, such as a 10 gigabit line, might be stat-
ically divided into 10 1 gigabit channels with all 10 links
being treated as one logical link. A packet arriving for this
logical link would be routed to whichever of the channels
was free. This approach offers a means of exploiting high
capacity physical links without forcing the higher speeds on
the rest of the internetwork.

In general, one can regard logical ports and logical links
as an optimization for the cases in which it is more efficient
for some portion of the routing to be performed by the in-
ternetwork. The benefits are primarily: (1) later binding
of routes to avoid congestion and failures and (2) shorter
packet headers. The IP approach represents an extreme of
this “optimiration” in which all routing between the source
and destination hosts is performed by the internetwork. By
the ““end-to-end argument”, this optimization, which in-
creases the cost of the (inter)network layer, is only justified
if it offers a net performance benefit. We conjecture that
this optimisation is only justified for limited portions of
some routes, such as replicated trunk links, and otherwise
incurs cost and performance degradation in the internet-
work service. That is, the IP approach can be viewed as an
extreme in false optimisation of the Sirpent approach”

The intra-host addressing of UDP [19] and TCP can be
regarded as a degenerate form of source addressing. That
is, the UDP port number is interpreted relative to the IP
host address so a UDP packet is source-routed to the host
and then to the socket within the host. With Sirpent, intra-
host addressing is provided by the same mechanism as used
for inter-host addressing. That is, a Sirpent header segment
can be used to designate the port within a host to which
to address the packet. In this light, it is interesting to note
that IP/UDP addressing can have some of the same po-
tential problems as source routing, namely having a fixed
binding to a route that has failed or is congested. In the
IP/UDP case, the “route” is bound to a particular host in-
terface and port (which is typically bound to a particular
instantiation of an application). Thus, the host interface
can fail and cause the communication to fail even though
the host may still be reachable through a separate host in-
terface. The remedy to this problem involves either revising
IP to represent intra-host transport endpoints (a direction

?Without the source routing option, IP would also fail to
provide an important functionality offered by source routing,
namely the ability for the source to pick the route.

being taken by the OSI standards) or to provide route re-
binding mechanisms similar to that required by Sirpent.
We argue that the latter is the simpler and more efficient
approach. Given that mechanism, Sirpent unifies inter-host
and intra-host addressing rather than treating them differ-
ently, as done with IP, and unifies the rebinding mechanism
as well.

In summary, logical hops and ports allow Sirpent to
mix both source routing and conventional (inter)network-
controlled routing as appropriate. This combination is fur-
ther illustrated in the next section which shows how IP can
be used as part of Sirpent.

2.3 Scalability

Sirpent has a number of attractive properties for scal-
ability. First, with variable-length source routes, there is
no limit to the number of nodes than can be addressed.
Even limiting the size of source routes to reasonable values
allows a very large number of nodes. For example, using
VIPER (of Section 5 and a maximum of 48 header segments
(expected to be under 500 bytes long), one can address up
to 2%¢ endpoints, far exceedingly the total required for the
future global internetwork. Moreover, there is no need to
coordinate the assignment of addresses; the addresses are
purely a result of the internetwork topology and port as-
signments within each switch, which can be arbitrary.

Second, the size of state required by each Sirpent router
is proportional to the properties of its direct connections
and not the entire internetwork, unlike standard IP routing
algorithms such as link state routing which store the entire
internetwork topology. In particular, a Sirpent router needs
memory for buffering, accounting and congestion control
that is related to the delay-bandwidth of its links. Thus,
the cost of a Sirpent router need not increase as the inter-
network scales to a larger size.

Finally, Sirpent accommodates existing internetwork-
ing approaches both for compatibility and to exploit these
techniques as optimizations as appropriate. In particular,
the Sirpent approach can be viewed and implemented as
an extended form of IP as follows. An IP protocol num-
ber is assigned to the Sirpent protocol. A Sirpent packet
can view the Internet as providing one logical hop across
its internetwork, as described above. That is, the packet is
source routed to an IP host or gateway so that the header
is now an IP header. The host/gateway uses standard IP to
route the packet to the specified destination host. At this
point, the packet is demultiplexed to the Sirpent protocol
module which interprets the remainder of the packet header
as a source route on from that point. The Sirpent protocol
module can also be invoked directly from the raw network
layer. An analogous approach cab be used to exploit ex-
isting X.25/X.75 (inter)networks, except for the additional
problem of managing the virtual circuits. In this sense, all
existing networks (and internetworks) can be incorporated
into the Sirpent approach by adding- a Sirpent module to
each routing node and allocating a type identifier for Sir-
pent for each network technology.

These existing internetworking protocols and tech-
niques can also be exploited to minimige the Sirpent header
size, using the approach of logical ports and links, as de-
scribed previously. For example, a complex multi-hop tran-
sit route can be replaced with a single logical port designa-
tion as an optimization of header size and load balancing.

