
August 1989 Report No. STAN-CS-89-1281

Load Balancing on the Hypercube and Shuffle-Exchange

bY

C. Greg Plaxton

Department of Computer Science

Stanford University

Stanford, California 94305

ECURlTY CLASSIFICATION OF THIS PAGE

Stanford University

ORGANIZATION

Arlington, VA

I 1 TITLE (Include Securrty Classifications

PROGRAM PROJECT TASK WORK UNIT
E L E M E N T N O N O NO ACCESSION NO

Load Balancing on the Hypercube and Shuffle-Exchange

I2 PERSONAL AUTHOR(S)
C. Greg Plaxton

13~ TYPE OF REPORT 13b TIME COVERED 14 DATE OF REPORT (Year, Month, Day) 15 PAGE COUNT

Research FROM T O - - - - - 8 9 / 8 / 3 0 19
16 SUPPLEMENTARY NOTATION

17 COSATI CODES 18 SUBJECT TERMS (Contrnue on reverse if necessary and rdentrfy by block number)

FIELD GROUP SUB-GROUP

19 ABSTRACT (Continue on reverse if necessary and identify by block number)

Maintaining a balanced load is of fundamental importance on any parallel computer,
since a strongly imbalanced load often leads to low processor utilization. This paper
considers two load balancing operations: B a l a n c e a n d MultiBalance. T h e B a l a n c e
operation corresponds to the token distribution problem considered by P&g and Upfal [g]
for certain expander networks. The MultiBalance operation balances several populations
of distinct token types simultaneously. Efficient implementations of these operations will
be given for the hypercube and shuffle-exchange, along with tight or near-tight lower
bounds.

20 DISTRIBUTION /AVAILABILITY OF ABSTRACT
q UNCLASSIFIED/UNLIMITED 0 SAME AS RPT

22a NAME OF RESPONSIBLE INDIVIDUAL

21 ABSTRACT SECURITY CLASSIFICATION
0 DTIC USERS

22b TELEPHONE (Include Area Code) 22c OFFICE SYMBOL

- - --. -- -. - -. --
DD Form 1473, JUN 86 Prevrous editions are obsolete

S/N OlOZ-LF-014-6603
SECURITY CLASSIFICATION OF lHI5 t-‘AGt

Load Balancing on the Hypercube and
Shuffle-Exchange

C. Greg Plaxton*
Department of Computer Science

Stanford University
Stanford, CA 94305

Maintaining a balanced load is of fundamental importance on any parallel computer,
since a strongly imbalanced load often leads to low processor utilization. This paper
considers two load balancing operations: B a l a n c e a n d MultiBalance. T h e B a l a n c e
operation corresponds to the token distribution problem considered by Peleg and Upfal[9]
for certain expander networks. The M u It i Ba la nce operation balances several populations
of distinct token types simultaneously. Efficient implementations of these operations will
be given for the hypercube and shuffle-exchange, along with tight or near-tight lower
bounds.

*This work was supported in part by a grant from the AT&T Foundation, NSF grant DCR-8351757
and ONR grant N00014-88-K-0166. The author is primarily supported by a 1967 Science and Engineering
Scholarship from the Natural Sciences and Engineering Research Council of Canada.

1 Notation and Terminology

A p processor fixed interconnection network may be viewed as an undirected graph, where
vertices correspond to processors and edges correspond to bidirectional communication
channels. Each processor has an infinite local memory, and a unique integer ID. There is
no global memory; processors communicate with one another by sending and receiving
data over the channels provided by the network. In order to discuss the time complexity
of an algorithm it is necessary to define exactly what operations can be performed in a
single unit of time, or time step. For establishing asymptotic upper bounds, it is realistic
to assume that:

1. Memory is configured in O(logp) bit words.

2. In a single time step, a processor can send and/or receive a single word of data and
perform O(1) CPU operations on word-sized operands.

The algorithms described in this paper are designed to run on the hypercube and
shuffle-exchange network families. A dimension d hypercube has 2d processors with IDS
ranging from 0 to 2d - 1. Processor i is adjacent to processor j if and only if the
binary representations of i and j differ in a single bit position. The shuffle-exchange was
introduced by Stone [lo]. Like the hypercube, a shuffle-exchange of dimension d has 2d
processors with IDS ranging from 0 to 2d-1. Processor i = (i&i . . . i& is connected to
processors Exchange(i), Shuffle(i) and Unshufle(i), where

Exchange(i) = (id-l . . . i&, $ 1))2,
Shuffle(i) = (id-2 . . . i&-i)& and

Unshuf,He (i) = (i&-l - . . i&,

O<i<d.-
Some important properties of the hypercube and shuffle-exchange network families

are summarized in Table 1. Note that the degree of the shuffle-exchange is constant,
while that of the hypercube is unbounded. Furthermore, the optimal VLSI layout area
of the shuffle-exchange is somewhat smaller.

A more powerful model of the hypercube will also be considered, one which does not
adhere to the l-port restriction on communication imposed above. This is the pipelined
hypercube model of Varman and Doshi [II]. The pipelined hypercube remains a realistic
model of computation by providing only a very restrictive form of d-port communication.

Network Processors Degree Diameter Layout Area
hypercube P l%P l%P @(P2)
shuffle-exchange P 3 21% P @(P2/ log2 P>

Table 1: Important properties of the hypercube and shuffle-exchange.

1

Communication on the pipelined hypercube is via word-sized packets, routed according to
the following simple scheme. Address bits are successively corrected in either ascending
or descending (as determined by the sender) order of significance, with no collisions
permitted. A collision occurs when two packets attempt to traverse the same edge in the
same direction at the same time.

