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Abstract

In this paper we consider implementation of atomic wait-free objects in the context of a
shared-memory multiprocessor. We introduce a new primitive object, the “Sticky-Bit”, and
show its universality by proving that any safe implementation of a segquential object can be
transformed into a wait-free atomic one using only Sticky Bits and safe registers.

The Sticky Bit may be viewed as a memory-oriented version of consensus. In particu-
lar, the results of this paper imply “universality of consensus’ in the sense that given an
algorithm to achieve n-processor consensus, we can transform any safe implementation of

a seguential object into a wait-free aomic one using polynomial number of additional safe
bits.

The presented results also imply that the Read-Modify-Write (RMW) hierarchy “col-
lapses”. More precisely, we show that although an object that supports a I-bit atomic
wait-free RMW is strictly more powerful than safe register and an object that supports 3-
vaued atomic wait-free RMW is dtrictly more powerful than |-bit RMW, the 3-vaue RMW
is universal in the sense that any RMW can be atomically implemented from a 3-value
atomic RMW in a wait-free fashion.
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1 Introduction

Consider an implementation of a concurrent object for a shared memory multiprocessor, where
by ““‘object” we mean a data structure together with a set of operations defined on this data
structure. Analogously with Lamporty definition of a safe register, we will call an implemen-
tation safe if it is based on the assumption that no two accesses are concurrent. One way to
transform a safe implementation so that it will work in a concurrent environment is to use
mutual exclusion to “lock™ the object before each access and to ““unlock™ it after the access is
completed. The main advantage of this approach is simplicity, while the main disadvantage is
that it causes one processor to wait for another, essentially reducing the speed of the system to
the speed of the slowest component, which can be zero if this component has failed.

Informally, we say that an object is atomic if the accessing processors see as if no two accesses
overlap and the order of the accesses is consistent with the partial order induced by the actual
order of accesses (the actual order is partial since concurrent accesses are incomparable). This
notion was formalized by Herlihy and Wing (7], who called it linearizability. We use the term
atomicity in order to stress that it is a generalization of the notion of an atomic register [9].
Using this definition of atomicity, one can see that if we take a safe implementation and use
“locks™ to insure that the data is being accessed by at most one processor at a time, we get an
atomic implementation.

Informally, we say that an implementation is wait-free if it guarantees that any processor that
wants to access the object will complete the access in a bounded number of steps, independent
of the speeds of the other processors concurrently accessing the object. In this paper we consider
techniques that can be used to transform a safe implementation into an atomic wait-free one.

In order to answer whether it is possible to transform a safe implementation into a wait-free
atomic one, it is important to specify precisely which memory model we are working with,
i.e. which primitive atomic objects are supported “in hardware”. The simplest case is when
we require the atomic wait-free implementation to use safe registers only. Unfortunately, this
model is “weak”. Dolev, Dwork, and Stockmeyer [5], and Chor, Israeli, and Li [4], have proved
that safe registers are not sufficient in order to reach even 2-processor wait-free consensus.
From this Herlihy [7] has concluded that safe registers are not sufficient to implement wait-free
versions of simple data objects like queues, stacks, etc.

Herlihy [7} defined the notion of universal object. Intuitively, an object is universal if we can
convert any safe implementation into a wait-free atomic one that uses only safe registers and
these objects. He showed that, assuming unbounded memory, an object that supports consensus
is universal. Also, his results imply universality of an atomic swap operation, i.e. an operation
that exchanges the context of a given register with a context of another one.

An important question is whether there exists a simple consensus-like object whose uni-
versality does not depend on availability of unbounded memory. We would like this object to
be simple enough to be easily implemented in hardware. Note, for example, that implementa-
tion of a swap operation requires the hardware to impose a complete order on the processors
concurrently accessing the object, which might be non trivial.

In this paper we introduce a new primitive object, the Sticky Bit (SB), and prove its uni-
versality by showing how to use O(n2 log n) Sticky Bits to transform any serial implementation



into a wait-free atomic one, where n is the number of participating processors. Informally, an
atomic Sticky Bit (ASB) is a register which can hold 0,1, or “undefined”. If several processors
are concurrently trying to write into the same ASB, only one of them succeeds. A proces-
sor returns ““fail”” if the value it was trying to write disagrees with the already written value,
and “‘success’” otherwise. ASB also supports a safe operation that resets the value to {unde-
fined”, where “safe” means that concurrent execution of this operation by 2 processors leads to
unpredictable results.

It can be seen that ASB is a special case of a 3-valued register that supports a restricted
variant of an atomic Read-Modify-Write (RMW). Hence, universality of ASB implies that the
RMW hierarchy “collapses”. More precisely, our results imply that although there is no wait-
free implementation of 2-value atomic Read-Modify-Write (RMW) from safe bits [5, 7] and there
is no wait-free implementation of S-value atomic RMW from 2-value atomic RMW [7, 10}, the
3-value RMW is universal in the sense that any RMW can be atomically implemented from a
3-value atomic RMW in a wait-free fashion using bounded memory.

