
December 1989 Report No. STAN-CS-89-1296

Completing the Temporal Picture

bY

Zohar Manna and Amir Pnueli

Department of Computer Science

Stanford University

Stanford, California 94305

Completing the Temporal Picture”

Zohar Manna
S tjanford Universi t,y tc

an cl

Amir Pnueli
Weizmann Institute of SciencG

Weizmann Ins t i txt e of Science:

Abstract

The paper presents a, relatively complete proof system for proving the validity of temporal
properties of reactive programs. The presented proof system improves on previous temporal
systems, such as [MPS3a] and [MP83b]? in that it reduces the validity of progra,m properties
into pure assertional reasoning, not involving additional tempora,l rea.soning. The proof system
is based on the classification of temporal properties according to the Bore1 hierarchy, providing
an appropria,te proof rule for eacll of the main cla.sses, such as snf~ty, reqwwe, and 1lrogres.r;
properties.

1 Introduction

Temporal logic is, by now, one of the acceptab le and frequently used approac hes to the formal
specification a.nd verification of concurrent and reactive programs. Even though we hwe witnessed,
over the la.st several years, a grea.t progress in the automatic verification of finite-stake programs,
t’he main tool for esta.blishing t,hat a proposed implementation sakisfies its tempora.1 specification is
still that of deductive verification, using a set of axioms and inference rules.

As described in [MPS3a.] (see also [MPS3b] and [PnuSG]), a, proof syslem tha.t, supports the
verifktion of temporal properties over reactive programs has to deal with three types of Lxlidity.

l A- .4ssertiorxLl Validity. This is the validity of non-tempora.1 (state) formula,e (also called
n.vertion.5) over an a,rbitrary interpretation.

l T- G’erlerxl Temporal Validity. This is the validity of tempo& for~mul
quences of states (moclels).

l P- Proyam, Validit,y. This is the validity of temporal formulae over seclt
represent computations of the analyzed program.

ae over arbitra.ry se-

ences of st,a.tes which

“This research was supported in part by he National Science Foundation under grants DCR-5413230 and WR-
8312595, by t,he Defense Advanced Research Projects Agency under contract N000:39-M-C-021 1, and by the IJnited
Stat,es Air Force Office of Scient8ific Research under contract’s AFOSR 87-0149 aucl M-0281.

tDepa.rtment. of Comput’er Sciellce, Stallford University, Stanford, CA 94X05
: Dcparhnent, of Applied Mathemat,ics, ~Veizmann Instit’uk, Rehovot,, lsrael

Correspondin g to these three types of I-aliclitj-, t.he proof syst,ern rna~- be partitioned into three
parts, each providing axioms and rilles for esta,blisliing the validity of tile corresponding type. ‘This is
essentia,llJ. t,he struc%ure of the proof system present,ecl in [MPS3b], w 1 lere we refer to the assertional
part a,s t,hc dorncrins part.

The program part presents some basic proof rules and some derived rules. The derived rules
provide direct support for proving some of the most frequently used temporal properties of programs.

One group of rules establishes the validity of the irtvariance formulae q q a,nd o(p + q Q), which
express the inva,riance of a state formula Q, either throughout the computation, or triggered by the -
occurrence of p.

Another group of rules establishes the validity of the eventuality formulae oq and n(p -+ OQ),
which express the guarantee that q will eventua,lly happen, either once or following each occurrence ._

These proof rules are completely satisfactory for establishing this restricted but very prevalent
set of temporal formulae. The rules derive temporal conclusions from assertional premises. They
have been proven relatively complete, and are the main working tools for verification of the tempora.1
properties of programs (see, e.g., [OLSZ], [MPU], [K&37]).

However, the question which is only partially answered in [MPS3a] is how do we prove all the
other properties whose expression in temporal logic does not fall into the restricted class of invari-
ance and eventuality formulae. The partial solution given there is a, genera.1 relative completeness
theorem, which shows that the program part is adec@e for reducing the validity of a tempora,l
formula over a given program (?-validity) into a set of valid formula.e, which are either assertional
(A-valid), or temporal but valid over a.rbitrary sequences of states (I-valid).

We remind t,he reader that this is the genera.1 chara,cter of a,11 I-elative completeness results
for program logics such ass Hoare logic ([AptSl]) or Dynamic Logic ([Har79]). Since, as soon as
we consider programs that operate over infinite cloma(ins, we lose the possibility of having true
completeness, the best we can hope for is rela.tive completeness ([COONS]). This type of complctcness
ensures a,11 effective reduction from the validity oE a. program logic statement into the validity of a
finit,e number of assertional statements.

Unfortuna,tely, the reduction given in [MPS:3a] is not only into assertional sta.tements, but also
into generally (I-) valid temporal st,atements. This requires a proof of a, general prograzm properth
to be basecl not only on assertional reasoning, but also on tempo,ral reasoning, which is less familiar,
even to a person who is well versed in general logic. This fact has been considered 1,. some
researchers a. deficiency, and has caused them to shy away from Jhe temporal proof system and look
for a,lterna,tive formalisms, in which a complete recluct8ion into assertional statements is gua.ra,ntet:tl
([AW], and also see [MPS’I]).

In this paper we attempt to remedy the situation by provicling a richer proof system For t.he _
pr0gra.m part, which ensures complete reduction of a genera.1 tempora.1 formula (given in a, canonical

-form) into a finite set of a,ssertNional statements, wllose valiclitv imply the valiclity of the original.
tempora.1 formula..

The approach to a complete proof system is ba.sed on a classification of temporal properties
a.ccording to their expression in a cmoniccrl jh~‘m, which applies a set of restricted future ~noclal-
ities tlo arbitrary past formulae. This classification esta.blishes a hierarchy of temporam propert ic>s
([MPS9]), 1w lose classes can be cha.racterizetl according to t,hree different cri t.eria. We have alrcad.~
mentioned their cha*racterization in terms of the syntactic form ot’ their canonical represellt,a.tiol~.

.4nother characterizatlion is x:nxmt ica,l, looking at a propert*y as t’he set of all sequences \vhich have
t his propert,y. By this view we ca.n give a t,opological characterization to the classes ill our llierar-
thy, locating it at the first t\vo levels of the Bore1 hiera,rchy. The third characterizatioll is in terlns
of structura,l restrictions on t,he Streett aut)omakon tha.t recognizes precisely the set of t,he infinit,c
sequences which have the property.

In principle, we should providek sepaxate proof rule for each of the property cla,sses in ONI’

hierarchy. In practice, we concentra.te on three particular classes, which have special significa.nce
as expressing most of the interesting progra,m properties, and forming a natura,l genera.liza,t ion of
the two classes of invariance a,ncl eventuality properties considered in the previous proof systems.
These are the classes of:

l Snfety Properties. These are all the properties that can be expressed by a temporal formula. -
of the form

w
for some past formula Q.

l Response Properties. These a.re all the proper
of the form

ties that can be expressed by a temporal formula

q (p -+ OQ), or alternately, 004

for some past formulae p and y.

l Progress Properties. These are a(11 the properties that ca.n be expressed by a3 temporal formula
of the form

q o p + q o q
for some past formula,e 13 a,ncl q.

We provide complete rules for ea,ch of these classes. This provides full coverage for the entire
temporal logic, since by [LPZS5] (see also [ThoSl]), any temporal formula 9 is equivalentp to a
conjunction of progress properties. Therefore, to prove the P-validity of v, it is sufficient to prop
the ‘F’-va.liclity of cx+ of t,he conjuncts, for which we can use the rule for progress properties.

2 Programs and Computations

The basic computational model we use to represent programs is that of a. fair f,rnrzsitiou system. 111
this model, a program P consists of the following components.

l v = { ‘211 , 4..) 1~~~) - A finite set of state variables. Sorne of th ese vaxiables represent. dn tel.
variables, which axe explicitly manipulated by the program test. Other \.aria(bles are co~ltr*ol
variables, which represent, for esample, the location of control in each of the processes in a
concurrent program. We a.ssume each variable to be associated with a domain, over which it
ranges.

l S - A set of stntc s. Each sta,te s E S is a,n interpretation of I’. assigiting to c>ach [‘it rial)l(\
y E V a value over its domain, which we denote by ,1;[;~].

:3

i
l ‘T - A finite set of t,~nn.s;itior?s. Each tra.nsit,ion T f 7 is associa.ted with an a,ssertion pT(I -. 1 -‘j.

ca,llecl the trnnsitio~2 wlnfiorz~ which refers to both an unprimed a,ncl a primecl \.ersion of the
state va,riables. The purpose of the transition relakion p7 is t’o express a rela,tion between a
state s and its successor s’. We use the unprimed version t,o refer to \xlues in s, and the
primed version to refer to values in s’. For esample, the assertion x’ = .c + 1 states tl1a.t t’he
value of x in s’ is greater by 1- than its va.lue in s.

l 0 - The precondith. This is a.n assertion cha.racterizing all the initial states, i.e., states at
which the computation of the program can start. A state is defined to be iuitinl if it satisfks -
0.