In this way, the two major issues for scaling with Sirpent,
size of source route and provision for dynamic (re)routing,
can be addressed using conventional network routing tech-
niques.

A key aspect of Sirpent is placing function in the trans-
port layer and higher which has been traditionally placed
in the (inter)network layer. The next two sections address
the role of internetwork directory services and the transport
layer in handling these functions.

3 Internetwork Directory Support for Source

Routing

The global internetwork directory service is extended
in Sirpent to provide routes to a host or service, given its
character-string name. In this vein, the routes to a service
can be regarded as just one of many attributes of the service
that the directory can maintain. Thus, as internetwork di-
rectory services move from highly specialized and restricted
name servers, such as the Internet Domain Name Service,
to general distributed data base management systems, a
query about a service can return routes to the service as
well as other attributes of the service.

The routing information is relative to the requesting
client both in the actual route as well as in the authorizing
tokens. One plausible scheme for acquiring and maintaining
the routing information (easily extended for authorization
and accounting) is described by Singh [23]. The scheme
assumes that the internetwork is structured as a hierar-
chy of regions with a routing directory server for each re-
gion, analogous to the Internet Domain Name service. (In
fact, similar considerations govern the division of the inter-
network into administrative regions for both routing and
naming purposes. For example, stanf ord. edu represents
both a naming and routing domain from an administra-
tive standpoint. Subdomains, such as cs . stant ord. edu
can have similar properties as a subnetwork of the Stan-
ford network.) Each server in responsible for maintaining
the routing information for immediately higher layer servers
and lower level servers within the same region. With Sir-
pent, the hierarchical character-string names serve as the
unique hierarchical identifiers for hosts, gateways and net-
works, required by Singh% scheme. Routing information
is updated by reports from routers, hosts and networking
monitors. The directory servers, as users of the internet-
work themselves, can also observe load and failures as part
of their normal operation.

This approach has several advantages. First, the clients
of the directory/routing service can exercise more control
over the routes taken by their packets than with conven-
tional routing. A client can request and receive multiple
routes to a service. It can also request a route with partic-
ular properties, such as low delay, high bandwidth, low cost
and security. For example, transactional application would
prefer a low delay route over one with higher bandwidth and
higher delay. A client can also use an independent routing
service or formulate its own routes to meet special applica-
tion requirements and considerations. In particular, policy-
based routing can be handled within this framework along
the same lines as proposed by Clark {6]. These extensions
in function and flexibility are feasible because routing deci-
sions in Sirpent are done at a higher layer than conventional
networks so the extensions do not impact the performance-
and reliability-critical switching nodes. The use of caching,
on-use detection of stale data and hierarchical structure for

the routing information, as has been proposed for directory
systems [3], reduces the expected response time for routing
queries and the expected load on directory servers”.

As a second advantage, the client can have more infor-
mation about the route it is using for packets. For example,
the directory service can return information on the band-
width, propagation delay, maximum transmission unit, etc.
for each portion of the route it returns. With this infor-
mation, a client can determine (up to variations in queuing
delay) the roundtrip time and MTU for packets on this
route, rather than discovering these parameters over time.
This property is particularly important for transactional
communication where the single request-response behavior
does not provide enough data to discover this information
before the communication activity has completed. The con-
ventional approaches of discovering this information over
multiple roundtrips takes more time, uses the communi-
cation resources less efficiently during this time and can
be invalidated at any time by the internetwork deciding to
reroute packets.

Finally, using the directory services for routing elimi-
nates the considerable duplication between directory ser-
vices and routing services- (incorporated in all routers in
conventional schemes). That is, there is no need for IP-like
addresses and thus no need for the mechanism and proto-
cols for mapping these addresses to routes and maintaining
all this information in each router. Merging the routing
and directory services facilitates supporting authorigation
and accounting as part of routing, which is required for ef-
fective resource management. The directory systems must
deal with authorization and access control in any case. The
authorization and accounting information represents a data
base. Thus, there is considerable potential for sharing of
mechanism and protocols between authentication, naming
and routing.

4 Transport Layer Implications

A transport layer protocol using Sirpent must imple-
ment some functions normally provided by the network and
internetwork layers, including recognising misdelivery, en-
forcing maximum packet lifetimes and handling very large
packets. We argue that these functions are more efficiently
implemented at the transport layer and, by the end-t-end
argument, must necessarily be implemented by the trans-
port layer in any case.

4.1 Handling Packet Misdelivery

A transport protocol using Sirpent must provide a
unique transport layer address independent of the network
layer because a packet may be misdelivered if the Sirpent
packet header is corrupted. (Because Sirpent does not use
a checksum, it can detect this corruption '*.) As an exam-
ple of such a protocol, VMTP [2] provides a 84-bit trans-
port layer identifier which is unique independent of the (in-
ter)network layer addressing.