The Sticky Bit can be viewed as a version of consensus, which has proven to be a valuable tool
in understanding the limitations of asynchronous distributed systems {5, 6]. On the other hand,
the definition of the Sticky Bit is memory-oriented, which makes it a convenient alternative
to consensus in the context of shared-memory systems. A Sticky Bit object can be easily
constructed from two safe bits and a single initializable object that implements a wait-free
single- bit consensus, where “initializable” means that the object can be initialized by one of
the participating processors so that it can be used again to reach consensus, as long as the
initialization does not overlap any other operation.

The construction presented in this paper indicates that reaching consensus is the funda-
mental problem in wait-free synchronization. In particular, randomized consensus algorithms
of Chor, Israeli, and Li [4], Abrahamson (1], Aspnes and Herlihy (2], and Attiya, Dolev, and
Shavit (3], together with our construction imply that polynomial number of safe bits is sufficient
to convert a safe implementation into a (randomized) wait-free one.

The paper is organized as follows. Section 2 presents the model and Section 3 formalizes
the notions of wait-freeness and atomicity. Section 4 presents definition of the Sticky-Bit object
and illustrates its use by presenting a wait-free leader election algorithm. In Sections 5 and 6
we describe how to transform any safe implementation into a wait-free one using only Sticky
Bits and safe registers, which proves that Sticky-Bit data object is universal. Conclusions and
open problems are presented in Section 7.

2 Model

In this section we sketch the model and the main definitions used in the subsequent sections.
Our model is similar to the one proposed by Herlihy {7]. The main difference is that we have
eliminated the explicit scheduler from the model and use I/0 automata to describe implemen-
tations of objects. The use of I/0 automata provides a convenient way of formalizing the notion
of ““one object simulating another”.

Informally, we regard a shared-memory multiprocessor executing a number of sequential



threads as a set of asynchronous processes communicating through shared data objects, where
each process corresponds to an execution of a procedure. Each sequential thread is executing
a single procedure at a time, where execution of the ““call”” instruction causes it to suspend the
current procedure and start executing the one that was invoked. The suspended procedure is
not continued until the invoked one executes the “return” instruction. This corresponds to a
system that does not support instructions that create new processes, i.e. all threads exist from
the beginning.

We use 1/0 Automata of Lynch and Tuttle [12] with the addition of ports, as described
in [11]. We view all communication as if it is done through 1/0 channels, where each channel
has two endpoints called ports. For each channel, one port is called the master and another
one is called the slave, where slave ports correspond to entry-points of procedures and master
ports correspond to “call” instructions. Messages sent from master ports are called commands
and messages sent from slave ports are called responses.

Processors and data objects are modeled as non deterministic automata with possibly a
countably infinite number of configurations and possibly a countably infinite fan-out from every
configuration. An Input/Output Automaton is a tuple M = (E, Q, Q°), where £ = £ u £ u
£™ is the set of actions (é"’“‘,é"", £ are output, input, and internal actions, respectively), Q
is the set of states, and Q% C Q is a distinguished set of start states. Each action corresponds
to a transition of the automaton from one state to another; we say that the actions which
correspond to transitions out of a given state are enabled in this state. An execution of an
automaton is represented by a sequence of actions, which we call a schedule.

A port automaton is a tuple ( Val, Il, CH, M), where

o Val is the set of values that can be sent as messages.

o Il is the set of ports. Each port has a type, which is either master or slave.

e CH is the set of channels. Each channel is a pair of ports, one of type master and the
other one of type slave. A port can belong to at most one channel; a port which does not
belong to a channel is called ezxternal, and the rest are called internal.

e M is an input/output automaton with the property that every action is a tuple (m,vr);
m € Val, = € Il. We consider only schedules where any action (m,1r1) is followed by
(m,m2) if ch = (w1, m2) € CH. To simplify notation, we write (m, ch) in this case. All
external actions are associated with external ports; all internal actions are associated with
internal ports.

An output action associated with a master port or an input action associated with a slave
port is called a command; an input action associated with a master port or an output action
associated with a slave port is called a response. A port automaton is well formed if any schedule
H restricted to any port 7 starts from a command and consists of alternating commands and
responses. We say that port 7 is input enabled in a state C if there exists an input action
associated with this port, that is enabled in C. A schedule H is balanced if it brings the system
to a state in which a port is input-enabled if and only if it is of type slave.

We say that an automaton has a procedure signature if it has at most one slave port; an

automaton has an object signature if it has no master ports. In order to abbreviate, we refer to
these automata as procedures and objects, respectively.
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Figure 1: Implementation of an object in terms of objects 0 and 0’. Arrows correspond to channels

and are directed from master to slave ports; circles and ovals correspond to procedure and object
automata, respectively.

A composition of several port automata with disjoint set of ports is done exactly like the
composition of input/output automata. In order to model interactions between components we
can link one component to another by defining new channels. A composition of several port
automata with additional channels is called a system.