. c = {Cl, . ..) C,} - A finite set of continual fdirness requirements (also ca.lled justice or loenk
fnirness requirements). Each continua.1 fairness requirement C; E C consists of t’wo sets of -
transitions C; = (Ei, Y”;), Ei C Ti C I, on which the requirement of continua.1 fairness is
imposed. Intuitively, the continual fairness requirement (E;, T,) 6 C disallows a computation
in which, beyond a certain point, Ei is continually enabled, but no transit,ion of T; is ta.ken
beyond this point.

. Tt = {RI, R,} - A family of recurrent fair/zess requirements (a.lso called strong fclim ess
requirements). Each recurrent fairness requirement Ri E ‘R consists of two sets of transitions
Ri = (,!Zi, T;), Ei & Ti C 7, on which the requirement of recurrent fa.irness is imposed.-
Intuitively, the recurrent fairness requirement (Ei, Ti) E R disallows a. computakion in which,
beyond a certain point, Ei is enabled infinitely many times, but no traSnsition of T; is taken
beyond t’hat, point.

We define the state s’ to be a T-sz1ccessorof the state s if

where (s, s’) is the joint interpretation which interprets x E 11’ as s[x], a.ncl interprek .c’ a s .5’[.2.].
Following this definition, we can view the transition T as a function T : C +-+ ‘2’, defined by:

T(S) = {s’ 1 s’ is a T-successor of s).

We say that the transition T is enabled on the state s, if T(S) # 4. Otherwise, \ve say that, T is
&snMed on s. We say t,hat a8 state s is termi~znl if a.11 the transitions T E 7 are disabled on it. The
enabledness of a transition T can be expressed by the formula

En(7) : (W’)p,(V, V’),

which is true in s iff s has some r-successor.

For a. set of transitions E C_ 7, we say that E is c nnbled on s, denoted by k’rt(L’), if SOIW
transition T E E is enabled on s, and that E is disabled on s if all transitions 7 F II are disabled
on s.

Given a pr0gra.m P for which the above components ha.ve been specified, we define a cornprrtntion
of P to be a finite or infinite sequence of states (7 : so, s1,sz, sa.tisfying the following requiren1ents:

0 Ii2itinlify SO is initial, i.e., so I= 0.

0 Cor2secrltion For eacll .j = 0, 1. t h e Statee sJ+l i s a. T-Sllccessot- o f t h e statBe S,js i.(>..
s.,+1 E T(S)), for some 7 f 7. In t(his case. wVc sa.y t,hat. the transition T is
taken a,t position j in cr. For a. set of transitions T c ‘T? \ve say that, T is
taken at position j, if some r E T is taken at j.

l Te,j,mination Either 0 is-infinite, or it ends in a st)a.te ok which is terminal.

l G”ontinuaZ Fairness For each (E;, T;) E C it is required that, if l3i is continually enabled beyolrd
some point in 0, then Ti must be taken at infinitely many positions in CT. _

l Recurrent 17a~rnes.s For each (E;, Ti) E R it is required tha.t, if Ei is ena,l~lecl on infinitely rna,I1>.
states of 0, then Ti must be taken at infinitely many positions in 0.

For a program P, we denote by Comp(P) the set of all computations of P. For simplicity, we will only
consider programs for which ‘T is always enabled. Such programs ha#ve only infinite computations.

3 Temporal Logic

We a.ssume an underlying a.ssertional language, which contains the predicate calculus, and inter-
preted symbols for expressing the standard operations and relations over some concrete doma.ins.
For the sa,l;e of completeness, we require that one of the domains is that of the integers, or another
domain with similar expressive power. We refer to a formula. in the assertional language as a statf
foI,,r7l?lla, or simply as a,n assertion.

A tempornlformula is construct8ed out of state formulae to which we apply the boolean opera,tors
1 and V (the other boolean operators can be defined from these), and the following basic temporal
opera,tors:

0 - Nest 0 - Previous
Z/i - Until S - Since

A n?odeZ for a temporal formula p is a finite or infinite sequence of states 0 : 7so, Sl, .‘.) where
each state sg provicles an interpretation for the variables mentioned in p. For simplicity, we will
only consider the ca.se of infinite models.

Given a. model (I, as above, we present an inductive definition for the not,ion of a temporal
formula. 1) holding a.t a, position j > 0 in 0, denoted by (a, j) I= II,.

0 For a state formula p,
(a, j) I= p e sj I= p.

That is, we evaluate p locally, using the interpretation given by .~j.

0 hd I= 7 - (vi> lfIP
. (53) I=pvcl - (Q) l=I?or (xi> l=u
l (c .d I= OP +==+ (Q+l) I=P
0 (0, .j> I= ~11’1 a for some k 2 j, (a, k) + q,

and for every i such that j 5 i < A:, (CT, i) I= p
l (7) I= 01 ++ j>Oand(a,j-l)+p
. (c l,j) I= p sq ,L-j for some k 2 j, (a, A:) I= cl,

a,nd for every i such that j > i > I;, (o,1) I= p

Adclitiollal temporal operators can be defined as follows:

G/I = Tup - Eventually @/I = T&l

01) = +1p - Henceforth flp = 10 ‘1)
- Sometimes in the past
- Always in the past

p Uq = q p V (pUq) - Unless Ij$q = q p V (l-)Sq) - Weal; Since

Another useful derived opera,tor is the en tnilrnesnt operator, defined by:

P=+-Q - O(P -+ Y)-

A formula that contains no future operators is callecl a lxzst formula. A formula tl iat contai 1x3
no past operators is called a future formula. Note that a stake formula is both a past a.nd a future
formula,. We refer to a past formula [future formula] that is not also a state formula, as a strict-ycc.st _
[strict-j&we, respectively] formula. For a state formula p and a state .s: such that p holds on Y, we
say that s is a p-state.

If (a7 0) I= p, we say that p holds on 0, and denote it by 0 I= p. A formula p is called satisfiable

if it holds on some model. A formula. is called (temporally) ,vnZid if it holds on all models.

Two formulae p and q are defined to be equiualent if the formula p E q is valid, i.e., cr j= p ifF
0 I= q, for all 0.

The notion of validity defined above is the notion of I-validity. Given a* pr0gra.m P, we ca.n
restrict’ our attention to the set of models which correspond to computations of P, i.e., Camp(P).
This leads to the notion of P-validity, by which p is P-valid if it holds over all the computations of
P. Similarly, we obtain the notions of P-satisfia.bility a,nd P-equivalence.

Canonical Form and Classification

By [LPZS5] (see also [ThoSl]), every temporal formula is equivalent to a formula of the form

A (q o p ; v OWiL
i=l

for some past formu1a.e vi, Qi, 2. = 1, . . . , 12.

Based on this ca.nonica.1 form we ca.n classify the properties espressible by temporal logic ac-
corcling to their expressibility by restricted ca.ses of this general formula. We list below the mail1
classes in tallis classificxtion, specifying their temporal characterktions. For each class we present
the form of tlhe temporal formulae that express the properties in that class, where the subformulae
p, (/, II;, qi appearing there a.re arbitrary past formula,e. We refer the reader to [MPSS] for a,c\clitiona.l
properties and characterizations of this hierarchy.

l Progress Prope die.5 - q o p v o o q .

l LWultiple Progress Properties - r\~=l(OOPi V OOCyi).
As stated above, the multiple progress class is the maximal class of properties expressible I,!-
temporal logic. _

4 Rules for Safety

From now on, we fis our attention on a program P, specified by the components (V, 2, T, 0, CR ‘77.).

In this section we consider proof rules for establishing the P-validity of a safety formula. ,;\s we
recall, a safety formula has the form q p for some past formula p. Let us review first the appropriate
rule for the simpler case that JJ is a stake formula.

For a transition T, and state formulae p and q, we define the ~uerificntion condition of T, relative
to p and q, to be the implication:

(PT A P> + cl’, denoted bY {P)+l),

where p,- is the transition assertion corresponding to T, and q’, the primed uersion of the assertion
q, is obtained from q by replacing each variable occurring in q by its primed version. Since p, holds
for two states s and s’ iff s’ is a T-successor of s, and q’ states that q holds on s’, it is not difficult,
to see that

If the verification condition {p} 7 {q} is assertionally valid, then every T-successor of a
p-state is a q-state.

For a set of transitions T C T, we denote by {pjT{q j tlle verification condition of T, relative to 1)
and q, recluiring that {pjT{qj holds for euery T E T.

The following rule is sound and complete for establishing the P-validity of the invaria,nce formula,
q q for a state formula q, over the progranl P.

This rule uses an a.uxiliary assertion p which, by premise 11, holds initially, and by premise I:3 is
propa,gaked from each state to its successor. This shows that 57 is an invariant of the program,
t1la.t is, it holds continuously over all computSa.tions of P. Since: by 12, the assertion ~3 implies q, it,
follows t1ia.t q is also an invariant of the program.