10 Acquiring a route requires a full round trip to the region
server for the destination. Thus, without caching, the time to
acquire the route incurs a similar round trip delay to that in-
curred by circuit setup in a circuit-switched network.

11 One could provide a checksum of the original Sirpent header
and then reconstruct this checksum from the trailer but a host
would not in general have the knowledge to reconstruct the orig-
inal header from the trailer.

This type of transport layer addressing has several addi-
tional advantages. For instance, the network-independent
addressing in VMTP is used to support process migration,
multi-homed hosts and mobile hosts. It also facilitates the
use of different network layers with the same transport
module and makes the transport layer more independent of
the network addressing and functionality. The major cost,
the larger sise of transport identifiers (64-bits in VMTP
versus 16 bits in TCP), is not significant with the higher
network data rates. Thus, we conclude that placing greater
requirements on the transport level to handle misdelivery
independent of the (inter)network layer is justified.

In contrast, conventional transport protocols rely on
(inter)network layer information to detect misdelivery. For
example, TCP requires that the IP header be correct be-
cause it relies on the IP address as well as the TCP port
number to form a complete unique transport address. (In
reality, it includes a pseudo-header” of IP-layer informa-
tion in its checksum to ensure the IP information can be
trusted by the transport layer.) This approach precludes
moving TCP connections between hosts or even different
host interfaces on the same host unless the IP address is
also reassigned.

4.2 Enforcing Maximum Packet Lifetime

Transport protocols require bounds on maximum
packet lifetime (MPL) because they use fixed-size fields for
packet identification”. The conventional approach to limit
MPL is to include a time-to-live (TTL), as employed in IP,
or a hopcount in the (inter)network header which is decre-
mented by each router. The packet is discarded when the
value reaches sero. However, correct implementation of this
facility requires that the TTL is updated by every router on
the packet route. This observation exposes a significant
flaw in this approach: The transport layer is dependent on
the correctness of the network layer for its correct opera-
tion, violating the basic objective of the transport layer (at
least with TCP and ISO TP Class 4) of providing reliable
process-to-process communication in spite of unreliability
at the network layer.

Appealing to the end-to-end argument [21], we require
that the transport layer include a creation timestamp in ev-
ery transport protocol packet and require that the sender
and receiver have roughly synchronised clocks. Undetected
failure of docks is viewed as equivalent to other host fail-
ures that could cause incorrect protocol behavior. The re-
ceiver then discards packets that are older than an accept-
able period based on its recent history of communication.
For example, a host with a low reception rate that has not
crashed recently can accept relatively old packets without
risk whereas a recently booted machine might discard pack-
ets older than its boot time.

The inclusion of a timestamp at the transport layer is
illustrated by (recently revised) VMTP, which includes a
32-bit timestamp in the trailer of the packet (along with
the checksum). The 32-bit timestamp represents the time

in milliseconds since January 1, 1970, modulo 232 The

12That is, after some number of packet transmissions, a field
value must be reused. If a copy of a previous packet using the
same identification is still in existence at the time of this reuse,
it may reappear at the receiver, causing confusion with the new
packet assigned that identification, and result in incorrect be-
havior if the receiver (unknowingly) accepts the old data.

0 1

0123456789012345
ook otH-ttttH-tH-tH-tt+
|Port I nf oLength|PortTokenLength |
Hobo kot -ttt -t -t -t +

\ Por t | Fl ags |Priorit |
- F-+-tH-tttt+-t-4-+-t+-+

> PortToken <
+-+-+-t+-tttt+-t-+-+-t+-+

> Portlnfo <
B e D s ko S B e e s |

Figure 1. VIPER Header Segment

The flags include:

VNT VIPER Next Type - the portInfo field is void and an-
other VIPER header segment immediately follows this
one. The portInfoLength field may still be non-zero if
the Portinfo field is used for padding.

DIB Drop If Blocked - drop the packet if it is blocked at
this router.

RPF Reverse Path Forwarding - the packet is being re-
turned using the route and tokens supplied in a packet
received by the currently sending host.

The Priority field indicates the priority of switching and
forwarding. Normally, a router only considers this field
when a packet is blocked. However, a sophisticated router
is free to use it to schedule a packet in competition with
other communication activities as part of every packet rout-
ing decision if the processing provides lower delay to higher
priority packets. Normal priority is 0 with 7 highest pri-
ority. Priorities 6 and 7 preempt the transmission of lower
priority packets in mid-transmission if necessary. Values
with the high-order bit set represent lower priorities, 0xF
being the lowest priority. Control and charging over the use
of priorities is exercised by the token mechanism if required.
For example, use of high priorities may be limited by simply
charging more for higher priority packets and limiting the
number of tokens for high priority traffic through a router
at any given time.

The PortTokenLength field specifies the length of the
PortToken field in octets. A value of 255 is reserved to
indicate that the actual length is larger than 254 octets. In
this case, the length is contained in the 32-bits starting in
the standard PortToken field. A PortTokenLength field of
0 indicates that the PortToken is not present.

