January 1990 Report No. STAN-CS-W-1298
Also Numbered CSL-TR-90-409

Leases: An Efficient Fault-Tolerant Mechanism
for Distributed File Cache Consistency

by

Cary G. Gray and David R. Cheriton

Department of Computer Science

Stanford University
Sanford, California 94305

Leases. An Efficient Fault-Tolerant Mechanism
for Distributed File Cache Consistency *

Cary G. Gray and David R. Cheriton
Computer Science Department
Stanford University

Abstract

Caching introduces the overhead and compkxity of ensur-
ing consistency, reducing some of itSperformance bene-
fits. In a distributed system, caching must deal with the
additional complications Of communication and host fail-
ures.

Leases are proposed as a time-based mechanism that
provides efficient coasistent access to cached data in dis-
tributed Systems. Non-Byzantine failures affect perfor-
mance, N 0Ot C O - , with their effect minimized by
short leases. An analytic model and an evauation for file
access in the V system show that leases of short duration
provide good performance. The impact of leases on per-
formance grows more significant in systems of larger scale
and higher processor performance.

1 Introduction

caching introduces theproblem of ensuring consistency
between the cached data and its primary location of stor-
age. By consistent, we mean that the behavior iS equiv-
alent to there being only a single (uncached) copy of the
data except for the performance benefit of the cache. With
large caches, the traffic required to maintain consistency
can be the dominant factor in cache performance.

Cache consistency protocols have been extensively
studied in the work on shared memory multiprocessor

“This work was supperted is part by the Defenss Advanced Re-
scarch Projects Agency undar contract NO0039-84-C-0211, by the Na-
tional Science Foundation Grant DCR-$3-52048, and by Digital Equip-
ment Corporatioa.

architectures; thisworkrelies on reliable, synchronous
broadcast communication as provided by the system bus.
A distributed system, however, can experiencepartial fail-
ures: ahost may crash or messages may be lost. Existing
approaches to consistency for file caches fall into two cat-
egories: those that assume reliable broadcast, and so do
not tolerate communication failures, and those that require
aconsistency check for every read, and o fail to deliver
good performance.

In this paper, leases are proposed as a consistency pro-
tocol that handles host and communication failures us-
ing physical clocks. An anaytic model and an evalua-
tion using file access characteristics of the V system show
that short-term |eases provide near optimal efficiency for
alargeclassof systemsin spite of tbefault-tolerance pPro-
ViSions. We argue that leases are of increased benefit in
future distributed systems of larger scale with tkir larger
ratio of processor speed tonetwork delay and |arger ag-
gregate |ate of failure.

The next section describes leases and how they are used
to implement cache consistency. Section 3 derives our
Simpl eanalytic model for picking lease terms and explores
their application using data from the V distributed sys-
tem [4]. Section 4 describes sane optimizations in lease
management. Section 5 examines tk fault-tolerance of
leasing. Section 6 compares |eases with other work on
distributed cache consistency and related problems. The
concluding section summarizes our results and specul ates
on further applications of |eases and directions for future
research.

2 Leases and Cache Consistency

A lease is a contract that gives itSholder specified rights
over property for alimited period of time. In the context
of caching, a kase grantsto its holder control over writes
to the covered datum during the term of the lease, such that
tk server must obtain the approval of the leaseholder be-
fore the datum may be written. When a leaseholder grants
approval for awrite, it invalidates its local copy of the da-

tum.
A cache using leases requires a valid lease on the da-
tum (in addition to holding the datum)before it returns the
datum in response to a read, or modifies the datum in re-
sponse t0a write. When a datum is fetched from the server
(the primary storage site of the datum), the server aso re-
turns a lease guaranteeing that the data will not be writ-
ten by any client during the lease term unless the server
first obtains the approva of this leaseholder. If the da-
tum is read again within the term of the lease (and the da-
tum Sstill in the cache), thecache providesimmediate ac-
cess to the datum without communicating with the server.
After the lease expires, a read of the datum requires that
the cache first extend the lease on the datum, updating the
cache if the datum has been modified since the lease ex-
pired. When aclient writes adatum, the server must defer
the request until each leaseholder has granted approval or
the term of its lease has expired.