In routing a packet, one time step is expended for each bit in the smallest contiguous
block of address bits that contains all of the bits to be corrected. For example, a packet
sent from processor 10110101~ to processor 10010011~ must pass through dimensions 1,
2, and 5. Assuming that the sending processor elects to have address bits corrected in
descending order of significance, the packet would be routed according to the schedule
given by the following list of (time, processor) pairs: (0,10110101~), (1, 100101012),
(2, IOOIOIOl2), (3,lOOlOIO12), (4,1OOlOOO12), (5,10010011~). This packet is sent by
processor 101101012, received and sent by processors 10010101~ and 10010001, and
received by 101100112. Let the first sender (10110101~, in this example) be called the
originatorof the packet, and let the last receiver (10010011~, in this example) be called the
acceptor of the packet. The pipelined hypercube imposes the following pair of restrictions
on communication:

1. Each processor is allowed to originate and/or accept at most one packet per time
step.

2. Each edge can transmit at most one packet in each direction per time step.

The pipelined hypercube model is not realistic in a strict sense, since a single RAM
cannot hope to examine O(log p) packets in O(1) time. However, it may be a useful model
in practice since the only additional hardware required at each hypercube processor is a
ring of O(logp) trivial coprocessors to handle the packet routing scheme described above.
Viewing this as an enhancement to the O(logp) I/O hc annel hardware already required
by a hypercube processor, one would expect to suffer only a small constant factor increase
in the VLSI area needed to implement a processor.

Several comments should be made with regard to mathematical notation. First, all
logarithms are to be taken base 2, that is, log II: denotes log, x. Second, it will sometimes
be convenient to make use of the function log, defined as

logx = max{log x,1}.

Finally, expressions such as [4,S) will be used to denote a set of contiguous integers, in
this case the set {4,5,6,7} (the interval from 4 to 8 with 4 included and 8 excluded).

2 Problem Definition: Balance

The first load balancing problem to be considered, Balance, is defined as follows. Let n
tokens be distributed over p processors, with no more than m tokens assigned to any single

2

p r o c e s s o r , [n/p] 5 _m < n. It will be assumed that n = O(pc) for some constant c in
order that calculations involving token counts can be performed with a constant number
of CPU operations. The problem is to redistribute the tokens so that each processor
has either In/p] or [n /pJ tokens, that is, so that the load is distributed as evenly as
possible. Peleg and Upfal have exhibited tight bounds for this operation on a certain
class of expander networks [9]. In many applications, it is not necessary to balance the
population of tokens exactly. If the difference between the maximum number of tokens
at any processor and the minimum number of tokens at any processor is t, it will be said
that the tokens have been balanced with error <. The corresponding operation will be
referred to as Balance with error t.

2.1 Tight Bounds for the Pipelined Hypercube

This section describes an algorithm for the Balance operation with minimum error that
runs in O(m logp) time on the hypercube or shuffle-exchange, and in O(m + logp) time
on the pipelined hypercube. This algorithm is due to Tom Leighton [6]. Assuming that
m exceeds [n/p1 by at 1east some constant factor, there is a trivial n(m + logp) lower
bound for the pipelined hypercube. The n(m) term in the lower bound holds since at
least m- [n/p] = 0(m) t’ime steps are necessary for a processor initially holding m tokens
to send away sufficiently many tokens to reach [n/pi, the maximum allowable number
in any balanced configuration. The logp term in the lower bound holds because, as will
be proven rigorously in Section 2.2, it is possible to configure the tokens in such a way
that no token is placed within R(logp) hops of a particular processor. Thus, Leighton’s
algorithm provides tight bounds for the pipelined hypercube when m exceeds [n/p] by
some constant factor. Note that if m does not exceed [n/p1 by a factor of 2 (say), then
load balancing is probably not necessary anyway.

The l-port version of Leighton’s algorithm will now be described. The algorithm
runs in m phases, and each phase takes care of one token from every processor for which
the supply of tokens has not yet been exhausted. In a phase, the designated tokens are
routed to a contiguous block (with respect to processor ID modulo p) of processors. Each
token is routed in exactly one phase. The first block begins at processor 0 (say), and
each subsequent block begins at the processor following the end of the previous block.
In this manner, the population of tokens gets distributed as evenly as possible.

A single phase of Leighton’s algorithm is implemented by performing a prefix sum
over the designated tokens followed by a concentration route as defined by Nassimi and
Sahni [8]. The prefix sum gives the offset of each token within the contiguous block
of destination processors. The size of the block is broadcast so that all processors can
compute the start of the next block. All of these operations can be performed in O(logp)
time , so the over-all running time of Leighton’s algorithm is O(m logp). Note that this
time bound is valid for the shuffle-exchange as well as the hypercube.

As indicated above, Leighton’s algorithm is best suited for the pipelined hypercube.
The prefix sum and broadcast operations can be pipelined on the hypercube but the

3

concentration routes cannot (provably). On the other hand, the pipelined hypercube
allows concentration routes to be pipelined [ll]. Hence, the Balance operation can be
implemented to run in O(m + logp) time on the pipelined hypercube.

2.2 A Lower Bound for the Hypercube

A lower bound for the running time of Balance on the hypercube can be obtained by
concentrating all of the tokens in a small number of processors and then bounding the
time required to eliminate the excess tokens from this set of processors. In the following,
recall that d = logp denotes the dimension of the given hypercube.