An object is specified by describing its external ports and stating all of its legal external
schedules. We say that an automaton A implements an object 0 if it has the same set of
external ports and its external schedules are a subset of the schedules specifying 0. Moreover,

we require that the set of sequential schedules of automaton A will be the same as the set of
sequential scedules of 0.

It is important to formalize the notion of implementing one object in terms of another.
An implementation of an object 0 in terms of objects 01,03,.. . ,0 is a port automaton
that implements 0 and is a system constructed by interconnecting several port automata such
that each automaton in the system is either a procedure or it implements one of the objects

01,03, ...,0%.

An example of an implementation of one object in terms of other objects is given in Figure 1.



Arrows correspond to channels and are directed from master to slave ports; circles and ovals
correspond to procedure and object automata, respectively. Consider the directed graph with
nodes corresponding to the automata and the edges corresponding to channels. Observe that
this graph is acyclic. Associate with every external port w; the system that consists of the inter-
connection of all automata with procedure signatures that correspond to nodes reachable from
the node that corresponds to the automaton that owns =;, and denote the obtained automaton
by P;. Note that P; has a procedure signature. Intuitively, this corresponds to decomposing the
system into “front-ends” and “‘representation objects”, and we call this canonical decomposition.

With each system A we associate a system A that hides the actions of A that correspond
to internal channels. For each schedule H of A, the corresponding schedule of A is called
the external schedule and is denoted by HM. The actions in Hlfi are divided into actions
corresponding to the slave ports of A, and actions corresponding to the master ports of A,
which we denote by H |4* and by H 1./1"‘, respectively.

3 Wait-free Atomicity

In this section we use the formalism presented in the previous section to define the notion of
wait-free atomicity. Often, it is natural to give a specification of a data object in terms of the
behavior of this object when every command sent to the object is executed and acknowledged
before a new command is issued. For example, in the case of a register, this corresponds to
executions in which reads or writes do not overlap. More precisely, a schedule is sequential if
every command action in this schedule is immediately followed by the corresponding response
action on the same ¢ -t.

An object is sequential if it is specified by sequential schedules only. Registers, queues,
and stacks are examples of sequential objects (if we assume that a “dequeue” operation on an
empty queue or “pop” of an empty stack are defined to return exceptions). On the other hand,
consider a 2-port object that, given a value on one of the ports, responds with this value or with
the value sent to it through the other port, whichever is larger. This object is not sequential
because the response to the first command has to come after the second command, i.e. the
waiting is inherent in the specification of the object.

Lamport [9] defined a register as safe if a “read not concurrent with any write obtains
the most recently written value”. This can be generalized to arbitrary sequential objects in a
straightforward manner, i.e. an implementation of a sequential object is safe if the set of all
schedules which are sequential with respect to this object is a subset of the sequential schedules
specifying the object. In other words, an implementation is safe it it assumes that the accesses
to the object never overlap in time.

For the case of registers, Lamport has defined the notion of atomicity. Intuitively, an object
is atomic if it behaves as if each operation occurs somewhere between the command and the
response. In order to generalize the notion of atomicity to arbitrary sequential objects, we first
define a partial order on operations in a given schedule H, where an operation is a command
action followed by a response action in the restriction of H to the external ports of the object.

Let 0 = (ec,e,) and 0” = (e., e.) be two operations in H. Recall that e, e, are commands and



er, €, are responses. Then o <y 0~ if both e, and e, appear before e. in H.

Definition 3.1 (Herliny-Wing [8])! An object is atomic if for every external schedule H of this
object, there exist schedules H' and S, such that H” is a balanced extension of H, S is sequential
schedule consisting of the same actions as H” and <g:C<g. The schedule S is called linearization
of H and is denoted by L(H).

It is easy to prove that under this definition of atornicity, if an object is atomic, then in order
to prove the correctness of the system, it is sufficient to prove correctness under the assumption
that accesses to the object do not overlap (7, 13].

Atomicity is only one of the properties required by Lamport of “atomic registers”. Another,
not less important property, is “wait-freeness”. Intuitively, the idea is that the time it takes
to access an object should depend only on the speed of the accessing processor. In particular,
the object has to eventually return a response, even if all the rest of the processors “died” in
the middle of an operation. Note that without this requirement atomic objects can be trivially
constructed using busy- waiting.

Intuitively, one can regard an implementation of an object as if it consists of a set of
representation objects and a set of “front-end” processes. Informally, an implementation of an
object is wait-free if there exists N, such that each invocation of a “front-end” process returns
a response after executing for at most N steps, independent of the execution of other “front-
ends”. An alternative definition of wait-freeness is to require that the response will be returned
after a finite number of steps. Note that our definition is stronger.

Formally, wait-freeness is defined as follows. Consider a system with canonical decomposi-
tion (P1,Ps,..., Px,01,03,...,0;) where external slave port =; corresponds to component P;.
Let H(C) denote the set of possible schedules that start at state C.