We limit ourselves here to write-through caches, for do-
ing so simplifies the explanation; extending the mecha-
nism to support non-write-through caches iS straightfor-
wad Write-through gives clean failure semantics: no
write that has been made visible to any client can be lost;
applications must otherwise be prepared to recover from
lost writes. Though the cost of write-through for fik
cachesis considered prohibitive by some{ 16}, the cost can
be largely eliminated by giving specia handling to tempo-
rary files[9, 24), since tky receive the majority of writes.

To illustrate the operation of a file cache using leases,
consider adisklessworkstation being used for document
production. When tk workstation execute8 latex for
the first time, it obtains a lease on the binary file contain-
ing latex for aterm of (say) 10 seconds. Another ac-
cess to the same file 5 seconds later can use the cached
version of this file without checking with the file server.
An access to this file after the 10-second term has expired
requires the cache to check with the server. When a new
version of latex is installed, the write is delayed until
every |leaseholder has approved the write. |f some bost
holding a lease for this file is unreachable, the delay con-
tinues until the lease expires.

In the preceding example, the relevant reads and writes
are not limited to opesations on the contents of the file. In
order to support a repeated open, the cache must also hold
the name-to-file binding and permission information, and
it needs a lease over this information in order to use that
information to perform tk open. Similady, modification
of thisinformation, such as renamingthe file, would con-
gtitute a write.

Short lease terms have severa advantages. One is that
they minimize the delay resulting from client and sewer
failures(andpartitioning communicationfailures). When
tk server cannot communicate with aclient, the Server
must &lay writesto afile for which the failed client holds

alease until that lease expires.” When a server is recover-
ing after crashing, it must honor the |eases it granted be-
fore it crashed This is most easily done if it remembers
the maximum term for which it had granted alease, and
it delays writesto all files for that period, effectively in-
creasing the time to fully recover by the maximum term.
Alternately, the server can maintain a more detailed record
of leases on persistent storage, but the additional I/O traffic
is unlikely to be justified unless terms of leases are much
longer than the time to recover.

Short leases also minimize the false write-sharing that
occurs. False sharing refers here to a lease conflict when
no actual conflict in file access exists. Specifically, false
sharing occurs when a client writes to a file which is cov-
ered by alease held by another client when the other client
is not currently accessing the file. False sharing introduces
the overhead of a callback to tk leaseholder(s) (thereby
delaying the requesting client and |oading the leaseholder
and server) in a Situation where without kases there would
be no conflict. In the extreme, a lease term should be set
to zero if a client is not going to access the file before it is
modified by another client.

Finaly, short lease terms reduce the storage require-
ments at the server, since the record of expired kases
could be reclaimed. However, the storage overhead for the
server to keep track of the leases it has granted is modest.
The server requiresarecord of each kaseholder’ sidentity
and a list of the leases it holds; each lease requires oaly a
couple of pointers. For aclient holding about one hundred
leases, the total is around one kilobyte per client. Even
if this were a problem, it could be reduced by recording
leases at alarger granularity, so that each client holdsfew
leases, at the expense of some increase in contention. We
show later how tk per-client record can be eliminated for
the most common class of widely-shared files.

L onger-term kases are significantly more efficient both
for the client and server on files that are accessed repeat-
edly and haverelatively littl ewrite-sharing. This may be
observed in the Andrew file system project [10], which
went from using a lease term of zero in the prototype to
effectively alease term of infinity in the revised version.*
The next section presents an analytic model of lease per-
formance and determines appropriate |ease terms using
parameters based on data from the V distributed system.

3 Choosing the Lease Term

The choice of 1ease tem is based on the trade-off between
minimizing |ease extension overhead versus minimizing

To avoid starvation of writes, the server does not grant new leases
on a file when a write is waiting for approval or for leases 1o expire.

2At the expense of failing to guarantee consistency after a communi-
catioos failure.

| ,Svmbol Description
number Of ClIentS(caches)
R rate of reads for each client
W rate of writesfor each client
S number of caches in which the file is shared
mprp Propagation defay for a message
Mpeoe tiMe t0 process a message (send or receive)
€ alowance for uncertaintv in clocks |
| ts leaseterm (@t server) |

Table 1. Performance parameters

fal se sharing. This trade-off applies to minimizing both
server load and client response. Lease Space overhead isa
less critical consideration and so is ignored as a factor. In
addition, the rate of failures is assumed to be low enough
to have no significant effect on the average response time,
especially with short-term leases. Finally, we consider
here only on-demand extension of kases rather than peri-
odic extension or otkr options such as noted in Section 4.