Definition 2.1 Let I”(i) denote the set of (t) processors at Hamming distance r from
processor i, 0 5 r 5 d.

Definition 2.2 Let B(i,r) denote the complete Hamming ball of radius r centered at
processor i. More formally, this is the set of processors given by B(i, r) = Uos&” (i).

Note that IB(;,r)I = &<l<t : .0 It will also be necessary to consider “incomplete”
Hamming balls, that is, HZming balls with only a partially filled outer layer.

Definition 2.3 Given a positive integer z, let r and y be the unique pair of nonnegative
integers such that x = y+&<l<r-l (f) , 1 ,< y 5 (t) . A set of processors B is a Hamming
ball of size x and radius r if rh&e is some processor i and some set of processors S such
that B = B(i, r - 1) US, S z I”(i) and ISI = y. Let B(x) denote the set of all Hamming
balls of size x.

Definition 2.4 Let a graph G with vertex set V(G) and edge set E(G) be given. For
every U c V(G), the fringe of U with respect to G, 3(G, U), is defined as the set

{u E U 1 (u,v) E E(G) for some v E V(G) \ U).

Finally, let the function f (G, x) be defined as

f(G4 = &, IWY WI9
VI==

where G is a graph and x is an integer, 0 ,< x s IV(G)I.

Lemma 2.1 The Balance operation requires R((n - [n/ml [n/p])/f(G, [n/ml)) time.

Proof: The n tokens can be concentrated in a set S of [n/ml processors. Under a
balanced load, S contains at most [n/ml [n/p1 tokens. Hence, at least n - [n/ml [n/p1
tokens must leave the set S. Only processors located at the fringe of S, those in 3(G, S),

4

can send tokens out of S, and these can only transmit one token per time step. Therefore,
the running time of Balance must be at least (n - [n/ml [n/pj)/(f(G, [n/ml)). 0

Having established Lemma 2.1, the desired lower bound can now be obtained by
computing f(& In/ml>, hw ere Hd denotes the undirected graph corresponding to a
hypercube of dimension d. Intuitively, one might expect that the value of f(Hd, 2) is
determined by a Hamming ball configuration. The correctness of this intuition is borne
out by the following theorem due to Harper [4]. Note that Frank1 and Fiiredi have given
a simpler proof of the same result [2].

Theorem 2.1 For every integer z, 0 < x 5 p, there exists a ball B E B(x) such that
f(& 2) = Iv&, B)l. cl

The following estimate of the “volume-to-surface” ratio of a Hamming ball is proven in
Appendix A.

Lemma 2.2 For positive integers d and r = r(d), 0 5 r < d/2, let S = t and let

0
0

v=c ’ . Then V = 2d(l-l/k)O<l<r 1- - implies that V/S = O(k1/2), 1 < k 5 d. 0

Theorem 2.2 The Balance operation requires R(k1/2m) time on the hypercube if m =
@(Pl/k (n/P)) and m 2 2nlp.

Proof: Note that k 2 1 since m 5 n, and k 5 logp since m > h/p. Theorem 2.1 and
Lemma 2.2 together imply that

f (I-id, pl-llk) = @(k-‘/2pl-l/k),

1 < k 5 logp. Now consider the lower bound given by substituting this equation into the
statement of Lemma 2.1. The numerator, n - [n/ml [n/p] is at least n - [p/2] [n/p] =
O(n). The denominator, f (G, [n/ml), reduces to f (Hd,pl-‘lk) = O(k-1/2p1-1/k). Hence,
Balance requires R(k1/2(n/p)p11”) = O(k1i2m) time on the hypercube. 0

2.3 Upper Bounds for the Hypercube

Now consider the task of obtaining an efficient implementation of the Balance operation
on the hypercube. Let a subcube of dimension 1 be given, with a tokens at processor 0
and b tokens at processor 1. Further assume that each processor knows the number of
tokens that it is holding, that is, the value a (b) is stored in the local memory of processor
0 (1). In this case, it is easy to see that the Balance operation can be performed over
the given subcube in]a - bl/2 + O(1) time. This observation motivates the following
definition.

5

Definition 2.5 Let a set of n tokens be arbitrarily distributed over the processors of a
p processor hypercube, p > 2. Let the Balance operation be applied to each of the p/2
subcubes of dimension 1 induced by the set of p/2 edges across dimension i. Then the
hypercube has been balanced across dimension i.

Clearly the amount of time required to balance across dimension i is t/2 + O(l), where
< is the maximum discrepancy between the number of tokens at a given processor and
its neighbor in dimension i.

Lemma 2.3 Let the low and high subcubes with respect to dimension i of a given
hypercube be balanced with error t. Then after balancing across dimension i, the entire
hypercube is balanced with error [+ 1.

Proof: Initially, each processor in the low subcube contains a number of tokens in the
range [a, a + [] for some integer a. Similarly, each processor in the high subcube contains
a number of tokens in the range [b, b + S] for some integer b. Thus, after balancing across
dimension i every processor contains a number of tokens in the range
and

which completes the proof. 0

By repeated application of Lemma 2.3, one finds that successively balancing across
every dimension of the hypercube yields an implementation of Balance with error logp.
The running time of this algorithm is O(mlogp), since no processor will ever contain
more than m tokens and hence each balancing step requires at most m/2 + O(1) time.
Furthermore, in the important case m = O(n/p), ti is p ossible to distribute the tokens so
that this performance is achieved to within a constant factor. In other words, the worst
case running time of such a balancing algorithm is O(mlogp) when m = O(n/p).