Definition 3.2 Let H5(C) = {H : H € H(C), ||H|(P;,01, O2,. . . ,0p)|| > N}. The signature
of an external slave port m; is wait-free if there exists N, such that:

1. For any state C in which the port m; is not input-enabled, there exists a schedule H € ’H;}(C)
such that it does not include any commands associated with external ports of (Pi, O1,02,. . ., O;).

2. For any state C in which the port #; is not input-enabled, and for any schedule H € 'H%(C),
there is a prefix H” of H, s.t. ®; is input-enabled in state H7YC).

Herlihy [7] introduced the notion of a universal object. A data object 0 is universal if given
a safe implementation of a sequential object 0% we can construct a wait-free implementation
of O’ in terms of O-type objects.

4 Sticky Bit

In this section we introduce a new data object, the Sticky Bit, and illustrate the use of this
object by presenting a deterministic wait-free leader-election algorithm.

‘Our notion of atomicity is essentially the same as the notion of linearizability introduced by Herlihy and
Wing [8]. Note, that since it refers to individual operations as opposed to sequences of operations, it is different
from the standard notion of atomicity for distributed systems.



Procedure JaM(v)
i, ' «— the ID of the processor;
Jam-0(g;);
for j — 1to! do
b - j-th bit of wvy;
jam jth bit of v with b&;
if the jam failed
then begin
for k — 1to 1 do
ifgr =0and V 1<k <j,(k'th bit of vg) = (k'th bit of v)
then ¢ - k;
end;
end;
end;
return v;
end.

Figure 2: Code of Jam(v;), executed by processor 1.

Definition 4.1 An atomic Sticky Bit (ASB) is a data object that holds 0,1, or L and atomically
supports the following operations:

e JaM(V) = If the value was L or v, sets it to v and returns “success”. Otherwise returns “fail”.
e READ -~ Returns the current value of the object.

In addition, it supports a hon-atomic FLUSH operation.

e FLUSH - Sets the value to L. This operation is non-atomic in the sense that any other
operation that overlaps it produces unpredictable results.

A consensus protocol was defined in the seminal paper of Fisher, Lynch, and Paterson [6]
to be a protocol where each processor has a I-bit input and produces a I-bit output which
confirms to two conditions. First, all produced outputs are the same, and second, if the output
is v then there is at least one participating processor whose input is v. The consensus protocol
can be naturally represented as an n-port object. It is easy to see that it is possible to construct
an atomic Sticky Bit from an initializable single-bit consensus object and two safe bits, where
“initializable” means that after using the object to reach consensus it is possible to initialize
it and use it again, as long as the initialization does not overlap with any other operation. In
particular, this implies that the randomized consensus algorithms [1, 2, 3, 4} can be used to
construct a randomized wait-free atomic Sticky Bit. Note also that ASB is a special case of the
write-once memory, and can be easily implemented in hardware.

The usual problem that arises when designing wait-free algorithms is that even if it is
sufficient that a single processor will execute some task, we can not assign a specific processor
to this task because the adversary might make this processor fail-stop. ASB objects provide a



convenient way to address this problem. In particular, they allow several processors to execute
the same task concurrently, “helping” each other, without interfering one with another.

A simple example that illustrates how to use this capability, is a wait-free atomic implemen-
tation of a “Sticky-Byte” object. This object is similar to the Sticky-Bit, but holds a number
of bits (say !) instead of a single one. The command that corresponds to Jam(0) or Jam(1) of
ASB is Jam(v), where v is an Z-bit value. Similarly to ASB, Jam(v) returns “success” if the
object holds v after Jam(v) returns, and *““fail”” otherwise.

Observe, that a straightforward implementation that is based on representing a Sticky-Byte
by | ASB objects where each processor simply tries to jam its bits one-by-one, leads to incorrect
values. For example, consider the case where | = 2 and one processor tries to jam (1,0) and
the other one tries to jam (0,1). A possible scenario is that the first bit is jammed by the
first processor and the second bit is jammed by the second processor, leading to the incorrect
value of (1,1). On the other hand, if a processor “returns” immediately after it comes to the
conclusion that it must return “fail””’, then some of the bits of the Sticky Byte might remain
undefined if the processor that is supposed to return “‘success” is stopped by the adversary.

The main idea is to require any processor that recognizes that he must return “fail”” to help
the processor that might still return ““success”. The code executed by processor p; in order to
simulate JaM(v;) operation is shown in Figure 2.

The algorithm begins with p; storing its input into v; and marking that its v; is valid by
jamming g; to 0. Then, it executes [ iterations, where ! is the number of bits in the input. At
iteration j, p; tries to jam the jth bit of the decision to be the jth bit of vy, where initially ?' is
the processor® ID. If it does not succeed, it means that there exists k and some processor pg,
such that pg' has succeeded in jamming the jth bit of v into the jth bit of v. By induction
on the number of iterations, we see that there exists at least one v, such that g, = 0 and the
first j bits of v correspond to the first (already jammed) j bits of v. The processor p; finds
such k, and from now on tries to jam v into v, essentially “helping” processor px. Note that
this algorithm has an interesting property that even if a processor p; stops immediately after
jamming 0 into g;, its input may still be the decision jammed into v.