The PortToken field contains a token value that indi-
cates authorization and accounting information, if present.
The token values are provided by the routing directory
servers at the time that the source determines the route.
These tokens are opaque capabilities to all but the router
and the administration domain that manages the router.
In general, these capabilities are structured, obtained and
managed in the same fashion as proposed by Clark [6] for
policy-based routing.

The PortInfoLength field specifies the length of the
PortInfo field in octets. A value of 255 for the Portinfo field
is reserved to indicate that the actual length is larger than

254 octets and contained in the 32-bits starting in the stan-
dard PortiInfo field. The PortInfo field is network/protocol-
specific and potentially contains the type format for the
rest of the packet as well as possibly other information, as
the earlier examples of using the Ethernet illustrated. For
example, the length would be 14 for an Ethernet header,
including 12 octets for the 2 48-bit Ethernet addresses in
the standard Ethernet header and 2 octets for the Ethernet
type field.

The size of the VIPER header segment is minimized by
the use of small fields, the smallest segment size being 32
bits. It is important to minimize the header segment size
because its multiplicative effect using source routing: with
N hops, there are N VIPER header segments on the front of
a packet. Minimizing the total header size is important to
reduce the need to fragment transport data segments and
to minimize header overhead for small amounts of data.

The fields are ordered to minimize the difficulty of han-
dling the packet header segment in cut-through switching
hardware. In particular, the fixed-length portion is first
and provides the length information on the variable-length
portion as far in advance as possible of the variable-length
portion arriving, allowing for hardware setup times.

The VIPER transmission unit is 1500 bytes. The large
size is justified by the de facto standard created by Ether-
net, the larger expected size from FDDI and other new
networks, and the higher data rates of future networks,
making large maximum packet sizes feasible without in-
creasing the maximum channel occupancy time per packet.
The 1500 byte size allows for roughly 1 kilobyte transport
packet plus up to 500 bytes of VIPER header information.
This size represents a comparable convention to the 576
byte unit used by the DoD Internet because VIPER does
not provide fragmentation and reassembly.

A VIPER router follows the Sirpent algorithm of strip
ping the current header segment from the front of the
packet, checking the port token for proper accounting and
authorization (if present), and appending the return port,
token and network-specific information onto the end of the
packet.

8 Performance Evaluation

Key measures of Sirpent performance include the per-
packet switching delay, header overhead and handling of
congestion and link failures. All three factors affect the
response time for clients as well as the network utilization.

6.1 Switching Delay

The switching delay with a cut-through Sirpent switch
is the switch decision and setup time plus the queuing time.
Cut-through switching eliminates the reception and storage
time for the packet, which is proportional to the size of the
packet. The switching decision and setup time can rea-
sonably be significantly less than a microsecond and han-
dled entirely by a hardware-optimized path in the com-
mon case. Thus, with links of low utilization, the switch-
ing delay is a fraction of a packet time. With reasonable
load (up to about 70 percent utilization), M/D/l model-
ing of the queue suggests an average queue length of ap
proximately one packet or less, including the packet cur-
rently being transmitted. The average queuing delay is
then approximately the transmission time for half of an

use of a 32-bit timestamp with 1 millisecond granular-
ity means that wrap-around occurs in roughly one month,
which should protect against all but maliciously delayed
packets. When a VMTP packet is received, the packet is
discarded if its timestamp indicates it is too old by the
above considerations. A timestamp value of 0 is reserved to
mean that the timestamp is invalid and should be ignored.
This value is for use by query operations when a machine
is booting before it knows the current time accurately.

The millisecond accuracy is motivated by the desire to
provide a basis for recreating relative time frame informa-
tion of arriving packet information in real-time traffic. For
example, packets representing a video stream may experi-
ence different delays in transit; the timestamps allow the
the receiver to recreate the appropriate timing as well as
discard very old packets. Because packet lifetimes are gen-
erally limited to multiple seconds if not minutes, inter-host
clock synchronization need not be more accurate than mul-
tiple seconds. In fact, as an optimization, the timestamp
comparison could be restricted to the high-order bits so
that a simple equality check of the creation time with the
current time would succeed most of the time, only resorting
to a more complex modulo difference check (that provides
for wraparound) when the simple test fails.

The inclusion of the timestamp has several advantages.
First, the correct operation of the transport protocol is
made independent of the (inter)network layer delaying of
packets for long periods of time. There is also no need for
a pseudo-header at transport layer that includes the (in-
ter)network layer information. That is, if IP provided such
a creation timestamp, it would have to be included in a
transport layer pseudo-checksum for strict correctness, the
same as done for IP addresses with TCP.