The following algorithm improves on this time bound by making a more careful
decomposition of the hypercube. One additional definition is needed in order to present
the algorithm.

Definition 2.6 Let the discrepancy across dimension i, denoted 6i, represent the
absolute value of the difference between the total number of tokens in the high and
low subcubes with respect to dimension i.

The efficiency of the following recursive procedure for Balance with error logp relies upon
the fact (shown below) that there is always some dimension with a small associated
discrepancy.

Algorithm Ba la nce

1. Each processor counts how many tokens it has and stores the result. This takes
O(m) time.

6

2.

3.

4.

5.

6.

Let 2 denote the dimension of the subcube being balanced (I = d initially). If I = 0,
return.

Compute 6i7 0 < i < 1. This involves performing I independent sums over the entire
subcube. These sum operations can be pipelined to run in a total of O(Z) time [5].

Determine the dimension i* with least associated discrepancy &;I. This takes O(2)
time.

Recursively balance the high and low subcubes with respect to dimension i*, using
Steps 2 to 6.

Balance across dimension i*, adjusting the token counts appropriately. The running
time of this step is analyzed below.

In order to establish the correctness of the preceding algorithm, it is necessary to
prove that the output hypercube is balanced with error logp. This follows easily by
induction using Lemma 2.3.

To analyze the time complexity, only the cost of Step 6 remains to be determined.
When this step is executed, the (I - 1)-dimensional high and low subcubes with respect
to dimension i* are each balanced with error 2 - 1. Hence, there are integers a and b such
that each processor in the high subcube contains a number of tokens that is in the range
[a, a + I - 11, and each processor in the low subcube contains a number of tokens in the
range [b, 6 + 2 - 11. Letting S = 5;+ gives

2’-‘(b - (a + I - 1)) 5 S,

and so (b + I - 1) - a 5 S2l-’ + 2Z- 2. Similarly, (a + 2 - 1) - b can be bounded by the
same quantity. Therefore, the cost of the balancing step is O(S2-’ + I). It remains to
bound the minimum discrepancy S. In the following sequence of lemmas, let A denote
the sum of the discrepancies in the given hypercube of dimension d, CO<i<d S;.-

Lemma 2.4 The value of A is maximized by packing all of the tokens into a Hamming
ball B of size [n/m].

Proof: Given an arbitrary distribution of the tokens, it will be shown that the
corresponding value of A is at most that achieved by a particular Hamming ball
configuration. First, transform the processor IDS of the given hypercube by toggling
each bit that corresponds to a dimension for which there are more tokens in the low
subcube than in the high subcube. Note that the transformed hypercube yields precisely
the same value of A as the given hypercube. It has the additional property that for every
dimension, the high subcube contains at least as many tokens as the low subcube. Let
w(i) denote the number of l’s in the d-bit processor ID i, and let n(i) denote the number

7

of tokens at processor i. Now observe that A may be expressed as

A = C w(i)n(i) - C (d - w(i))n(i)
O<i<p O<i<p

= 2 c w(i)n(i) - nd,
O<i<p

where p = 2d. Thus, maximizing A is equivalent to maximizing Co<;<, w(i)n(i). This
new sum is clearly maximized by distributing tokens according to the following algorithm:
While there are tokens left to distribute, put m tokens (or the number of tokens remaining,
if less than m) into an empty processor with largest w(i) in the set of empty processors.
The result follows since this algorithm fills a Hamming ball centered at processor 2d - 1.
II

Lemma 2.5 Let an instance of Balance be given for which the tokens are packed into
a Hamming ball of size [n/ml. Then A = O(md1/2p). Furthermore, if m 2 2n/p and
[n/ml = pi-l/‘, then A = @(mdb-1/2p1-11”).

Proof: Assume the tokens are packed into a Hamming ball B of radius r. The total
discrepancy A is bounded by m times the number of edges between B and Hd \ B. The
number of such edges is maximized when r = [d/2], so A = O(md(,dy2,)) = O(md1/2p).
For the sharper bound, Lemma 2.2 tells us that the cardinality of the fringe of B
is f(Hd, pl-ll”) = @(k-l12pl-‘l”). The number of edges between B and & \ B is
d - r = O (d) (r is at most ld/2J since m > 2njp) times the size of the fringe of B.
Hence, A = O(mdk-1/2p1-1/k), as claimed. 0

This section will only make use of the O(md1/2p) bound of Lemma 2.5. The more
detailed bound involving k will be needed in the next section in order to analyze a
load balancing algorithm involving multiple token types. The following theorem is an
immediate consequence of the preceding two lemmas.

Theorem 2.3 For any instance of Balance, the average discrepancy across a dimension,
AJd, is O(mds112p). 0

Recall that the cost of the balancing step in algorithm Balance was shown above to be
0(62-l + I), hw ere 6 = S;1 is the minimum discrepancy. Now the minimum discrepancy
is certainly no larger than the average discrepancy, so S must be O(ml-1/22’) by
Theorem 2.3. Hence, the cost of the balancing step is O(mZ-1/2 + I), and the total
running time of algorithm Balance is o(&<l<d ml-1/2 + 2) = O(mlog1/2p + log2p).- -

Of course, this algorithm performs balancing with error logp. This should be good
enough for most applications, but if a minimum error (0 if pin, 1 otherwise) balancing
is desired, some post-processing is needed. Note that the post-processing task can be
viewed as an instance of Balance with m = logp, which can be solved in O(log2 p) time
using the l-port version of Leighton’s algorithm described in SectSion 2.1.