Observe, that if each processor tries to jam its own ID, the above algorithm implements a
wait-free leader-election in O(log n) time. This implies that an atomic Sticky Byte that holds

an arbitrary number of bits can be implemented from log n atomic Sticky Bits, where an access
time of such implementation is 0 (log n).

5 Atomic Implementation of an Arbitrary Object.

In order to construct an atomic simulation of an arbitrary sequential object, we must be able
to impose an order on accesses that overlap in time, such that this order will be consistent with
their real order (see Definition 3.1), i.e. if an access was completed before another one was
started, then the same relation between these accesses should exist in the imposed order. In

other words, we must construct a sequential schedule which is consistent with the real schedule.
A natural approach, proposed by Herlihy [7], is to assume that the system supports an

atomic operation that prepends an element to the beginning of a list. The idea is that a



processor that wants to access the object stores the command in the list, and then uses the
commands that were stored beforehand in this list to compute the “current” state of the object
and the appropriate response. The commands stored in the list correspond to a sequential
schedule which is consistent with the real one, and therefore the implementation is atomic.

In order to be able to show that it is possible to implement such list from Sticky Bit
objects, we review the construction of [7], adding several details. Our modifications mostly
concern memory allocation, since we do not want to assume any “built-in”> memory-management
primitives.

Upon receiving a command cmd, processor p; proceeds as follows:

1. Gets a free cell Cell and stores cmd in this cell.
2. Uses ApPPEND to prepend Cell to the list.

3. Reads the cells in the list one by one to construct the suffix S of the sequential schedule
of the simulated object. The cells are read until it encounters a cell that holds a state
instead of a command.

4. Computes the state of the object that results from applying S to the encountered state
and stores it in Cell.

5. Frees cells of the list that belong to it and that have at least n cells that hold states (and
not actions) ahead of them in the list.

6. Computes the response rsp of the object and returns it.

Observe, that because of Step 4 there are at most n cells in the list that hold actions and
not states. Hence, in order to compute the “current” state of the object it is enough to scan
at most n cells of the list, and therefore the implementation is wait-free. Step 5 is needed to
bound memory. As a result of the fact that a processor never scans more than n cells of the
list and the fact that it stops scanning after encountering a cell that holds a state, Step 5 does
not remove from the list any cell that might be read by some processor.

Though it seems that the main problem lies in implementing the APPEND command, there
are several additional issues which were omitted from the description of universal constructions
of Herlihy [ 7). First, note that care should be taken while implementing Step 5. In particular, a
straightforward implementation, i.e. recognizing that there are at least n cells that hold states
ahead in the list by scanning these cells, is incorrect. The problem lies in the fact that some of
these cells might be already freed, initialized, and used again, causing us to follow ‘“dangling”
pointers. One way to solve this problem is to add n bits {b1, b3, . . ., by} to each cell, initially
all 0. After a processor modifies its current cell to hold a state, it scans the following n cells
in the list, writing 1 in the appropriate bit of each cell, according to the distance to this cell.
Each time a processor is invoked and needs a new cell, it first checks all of its cells that are still
in the list, and frees those that have all the bits b; equal to 1. This way the list is traversed
only in the forward direction. Moreover, if a processor accesses a cell during this traversal, then
the appropriate b; bit of this cell was 0 before the access, and therefore this cell could not have
been initialized, which means that we never follow “dangling” pointers.

The second point concerns the space complexity. Herlihy claims in [7] that because there
are at most n cells in the list that hold actions and not states, and because each such cell can



delay at most n other cells from being freed from the list, the space complexity is G)(nz) in the
worst case. This claim is correct if we assume that there exists a single bounded-size pool from
which new cells are allocated. The problem is that it is impossible to implement such pool from
safe registers, because it allows wait-free 2-processor consensus. Therefore, it seems that the
actual space complexity of Herlihy% construction (which assumes that the system supports a
wait-free atomic operation that prepends an element to the beginning of a listz) is G)(n3) in the
worst case, which is achieved by allocating disjoint pools to each one of the processors.

6 Universality of Sticky Bit

In the previous section we have described how to transform a safe implementation of a sequential
object into an atomic wait-free one if we are given an “augmented list” object, which supports
the following operations:

e GFC - Gets a free cell.
e INIT - Frees and initializes the given cell.

e APPEND - Prepends the given cell to the beginning of the list.

In this section we show universality of the atomic Sticky Bit object by presenting an implemen-
tation of these operations. Similarly to the implementation of the Sticky Byte, the heart of the
presented algorithms is the idea of extending “help to less fortunate processors.