Generalizing to Past Formulae

fiext, we have to extend the INV rule to clea,l with formulae q, which a.re past formulae. First., LYP
extend the notion of the primed version of a, formula, to apply also to a past formula. Recall that
the intendecl meaning of a primed formula is to espress the value of a formula in the nest state, in
terms of the values of the va,riables in the next stake and in terms of values in the current st8at.e.
This is inductively defined as follows:

l For a state formula p(V), we define as before

(1-w))’ = PW>.

l For a previous formula
(Od = P-

This corresponds to our intuition that op holds in the next state iff p holds now.

l For a since formula

This corresponds to the intuition that pSq holds in the next state if, either y holds there, or
pSq holds now and p holds nest.

With this definition, we estend the notion of the verification condition {pjT{qj to a*pply also to
past formulae p and q, and to mean

(PT A PI =+-I’*

Note that since we work with temporal formulae, we replaced the previous implication 11~7 a.11 erl-
tailment, because we expect the implica,tion to hold at nil positions of the computation, not, onl>-
at the first one.

With this extension, the genera.1 single rule for establishing sa’fety properties is given 1,~

S A F E s1. (@r\fiI'St)+-9

$2. 9=%-q
s:3. (‘3)7(p)

w

The implications, appearing in the premises 11 and 12 of the INV rule, have been replaced in t.he SAFE

rule by the entailments, appearing in the premises Sl and S2. In Sl we also added the conjunct first
which is a.n abbreviation for the formula 10~. characterizing the first position in the computation

-as the only position that has no predecessor. This conjunct is sometimes necessaq t,o ensure tL1.t.
13 holds in the first pos&ion.

A Minimal General Part

Examining the prerrkes s1 - s3 of the SAFE rule, we observe that they all have t,lle form of temporal
formulae, which are actually other safety formulae. How are these to be proven? It seems t8ha.t me
need some additional rules, belonging to the general part. These rules enable us to prove some
temporal formulae that a,re generally va,licl, i.e., hold over any sequence of states, unrela.ted t,o an)
particular program.

The first rule we consider is the rule of temporal instantiation, which provides a. basic tool _
for deriving temporal va,liclities from assertional ones. Let q be a skte formula, containing the
propositional symbol p, and let 9 be a temporal formula. We denote by q[p/p] t,he temporal
formula obtained from q by replacing all occurrences of p by V.

/ INSTq P☯(:lp j j
Note, in particular, that if q has the form t --+ r then the temporal conclusion is an entailment of
the form t[y/p] =+Y[~/P]. T llis rule is often used, without any instantiation, to derive the temporal
validity of q q from the assertiona, validity of q. In these cases, it is sometimes referred to a,s
generalizatio,u.

The next rule we consider can be viewed a,s stating the monotonicity of the t,empora.l operator
0. For two temporal formulae 23 a.nd q, we ca,n interpret the enta,ilment I-)=+-(!, i.e., O(I) -+ cl), as
aOn ordering rela.tion between the formulae, stating that p is smaller (stronger) t’han q. Indeed, for
a sequence 0, p=+-(I claims that the set of positions at which p holds is contained in the set of
positions at which (I holds. Monotonicity of the q operator states that if p+=-q, and up is valicl,
then so is Oq.

S - M O N A l . p-rq
AZ. q p

oq

This rule can also be viewed a.s a temporal version of Modus Pollens, where entailment replaces
implication. In fa,ct., t’he two preceding rules provide a formal support. for nlany elementa.ry ma-
nipu1a.t ions, such as substituting equals for equals, and using any instantiation of propositional
ta,utologies. We refer to a,ny such manipulation as *justified by propositionnl rmsoning.

In a,clclition to t,hese very general rules, we need in our general part some propert’ies which a.re
specific to the initial pa.rt of a sequence of st*ates. These will ena.ble us to draw some conclusions
from the formula first, as is needed in premise Sl of the SAFE rule.

These are present,ed by the following two axioms:

0 I -PREV: first =+- -Qp

. I-SINCE: first =+ ((pSq) E q)

The I-PR.EV axiom st &es tl1a.t no l)/‘e,/lzous formula can hold at the init8ia.l posit’iou of a.ny sequence.
The I-SINCE a.xionl st.ates that the formula j&q ca,n hold at the initial position iff (1 l-\olcls there.

The Completeness of the SAFE Rule

We proceed to consider the applicability of the SAFE rule to the proofs of sa.fety properties. First.
we present an esanlple, illustra.ting its use.

ExaIl2ple 4.1 Consider the trivial program with a single state variable n:, precondition .I: = 0, and
a single t8ransition T whose assertion is given by p,. *. .I? = n* + 1. Observe that this program has a
single infinite computation, given by (z : O), (II: : l), (5 : 2)) . . .

We wish to prove for this program the trivial safet,v property

o((x = 10) + @(Lc = 5)).

This property claims that any state in which II: = 10 must have been preceded by a state in which .
x = 5. Note that th’ tIS rivial property would not be true for a program that advances in steps of 2,
rather than steps of 1.

To prove this property, we identify q as (5 = 10) -+ 0 (X = 5) and intend to use the SAFE rule.
As the auxiliary formula up, we take (II: > 5) --+ 0 (X = 5). Th e rule requires showing the following
three premises:

Sl. [(m = 0) A first] ==+ [(x >_ 5) 3 @(J: = 5)]

sfz. ((.I: 2 5) + 0(x = 5)) =+ ((x = 10) 3 @(n: = 5))

s:3. [(n:’ = x + 1) A ((x > 5) + @(n: = ?5))] =+- [(X > 5) + (@(lx = ‘i) v (x’ = 5))]

Ill s:3 we have alrea.dy expanded (0 (X = 5))’ into (0 (X = 5) V (z’ = 5)). All of these apparently
temporal formulae ca.n be established by the INST rule, losing the following three valid sta,te formulae,
and their a,ssociaLed instantiations.

Vl. ((x = 0) A p) -+ ((s 2 .5) -+ r)
with the replacement of (first, 0 (X = 5)) for the proposition symbols (p, r), respectively.

v2. ((J > 5) -+ 1)) -+ ((J: = 10) + 2,)

wit,h the repla.cement of 0 (n: = .5) for the proposition symbol p.

L3. [(x’ = x + 1) A ((x 2 5) + p)] --+ [(JJ > 5) + (1’ v (.d = ri))]
\vith the replacement of ~(n: = Fj) for the proposition svmbol p.

Theorem 7.2, presented in Section 7, establishes t’he adequacy of the SAFE rule by stating:

‘The SAFE rule is complete, relative to nssertiorzcrr! wlidity, for llrouing the P-validity of
trny saj*etg prope,rty.

The proof of the theorem is ba,secl on the construction of a, big past invariant which relates the
values of va.riaMes in an accessible st(ate (i.e., appearing in some computation of P) to t,he boolean
*a.lues of the temporal sub-form&e of the past formula. (1, whose invariance we wish to establish.

LO

Causality Formulae

Even though, in theory, the completeness theorem above fully settles the cluestion of proving t,he
validity of safety formulae, there is a. practical interest in identifying special forms of safety formulae,
for which a specific proof methodology exists. One of these subcla.sses contains the properties
expressible by the causality formula

for past formulae p and (I. The causality formula stat.es that every p-sta,te is necessarily preceded
by a q-state.

To present a proof rule for causality properties, we define first the i~n?~Pr~se ,uerificntio/l condition.
d e n o t e d b y {p}T-l(q) d tan s anding for the entailment

(PT A P’> =+I-
The validity of this condition ensures that any r-predecessor of a p-state must be a q-state. The
condition is extended to sets of transitions T C 7 in the usual way. Then, the following rule is
adequate for proving causality properties.

C A U S I(l. Jk-(~vQ)

K2. (0 A first) =+-+
X3. (y}7-l{9 v q)

p=+oq

By premise Kl, any state satisfying p, either alrea.dy satisfies q, or satisfies the auxiliary past
formula p. By premise IS, the predecessor of any p-state must satisfy p V q. Thus, if we do not
find a q preceding p, 9 propagates all the way to t,he initial position. However, this contradicts
premise K2, according to which the init,ial position cannot satisfy 9.

Incremental Proofs

In the previous paragraphs, we have considered how to establish the inva,riance of some past for-
mulae. Having established some basic in\-ariants of this form, we may want to use them in order to
derive more complex properties. For this purpose, we cluote again the S-MON rule, which suggests a.
strategy, to which we refer as the incmmentnlity p-inciple. According to this principle, we establish
first the validity of a simpler sa.fety property op. Later, whenever we have to establish the validit>-
(over P) of a premise tha,t has the form q $, Lve ca.n instead establish the validity of ~=+JL

5 Rules for Response

Response properties are those which can be espressed by a formula of the form

27 =+Oq. or ecluiva.lently O(p -+ Oq)

for some past formulae p a,nd q. Now that, we hal-e lea.rnecl, in the previous section, how to generalize
rules having assertional premises int,o rules with temporal premises involving past formula.e, it is
straightforwa.rd to properly adapt the set, of rules from [MPS3a]. Th e rules for establishing response
properties can be paztitionecl into .~lr~&-.~kp rules and e.rtellclecl rules. We consider each groul) in
turn.