8

Theorem 2.4 The Balance operation, with minimum error, runs in O(m logli2 p+log2 p)
time on the hypercube.

Proof: First apply algorithm Balance described and analyzed earlier in this section
to balance the load with error logp. This takes O(m log1i2 p + log2 p) time. Compute
the minimum number of tokens, a, at any processor and broadcast this value to all
processors. This takes O(logp) time. Every processor then sets aside a tokens, and the
remaining tokens (of which there are at most logp at any single processor) are balanced
using Leighton’s algorithm in O(log2 p) time. 0

2.4 Load Balancing on the Shuffle-Exchange

As noted in Section 2.1, the l-port version of Leighton’s algorithm runs on the shuffle-
exchange. Hence, the Balance operation, with minimum error, runs in O(mlogp) time
on the shuffle-exchange. Now consider the following lower bound.

Theorem 2.5 Assuming m > 2n/p, the Balance operation requires O(ml@g(n/m)) time
on the shuffle-exchange.

Proof: Using techniques due to Leighton [7], Cypher has proven that the p processors
of a shuffle-exchange can be partitioned onto c chips in such a way that fewer than
p/2 processors are assigned to any single chip, and the number of pins per chip is
o(P/(cl@g(P/c))) PI. The P’m count for a particular chip C is determined by the total
number of edges joining a processor assigned to C to a processor assigned to some other
chip. Letting SEd denote the graph corresponding to the shuffle-exchange of dimension d,
Cypher’s bound implies (by an averaging argument) that for every integer x, 0 _< x < p/2,
there exists an integer g(x), x 5 g(x) < p/2, such that

f(SEd, s(x>) = o(x/ l@g x>s

Now consider the lower bound for Balance obtained by packing the n tokens into a set
S of g([n/ml) processors with 0([n/ml / l@g[n/ml) neighbors. At least n/2 = n(n)
tokens need to be moved to processors outside of the set S, and each edge leaving S can
carry at most one token per time step. Hence, Balance requires R(ml@g(n/m)) time on
the shuflle-exchange if m 2 2n/p. 0

The upper and lower bounds are tight for 2n/p 5 m 5 n’-‘, where 6 denotes an
arbitrarily small positive con&ant.

3 Problem Definition: MultiBalance

In this section, a slightly more complicated load balancing problem than Balance will be
considered. Let n tokens be evenly distributed over p processors, that is, each processor

9

contains either [n/p] or [n/p1 to kens. Each token has an associated type. There are g 2 2
different types of tokens, and nothing is known about the distribution or proportion of the
tokens of any particular type. The set of tokens of a particular type will be called a group,
and it will be assumed that the g group types are given by the integers (0,. . . , g - 1).
The problem is to execute g Balance (with error <) operations, one over each group of
tokens. This operation will be referred to as MultiBalance (with error 0.

3.1 Upper Bounds for the Hypercube

An implementation of MultiBalance that runs in O((n/p)(logglogp)1/2 + glog2p) time
on the hypercube will now be presented. The following definitions, which build on
Definitions 2.5 and 2.6, are required.

Definition 3.1 Given an instance of MultiBalance, the n tokens have been multi-balanced
across dimension i if and only if each group j has been balanced across dimension i,
Osj<g.

Definition 3.2 Let Si denote the discrepancy across dimension i with respect to group
j, 0 5 j < g. Define the multi-discrepancy across dimension i, denoted Sy, as the sum
c 6iO<j<g 2’

Algorithm MultiBalance

1. Each processor partitions its set of tokens into g subsets, one subset corresponding
to each of the g token types. Each of the subsets is counted and the results are
stored. This takes O(n/p) time.

2. Let Z denote the dimension of the subcube being multi-balanced (I = d initially).
If Z = 0, return.

3. Compute SM, 0 5 i < 1. Th’is involves performing 2 independent sums over the
entire subcube for each of the g groups. Each set of Z sum operations can be
pipelined to run in O(Z) time [5], so the total running time is O(gZ).

4. Determine the dimension i* with least associated multi-discrepancy #!!. This takes
O(Z) time.

5. Recursively multi-balance the high and low subcubes with respect to dimension i*,
using Steps 2 to 6.

6. Multi-balance across dimension i”, adjusting the token counts appropriately. The
running time of this step is analyzed below.

10

The correctness of the preceding implementation of MultiBalance with error logp
follows by induction using Lemma 2.3. If a minimum error multi-balancing is desired,
O(log2 p) post-p recessing per group can be performed as described in Section 2. The
total cost of post-processing is thus O(glog’p) time.

In order to complete the analysis of the running time of algorithm MultiBalance, it is
necessary to consider the cost of Step 6. Let, Aj denote the sum of the discrepancies with
respect to group j in the given hypercube of dimension d, &<i<d 6:. Let AM denote the
sum of the multi-discrepancies CO<i<d @‘I = Co<j<, Aj. -- -
Lemma 3.1 For any instance of MultiBalance, AM = O(dk-1’2n), where k satisfies
g = pl’“.

Proof: Let, the number of tokens in group j be denoted xj, 0 L: j < g, and consider
the contribution of Aj to AM. Since Co<j<g xj = n, there is at most one xj that exceeds
n/2. Suppose that xl 2 n/2 for some group 1. Then Al = O((n/p)d”2p) = O(d”2n) by
Theorem 2.3. Now k < logp = d (since g 2 2)) so d”2 5 dk-1’2 and Al = O(dk-1’2n).