3.1 A Simple Analytic Model

We consider a system consisting Of asingle server, char-
acterized by tk performance parameters given in Tabk 1.
That is, the server has one file and N clients for that file,
where each client’ s reads and writes follow Poisson dis-
tributions with rates R ad W, respectively. The file is
shared by S of the caches at each point it is written. There
is at most one lease per client for the file.

We assume that the message processing time® my, o at
both the sender and recipient and the message propagation
time my, ., are the same for all hosts. Thas, a message
is received mypop + 2Myp, o after it is sent and a unicast
request and reply takes 2myp, op + 4mppoc. Multicast mes-
sages are sent once, and received with high probability by
the recipients using a multicast facility [S, 6); it requires
time 2mp,op + (1 + 3)mMyprqc to send a multicast message
and receive n replies.t.

For a lease with sexm tg, the effective term t¢c at the
cache is

tc = max(0,ts — (Mypop + 2mMppoc) — €)

3The processing time does not include processing that occurs after
the packet is sent or before it is received, only processing that is on the
critical delay path. Queueing delays due to congestion are ignored, as is
the second-order effect of response time on request rate.

“The average propagation and processing times ™ prop 30d Mproc
include a normal level of retransmissions, and so our cstimastes are rea-
mbleformnlmtomnnmbusofmm Whea the number
of recipients (and replies) is large, the delay and processing overhead
increase as more retranamissions may be required.

because t¢ is shortened by the time for the cache to re-
ceive the |€3SC mp,op + 2y, o PlUSthe allowancee for
clock skew. Thus, in systems with large propagation de-
lays between clients and large clock skew, the server must
provide a proportionally larger lease term ¢ s if the lease
term at the clients iSto beeffectively greater than zero.

If a cache handles an expected Ric reads over the term
of the lease not counting the read that results in the lease
request, the cost of the lease request is amortized over 1 +
Rtc reads, so that the rate of extension-related message
handled by the server is

2NR
1+ Rtc

adding an average delay of

2(Mprop + 2"'919:)
1+ Rtc

to each read request.

When it receives a write, tk sewer multicasts a re
quest for approval t0 au of tk leaseholders and processe:
the replies. Assuming the writer is one of the leasehold:
ers, one approval message can be saved if the reques
for a write carries the implicit approval of the requesting
cache3 Obtaining approval therefore requires one multi
cast request message plus S — 1 approvals, for a total o
S messages.® The time ¢, to gain approval is

te = 2Myprop + (S + 2)Mproe

for S > 1. Thus, the delay is at most t, and the load 2
most NSW.

In the file cache environment, we expect lease terms o
the order of seconds and message times (including t,) i
the range of milliseconds. We therefore do not conside
cases in which ¢, is a significant fraction of ts. The e»
ception is ts = 0: it is important to recognize that a zer
lease term is better than a very short lease term because
non-zero ts and zero tc means that writes are penalize
but reads do not benefit.

‘When the lease term is zero or there is no sharing, tt
load and delay are limited to those due to extensions ¢
leases. For S > 1 and ts > 0, though, the server senc
and receives ONR

1+ Rte

consistency-related messages per unit time, and the ave
age delay of

]. ,ZR('H‘I’,,, + 277»9") .
R+W 1+ Ric W)
5This optimization is particularly important to allow the comm
case of an unshared file to be handled with a single unicast reque:
response from the client to the server. It means that a longer term alwa
decreases the server load for unshared files.
$Without multicast, it would require 2(S — 1) messages.

+ NSW (

is added to each read or write.
The |oad for zeroleasetermis2.N R; aterm longer than
t, produces alower [oad if

2NR

2NR>
1+ Rt

+NSW
c

Defining alease benefit factor as
2R
SW’
the preceding condition holds if « > 1 and

1
> Ra-D)

a=

A sufficiently long lease term will reduce server load
whenever a is greater than one. Larger values of a and
R imply better performance for short terms.” Intuitively,
ameasures the ratio of reading to writing, scaled by the
additional overhead caused by sharing.