Rules for Single-Step Response

These are the rules tIllat establish properties that depend on the esecution of a single helpful
tra.nsition (which may be selected out of several candidates) to accomplish the guarant,eed response
q. We have three rules in this group, which differ by the type of fairness on which they rely.

The first rule is unconditionil of any fairness assumption, and only relies on the fact t,ha.t as
long as there are enabled tra,nsitions , some transition will eventua(lly be t&en.

The rule considers three pa,s t formulae I-,, q, and the auxiliary 9. Premise Bl requires that any
p-state, either already sa,tisfies q, or satisfies 9. Premise B2 requires that taking any transition from
a p-state, must 1ea.d to a, q-state. Premise B3 requires that at least one transition must be enabled
on each p-state that does not satisfy cl. Clearly such a transition must be takcan nest, resuking in
a q-state.

The next single-step rule relies on continual fairness to ensure that eventua,lly a helpful transition,
leading to q, will be taken. It assumes a continual fairness requirement (E, 7’) E C.

C-RESP Cl. p+(q v Y)

CT {P}l{q v Y}
(3. {p}T{q}
c 4 . w-(q v E n (E))

P--al

Premise Cl ensures, as before, that p entails q or p. Premise C2 states that any tra,nsition of the
program, either lea.cls from 63 to q, or preserves 3. Premise C3 sta.tes that any transkion in t’he
helpful set T leads from p to q. Premise C4 ensures that E is ena.blecl as long as 13 holds and
q does not occur. It is not difficult to see that if p happens, but is not followed by a q, t.hen p
must hold contin~lo~tsly beyoncl this point, and no transition of T is taken. lIo\ve\-er, tluc to CL?
this means that E is continuously enabled beyond this point, whicll violates the requirement of
continual fairness represent’ed by (E, T).

The last rule relies on a recurrent fairness requirement (E, T) E ‘72.

R-RESP Rl- p=+(q v Y)

R2. {v}T{q v 9)

Ia PwYcr~
R4. “3~o(q v E n . (E))

Pi-W1

12

The cliffercnce betwc>en this rule and its c-version is in the fourth preulise. While (:‘J requires tllat
; ent,ails t,he occurrence ot’ q or the enabling of E now, R-k requires the et:entunl occurrence ot' q

or ena,hling of E. Here, a.11 occurrence of p not followed by a (I, leads, as before, to 43 holding
continuously, and no t’ransition of T being taken. However, the wea ker premise R4 guarantees
that E is enabled infinitely many times, which suffices to violate the recurrent fairness requirement
(Em. - .

In view of the fact that premise R4 appeazs to be of the same form a,s the conclusion, i.e., another
response formula, one may wonder whether we may not enter a circuk loop, trying to prove one _
response property by another. The answer to this problem is that when we prove premise R4, we
a.ctuaSlly consider a simpler program, in which none of the transitions of E is ever used. This is
beca.use the first time a. tra,nsition of E can be taken, we have alreacly achieved the goal of a. sta.te
on which E is enabled.

Rules for Extended Response

These rules combine single-step response properties to form general response properties, which need
more than a single helpful transition for their achievement.

First, we list two basic rules, which express the monotonicity and transitivity of response prop-
erties. They properly belong to the general part.

‘The most important rule for establishing extenclecl response propert#ies is based on well-founclecl
induction.

We say that the binary relation + over the set d (often presented as t’he pair (A, 5)) is ~:&ll-
Jo~u~nckd, if there does not exist an infinite sequence ~0, cll, where CL; E A, such that (1; >- cl;+1 for
all i = 0, 1,

For the relation %, we denote by 4 its inverse relation, i.e.,

mcl by -(the reflesive extension

a--G e- (a 4 o> or (a = 0).

Assume a well-founded relation (d, >), and a partial /*~~&in~ jkrlctiorl S : S i--+ A, mapping
sta.t.es into the domain d. We denote the fact tha,t, S is defined by S E A. The following rule uses
well-founded induction to establish a.n extended response property.

WELL-RESP Wl. p=t(q v P)
vv2. y=h(S f d)
w3. [p A (6 = a)] =+ (>[q v (F A (6 -(Cl))]

P-r@

Premise b1,‘1 ensures tha,t p entails that, eit,her q already holds, or p is establishetl. Premise F\y:!
(~I~SIUYS that S is defined a.s long as p holds. Premise 1y13 guxantees tha,t if p 1~01~1s \\.it 11 a certain
rank 0, then eventually we will rexh a state? in which either q holds, or p is maillta,inecl but
with a. rank lower t’han CL. Since a well-f’ounded ranking ca.nnot go on decreasing forever, we must,
eventually reach a y-state.

The adequacy of this set of &les for proving response properties is established in Theorem 7.3
presented in Section 7, which states:

The rules givm tsbove are complete, relative to crssertional validity, j’or proving the P-
validity of my response property.

6 Rules for Progress

In this section we deal with progress properties, which are the properties that can be expressed 1,~.
a formula of the form

q o p v o w.

for some past formulae p and q. There a,re several alternative forms in which every progress property-
can be recast. They are given by

We prefer to work with an extended form of the last formula,

This formula states that any occurrence of 11, that is followed by infinitely many occurrences of I*,
must eventually be followed by an occurrence of q.

Progress under Continual Fairness

If we work only under t’he a.ssumption of continua.1 fa.irness, that is, the fa.mily of recurrent fairness
requirements ha.ppens to be empty, then \ve can ba.se the proof of progress properties 011 so1110
response properties and a well-founded argument. This is given by the C-PROG rule.

C-PROG Cl. p=+(q v P)

c2. p=+(S f -A)

c3. [p A (6 = CL)] =+- [(PA (6 5 cy>)U q]

c 4 . [rvyw(S=~)] ==+ o[qv(MQ)]

(p A 004 =+O(l

Note tha,t this rule uses the Udess operator U.

Premise c’l of the rule ensures that a,ny position that satisfies ;u, either already satisfies ‘1. OI’
sat,isfies p. Premise C2 ensures that 6 is defined as long a,s 9 holcls. Premise C’:3 ensures t 11;1t .
st,arting at a position satisfJ4ng 13 and ha\-ing a, clefinecl rank CL, Q is cont,inriously maintaiI~(~tl ati(l

the rank never increases a.bove cy until (I occurs, if ever. Premise (-‘-I indicates that an acldit ional
occurrence of I= st rengt~liens t,he non-increase . guara,nteed by C3, into a, guara.nt eed eventua,l decrease.
Thus, if there are infinitely ma,ny occurrences of r then, either S decreases infinitely often, \&ich is
impossible due to well-founcledness, or q is eventually realized.

The adequacy of this rule is statecl by C’orokry 7.1, presented in Section 7, which cla,ims:

For a program with no recurrent .fni/xess requiremen,ts, the c-PROG rule is co,mplete.
relative to nssertionnl validity, j’or prolGng the P-validity of nn y 1xogre.s.~ property.

Obviously, a progress property (p A aor) +--Oa can be valid over a program clue to the fact
that the simpler response property p=+oq is valid. The theorem above depends on a pa.rticula.r
mechanism to guarantee that infinitely many occurrences of r cause the eventual occurrence of (I. -
This mechanism is based on a ranking function, measuring the distance awa,y from the realization
of q, such that each occurrence of an extra r causes an eventual decrease in the rank.

Progress under Recurrent Fairness

When we have recurrent fairness requirements, a well-founded decrease is not the only mecha.nism
by which infinitely many occurrences of r can cause the computa,tion to progress from 11 to (1.
Another possible mechanism is ba.secl upon a recurrent fairness requirement (E, T) E R, such that
each transition in T leads from p to Q, and each occurrence of r causes E to eventually become
enablecl (a-t lea,st once). Consequently, the rule C-PROG is no longer adequat,e.

To cover the case of recurrent fairness, we present first a single-step rule for progress under
recurrent fa,irness. The rule concerns a recurrent fairness requirement (E? T) E ‘R, and past formulae
p,r, 0. and q.

R-PROG Rl. p+--(q v 9)

IQ. {?}I{q v ‘p}

R3* Pw{d
R4. ☯P A q 0(9 A r)] =+- o(q V ET@))

(I) A 00~) =+-Oq

This rule establishes a single-step progress, under the assumption of the recurrent, lairness re-
quirement (E, ‘5!‘) E ‘R. Several single-step progress properties can be combinccl, using the properties
of monotonicity aad transitivity of the progress formula. Below we present two rules, properly be-
longing to the general part, for these two properties.

Fina.lly, we have a well-founded rule for combining together progress propcrt\ies using irl<l~~ctiol~.