Second, unlike the TTL field in the IP packets, the cre-
ation timestamp requires no update in intermediate routers,
thereby eliminating the associated processing load on the
routers. This approach matches with the Sirpent philoso-
phy, namely using slightly more bandwidth (in the form of
extra bandwidth to send around the creation timestamp)
to reduce the processing load at the routers.

Third, it relieves the sender of the job of choosing a
TTL, a decision which fundamentally belongs to the re-
ceiver. Restrictive choices of TTL in some software have
already caused problems in the context of the rapid growth
of the Internet. (Note that the scope use of TLL in multi-
cast [9] does belong to the sender and is only an optimisa-
tion for switches and network, not an issue of transport
protocol correctness.)

The timestamp information can also be used by the re-
ceiving host to aid in estimating the round-trip time, to
detect congestion when significant increase in delay takes
place, to aid in maintaining synchronized time between
hosts, and to recreate the time frame for real-time traffic,
as described above.

This approach requires approximately synchronised
clocks among the communicating hosts (unless suppression
of old packets is not necessary). This requirement is feasi-
ble for several reasons. First, there are reliable clock syn-
chronization protocols available [8, 14]. Second, clock syn-
chronisation is useful, if not required, for a variety of other
reasons in communicating hosts. For example, file transfer
should avoid creating (or apparently creating) a file before
its creation time at the sender. Thirdly, external sources of

time synchronization, such as the WWYV radio source, are
available to provide extra redundancy and thus reliability
for this facility. In particular, file servers and other major
machines can have access to such a service by radio receivers
(if battery-backed up clocks are insufficient). The availabil-
ity of accurate and standardiaed radio broadcast sources
around the world allows clock synchronization among com-
puter systems to be scaled globally. The coarseness of clock
synchronization that is adequate for reasonable transport
protocols, including VMTP, makes these sources of time
sufficiently accurate for this use.

4.3 Handling Large Logical Packets

The Sirpent protocol provides no support for frag-
mentation and reassembly, unlike IP. Handling the logical
packet fragmentation and reassembly at the transport layer
simplifies the internetwork layer and makes the communi-
cation system more resilient to error and packet loss. The
transport protocol can provide selective transmission and
flow control on the logical packet fragments, avoiding the
all-or-nothing behavior of IP in the reassembly of pack-
ets and the systematic failures that can arise because of
overrun. For example, with VMTP, rate-based flow con-
trol is used between packets within a packet group to avoid
overruns, and selective retransmission is employed when a
packet is lost within a packet group. Other recent trans-
port protocols, including XTP [5] and Rx [22], also provide
selective retransmission with comparable benefits.

The Sirpent approach requires a minimum transfer unit
guarantee that is large enough to contain the minimum
transport packet plus the header segments. Any network
that does not provide this minimum on its links must pro-
vide an encapsulation layer that transparently delivers this
minimum size, as was done with PUP [1].

Traditionally, the (inter)network packet is the unit of
host transmission, so it appears that Sirpent may impose
significant host overhead in sending smaller packets than
would be feasible with IP. However, the transport layer can
provide a unit of transmission that decouples the host unit
of transmission from that of the network packet sise. An
example of such a unit is the packet group in VMTP. Using
a network adaptor like the NAB [17], the host can initiate
the transfer of a packet group and let the NAB handle the
per-packet transmission, including the per-packet Sirpent
overhead '3,

5 VIPER

We propose a specific protocol to be used as a realiza-
tion of the Sirpent approach, called the Versatile Internet-
work Protocol for Extended Routing (VIPER).

A VIPER header is shown in Figure 1. The Port field
specifies the output port to be used by the current switch
or router. Reserving 0 as a special port value meaning
9ocal’, the effective number of ports per switch is limited to
255. We require that larger fan-out switches be structured
hierarchically as a series of switches, each with a fan-out of
at most 255. The hierarchically structuring has a number
of advantages in the development of a switching fabric and
imposes no significant additional delay given the use of cut-
through routing at each stage.

“Actually, a NAB can easily handle multiple packet groups
if minimising host processing overhead is critical, but this opti-
migation seems unwarranted in general.

average packet size. Thus, we expect the savings in de-
lay for cut-through to be significant for all but significantly
loaded links. Moreover, previous work on Blaaenet [12]
shows that circuit-switched networks cannot run links at
comparable utilization with the bursty traffic characteris-
tic of computer communication. Thus, we argue that, when
queuing delay in a Sirpent-style internetwork becomes sig-
nificant, other schemes would be severely congested or deny
service because of their slower switching (in the case of IP
approaches) and more static allocation of resources, as in
the CVC approach.

The size of the Sirpent-style header, which depends on
the length of the route and other factors, also contributes
to switching delay. However, we argue below that the ex-
pected size of the header is relatively small, possibly smaller
than with IP.

0.2 Header Overhead

The header overhead is dependent on the average packet
size, the number of hops a packet travels'* and the size of
each header segment.