In extending this analysisto handle multipk files, we
note that the load due to multiple leases sums directly. The
cache can batch itsrequests for extensions so that asingle
request covers many files. R and W then correspond t0
the total rates for all covered files, and so are higher; the
higber absolute rate of reads increases a, and so the benefit
is greater. In general, a cache should extend together all
leases over dl files that it still holds.

The server |0ad due to consistency iSroughly propor-
tional to the number of messages handled (sent or re-
ceived) by the server. If we know the fraction Of server
load due to consistency for a kase term of zero, we can
calculate the (relative) total |0ad from the (relative) con-
sistency |0oad. Similarly, application-level response time
includes other processing in addition to the time required
toensurecoasistency.

The formulas we have derived can be used to predict
performance in a specific system, given the appropriate
parameter s, as demonstrated in the next section.

3.2 Expected Performance In V

The expected performance Of leases with the v file
caching mechanism [9] is determined using the analytic
model devel oped sbewe and system performance param-
eters collected from measurement, given in Table 2. The
measurements are determined from a trace of file access
traffic generated by recompiling the V fik server, with the
file service and client programs executing on MicroVAX
11 workstations connected by Ethernet. The message times
are based on separate timings of V inter-process commu-
nication. The trace includes only one client so there are

7When unicast is used to request approval, the corresponding defini-
tion sa = R/(S -)W.

rateofreads R 0.864 /sec
rate of writes W 0.039/sec
message propagation time | my,., | 1.0msec

message processing time | my,,. 0.25 msec
dlowance for clocks € 100 msec

Table 2: Parametersfor file cachingin V.

- 2.00

§1.75 ---------- g=gg
< : - .= S=
S50 0000 = 10
2 --= Sa1
g 125 . Trace

.
.
LT
ey
tees
...............

im0

00 50 100 150 200 250 30.0

lease term (sec)
Figure 1: Relative Server Consistency vs. Lease Term

no writes t0 shared files. \We have cal cul ated estimatesfor
different degrees of sharing to illustrate its effect over a
plausible range.

Figure 1 gives the relative server load for consistency
asafunction Of the term, computed using formulal from
Section 3.1. Tk curve labelkd Trace was determined Us-
ing a trace-driven simulation of the cache and server The
proximity of this curve to the no-sharing (S = 1) curve,
derived from oar analytic model, validates the model for
this case. We note that tk knee of the Trace curve is
sharper and at alower term. This (favorable) discrepancy
is to be expected because actual file access is burstier than
that given by a Poisson distribution. This burstiness im-
plies that short terms should perform even better than our
estimates indicate.

From Figure 1, most of tk benefit of anon-zero |ease
term is gained by aterm of just afew seconds. For exam-
pk, a S =1, aterm of 10 seconds reduces the consis-
tency traffic to 10% of that for azero term. The load for
consistency must be considered as it affects the total on the
server. At alease term of zero, consistency accounts for

3.0+

2.0 1

1.5

average added delay (msec)

1.0+

0.5+

0.0 — L
0.0 50 100 150 20.0 250 30.0

lease term (see)
Figure 2: Delay due to consistency.

30% of the server traffic in the trace, so that the actual ben-
efitisa27% reduction in total server traffic, to alevel just
4.5% above that for infinite term. At s= 10, total server
traffic is 20% less than for a zero term and 4.1% over that
for an infinite term. Longer terms provide relatively little
additional reduction in server load yet introduce all the dis-
advantages of longer lease terms. Thus, a short lease term
of (say) 10 seconds appears as a good choice for these file
access characteristics, given the advantages of short leases
described earlier and the insignificant reduction in server
|oad provided by longer lease terms.

Figure 2 shows the average delay added to each read
or write by consistency, as a function of the lease term.
Because writes are a small fraction of all operations, the
delay added to shared writes contributes little to the av-
erage delay, and the curves for S = 1t0o S = 40 are
indistinguishable in the graph as shown. Again, much of
the benefit of leases is gained with lease terms in the 10
second range. Becamse many programs have significant
compute time betwesa file accesses, the improvement in
response time for longer lease terms is insignificant.