WELL-PROG U’l. p=+-(q v P)
w. p=+(6 E A)
w3. ☯63 A (6 = a > A q O?j =+=-o ☯q v (P A (h 3 a))]

[P A 004 =+OQ

This more general case is summarized by Theorem 7.4 presented in Section 7.

The rules given above are complete, relative to assedionnl ~cnlitlity, for proving the T’-
cnlidity oj* an,y lwogress property.

7 Completeness of the System

In this section we sketch the general ideas that lead to the (relatke) completeness of the rules
presented earlier. Since the most innovative part of the proof system presented in this paper is the
incorporation of pa,st formulae, we structure the completeness proof into two major steps, t,he first
of which is the elimillntion of the past. The second step is left to deal with the restricted case of
safety, response, and progress properties, where the subformulae p and q are only state formulae.

Encoding Past Formulae

We define a temporal formula as stratified if it contains no future opexxtor within the scope of a,
past operator. Obviously, all formulae in canonical form are stratified, because they never a,pply
past opera.tors to strict-future formulae.

LetJ us fix our a,ttention on a program P and a strakified formula 9, whose validity over P we
wish t,o establish.

Define Q to be the set of subformu1a.e of 13 (possibly inclucling 13) whose principal operakor is a
past operakor, i.e., 0 or S. We define a set of new boo1ea.n variables 13 consisting of a variable b,
for each formula p E a. We intend to use the varia*ble h, to encode p, i.e., as a variable tha.t will be
t’rue a.t a, position in a computation iff the formula p is true there.

Let y be a subformula of ~3, and p a subformula. of q. We define p tlo be CD- mari~mal in q if

l there is 110 r, another subformula of q, such that r E @ and 12 is a, proper subforrllula of r’, i.e.,
strict!ly contained in r.

Let vl, 1~~ be all the Q-maximal subformulae of q. We define the statification (i.e., encoding
of past form&e as state formulae) of q? denotecl by stat(q) (or qs)) to be

T1ia.t is, stclt(q) is obta,inecl from y by replacing all occurrences of the subformula pi by the ~xiahle
b,, , for i = 1, I?. It is not difficult to see tallat, in the special case that q is a past, formula., sfnt(q)

is il. state formula.

Replacing past formulae by boolean variables is obviousl,: not cwough, unless we ca’n guarantee
that in all positions of the comput.ation the *aria,ble 6, assumes the same truth value as 11. To
achieve this we modify the program P, given by the system (Ii, S,I, @$,R), to obtain its sfntijietl
version P,, given by (P, 2, ?, 6, ?, k), where we define:

l P = V U B. That is, we augment V by the new boolean variables in 23.

l E - The set of interpretations over ii. \ia,riables in B should be assigned boolean values.

l ‘I? - Corresponding to each 7 E 7, we place in L? a transition i, whose transition rela.tion is
given by /;T = p7 A N. The assertion N(g, i/l) controls the evolution of the va,riables in U
between each state and its successor, and ensures that it corresponds to the evolut,ion of the>
past formulae they stand for. The assertion N is a conjunction containing a conjunct1 (Jr,) -
for each p E @. These conjuncts are given by:

n C(Qp) : 6/O E st a t (p).

This conjunZ guarantees that the boolean value of 60~ in the next state equa,ls the
truth-value of sta t(p) in the current state.

l Cb %) : b ;& = K~wd)‘v (bp& A Wt(dY)l*
This conjunct guarantees tha,t bpsq is true in the next state iff either stnt(y) holds t’here,
or stat(p) l~olcls there a.ncl bpsg holds now.

l 0 : 0 A 172it. The assertion hit ensures that the initial value of each variable b, E L3 matches
the initial value of the past formula p. The assertion Init contains a conjunct Z(p) for each
p E a, given by:

This conjunct states that all previous formulae are initially false.

n Z(pSq) : bPSs E sta t(q).
This conjunct states thak the only wa,y for pSq to hold at the first state in a computSatiorl
is for sta t(q) t,o hold there.

The structure of the fairness families t and k is identical to that of C and 72, escept for the
trivial renaming of ea,cli T t>o i.

Example 7.1 Consider the simple progra.In, presented in Exa.mple 4 above, which was given 1))
V = {.x}, 7 = {T}, where p T : X’ = -7: + 1, and 0 : .c = 0. The formula considered there is

c r � : q (;r = 1 0) + Q(.r = 5)).

Clearly, for this case @ = { 0 (X = 5)}, yielding a single boolean variable b, corresponding
to the past formula @(n: = 5), which is an abbreviation for TS(Z = 5). Consequently. ive ha.\.c
sta t(y) : q ((a = 1 0) -+ 6), and the statified program P, is given by:

0 P = {x, 6}.

l ‘? = {-T’}, \vhere (follo\ving some simplifications) er : (z = .2: + 1) A (b’ s [(.I” = 5) V I)]).

0 0 : (.I, = 0) A (11 s (.7’ = 5)). w 1ic 11 * 1 is equivalent t,o (;I: = 0) A 11).

Theorem 7.1 (Past Elimination)

l The formula ‘p is valid over P <ff pS = stat(@ is valid over P,.

l Any proof of P, I- vS, using the proof system pl-esented in this paper,
can bc cflectively transJormed to a proof of P I- 9.

Proof: The first statement of the theorem follows from the fact that there is a. one-to-one corre-
spondence between computations of P and computations of P,, such that for every 0, a. computation
of P, and 3, the corresponding computation of P,, position j, and past formula 11 E @:

(Q) I= 1-3 - (W I= (b = T).

This fact ca,n be proved by induction on j = 0, 1, . . . and structural induction on p E CD.
The second statement of the theorem is proven by showing that, replacing each line I- 1,:~ in the

proof of P, t- yS by the line I- stat-l($), we obtain a sound proof of P I- 3. The knsformat ion
stat-‘($) replaces each occurrence of b, in ,J) by the pa,st formula p, each occurrence of bi, by p’,
and each occurrence of 6 and ,I$ by 0 and pr, respect,ively.

A deta,iled proof of this fact considers the different justifica.tions for the line t- $, a)nd shows the
corresponding justifica,tions for I- stat-l($).

An illustrative ca,se in point is a, proof line stating the validity of the verification conclition
{T}?{bpSp>, for tlle simple case that p and q are state formulae, and that the line is just,ifiecl by
generalization of a va#lid state formula.

This leads to the proof line

which can be written as

which is equi \-a lent t,o
t- Pr j- ki! v (bp& A P’)l-

Since pT does not refer to bl:sy, this line can be valid only if p7 -+ q’ is a8 ~*alicl state formula.
Applying stc&’ to iT =+-blS,, we obta,in

which expands to
t- PT =+- 14’ v ((PSC!) A P’)l*

CIea.rly. the valiclity of f T --+ q’, claimed abdve, can be used t,o justify this line.

A small technical problem is tha.t a. naive substitution of a past formula 11 for the va,riable h,
n1a.y result in l’ormulae tl1a.t are not alloived in our syntax. A case in point, is a. state fornlula
CY([I~), in which t,he variable b, falls in the scope of a qua.ntNification (on some other va.riahle). O~II.

1s

syntax does not allow qua,ntification over temporal formulae tl1a.t acre not state formulae. To resolve
this problem, we observe that the state formula a(bp) is equivalent, in all contest,s, t,o the formula
VP A Q(T)) v (‘b, * 4Fh in which the occurrences of b, are outside my scopes of qua.ntifications
performed in cy. Substitution in this latter form will result in a1 formula tha,t is allowed hy our
syntax. J

We should emphasize that the systematic elimina,tion of the past from formulae and proofs,
which facilitates establishing the completeness of the proof system, is not necessarily the approach
we recommend for the actual verification of concrete programs. On the contra,ry; we strongly _
recommend working directly with past formulae which explicitly represent the relevant facts a.bout)
the history of the computation leading to the current state. For example, we find the inva*ria,nt
o((x = 10) * 0(x = f5)) much more appealing and explicit than the encoded version q I((.r =
10) --+ b), accompanied by the tacit understanding that b = T iff we have passed in the past through -
a, state in which J: = 5.

Having shown how the past can be systematically eliminated, and replaced by state formulae, it
only remains to show that the rules given above are adequate for proving the validity of the three
f.1 asses of formulae:

UP P=+-04 (1’ A 004 =+oq,
for the restricted case that p, q, and r are state formulae. These cases are more familiar, and the
completeness of similar rules, for the cases of the safety a.nd response classes, has been previously
discussed in several places, such as [LPSSl], [GFMdR%], [FraSG], [XSSS], and [MPS7].

Safety

Since we have restricted our attention to state formulae, it is sufficient to show that, whenever q I~
is \:a.lid over the program P, we can prove this fa.ct, using the INV rule. Premise I3 is proven by
showing that (pT A p) -+ y’ is a valid state formula, for every T E ‘T.

Theorem 7.2 (Completeness of Safety) Ti2e rule INv is complete, relative to assertional vnlid-
ity, fo‘r proving the *validity of snfety form&e oj’ the form q q , roile,re q is a state fo~rr-da.