Hence, it may be assumed that xj 5 n/2, 0 < j < g. Let kj satisfy xj/n = ~-l’~j, 0 5
j < g. The tokens of group j can be packed into plsl”c-l processors, and by Lemmas 2.4
and 2.5, Aj = O((n/p)dky1’2p’-“kJ) = O(dxjkr1’2) = O(d1’2xj log1’2(n/xj)). Consider
the function f(x) = x log”2(n/x), where x is a real value in the range [1, n/2]. One may
easily verify that f”(x) < 0 in this range. In other words, f(x) is a concave function.
Therefore, the sum Co<j,,g f(xj), subject to the constraint Co<j<g xj = n, is maximized- -
when all of the xj’s are equal, that is, when xj = n/g. Forcing the xj’s to be integers can
only decrease this sum, so AM = O(d112gf (n/g)) = O(d1f2g(n/g) log1’2 g) = O(dkB112n),
as required. 0

Lemma 3.2 For any instance of MultiBalance, the average multi-discrepancy AM/d
across a dimension is O(n(logg/ logp)1’2).

Proof: Immediate from Lemma 3.1, since g = pl’” and k = logp/ logg. 0

Theorem 3.1 The MultiBalanceoperation runs in O((n/p)(logglogp)1’2+glog2p) time
on the hypercube.

Proof: By a simple extension of the argument given in Section 2, the time required
to perform the multi-balancing step is 0(@2-’ + gl). Now @ is certainly no more
than AM/d, and the number of tokens in a subcube of dimension 1 at, depth d - 1 of the
recursion is 0(n21ed + g2’(d - I)), where the latter term bounds the cumulative effect
of odd parity in the balancing operations. Thus, Lemma 3.2 implies that the total time
expended in Step 6 is

0
(
c 2-‘(n21vd + g2’(d - Z))(logg/Z)1’2 + gl ,

I<l<d- -)

which reduces to O((n/p)(logglogp)“2 +glog2p). Th’ d1s ominates the time required by
all other steps of the algorithm, including the post-processing. 0

11

3.2 A Lower Bound for the Hypercube

It is easy to see that +(A” - dgp)/p is a lower bound on the running time of MultiBalance,
since AM can only decrease by 2p each time step and it is certainly less than dgp after
the MultiBalance operation has been performed. Hence, exhibiting a particular input
instance with a high value of AM gives a good lower bound on the worst case running
time of MultiBalance. Consider the input instance given by the following construction.

Assume for convenience that g = 2’) 1 5 r 5 d, and let q = [d/r] - 1 or [d/rJ ,
whichever is odd. Divide the first qr bits of each processor ID into r fields of q contiguous
bits. The ith field determines the ith bit of an r-bit condensed ID according to the
following rule, 0 5 i < r. If the majority of the q bits in the ith field are 0, then the ith
bit of the condensed ID is 0; otherwise, it is a 1. Note that since q is odd there will always
be a strict majority of either O’s or 1’s. Furthermore, symmetry implies that exactly 2d-r
processors share any particular condensed ID. In the following lemma, let U denote such
a subset of 2d-r processors.

Lemma 3.3 The number of hypercube edges from processors in U to processors outside
of U is O(rq1/21UI).

Proof: By symmetry, it is sufficient to prove that the number of such edges associated
with the first (say) field is O(q1/21UI). Also, it may be assumed without loss of generality
that the first bit of the condensed ID associated with U is a 0. Let U’ denote the subset of
the processors of U with [q/21 0 b’t1 s and 1q/2J 1 bits in the first field. Lemma B.2 implies
that IU’I = O(q--U2 IUl). It should be c ear1 that only the processors in U’ contribute to
the desired edge count, and each of these contributes exactly [q/21. Thus, the number
of edges leaving U that are associated with the first field is O(q112 IUl), as required. l’J

Theorem 3.2 The MultiBalance operation requires R((n/p)(logglogp)1’2 -glogp) time
on the hypercube.

Proof: Consider the input configuration obtained by filling each of the processors having
condensed ID i with n/p tokens from the ith group, 0 5 i < 2’. Lemma 3.3 implies that
each group contributes O((n/g)(logglogp)1’2) to AM, so AM = O(n(logglogp)1’2). As
argued above, this fact immediately implies the desired lower bound on the running time
of the MultiBalance operation. 0

3.3 Average Case Analysis

Given n distinct tokens and p processors, there are
n!

KnlPYIP
different ways of assigning n/p tokens to each processor, assuming that n is an integer
multiple of p. This section analyzes the average case running time of MultiBalance over

12

all of these possible input configurations when there are g distinct groups of tokens. The
upper bound to be derived will be interesting for sufficiently small values of g. In the
following discussion, the phrase “with high probability” means with probability 1 -O(p-“)
for an arbitrary positive constant c.

Let the ith group contain n; tokens, and consider the expected contribution of group
i to the total running time of this version of MultiBalance, 0 < i < g. Letting p = 2d,
there are d”,0 distinct subcubes of dimension d’. Focus attention on one such subcube
C, and let the random variable X denote the number of tokens from group i initially
assigned to some processor in C. Let Yj denote the random variable that is 1 if the jth
token of group i contributes to X, and 0 otherwise, 0 < j < n;. Letting 0 = 1/2d-d’,
the expected value of Yj is 8, and the expected value of X is n$. The variance of Yj is
bounded above by the variance of the binomial distribution with probability 9. Thus,
the variance of X is at most ni0(1 - 0) < n;O. A standard Chernoff bound implies that
with high probability, X is within 0((niB logp)‘/2) o 1f ‘t s expected value. Since there are
Only P = CO<d’<d d”l0 choices for C, every subcube of dimension d’ contains-

group i tokens with high probability, 0 5 d’ < d. Thus, after balancing the group i
tokens over subcubes of dimension d’, every processor contains

ni*o
P

({p+d’)

group i tokens with high probability. The additive d’ bounds the worst case error in the
balancing, as given by Lemma 2.3. Note that this is a pessimistic estimate to apply to
the average case behavior of MultiBalance, and could certainly be improved. Continuing
the analysis, the preceding bound implies that the total cost of the jth multi-balancing
operation performed by algorithm Multi Balance is