In order to implement the operations atomically, the procedures described in this sections
“busy- wait” until the operation is executed and only then return. Thus, the problem is to
limit the amount of this waiting in order to achieve wait-freeness, and this is where the “help”
paradigm comes into play. Each implementation of an operation is constructed from two proce-
dures: the kernel procedure which actually implements the operation, and the control procedure,
which repeatedly invokes the kernel. The kernel procedure is designed so that it either succeeds
in executing the operation or returns “failure”. Moreover, if” it returns “failure” then at least
one other processor has succeeded in executing the same operation concurrently. The control
procedure repeatedly invokes the kernel procedure until it returns with success, and then in-
vokes the kernel procedure on behalf of each one of the processors that is currently trying to
execute this operation. This ensures that there can be at most n consecutive “failures’ of kernel
procedure, which makes our algorithms wait-free. Sticky Bits are used in order to enable one
processor to execute on behalf of the other one without interfering with him; essentially, the
idea is that the processor that is being helped does not “know” this.

The information stored in each cell of the list is shown in Figure 3. In particular, the Prev
field is constructed as an atomic Sticky Byte, and is used to decide which processor succeeds
in appending his cell to the list; ProcID is also a Sticky Byte which is used to decide which
processor currently ““owns” the cell (this processor is responsible for initializing it).

‘Herlihy’s construction of a wait-free atomic object directly from multibit consensus uses unbounded memory.
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Claimed: Equals to 1 only if the cell is not free. (Sticky)

ProcID: Holds the processor ID that “owns the cdl”. (Sticky)

NotHead: Equals true when the cell is in the list but is not the head of the list. (Sticky)
Data: The value of the cell. (Safe)
Next: Points to the next cell in the list. (Sticky)
Prev: Points to the previous cdl in the list. (Sticky)
hit: Equals 1 if the cell is being initialized. (Safe)

1:72,..,, ™n: The bit r; equals to 1 if processor p; does not want the cell to be initialized. (Safe)

CountInit: The highest ¢ such that for al j < 7, the owner of the cell saw each one of r; being
equal to 0. (Safe)

Figure 3: Information stored in a single cell

6.1 Implementation of INIT

Initializing a cell involves, in particular, flushing the Prev field. We use the GRAB and RELEASE
procedures, shown in Figure 4, to prevent the flushing while there exists a possibility that
some processor might read this field, because by definition of the Sticky Bit, FLUSH can not
be overlapped by any other operation. Before accessing a cell, we require that the processor
will Gras it first, by checking the Init bit, setting the appropriate r;, and checking the Init bit
again.

The initialization of a cell is done by the processor that “owns” it, i.e. the processor whose
ID is stored in the ProcID field of the cell. This processor fist sets Init bit to state that the cell
is under initialization, and then it checks the r; bits one by one. The idea is that by deferring
the initialization until the processor who owns the cell sees each one of the r; bits being zero at
least once, we guarantee that the access to the *“‘sticky”” data in the cell and the initialization
of the cell are never executed concurrently.

Lemma 6.1 If a call to GRAB( Cell) by processor p; returns “success”, Cell will not be initialized
until a subsequent call to RELEASE(CeH) by the same processor.

Proof: The fact that the call by processor p; to GraB( Cell) returned “‘success” means that p;
saw Cell.Init=false after setting Cell.r; to 1. If the processor p; tries to initialize the Cell after
this has happened, it can not succeed since the first thing it will check is whether Cell.r, =0
for all 1 < k < n. The only possible problem might arise if p; is in the middle of initialization
of Cell. Clearly, it can happen only if the second access of Cell.Init by p; and the access by p;
occurred concurrently. Therefore, in this case, p; will start the access of Cell.r; only after p;
has completed writing 1 into it, and INIT will fail.

Lemma 6.2 A call to INIT fails only if there is some processor that is currently executing GRAB
on this cell or it has already finished executing GRAB but has not executed RELEASE yet.

Proof: Omitted. [
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procedure GraB( Cell);
if Cell.Init = true
then return “fail”;
else begin
Cell.r;—1,
if Cell.Init = true
then begin
Cell.r; — 0;
return “
end;
else return “empty”;

fail”;

end;
end.

procedure RELEASE(CELL);
CeLL.7;«0;
end.

Figure 4: The GRAB and RELEASE procedures executed by processor p;

procedure INIT( Cell);
if Cell.Init = 0 then Cell.Init — 1;
RELEASE(Cell);
j +—Cell. Coun tInit;
while j < n and r; = 0 do begin
end;
Cell. Coun tlnit « |
ifj=n
then begin
initialise thecell;
Cell. CountInit — O;
Cell.Init — O;
return %Success” ;
end;
else return “fail” ;

end.

Figure 5: The INIT procedure.
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procedure GFC;
AnnounceGFC(i) « 1;
Cell — GFC-INNER(~);
Cell. Chimed « true;
AnnounceGFC(3) — 0;
for all j such that AnnounceGFC(:) = 1 do begin
Tmp «+ GFC-INNER(~);
RELEASE( Tmp);
end;
return Cell,;
end.

procedure GFC-INNER(ID);
for all cells Cell in memory do begin
if GRAB( Cell)= “empty” and Cell.ProcID = 1D and Cell.Claimed = 0

then begin
return Cell;
end;
end;
do forever

for all cells Cell in memory do begin
if GRAB(Cell) = “empty”
then begin
try to jam ID into Cell. ProcID;
if “success” and Cell.Claimed = false
then return Cell;
else RELEASE( Cell);
end;
end;
end;
end.