Previous network measurements [4] suggest (as a rough
approximation) that half the packets are close to minimum
size (for the transport layer), one quarter are maximum
size and the rest are more or less uniformly distributed
between these two extremes. Using this approximation in
general, the average packet sige is roughly 3/8 of the max-
imum packet size.

The topologies of internetworks are evolving to mini-
mise hop count and improve managability (although there
are some counterexamples). Looking at a relatively mature
communication system such as the world-wide telephone
system, one sees hop counts of 5 or 8 for global commu-
nication. In addition, an increasing amount of computer
communication is local, within a cluster of local networks
or campus. Moreover, clusters with significant inter-cluster
communication are likely to be supported by low hopcount
routes. Thus, we argue that locality of communication
causes the expected number of hops per packet for many
applications significantly less than one.

Finally, several trends in networking suggest that net-
work addressing may evolve away from the large addresses
used in the Ethernet. First, some multi-access networks,
such as the Token Bus [15], use dynamically assigned ad-
dresses, so the address sige can be approximately that re-
quired to handle the number of possible nodes on one net-
work, rather than the total number of this type of network
interface ever manufactured. That is, the address could be
16 bits or fewer, rather than 48 bits. Second, work on very
high-speed networks has been favoring point-to-point net-
working rather than multi-access techniques. The address
is then implicit in the route taken, rather than having to
be specified in the packet, further reducing the address sise.
Finally, the Blagenet design and its general rationale sug-
gest that networks themselves may use source routing. In
this case, we argue that again the expected length of the
source route is small because of locality to communication.

Combining these observations, the expected overhead
for Sirpent addressing as a percentage of packet size is
small. As an estimate, assume that the maximum packet
size is 2 Kilobytes (so that average packet size is about 633

14 We use the convention of counting hops as the number of
routers traversed, not the number of networks traversed.

bytes). Assume that the average header size is 18 bytes per
hop (which is a VIPER header plus Ethernet header) and
the average number of hops is .2 (counting 0 hops as local
to the same network). Then the average VIPER header
overhead is 0.5 percent. This figure is indicative of our ra-
tionale for the design and suggests that header overhead
should not be a problem. Further measurements and ex-
perience are required to provide a better indication of the
actual overhead.

The variable-sized header required by source routing is
a potential cause of complication and cost. However, it is
easy to support on transmission from the source with a sim-
ple multi-segment DMA facility, as provided by many net-
work adaptor chips and boards. On reception, the header
has been reduced to that comparable to current network
headers, if not simpler. The trailer then contains the source
route. Of course, “intelligent” network adaptor boards,
such as the NAB [17], can be extended to support this
source routing scheme. In particular, the trailer can be re-
moved by the NAB on reception to avoid transferring the
trailer to main memory and “polluting” the user data area
with the trailer. A router can handle a Sirpent packet in
software by, after fully receiving the packet, copying the
first header segment to the end of the trailer (with suitable
modification) and then transmitting the packet starting at
the following header segment.

8.3 Response to Congestion and Link Failure

Another performance concern with source routing is the
time required for a client to reroute packets in response to
congestion or link failure. A related concern is the lack
of network layer control over load and load distribution.
Sirpent addresses these issues as follows.

Clients can request multiple routes (rather than a sin-
gle route) to the desired host or service, and switch be-
tween these routes based on the performance of the different
routes. Because the client knows the base round trip time
for the route, measures the actual round trip time as part
of reliable communication, and receives feedback from the
rate-based congestion control mechanism in the presence
of real congestion, it is able to quickly detect and react
to congestion and link failures. In fact, we argue that the
client can react faster and more reliably to optimise its end-
to-end performance than can the hop-by-hop optimization
of conventional distributed routing, except in one expected
case, namely the replicated transit link. This case is han-
dled by making the replicated transit link appear as one
logical link to the source routing mechanism (as described
in Section 2.2) and allowing the router to select between
the physical transit links based on local load conditions.

The rate-controlled congestion control precludes exces-
sive load on portions of the internetwork independent of the
routes chosen by the sources. The back pressure exerted by
the congestion control mechanism causes sources to switch
to other routes, as described above.

The routing directory servers maintain reasonably up-
to-date load information on links using report received from
network monitoring stations, individual routers and sources
experiencing problems with routes they are using. The in-
ternetwork topology is slowly changing and easily tracked
by the routing servers. The clients benefit from these rout-
ing updates by periodically requesting route advisories from
the routing servers. The problem of load distribution in re-

sponse to (the far more dynamic) changes in load is handled
by the use of logical hops.

Using these techniques, we conjecture that Sirpent can
provide better performance than competing and established
internetwork architectures.