0 5 j < d, with high probability. Summing over j and interchanging the order of
summation, the cost of all of the multi-balancing operations is

0
(-

o<F<g &7iiGG + g log2 P
)

with high probability since the sum over j is dominated by the j = 0 term. The remaining
sum is maximized by setting ni = n/g, 0 5 i < g, which leads to a total multi-balancing
cost of

&zzG+glogzP >

13

with high probability. Note that the g10g2p term matches the cost of post-processing
and other computations performed by M ultiBalance.

The preceding analysis can also be applied to the straightforward implementation
of MultiBalance that multi-balances across each of the dimensions in ascending order.
Furthermore, this version of MultiBalance can be made to run as efficiently on the shuffle-
exchange as it does on the hypercube. For the shuffle-exchange version, shuffles are not
performed by moving entire sets of n/p tokens, but rather by moving appropriate subsets
of the tokens to make the composition of the set of tokens at each processor (that is,
the number belonging to each group) the same as it would have been if a true shuffle
had been performed. The total cost of simulating the shuffle operations in this manner
is easily seen to be on the same order as that of the multi-balancing operations. This
algorithm will be referred to as the shuffle-exchange version of algorithm MultiBalance.
The following theorem summarizes the two main results of this section.

Theorem 3.3 The average running time of algorithm MultiBalance, as well as that of
the shuffle-exchange version of algorithm M ultiBalance, is

0 (&73zG+glog2P *>

4 S u m m a r y

This paper has described hypercube and shuffle-exchange algorithms for performing
two load balancing operations: Balance and MultiBalance. For the Balance operation,
lower bounds were derived by considering the particular input configuration obtained
by packing the tokens into a smallest possible set of processors with low expansion.
For the hypercube, an algorithm was given that matches the lower bound to within a
multiplicative constant if m >_ max{2n/p,log3/2 p} and m = O(n/p). The lower bound
for the shuffle-exchange is higher because the hypercube has better expansion properties
than the shuffle-exchange. Tight upper and lower bounds were obtained for the shuffle-
exchange for m in the range 2n/p 5 m < nl-‘, where E denotes an arbitrarily small
positive constant.

Upper and lower bounds were given for the MultiBalance operation on the hypercube.
These bounds are tight for (n/p)(log g log p)li2 = fI(g log2 p). A straightforward
implementation of MultiBalance on the shuffle-exchange was also described. Finally,
the average case complexity of the hypercube and shuffle-exchange implementations of
Multi Balance was considered. Not surprisingly, these algorithms behave much better on
average than they do in the worst case.

Perhaps the most important application of the Balance and MultiBalance operations is
to the problem of sorting. Fast, practical sorting algorithms based on these load balancing
primitives are described in [lo].

14

A Expansion Properties of the Hypercube

The calculations in this appendix analyze the volume-to-surface ratio of a Hamming ball
of radius r = r(d) lying in a hypercube of dimension d. Theorem B.l, which is used in
Section 2.2, characterizes the asymptotic behavior of this ratio for r in the range 0 to d/2.
The results could easily be extended to handle higher values of r (that is, d/2 5 r 5 d)
by taking advantage of symmetry.

B Asymptotic Analysis

Definition B.l Let R+ denote ~o<l<~ (;“)/c>.- -

Lemma B.l Let d and r be positive integers, 1 5 r < d. Then R+ > Q.-r.

Proof: Observe that Rd,O = 1 and for 1 5 r 5 d

&,r/Rd,r-1 = d ’- ?-+I (o~Two~&3)

> d- ‘, , , l~&‘(;)/((“l)
r . d-Z+1

= d - r + 1 lyi:T 1

cl

Lemma B.2 For positive integers d and r, r 5 d/2,

Rd,r =

where r = d/2 - 6.

Proof: The following three cases will be considered separately: z = O(d) and z < d/4;
x = o(d) and x 2 1; 0 5 x < 1.

Case 1: z = O(d) and z 5 d/4. Exercise (9.42) of Graham, Knuth and Patashnik [3]
establishes that &T = O(1) in this range.

Case 2: 2 = o(d) and z 2 1. It is sufficient to prove that &T =
z = 0(l). For th

0 (j/i&) since
e 1ower bound, consider the inequality

and observe that for sufficiently large values of d

which converges to em8 = Q(1). Hence, R+ = R(dd/z).

For the upper bound, note that

(lfl)/(;1) ’ ,:+I’

for 1 < 2 < r. Hence, the sum CoCICr f- 0 is dominated by the infinite geometric- -
progression with initial value (t) and ratio r/(d - r + 1) between successive terms. Thus,

R
d-

d,r <
r+l

d-2r+l

Case 3: 0 5 z 5 1. It is sufficient to prove that R+ = 0 (a) since x = O(1). A
lower bound on Rd,r can be obtained as follows:

Furthermore, for sufficiently large values of d

(r - ; & ,) / (t) ’ (d:fj,)”

16

which converges to e-’ = C!(l). Hence, &r = n(a).