We expect that the same resuit would apply to Unix-like
systems even though our measurements of access rates
are different from those that have been reported (8, 17]
in longer-term tram of Unix systems. For example, our
ratio of reads to writes is almost an order of magnitude
higher that those reported elsewhere. Several factors ac-
count for this difference. First, operations on temporary
files (which account for a |argefraction of the writes) do
not appear because they are handled specially by the V file

cache, in amanner analogousto using alocal disk for tem-
porary files. Second, unlike most other traces, our mea
surements include program loading and accessto informa-
tion about files (such asdirectory lookups), both of which
are predominantly reads. Finally, the read and write mea-
surements correspond to when a file is opened for reading
or closed (committed) with writing, as opposed to each
tme a block isread or written; tk directory operations
therefore are alarger fraction of the (logical) reads and
writes.

When these factors are considered, the composition of
this short trace is fairly consistent with those of tk longer
term traces of Unix systems. only the last factor repre-
sents a departure from the more common semantics of the
Unix file system; the other two factors are consequences
of the cache design in V and might be profitably employed
inaUnix system. Supporting Unix semantics, where read
and writecorrespond to block-level operations, would
give ahigher absolute rate of reads, but a somewhat lower
ratio of reads to writes (because the ratio of reads to writes
for fileblocks is|owerthan for other file-system data). The
performance of leases in such a system would be quali-
tatively similar; thehigher rate of readswould givethe
curves a sharper knee, favoring fairly short terms, while
the more frequent writes makes it more sensitive to shar-

ing*

33 Applicability to Future Distributed Sys-
tems

Several trends anticipate properties Of future distributed
systems. Systems are being extended over wider-area
networks, increasing the delay for communication. The
speed of processors al SO continues t0 grow. Finally, larger
numbers of hosts, both clients and servers, are being tied
together within a single system.

Larger propagation delay between clients and servers
means that the impact Of lease extensions and invalida-
tions on response time is greater. Figure 3 shows the added
delay on a network where the round-trip time is 100 mil-
liseconds, while all other parameters remain as in our pre-
vious analysis. In this case, a 10 second term degrades re-
spoase by 10.1% over using an infinite term and a 30 sec-
ond term degrades it by 3.6%. Thus, with a significant
increase in propagation delay, sightly longer lease terms
may beappropriate, but termsinthe 10-30 second range
still appear to be adequate.

Faster client processors redace the amount of timefor
computation between read and write requests, so that the
number of operations occuring within a term increases.
The higher rate pushes the knee of the load curve lower.
The impact on application-level response time is almost
identical tothat of a Slower network: thefraction of time
spent in communication &lay is larger, S0 that the signif-

100.0[-

80.0

60.0

40.0 |-

average added delay (msec)

20.0 +

0.0 J | | B S F—
0.0 5.0 10.0 15.0 20.0 25.0 30.0

lease term(sec)
Figure 3: Added delay with 200 ms round-trip time.

icance Of consistency iS greater

Increased numbers of clientsand servers have nosignif-
icant effect unless it increases the level of write-sharing,
which we do not expect to be the case. In fact, there is no
evidencethat thelevel of write-sharing hasincreased over
tk very modest |evel s measured by Montgomery (15] in
Multics over 12 years ago. Leases have the benefit of in-
creasing the ratio of clients to servers (by reducing consis-
tency overhead), thereby reducing the cost (or improving
the performance) of large-scale systems.

4 Options for Lease Management

L ease management in the server admits several options
that may be exploited to improve performance. The server
controls the term of the leases it grants; it is also free to
wait for a lease to expire instead of seeking approval of a
write. The client is free in deciding when to request ex-
tension of |eases, whea to relinquish them, and When to
approve a write. The combinations of these options give
different trade-offs between | 0ad and response time.

For example, the client may anticipate the expiration of
itsleases and quest extension before the covered file is
accessed. Doing so improvesresponse time by eliminat-
ing the added delay for reads, but it does so at the cost of
increased load for the server. In particular, an idle client
continues t0 request extensions even when filesare not
being accessed, and because the cache continues to hold
leases it may increase the level of contention dueto false
sharing.