Proof: The basic idea of the proof is the construction of an assertion ,X that holds in a sta,te $5
i fF s is nccewible, i.e., appears in some computation of P. We then show semnn ticnlly that, if q q is
indeed valid over P, then the premises of the INV rule a,re valid when taliing s for 9.

We assume that our data doma,in is expressive enough to encocle records (i.e., listJs) of c1at.a.
elements, and lists of records. In the definition of the assertion, we freely use the auxiliary va.riable
7’ ranging over records, and a variable X ranging over lists of recorcls. We are mainly interestecl iI1
records r of size 1 \/‘I, and often write r = I:’ t,o denote tha.t the record r contains a list of elements
cqua,l to the current values of the state va.ria#bles I/‘. I,Ve use t,he subscripted expression A[;] to refer -
to tjhe i?-th element of A, and the espression Ins/(A) to refer tjo the last element of A. F’or an assertion
J(\;J, referring to the state va,ria(bles T/‘, and a, record r of size equal to that of T/, we denote b>* t’(j.)
the assertion 9 in which the value ~[i] is substJituted for the state variable ‘11; E I,“, for i = 1, II -1.

The assertion Y is given by:

The body of the assertion S (to which we refer as Q(I -. A)) coilsis&, it1 addition to t,lie requirell1cilt
that X is non-empt,y, of three cla,uses, given b!*:

3 : 1 - = ht(A)

7: K(1 < i < IAl) : v p&q], A[; + I]).-
rE7 _

The assertion s states the existence of a list of records X of length n = IAl > 0. The list X
encodes the history of a computatlion from some initial state to the current state. Ea,ch element,
A[$ i = 1, . ..) 12, is a record of data elements, representing the va,lues of the state va.riables V at the -
i-th state of the computation.

Clause a states that X[l] satisfies 0, the initial assertion of the program.

Clause /? sta.tes that the current state varkbles V equal last(X) = A[n], the last record in A.

Clause y states that the (i + 1)-st record of A, for each i = 1:n - 1, is a 7-successor of the
7:-th record, for some transition r, guaranteeing the correct succession from X[l] to X[U.].

We will show now that X, when substituted for 9, validates the three premises of the INV de.

It is not difficult to see that taking X to be (I/), i.e., the list consisting of the single record
containing the current values of ul, UIQ the assertion O(V) implies the body @(V, A).

12. ,y--,y
By our assumption that q y is valid over P, it follows that each accessible state satisfies (I.
Since ,X characterizes precisely the accessible states, the premise follows.

1.3. [p,(V, V’) A 3X : Q(V, A)] -+ 3X’ : Q(V’, A’), for each T E 7.
It is not too difficult to see that if V, V’, and X satisfy pT(V, V’) A Q(k’, A), then there exists a
A’ which sa.tisfies XP(V’, A’). iZn appropria.te choice is

A’ : x * (V’),
i.e., the list obtained by appending to the end of X an additional record, consisting of the list,
of the values of the primed variables V’.

Since we a.re interested in sliol\:ing completJeness, relative to assertiona. va.liclity, it is sufficicllt,
to show that t’he premises a.re a.ssertionally z~li~!, as we have (lone above. II

Response

As a complete rule for establishing response properties of tAe form II=+-o~, for t,he restricted
ca,se that p and q are state formula,, we propose the following F-RESP rule, which is an appropria.te
combination of the WELL-RESP, C-RESP, and R-RESP rules. As usual, the rule stipulates the existence
of an auxiliary assert ion 9, a well-founded relation (A, +), ancl a partial ranking function S : S w A,
mapping states illto the domain d.

Since \ve int8end to combine together continual and recllrrent fairness, it is helpful t,o form the
union of the coiltinual and recurrent fairness requirements into one set of fairness requirements
.T- = c UR..

20

F-RESP FL P+-((I v 4
13. p=+(6 E A)

F3. {PA(S=a)}I{qV($w+5&2))}
For ea,ch a, E CA, there exists a fairness requirement Fty = (E,, Tel) f F, such that

F4. {m(S=a)} T, {qv (w’++x))}
If Fa f C, then

c5. [y A (S = a)] ==k- (q v En(E,))
If FO E R, then

R . 5 . F- {FO} t-
[%A(S=cY)] =+- o[qv (w(64a)) vEn(E,)]
P=+Oocl

This rule combines well-foundedness with single-step rules. For each parameter CY E d, the rule
requires the identification of a fairness requirement (ECY, T,), that can be either a continual fairness
or a recurrent fa,irness requirement. In both cases, it is required (by premise F4) that a,ny tra.nsi t ion
in T, leads from each y-state s with rank Q to a state s’, that either satisfies q, or satisfies 9 wit111 a
rank strictly lower than 0. Any transition not in T, is required (by premise F3) to lead from ca.ch
p-state with ra,nk cy to a state s’, that either satisfies q, or satisfies 9 with a rank not higher tha.n
Q.

For the case tha,t (E, , T,) is a continual fairness requirement, premise C5 requires tha,t each
q-state with rank CY, either satisfies q, or enables E,. For the case that (E,,T,) is a recurrent
fairness requirement, premise R5 requires that each v-state s with rank cy is eventually followed by
a state s’, that either satisfies q, or satisfies 9 with a rank lower than cy, or enables E,. To avoid
circularity, premise R5 is to be proven for a simpler program, in which F, = (E,, To) is removed
from the list of fa.irness requirements. This is feasible because when trying to achieve a state in
which E, is ena.bled, we cannot be helped by any transition of E,, since its activation from a. state
s’ implies that E, is alreacly enabled on s’.

The following lemma establishes a connection between an xbitrary well-founded relation and a
well-founded ranking. Such a ranking is required for the rule F-RESP.

Lemma 7.1 Let B be n well-founded relation over the set 5’. Thm there exists n tot,al mnking
jll12ctioll 6 : S I----+ Ordinc~1.s, mapp ing each eleme,nt of S into .$ome o~rdid, such that:

n. sBs’ + 6(s) > S(s’).

b. If s’Bs” -+ sBs” f0.r every s" E S , t h e n S (s) > S(s’).

Based on this lemma, we can now state and prove the main completeness theorem.

Theorem 7.3 (Completeness for Response) The ,de F-RESP is complete, ~relntive to n.wer-
tionnl *validity, for provi,ng t h e validity of 1'esponse formdne oj‘ file jbrni p=+Oq, riher~e p and c-1 we

state ~fo~r~niulne.

“I

Proof: Assume the formula ~)=+-oq t,o be valid over the program P. We have to show the
existence of an appropriate assertion 9, a well-founded ordering (A, k), a ranking function S : S I-+
A, a,nd a, selectSion function, identifying for each CL E d a fairness requirement, F, = (E,, T,) E
F, such that together they satisfy the premises of the F-RESP rule. Due to t,he incrementalit>
principle, it is sufficient to show for each premise $, the validity of x -+ $J, where /y is the assertion
characterizing accessibility, and- whose invariance over P has been established by the preceding
theorem.

We define a. (computation) segment to be a finite sequence of states 0 : sr, ~2, sk, for k >_ 1, _
such tl1a.t for every i = 1, k - 1, .s;+~ is a T-successor of s;, for some r E ‘T. We say that the
segment 0 departs from s 1, a,nd that it conrlects sr to sk. We define a segment to be q+ee if none of
the states si, . . . , sk satisfies q. From now on, when we refer to a segment, we mean a q-free segment.

We define the a,ssertion 9 required by the F-RESP rule as follows.

sI=v e There exists an accessible p-state 4 and a q-free segment,
connecting 2 to s.

This definition is verbal, but it is clear how it can be expressed in our assertion language, using
techniques similar to the ones used for defining /y in the theorem about safety.

It is clear that if the state s satisfies p, and some computation contains s at position j, then,
due to the a.ssumecl validity of p=$-Oq there must be a later position k > j satisfying q.

It is also obvious that 9, defined in this way, satisfies premise Fl of the rule, i.e., p=+(q V 9).
This is because, if s is an accessible p-state which does not satisfy q, then we can take i = s and the
singleton segment s, connecting s to itself, as a justification for the claim that s satisfies ‘3. We can
restrict our considerations here and elsewhere to a.ccessible states only due to the incrementality
principle.

Let the fa.mily of combined fa,irness requirements .7= consists of the sets F,, F,, where ea.ch
F; is eit’her a continual fairness requirement or a recurrent fairness requirement. Without loss of
generality, a,ssume that Fl = (7,T) is a continual fairness requirement, consisting of a pair of sets,
each being the full set of transitions 7. For a segment o : si, . . . , sk and a fairness requirement
Fi E ,T, we say that Fi = (I?;, Ti) is fulfill e d in o if one of the following holds

l Some transition of Ti is taken in 0’.

l Fi is a, contNinual fairness requirement, a.nd E; is disabled on some state in 0.