Figure 6: The GFC procedure executed by processor p;
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6.2 Implementation of GFC

The code implementing the GFC operation is presented in Figure 6. To get a free cell, the
processor p; first sets AnnounceGFC(1) to state that it is in the middle of trying to get a free
cell and scans all memory, checking whether there is an empty cell that was “prepared” for him,
i.e. a cell with Claimed bit off and ProcID being equal to i. If such cell was not found, it scans
the cells one-by-one, trying to jam i into the ProcID field of the cell; the scan continues until
success. When the processor has succeeded, i.e. the ProclD field of the current cell C holds i,
it checks whether C is his “own” cell by checking the C.Claimed bit. If C was already claimed,
the search continues. Otherwise, it sets C.Claimed to “true” and resets AnnounceGFC(i). C
is the cell that is eventually returned as the response to the GFC command.

Before returning, the processor helps all other processors that are in the middle of looking
for a free cell. For each such processor p;, the processor p; scans all the cells, looking for a
cell with j jammed into ProcID and the Claimed bit equal to 0. If such a cell was found, it
means that there is a cell that only p; can claim, and in this case p; returns. If not, it starts
participating in the search again on behalf of p;. The only difference is that after succeeding
with jamming j into ProcID of a cell with Claimed bit 0, it does not turn on the Claimed bit.

Since each p; before “helping™ p; scans all the cells and checks whether there is a cell which
already belongs to p;, but was not yet claimed, we have the following lemma.

Lemma 6.3 At any point, for any 1 < i < n, there can be at most n ceils with ProcID bit equal
i and the Claimed bit equal to O.

Observe, that if during one memory scan no cells were allocated, a free cell is found. The
following lemma bounds the number of scans in which a free cell was not found.

Lemma 6.4 At most 2n? ceils can be allocated from the moment a processor announces that it
is trying to get a free cell until a cell with ProcID being equal to the ID of this processor is actually
allocated.

Proof: Assume that the lemma is false. Consider 2n? cells that were allocated after p; an-
nounced that it is trying to get a free cell. There exists at least one processor p; that has
allocated at least 2n cells among these 2n?. Observe, that a processor, during a single invo-
cation of GFC procedure, can allocate at most n cells — one per each participating processor.
Thus, since p; has announced that it is looking for a free cell, p; has executed GFC procedure
from the beginning to the end at least once, which means that one of the 2n cells it has allocated
has ProcID being equal to i, i.e. it belongs to p;. This contradicts the assumption that there
were no cells allocated for p;. |

6.3 Implementation of APPEND

The idea is to use the Prev field, which is an atomic Sticky-Byte object, to decide which
processor succeeds with appending his cell to the list. The code of APPEND is given in Figure 8.
First, look for the current head of the list using procedure FIND-HEAD, which code is given in
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procedure FiND-HEAD(Cell);
Head —1;
while Head =l and Cell. Next =1 do begin
for all cells TmpCell in memory do begin
GRAB(TmpCell);
if “success’ and TmpCell.Next # 1 and TmpCell. NotHead = fdse
then Head — TmpCell,
else RELEASE( TmpCell);
end,;
end;
end.

Figure 7: The Find-Head procedure.

procedure APPEND(Cell);
AnnounceAppend(z) «— 1;
Head —FIND-HEAD(Cell);
Head — APPEND-INNER(Cell, Head, 1);
AnnounceAppend(t) «— 0;
for al j such that AnnounceAppend(i) = 1 do begin
Cell' « the cell processor p; is trying to append;
if GRAB(Cell) = “success"
then begin
Head — APPEND-INNER(Cell', Head, j);
RELEASE( Cell);
end;
end;
RELEASE( Read);
end.

procedure APPEND-INNER(Cell, Head, ID);
if Cell Next # L then return Head;
OldHead «— Head.Next;
while Cell. Next =L do begin
GRAB(OIdHead);
if “success” then jam OldHead.NotHead with “true’;
try jamming Head.Prev with pointer to Cdll;
ReLease{ OldHead);
OldHead ~ Head,;
Head «— Head.Prev;
GRraB(Head);
if “success” and (Head = Cell or Cell. Next =1) then Head.Next «— OldHead;
end;
return Bead;
:nd.

Figure 8: The Append procedure.
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Figure 7. To find the current head, scan all the cells looking for a cell with Next field defined,
but with NotHead being false. This uses the fact that while appending a new cell C to the head
H of the list, we first define H.Prev to point to C, then we define C.Next to point to H and only
then we set H.NoHead to true. Observe, that if during a single scan no cells were appended
to the list, we will find the head. We will show below that from the moment processor p; sets
AnnounceAppend(t), there are at most n cells appended to the list before its cell is appended.
Therefore, after at most n scans of all the cells, we will either find the head of the list or will
recognize that the Cell was already appended by some other processor.