The sewer can use these options to optimize the han-
dling of installed files, which account for a significant pro-
portion of shared access. Installed files are files such as
commands, header files and libraries which ar e part of the
standard System support. These files are widely shared,
heavily read and only infrequently Written. In the trace
taken from V, they account for almost half of all reads, but
no writes. The handling of installed files is optimized by
using a smaller number of leasesto cover these files® such
asone per major directory, and multicasting au extension
covering leases on installed files to all clients periodically,
eliminating the need for clientsto reguest extensions of
these |eases. Additionally, the server can simply eliminate
a lease from the multicast extension when a file covered
by the lease is to be modified. The write operation then
proceeds as SO0N as the lease has expired This approach
eliminates the need for the server to contact alarge number
of clients when an installed file is updated and the resulting
implosion of responses. Given the significant probability
of the server having to wait for |ease timeout because one
of the many client machines is unreachable, write opera-
tions to instakd files do not necessarily experience higher
delay as aresult of this optimization. This optimization
also eliminates the need for the server to keep track of the
leaseholdersfor installed files. Finally, it eliminates added
delay at the client cache for reads of installed files because,
in the absence of writes to installed files, these leases do
not expire.

Finally, the server can set the lease term based on the
file access characteristics for the requested file as well as
tk propagation delay to the client In particular, a heavily
write-shared file might be given aleaseterm of zero. A
lease given to adistant client could be increased to com-
pensate for the amount the lease term is reduced by the
propagation delay and for tk extra delay incurred by the
client to extend the lease. In general, a server can dynami-
cally pick lease terms on a per file and per client cache ba-
sisusing the analytic model, assuming the necessary per-
formance parameters are monitored by the server.

5 Fault-Tolerance

Leases ensure consistency provided that the hosts and net-
work do not suffer certain Byzantine failuresincluding
clock failure. More specifically, consistency iSmaintained
in spite of message loss (including partition), and client or
server failures (assuming writes arepersistent at theserver
across a crash). Moreover, availability is not reduced by
the caches because an unreachable client at most briefly
delays write access by otkr clients.

Leases depend on well-behaved clocks. In particular,

*Multiple fila per lease can also result in a form of false sharing. We
ignore this effect with installed files because the rate of update is 5o low.

aserver clock that advances too quickly can cause errors
because it may allow a write before the term of alease
held by a previous client has expired at that client. Sim-

ilarly, if aclient clock fails by advancing too slowly, it

may continue using a lease which the server regards as
having expired. The opposite errors-a low server clock
or fast client clock—do not result in inconsistencies, but

do generate extratraffic since a client will regard leases
to have expired before the server does, Such failures are
much less common than eitber crashes or communication
failures; they can be detected quickly by either a synchro-
nization protocol or by including explicit timestampsin

lease-related messages.

We also regard it as a reasonabl e assumption that clocks
at the nodes of a distributed system ar e synchronized
within e which is small relative to the lease terms of sev-
eral seconds. Synchronized time is required for other as-
pects of file access as well, such astk file-modified times
used by the Unix make facility. AS a minimum, the cor-
rect functioning of |easesrequires only that clockshavea
known bounded drift, in which case the lease term can be
communicated asitSduration t.

6 Related work

Previous caching file systems that have guaranteed con-
sistency have mostly used either a zero term or an infinite
leaseterm. Sprite[16), RFS [1] and a prototype of the
Andrew file system (18] use a zer o-ter mlease at the gran-
ularity of file opens; Sprite and RFS use an infinite term
while a file is open. The Andrew prototype experienced
excessiveserver |oad fr om consistency checks as the sys-
tem configuration Was scaled [10]. Noo-zero term leases
appear applicabletoall three systemswith significant per-
formance improvement over their current designs, espe-
cialy with faster processors and larger network latency.
The |ater Andrew file System [10, 11] basically uses
an infinite term, relying on the server to notify the client
when cached data is changed. If communication with a
client fails (at the transport level), the server allows up-
dates to proceed, possibly leaving the client operating on
stale data. The client does not leam of the error until
it next attempts tocommunicate with the server; polling
with a period of ten mimutes is used to limit the interval
for which inconsistent data may be used. Andrew uses
aseparateimmutable volume for installed files to avoid
the cost of their update under the normal mechanism. our
work suggests that a short-term lease would be adequate
for Andrew, as opposed to the infinite term, allowing up-
dates to be deferred in the client failure case long enough
toavoid inconsistency. The other benefits of short leases
axe then available as well, including the ability to handle
installed files well within the same framework, using the

optimizations we have described.