For a segment 0, we define sat(a) to be the set of all indices i = 1, m such that Fi is fulfille(l
in 0‘. Let @ denote the set of all states satisfying 9. We define a binary relation B on Cp by:

s B.? ++ There exists a q-free segment (7 connecting s to S, such that sat(a) =
U .rn)., ..*,

We claim that B is a well-founded relat,ion over @. This is beca.use an infinite sequence

s* R s2 B s3*..,

gives rise to a computation
0 : 9, 3, . ..> 2, s2, s3,

such that so is init ial, .G satisfies p, and no state heyoncl .4 satisfies (1. Such a computation ol1Gusl.y
viola.tes our assumption thaStJ 21 +-Oq is valid over P. The fact that the sequence above is a. tom-
putation, in pa,rticular tha.t it sa.tisfies all the fairness requirements, hinges on the a,ssumption that
the satisfiability set of ea.& segment si, s’+’ is the full set (1, m}. .

According to Lemma 7.1, there exists a ranking function So : @ I-+ Ordinals, ma.pping states in
@ into the ordinals.

Let s be a, y-state and s’ a successor of s. If s’ does not satisfy q, then it is also a p-sta.te. In
this case we show that 60(s) > &(s’). Tllis inequality is ensured by clause b of Lemma 7.1, provided -
we show that for every s”, s’Bs” implies sBs”.

Indeed, let s” be a state such that s’Bs”. By the definition there exists a segment O’ : .s’. . . . , .s”
connecting s’ to s”, such that sat(a’) = (1, m}. It is obvious that the segment o : s, s’, s”, -
formed by appending s to the beginning of s’, connects s to s”, and that sat(a) = (1, III}. This
establishes s Bs”.

The ranking 60 is not fine enough to uniquely identify the fairness set Fey. We therefore augment
it by a secondary ranking S1 defined as follows.

For a segment CT, we define the deficit of 0, denoted by A(a), to be the smallest positive integer
i, such that Fi is not fulfilled in 0. In the case that sat(a) = { 1, 772}, A(a) is defined to be m + 1.
We define a segment o : sl, sk to be leveled if &(sl) = . . . = &(sk).

For every p-state s. we define its secondary ranking 61(s) by

61(s) = mo,z{A(a) 1 o is a leveled segment departing from s }.

The complete ranking function, to be usecl in the rule, is formed by the lexicographical pairing
b(s) = (So(s),&(s)). Th e range of the function S is defined to be ,A, the set of all pa.irs of t,he form
(~0, i), where 00 is an ordinal a.ncl i 5 m + 1.

The ordering >- over d is defined by

(cyo,i) + (c&i’) e (Qo > 4) v ((a0 = ~2;) A (i > i’))

. Clearly, this ordering is well-founded.

There are several properties t,hese ranking functions satisfy.

Pl. For every p-state -5, S,(S) 5 112.
Let o be a leveled segment connecting s to some s’. If sat(a) equals { 1, . ..? m}, then .s US
holds, which leads to 60(s) > 60(s’), contradicting the fact that o is leveled. It follows that, at1
least some Fi is not fulfilled in 0: and therefore 61 (s) 5 nz.

P2. For every v-state s and its successor s’, either s’ satisfies q, or 6(s))- S(s’).
Assume that s’ does not satisfy q. We have already shown that ho(s) > &(s’). If ho(s) > &(s’), _
then clea.rly S(s) k S(s’). In the other case, i.e., So(s) = So(s’), let Sl(s’) be ,I < m. By the
definition of 6,. there exists a leveled segment 0’ : s’, . . . , s”, such that i is the smallest index
of a fa.irness requirement Fi? which is, not fulfilled in 0’. Clonsicler the augmented segment
0 : s, s’, . . ., s”. Clearly, o is leveled and any Fi fulfilled in 0’ is a,lso fulfilled in 0’. It, follo\vs
that the deficit of 0, A(a) > A@‘) = i. Since o is only one of the leveled segments depa.rting
from s, and 61 (.p> is defined to be the maximum of the deficit,s of a.11 such segment$s, it follows
that &(s) > 1..

P3. Let .S be a wtamteT SU& t h a t S&S) = ,1. r,et s’ be a T-SUCC~SSOL’ of .I;, where T is one of the
transitions of Ti. Then, either s’ satisfies (1, or 5(-s) + S(.s’).
It is sufficient to consider the case that s’ does not satisfy (I and that, &(s) = &(s’), a.nd t,o
show that S&S) > S&4). A ssume, to the contrary, that S,(S) = S&S’) = i. Let 0’ : s’, S”
be, as before, the segment realizing the deficit i for s’. Clearly, the augmented segment
0: ,s, s’, . ..) s” fulfills all tl-e requirements fulfilled by o’, and in addition also fulfills F,. It
follows that A(o) > i, and therefore also 6,(s) > i, contradicting our original assumptions.

We proceed to show that all the premises of t,he F-RESP are satisfied by these clcfinitions. We have -
already shown that Fl is valid.

F2. ++(S E A)
Clearly 60 and S1 are defined on every p-state. It follows that S is also defined.

For the next premises, we identify for each value cy = (00, i) E ,A, the hell,ful fairness ~eqwkement
F, = (Ea, T,) to be Fi = (Ei, Ti).

F3. {P A (6 = 0)) 7 {q v (9 A (6 i a))}
It is straightforward to show that if s’ is a successor of a p-sta,te S, t’hen either .c;’ satisfies q or it is
also a p-state, which by property P2 above satisfies S(s) 2: 5(s’).

F4. ((13 A (S = a>} T, {q v (9 A (6 -+ a))}
Let .s be a v-state, such that h1 (s) = i, and S' a T-successor of .I;, for some transit ion T E Ti s If
s’ does not satisfy q, then it clearly satisfies 9, and by the property I’3 stJatecl abo[-e. also sa,tisfies
S(s) 5 S(s’).

FOB the case that I;‘; = (E;,T;) is a continual fairness requirement, we proceecl tJo show
c-5. [i? A (6 = cl>] +=- (q v ET@,))

Let .s be a p-sta,te, not satisfying q, such that &(s) = i. Let o : cc, s” be the segment realizing
the deficit i. If Ei were disabled on s, then according to the definition Fi woulcl ha.ve been fulfilled
in 0. We conclude that E; must be enabled on s.

For the case that Fi = (E;, Ti) is a recurrent fairness requirement, we proceed t’o show
R5. F - {FJ t- [p /I (6 = a)] =+- o[q v (Y A (6 -(0)) V En(EJ]

Let P’ denote the program which is identical to P in a811 components, except that the recurrent
fa,irness requirement Fi = F, has been removed from it’s combined fairness set F. We proceed to
shokv that P’ I= $, where q!~ is the state formula whose validity is claimed to he l)rovable in R.5.
Assume to the contrary, that $ is not valid over P’. In that. ca,se there must exists a, a computaltion
of P’, containing at some position j a V-state s with rank 0 (and 6&) = i), such tha,t no positiorl
beyond j satisfies q V (9 A (S -+ a)) V En(Ei). Bem 8, comput)ation of P’ means that it satisfies all’ g

-the fairness requirements posed by P, except possibly Fi. However, since En(E,) = E/1(fi’i) is one
of the clisjuncts excluded beyond position j, it follows that Ei is ena.bled only finitely many times _
on cr, which implies that o is fair also with respect to /Ji, and is therefore also a. computation of P.
This violates our original assumption that p=+-Oq is va.lid over P.

If we base our completeness proof on induction on the size of F, the combirletl fairness set, we
ha.ve just reduced the completeness problem of response properties for programs with 1.7=1 = rl + 1.
to tlia,t of pr0gra.m with IFI = 12. By such an induction, since we ha.ve just shown that8 1” I= (,‘I, it
follows that P’ I- t/l, as is required by R5.

Note that t,he reduction implied by premise R5 always removes from F a. raec,urarent ~U~VHFPS
requirement. This implies that a.fter any number of such removals F will still contain the contSinual
fairness requirement (7, I), and therefore IF1 2 1.

It follows that the base case for the induction can be I?J = 12 = 1. In this case! the only helpful
requirement ca’n be (7,7). Th e arguments above are fully a.pplicable for this case, except that the
case leading to R5 never arises, since the helpful requirement is alwa.ys a continual requirement. J

Progress

Lastly, we consider proving the completeness of our proof system for proving formula,e of the form
(PA 00~) =+Oq, for state formulae p, q, and r. A helpful intuition, which will guide us in the proof, ._
is that such a formula is valid over P iff the response formula, 1-3 =+- oq is valid over a pr0gra.m P+
which differs from P by having an additional continual fairness requirement, which demands that
every computa.tion contains infinitely many r-states.

With this understanding, we proceed in a route very similar to that of establishing completeness
for response properties. We consider first the general ca.se of a program that has both continual
and recurrent fairness requirements.