After finding the Head of the list, processor p; checks whether the cell it tries to append is
already in the list. If not, it tries to jam the pointer to Cell into the Prev field of the head. If
success, it writes the pointer to the head into the Next field of Cell, and indicates that Head is
already not the head of the list by setting the NoHead field.

A failure to jam the Prev field with the pointer to the Cell means that some other processor
succeeded in appending another cell C” to the list. Before writing anything into this cell, p;
tries to GrRAB C” in order to prevent initialization while writing. We have to take into account
the case where C”was already deleted from the list or is in process of being deleted. (Note that
this is the only case where GraB might fail.) But, as we have described in the previous section,
a cell can be removed from the list only if there are at least n cells ahead of it in the list. By
Lemma 6.5, in this case Cell was already appended to the list. On the other hand, if the GraB
succeeds, and the Cell is not yet in the list, then there are less than n cells in the list ahead of
C” and therefore it could not have been initialized in between the moment it was added to the
list and the GraB. Hence, it is safe to write into it.

Before returning, p; checks which processors have announced that they want to add their
cell to the list, but have not succeeded in doing so yet. For each such processor p;, processor
p; checks if the cell that p; is currently trying to append is already in the list, and if not it
appends it as if it was its own cell, by executing the above algorithm.

Lemma 6.5 At most n cells can be appended to the list from the moment a processor announces
that it is trying to append a cell until this cell is actually appended.

Proof: Assume that the lemma is false. Consider n cells that are appended after p; announces
that it is trying to append a cell. There exists at least one processor that “owns” two cells
among them. After appending the fist one of these cells and before appending the second one,
this processor has to help all other processors that are trying to append a cell. In particular, it
has to help p;, which leads to a contradiction. [

6.4 Space and time complexity

The following theorem states the space complexity of our construction.

Theorem 6.6 Any sequential object can be atomically implemented from O(n2 log n) sticky bits
and O(nz) cells, where each cell is large enough to hold a state of the object.

Proof: We allocate the cells from a central pool, and therefore it is enough to count the number
of cells which are in the list plus the cells which are being initialized. As we have already pointed

16



out in the previous section, the number of cells in the list which are not being initialized is O(n?).
By Lemma 6.3, each processor might allocate at most a single cell during execution of GFC
command per each other processor. In addition, each processor GrRABS at most 3 cells at any
moment, preventing their initialization. |

The time complexity of the construction depends on the time complexity of the safe imple-
mentation of the object. Denote by T the time needed by the safe implementation to execute
one access to the object. In the worst case the universal construction leads to O(n) calls to
the safe implementation of the access (n — 1 calls in order to reconstruct “current state” and
another call in order to actually execute the access). Since GFC and APPEND procedures take
O(n3 log n) time in the worst case and O(n2 log n) time if there are no concurrent accesses, this
leads to the total of O(nT + n3logn) running time in the worst case and O(T + n? logn) if the
object is accessed sequentially.

7 Conclusions and Open Problems

We have described a new approach to implement wait-free shared data objects in a shared-
memory multiprocessor, based on the idea of one processor helping another. We have introduced
the Sticky Bit object, which can be viewed as a memory-oriented generalization of consensus,
and showed how to use it to implement this approach. In particular, we showed how to construct
a wait-free atomic implementation of any sequential object in terms of O(n2 log n) Sticky Bits,
where n is the number of processors.

Dolev, Dwork, and Stockrneyer [5] and Chor, Israeli, and Li showed that there is no wait-free
implementation of I-bit Test-&-Set by safe registers. Furthermore, Herlihy [7] and Loui and
Abu-Amara [10]showed that there is no wait-free protocol that achieves 3-processor consensus
using atomic L-bit Test-&-Set for arbitrary k. It is easy to extend these proofs and show that no
atomic Read-Modify-Write (RMW) operation on a single bit is powerful enough to implement
a wait-free 3-processor consensus. On the other hand, observe that 3-processor consensus can
be trivially achieved using a wait-free atomic RMW on 2 bits. This indicates that there exists
a RMW-hierarchy, where safe-bits are on the bottom, I-bit RMW is on the fist level, 2-bit
RMW is on the second level, etc. The universality of Sticky-Bit proves that the RMW hierarchy
collapses at the 3rd level, because an atomic Sticky-Bit is trivially simulated by an atomic 2-bit
RMW.

The results presented in this paper suggest a number of natural direction for further research.

e Though the construction presented in Section 6 uses polynomial amount of memory, it is

clearly not efficient. Is it possible to improve the memory and time complexities of this
construction ?

e Can we prove a lower bound on the amount of memory needed to implement an arbitrary
wait-free atomic object directly from safe bits ?

e Are there any other natural objects, besides Sticky Bits, that are universal, easily imple-
mentable in hardware, and convenient to use when programming shared-memory multi-
processors ?
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