7 Related Work

Source routing is an established concept [10, 24].
Saltzer [20] advocated the use of source routing in cam-
pus networks for some of the reasons to cited here, but
without considering congestion control or accounting. Al-
though their focus was also on simplifying the routers (and
although they identify a number of other key advantages we
do), they do not address the requirements of cut-through
or construction of the return route in the trailer. As part
of this earlier effort, Singh [23] developed the specification
for a source routing server. This specification identifies the
need for hierarchical naming of internetwork hosts but it
does not explore the idea of combining this level of identifi-
cation with character-string host identification, as provided
by directory servers.

Blazenet [11, 12, 13] is a network design that exploits
source routing with some of the same motivation as Sir-
pent. The Blazenet design provides a gigabit network that
that may require Sirpent techniques for adequate internet-
working performance.

The token-based authorisation and accounting scheme
builds on Clarks approach to policy-based routing [6].
Clark proposal also uses source routing. However, Sir-
pent provides an approach that subsumes the Internet with
focus on very high-performance routing, rather than focus-
ing on policy enforcement within the current Internet. In
fact, Sirpent reverses the design base of IP. Sirpent makes
source routing the basis (rather than an option like in IP)
and reduces (inter)network distributed routing (in the form
of logical links and ports) to an optimisation, rather than
the basis of the design, as in IP.

8 Conclusions

Sirpent provides a high-performance approach to in-
ternetworking with significant advantages for performance,
cost, resource management and scalability. We conjecture
that its performance is adequate for a wide-range of traf-
fic from real-time video to file transfer, assuming adequate
bandwidth. In particular, there is no need to resort to cir-
cuit switching and resource reservation techniques to pro-
vide for this range of traffic. Sirpent also suggests a means
to move “intelligence” out of the (inter)network, freeing the
internetwork to be fast while also providing hosts and rout-
ing servers the option of providing more intelligence, user
control and flexibility. In particular, policy routing issues,
whether for security, reliability or accounting reasons, can
be made by the source host and routing server with no
complication of the internetwork routers beyond the token
authentication and accounting mechanism. This migration
of function up the layers seems key to higher performance,
reliability, security and functionality.

Several ideas are central to the Sirpent approach. First,
source routing is taken as fundamental, encompassing both
inter-machine and intra-machine routing, with conventional
network routing handled as a selective optimigzation, re-
ferred to as logical links. This approach is supported by
the end-to-end argument given that conventional routing

incurs a cost, provides benefit only in certain cases, and
does not provide the endpoints adequate control of packet
routes (and therefore, of the delivery service it receives).
More generally, Sirpent seeks to move all but the essen-
tial functions out of the internetwork layer. In particular,
packet lifetime limits, unique endpoint identification and
fragmentation/reassembly must be handled at the trans-
port layer with Sirpent. Similarly, routing is performed
by the sources or routing directory services, moving this
function out of the performance-critical portions of the in-
ternetwork.

Second, per-hop and per-packet accounting tokens and
priority are proposed as both necessary and sufficient for
internetwork resource management, without losing the ben-
efits of packet switching for the bursty, transactional traffic
that is characteristic of computer traffic.

Finally, rate-based congestion control exploiting the
source routing information in packets can control queuing
delay and packet loss, given adequate output queue buffer
space.

The Sirpent approach also incorporates a number of
novel detailed ideas building on the well-known concept
of source routing. First, the return route or a basis for
the return route is dynamically constructed as a trailer to
the packet, facilitating cut-through routing and reducing
switching delay. Second, logical hops are introduced to
provide a trade-off between local (to router) and remote
(at routing service) route binding. Third, Sirpent explicitly
provides for compatibility with existing (inter)network ap-
proaches, including IP, by allowing (inter)network-specific
fields in the packet header segments. Fourth, the routing
service is provided as an extension of internetwork (name)
directory services, eliminating the extra identifier space and
mechanism required for current internetwork datagram ap-
proaches such as IP. Finally, the optimistic token-based au-
thorisation using caching provides control of resource usage
without performance penalty.

Several issues remain open and are topics of our on-
going research on Sirpent. First, there is a need to char-
acterise the behavior of the rate-based congestion control,
determining the relationship between traffic stability, link
characteristics, buffer space and link utilization. Second, a
demonstration implementation of VIPER together with a
routing directory service is required to gain a better under-
standing of route selection, monitoring and reselection dy-
namics. Third, the details of the port token structure, man-
agement and accounting mechanism need to be developed.
Finally, we are interested in experimenting with real-time
traffic on Sirpent internetworks in which “jitter” is handled
by selectively delaying data delivery to recreate the origi-
nal packet transmission spacing, possibly using the VMTP
timestamp for this purpose.

Overall, Sirpent appears to be a promising approach to
building the global internetwork required for the next gen-
eration of computer communications and distributed sys-
tems. We plan to experiment with the VIPER protocol
and its implementation to further evaluate this approach
and the techniques we have proposed.