Burrows MFS {2] and the Echo file system of Mann et
al. [13] both use tokens, which can be regarded as limited-
term leases, but supporting non-write-through caches.
With extension, our analysis of performance could be
profitably applied to these systems.

Other systems have avoided the consistency problem by
either not guaranteeing consistency, as done by NFS[21],
or by prohibiting write-sharing, as done in the Cedar file
system CFS [19]. We believe that the simplicity and effi-
ciency of leasing together with the importance of consis-
tency and write-sharing make these solutions less attrac-
tive in the future. In particular, we note that the soft state
required for leasing is compatible with the so-called state-
less interface used in NFS.

The Xer ox DFS [20] uses breakablelocks with time-
outs, which arc superficially similar to leases. However,
the timeouts specify a minimum time before which alock
can be broken to avoid an excessive rate of transaction
aborts. However, becauseclients do not usethelock time-
out value and they are not reliably notified when a lock is
broken, the schemedegenerates t0 |easing with aterm of
zero.

Mirage [7] provides a consistent distributed shared
memory using infinite-term |eases. Mir age augmentsthis
with a timer that (in terms of the leasing framework) speci-
fies a minimum time after acquiring a lease before a client
will relinquish it. This time can be increased to reduce
the amount of thrashing, just as the lock timeout in DFS
reduces the frequency of aborted transactions.

Time-based methods resembling |easing haveal sobeen
used in at least two distributed naming systems. L amp
son’sglobal directory service {12} hasclient caches that
discard entriesat aserver-specified time. Ser ver sarefor -
bid& u from modifying an entry beforeit expires. This
condition is equivalent to our policy for leases over in-
stalled files. However, no provision is made for either
requesting approval of writes or for any extension of the
terms.

Name services more commonly use cached data as
hints, for which consistency need not be guaranteed. In
tk Internet Domain Name Service[14], for example, a
nameserver specifies atime-to-live for thedatait returns,
and clients cache the data for that period. However, the
data may be modified during that interval. Any inconsis-
tency that results must be detected and corrected by other
means. Terry [22, 23] discusses in more detail the caching
of hints for name interpretation, including the use of on-
use and periodic checks as options in maintaining the ac-
curacy of the cache at the desired level.

Finally, the consistency work with caching shared
memory systems has ignor ed the problem of commu-
nication and cache failures to date. However, leasing
may represent a Useful extension to consistency protocols

for large-scale multi-level shared memory multiproces-
sors[3].

7 Conclusions

Leasing is an efficient, fault-tolerant approach to main-
taining file cache consistency in distributed systems. In
this paper, we have analyzed its performance and evau-
ated performancein the context of areal system, examined
its fault-tolerance properties, and considered its applica
bility to other distributed systems, especialy large-scale,
high-performance systems of tk future.

Our simple analytical model estimates the server con-
sistency load and consistency-induced delay to cache re-
quests as a function of the lease term, the ratio of reads
to writes, the degree of sharing and message times. This
model provides a basis for a file server setting |ease terms
dynamically based on observed file access characteristics.
In particular, it indicates when |eases with a non-zero term
reduce server load, given that high levels of write-sharing
can make file caching ineffective. A trace-driven simula-
tion using data from the V system provides (partial) vali-
dation of the analytic model.

A relatively short lease term is close to optimal with
file access characteristics expected in Unix-like systems
where the dominant file access is for software develop
ment and document preparation. In particular, using pa-
rameter values from the V system with this model, a lease
term of 10 seconds results in a server load that is within
5 percent of that achievable with infinite term. We ar-
gued that the V file access characteristics are similar to
those observed with various Unix-like systems. Short-
term leases have a number of significant advantages over
longer leases, including lower write delays resulting from
client crashes, lower recovery delay from server crashes
andreduced false sharing.