For the upper bound, Stirling’s approximation can be used to show that Rd,ld,21 =
@(a). It follows from Lemma B.l that R+ = O(d). 0

Theorem B.l Let d be a given integer and let r = r(d) be an integer between 0 and
d/2. If COXl<,. (;“) = 2d(1-1’k) then R+ = o(G).- -

Proof: The following four cases will be considered separately: r = d/2-n(d) and r 2 0;
r = d/2 - o(d) and r < d/2 - d213; d/2 - d213 < r < d/2 - 4; d/2 - & 5 r 5 d/2.

Case 1: r = d/2 - R(d) and r 2 0. In this range, R+ = O(1) by Lemma B.2, and
k = O(1) by Exercise (9.42) of [3]. Hence, R+ = @(fi).

Case 2: r = d/2 - o(d) and r 5 d/2 - d2i3. Let r = d/2 - d112+&, hence S =
l/2 - w(l/ log d) and S 2 l/6. As in the preceding case, &T = @(d1i2-“) by Lemma B.2.
The logarithmic form of Stirling’s approximation implies that In n! = n In n - n + O(ln n).
Hence,

In d0 = d l n d - r l n r
r

- (d - r) ln(d - r) + O(lnd)

= d In d - (d/2 - ds+‘12) ln(d/2 - ds+l12)
-(d/2 + d6+li2) ln(d/2 + d’+‘/2) + O(ln d)

= d In 2 - (d/2 - d’+‘/‘) ln(1 - 2d6-li2)
-(d/2 + d’+“‘) ln(1 + 2d6-l12) + O(ln d).

The following pair of inequalities may be easily derived from the Taylor’s series expansion
of ln(1 + x):

x - x2/2 5 ln(1 + x) 5 x, x > 0, and
1-3 - x2 5 ln(1 - 2) 5 --II: - x2/2, 0 5 x 5 -.
2

These inequalities imply that for sufficiently large values of d,

In
d

0
>

r
din 2 - (d/2 - d”+‘/2)(-2d”-‘/2 - 2d2”-l)

-(d/2 + d”f1/2)(2d6-1/2) + O(lnd)
= d In 2 - 3d2’ - 2d3”-li2 + O(ln d)
>_ d In 2 - 5d2’ + O(ln d),

In d In 2 - (d/2 - ds+1/2)(-2d”-1/2 - 4d2’-l)

-(d/2 + ds+1/2)(2d6-1/2 - 2d2”-l) + O(ln d)
d In 2 - d26 - 2d3”-1/2 + O(ln d)

F d l n 2 - d26+ O(lnd).-

17

d
Thus, CO<l<r 1 =0 &,r (;) = 2 d-‘(d26) where the 0(In d) term has been absorbed into
the O(cFs) term (using the fact that S 2 l/6). Hence, k = @(dlm2”) and Rd ,. = O(G).

Case 3: d/2 - #I3 5 r 5 d/2 - a. Let r = d/2 - d112+“, 0 < S L: 1/6.‘In this case,
R,jr = O(d1/2-s) by Lemma B.2. Equation (9.98) of [3] implies that

(f) =@ ($em2d26),
so multiplying by &. gives

,z, (y) = @ ($.e-2d26) = @(2d(1-1/k)),
--

for k = dln 2/(Sln d + 2d2&). Observe that k = O(d1-26) since d2’ = R(Sln d), 6 > 0.-
Hence &jr = @(fi).

Case 4: d/2 - 4 5 r 5 d/2. In this case, R+ = @(a) by Lemma B.2. Together
with Equation (9.98) of [3], this implies that Coll<T (f) = 0(2d). Hence, k = O(d) and
-&,r = @(A@. 0

References

[l] R. E. Cypher. Theoretical aspects of VLSI pin limitations. Technical Report 89-
02-01, Department of Computer Science, University of Washington, February 1989.

[2] P. Frank1 and 2. F”uredi. A short proof for a theorem of Harper about Hamming
spheres. Discrete Mathematics, 34:311-313, 1981.

[3] R. L. Graham, D. E. Knuth, and 0. Patashnik. Concrete Mathematics. Addison-
Wesley, Reading, MA, 1989.

[4] L. Harper. Optimal numberings and isoperimetric problems on graphs. J.
Combinatorial Theory, 1:385-393, 1966.

[5] C.-T. Ho and S. L. Johnsson. Distributed routing algorithms for broadcasting
and personalized communication in hypercubes. In Proceedings of the 1986 IEEE
International Conference on Parallel Processing, pages 640-648, 1986.

[6] F. T. Leight on. Personal communication.

[7] F. T. Leighton. Complexity Issues in VLSI: Optimal Layouts for the Shufle-
Exchange Graph and Other Networks. MIT Press, Cambridge, MA, 1983.

[8] D. Nassimi and S. Sahni. Parallel permutation and sorting algorithms and a new
generalized connection network. JAc,\I, 29:642-667, 1982.

[9] D. Peleg and E. Upfal. The token distribution problem. SIAM J. Comput., 18:2X&
243, 1989.

[lo] C. G. Plaxton. Eficient Computation on Sparse Interconnection Networks. PhD
thesis, Stanford University, September 1989.

[ll] H. S. Stone. Parallel processing with the perfect shuffle. IEEE Transactions on
Computers, C-20:153-161, 1971.

[12] P. Varman and K. Doshi. Sorting with linear speedup on a pipelined hypercube.
Technical Report TR-8802, Rice University, Department of Electrical and Computer
Engineering, February 1988.

19