9 Acknowledgements

The paper has benefited considerably from the com-
ments of Dave Clark, Steve Deering, Deborah Estrin, Ross
Finlayson, Hendrik Goosen, Zygmunt Haas and Chuck

Thacker as well as the referees. The author has also ben-
efited from discussions with members of the Internet End-
to-end Task Force chaired by Bob Braden. This work
was Sponsored in part by the Defense Advanced Research
Projects Agency under contract N00039-86-K-0431, by Dig-
ital Equipment Corporation, by the National Science Foun-
dation Grant DCR-83-52048 and by ATT Information Sys-
tems.

References

(1] D.R. Boggs, J.F. Shoch, E.A. Taft, and R.M. Metcdfe. Pup:
An internetwork architecture. IEEE Transactions on Com-
municationr, COM-28(4):612—624, April 1980.

[2] D.R. Cheriton. Versatile message transaction protocol
(VMTP). RFC 1045, SRI Network Information Center,
February 1988.

[3] D.R. Cheriton and T.P. Mann. Decentralizing a global nam-
ing service for efficient fault-tolerant access. A CM Trans.
on Computer Systems, 7(2), May 1989. An earlier version
is available as technical report STAN-CS-861098 Computer
Science Department, Stanford University, April, 1986 and
CSL-TR-86298.

[4] D.R. Cheriton and C. Williamson. Networkmeasurement of
the VMTP request-response protocd in the V distributed
system. In SIGMETRICS 87. ACM, 1987. Banff, Canada.

[5] G. Chesson. XTP/PE overview. In 13th Conference on
Local Computer Networka, pages 292-296. IEEE Computer
Society, October 10-12 1988. Minneapolis, Minnesota.

[6] D.D. Clark. Poli youting in Internet protocols. Technical
Report 1102, Internet RFC, May 1989.

[7] D.D. Clark, M. Lambert, and L. Zhang. Netblt: A bulk
data transfer protocol. RFC 969, SRI Network Information
Center, 1985.

[8] F. Crirtian. Probabilistic dock synchronization Technical
Report RJ 6432, IBM Almaden Research Center, Septem-
ber 1988.

[9] S.E. Deering. Multicast routing in internetworks and ex-
tended LANSs. In Proc. SIGCOMM '88. ACM, August 1988.
Also available as Stanford CS tech. report STAN-CS-88-
1214,

[10] D.J. Farber and J.J. Vittal. Extendability considerations in
the design of distributed computer system (DCS). In Proc.
Nat. Tefecomm. Conf., pages 15E-1 to 15E-6, November
1973. Atlanta, Georgia.

[11] Z. Haas. Packet-#witching in Future High-performance
wide-area Networkr. PhD thesis, Electrical Engineering
Dept. Stanford University, May 1988.

[12] Z. Haas and D. R. Cheriton. A case for pack&switching in
high-performance wide-area networks. In SIGCOMM 87
Workrhop, Aug 11-13 1987. Store VT.

[13] Z. Haas and D.R. Cheriton. Blasenet: A packet-switched
wide-area network with photonic data path. to appear,
IEEE Transactions on Communications, An earlier version
appeared as Stanford Computer Science Department tech-
nical report, Blazenet: A High Performance Photonically
Implementable Wide-area Network, 1988.

[14] J. Halpern, B. Simons, R. Strong, and D. Dolev. Fault-
tolerant clock synchronisation. In Proc. 3rd Annual ACM
Sympostum on Principles of Distributed Computing, pages
89-102. ACM SIGACT/SIGOPS, 1984. Vancouver, BC
Canada.

(15] IEEE. 80%.4 Token-Parr Bur Access Method. IEEE, New
York, 1985.

[16] V. Jacobson. Congestion avoidance and control In SIG-
COMM 188. ACM SIGCOMM, August 1988.

{17} H. Kanakia and D.R. Cheriton. The VMP network adapter
board NAB: High-performance network communication for
multiprocessars. In SIGCOMM 88. ACM, August 1988.

[18] P. Kermani and L. Kleinrock. Virtual cutthrough: A new
computer communication switching technique. Computer
Networks, 3:267-286, 1979.

[19] J. Postel. User datagram protocol. RFC 768, SRI Network
Information Center, September 1980.

[20] J. Saltger. Source routing for campus-wide intemet trans-
port. In Proceedings of the IFIP Working Group 6.4 Work-
rhop on Local Area Networkr. IFIP, August 1980. Also In-
ternet IEN 144,

[21] J.H. Saltger, D.P. Reed., and D.D. Clark. End-to-end ar-
guments in system design A CM Trans. on Computer Sys-
temns, 2(4):277-288, November 1984.

[22] B. Sidebotham. Rx protocol specification. draft from ITC
CMU, March 1989.

{23] V. Singh. The design of a routing service for campus-wide
internet transport. Technical Report MIT/LCS/TR-270,
MIT, 1981.

[24] C.A. Sunshine. Source routing in computer networks. Com-
puter Communications Review, 1{7):29-33, January 1977.