As a first step, we formulate a combined rule for progress, using a notation similar to that of the
F-RESP rule, with some small changes. We define the combined fairness set & = { ($,7-p)} U C U R.
Thus, the set Fr contains, in addition to the continual fairness requirements taken fromX, and
the recurrent fairness requirements taken from R, also the special “fairness” requirement (4,lp).
This virtual fairness requirement contains no transitions in its E set, but restricts our attention (as
may be seen from the rule) to computations, in which r occurs infinitely many times. We represent
the requirements contained in Fr by the list Fo, Fl, F,, where Fl, Fm are the real fairness
requirements, a(nd Fo = (4, Tp) is the virtua,l one. Following is the combined rule for progress.

F-PROG FL p=+(q v v)
F 2 . c3+(S E A)
F 3 . {yA(S=41 7 k! v (p A (6 5 4) >

For each CY E -A, there exists a fairness requirement F, = (Ea, T,) E &, such that:
If Fcx # (Md, then

F4. (9 A (S = 41 ZY bl v (9 A (6 -i 4))
If F, = (+,7~), then

F5. {‘P A (6 = 4 A r> 7 {q v (9 A (6 -(4))
If F, E C, then

C6. [‘P A (6 = CY)] =+ (q V En(ECY))
If F, E R, then

R 6 . .E’,. - {F,} I-

[(r3 A (6 = a) A oar] =+ o[q V (Y’ A (6 4 a)) V En(E,)]

(P A q o r) =+ Oq

Theorem 7.4 (Completeness for Progress) The de F -PROG is co,mplete, relat ive to ns.w+
fio~ak cdidity, for pwving the cnlidity of p/‘ogress fo~mdn~ of the fowl (p A oar) =+Oq, W/ICIY
13, I’? ard q are state formulae.

Proof : Assume the formula (p A aor) +-oc, to be va.licl over the program P. \!‘e adopt thp
definitions of 9, and q-free segments, from Theorem 7.3. We slightly modify the definition of’
fulfillment in a segment to read as follows:

For a segment 0 : sl,... , sx: and a fairness requirement F; = (Ei, Ti) f Fy, \ve sa,y tllat I,‘, is
flllfilled in CT if one of the following holds:-

l i > 0 and some transition of T; is taken in 0.

l i > 0, Fi is a continual fa,irness requirement, and Ei is disabled on some stake in 0.

l i = 0 and some state in CJ satisfies r.

Thus, we associate the fulfillment of the set F. = (4, Tp) with the satisfaction of 1’. We define the
set sat(a), for a segment 0, as before, except that its range may now be any subset of {O,l? In}.
Simila.rly, we define the relation B to hold between two states, s and s’, if there esists a segment’
0, connecting them, such that sat(a) = {O,l, m}. The relation B is well-founded, because
an infinite sequence of B-related p-states gives rise to a computation violating (p A nor) =+oq.
Consequently, we obtain the prima.ry ranking S0. The definition of the dehcit A(a) of a segment 0
is precisely the same as the corresponding definition in Theorem 7.3, except that it now ranges over
-to 17 7 .“7 m}. This leads to the seconda,ry ranking &, and to the definition of the combinecl ranking
S = (60, &), which ranges over pairs (cyo, i), with a0 an ordinal, and 0 5 i 5 177.

It is straightforwaxd to verify that properties Pl and P2 are still valid, as is P3 for Sl(s) = 1: > 0.
A special consequence of the definitions above is that if s is a v-state, which sakisfies r, then
61(s) > 0.

We may now turn to establish the validity of the premises of the rule. Premises Fl, F2, a,ncl F3,
follow from arguments similar to the ones presented in the case of the response rule.

Given a parameter cy = (no, 2:)) we identify the helpful fairness requirement F, as Fi E FT..
Premise F4, which is applicable only in the case that i > 0, is justified by a.rguments simi1a.r to
those of the response ca.se. So axe premises C6 and R6, which are also applicable only to the cases
i > 0. Considering R6, the inductive argument has to consider a similar progress propert,y for a,
simpler program.

Premise F5 l~olcls trivially, since by the observation above, there can be no p-stake s, satisl$ng
r, such that i = S,(s) = 0. 4

Using the constructions employecl in the proof of this theorem, it is possible to derive the
following corollary.

Corollary 7.1 (Completeness of Progress under Continual Fairness) lb- a program with _
no recurrent fairness requirements, the c-PRoG rule is complete, relative to assertional validity. for
proving the P-validity of any /j’rogress property.

Proof: Assume the formula p=+-oq to be valid over the program P, which has only continual
fairness requirements. We adopt the definitions of the assertion v, the ordering B, shown to be
well-founded, and the ra,nking function 60, based on B, from the previous theorem. We take 5, f’o~
the ranking S required by the c-FROG rule. It is not difficult to see that this choice of 9 alltl F
satisfies premises Cl-C:3 of the rule. Let us consider premise C4. Assume a computation, in which

the stat,e s at position j satisfies r A 9, and has the ra.nk &(.5) = ct. It is not difficult to see tllat
there must be another state S, at position rG 2 3, such that either Z satisfies (1, or the segment, s. . ..S
is q-free and fulfills a.11 the (continual) fairness requirements associated with P. In the la,ter case
sBs” (since s satisfies i’), a,nd according to clause n of Lemma 7. I, this inrplies t,hat So(s) > 6,(.G).
This establishes premise C4. 4

Acknowledgement

We gratefully acknowledge the help of Alur Rajeev and Tom Henzinger in ca.reful reading of the
manuscript and thank them for many helpful suggestions.

References

[Apw K.R. Apt. Ten years of Hoare’s logic: A survey - part I. ACI11 Trans. Prog. Lang.
sys., 3:431-453, 1981.

[ASS91 B. Alpern and F.B. Schneider. Verifying temporal properties without temporal logic.
A CM Trans. Prog. Lang. Sys., 11:147-167, 19S9.

[Coo7S] S.A. Cook. S oundness and completeness of an axiom system for program verification.
SIAM J. Comp., 7:70-90, 1978.

[Fra86] N. Francez. Fairness. Springer, 19S6.

[GFMdRS5] 0 . Crrumberg, N. Francez, J.A. Makowski, and W-P. de Roever. A proof rule for fair

[Har79]

[K&37]

[LPSSl]

[LPZ%]

[MPS3a]

[MPS3b]

[XII%4]

termina,tion. Inf. and Co,mp., 66:S3-101, 19S5.

D. Harel. First-Order Dynamic Logic. Let. Notes in Comp. Sci. 6S, Springer, 1979.

F. Kriiger. Temporal Logic of Programs, volume 8 of EATCS Il//onoq,raph.s on Theoret-
ical Computer Science. Springer, 1957.

D. Lehmann, A. Pnueli, and J. Stavi. Impartiality, justice and fairness: The ethics
of concurrent termination. In Proc. 8th Int. Colloq. Aut. Lang. Prog., pages 264-277.
Let. Notes in Camp. Sci. 115, Springer, 1981.

0. Lichtenstein, A. Pnueli, and L. Zuck. The glory of the past. In Proc. Coznf. Log&
of Programs, pages 196-215. Let. Notes in Camp. Sci. 193, Springer, 19S5.

2. Manna and A. Pnueli. How to cook a temporal proof system for your pet language.
In Proc. 10th ACM Symp. Print. of Prog. Lang., pa.ges 141-154, 19S3.

2. Manna and A. Pnueli. Verification of concurrent programs: A temporal proof
system. In J.W. DeBakker and J. Van Leuwen, editors, Ibnndations of Computer
Sciewe IV, Distributed Systems: Part 2, pages 163-255. Mathema.tical Centre Tracts
159, Center for Mathematics and Computer Science (CWI), Amsterdam, 19S.3.

2. Gnna a,nd A. Pnueli. Adequate proof principles for invaria.nce and liveness prop-
ertics of concurrent programs. SC%. Co7121). Pwg., 3X57-289, 19S4.

i
[MIW] 2. Manna and A. Pnueli. Specification and verification of concurrent programs by

V-automata. In hoc. lL{th ACM Sym.p. Print. of Prog. Lang., pa.ges l-12, 1987.

[MEW] 2. Manna and A. Pnueli. The anchored version of the tempoal framework. In J.W.
,de Bakker, W.-P. de Roever, and G. Rozenberg, editors, Linear Tine, Branching Time
and Partial Order _in Logics and Models for Concurrmcy, pages 201-284. Let. Notes
in Comp. Sci. 354, Springer, 19S9.

[OLS2] S. Owicki and L. Lamport. Proving liveness properties of concurrent programs. ,K’,\rl
Trans. Prog. Lang. Sys., M55-495, 19S2.

[PnuSfi] A. Pnueli. Applications of tempora,l logic to the specification and verification of reac-
tive systems: A survey of current trends. In J. W. de Bakker? W.-P. de Roever, a,rld _
G. Rozenberg, editors, Current Trends in Concurrency, pages 510-554. Let. Notes in
Comp. Sci. 224,. Springer, 19%.

[ThoSl] W. Thomas. A combina8torial approach to the theory of w-automata. hf. and Corlt.,
48:261-283, 1981.