Leases appear well-suited to large-scale distributed sys-
tems. The improvement in response time that tky offer
is more significant for the faster processors and higher-
&lay networks. In this setting, the round-trip time to tk
client becomes a significant cost and potentially affects
the choice of lease term. The lease overhead of handling
large numbers of clients can be reduced by distinguishing
different classes of files based on access characteristics.
In particular, installed files—those with a high-degr ee of
sharing and read access but low degree of writing—can
behandled efficiently using multicast extensions from the
server to extend the leases on directories of these files and
delayed update to avoid tk overhead of explicit lease in-
validation.

Leases provide strict consistency in spite of non-
Byzantine failures, including partitions. Failures result
only in reduced performance, with tkir effect minimized

>

by short lease terms. A key assumption is that clocks are
reasonably accurate, at least in terms of drift if not mutual
synchronization. \We have argued that synchronized phys-
ical clocks are important in genera in a system where files
are shared in tk manner supported by leases.

There are severa limitations to this work. First, we
have used a simplified mode of file sharing and focused
our evaluation on relatively low degrees of sharing. How-
ever, low degrees of sharing appear common in most
systems. Exceptions that warrant further investigation
include distributed transaction processing systems, dis-
tributed parallel programming systems and possibly sys-
tems that make extensive use of remote execution. Sec-
ond, our analysis of performance is only approximate,
since it ignores important factors such as queueing delays;
nonetheless, our easily computed estimates are useful. Fi-
nally, there is limited experience with tk use of leasesin
actual system operation. We are presently extending and
tuning the file caching service within V, using the mea-
surements of this serviceto further refine our model of per-
formance and to gain further experience. We also plan to
explore adaptive policies that vary the coverage and term
of leases in response to system behavior in place of static,
administratively set policies.

L eases have other applications besides file cache con-
sistency. In particular, leases may aso be applicable to
large-scale shared memory multiprocessors. However, the
benefits will have to be evaluated relative to the costs of
timers on memory and cache lines, and the ability of the
software to handle failures.

The |ease approach is an example of a communica-
tion and coordination mechanism and reasoning based on
(real) time, the availability of clocks that measure the pas-
sage of time with modest accuracy, and the ability to draw
conclusions after a passage of time, possibly in the ab-
sence Of communication we are applying tbis general
approach tO other areas as well, including a distributed
transaction management protocol and a transport proto-
col, We see this use of time as a fundamental aspect of
distributed systems with potential for significant extension
beyond that described here.

Acknowledgements. Tkse ideas have benefited from
discussions with many members of the Distributed Sys-
tems Group, of whom Joe Pallas has been especially belp-
ful. The comments of tk SOSP referees, and especialy
the more detailed reviews by Marvin Theimer and Doug
Terry, have klped to improve tk quality of this paper.
The name “ leasg” was suggested by Morry Katz

References
[1] BAcH, M. J, Lurr, M. W., MELAMED, A. S., AND

YUEH, K. A remote-tiecache for RFS. In Proceed-
ings of the Summer 1987 Usenix Conference (June
1987), Usenix Association, pp. 273-279.

[2] BURROWS, M. Efficient data sharing. Tech. Rep.
No. 153, Computer Laboratory, University of Cam-
bridge, Dec. 1988. The author’s PhD thesis.

[3] CHERITON, D., GOOSEN, H., AND BOYLE, P. Multi-
level shared caching techniques for scalability in
VMP-MC. In Proc. 16th Int. Symp. on Computer
Architecture (May 1989).

[4] CHERITON, D. R The V distributed system. Com-
mun. ACM 31,3 (Mar.1988), 314-333,

[S] CHERITON, D. R, AND DEERING, S. E. Host groups:
A multicast extension for datagram intermetworks. In
Proc. 9th Data Communications Symposium (Sept.
1985). ACM/IEEE, pp. 172179.

[6] CHERITON, D. R, AND ZWAENEPOEL , w. Distributed
process groups in the VV kernel. ACM Trans. Comput.
syst. 3, 2 (May 1985), 77-107.

[7] FLEISCH, B. D., AND POPEK, G. J. Mirage: A coher-
ent distributed shared memory design. In Proceed-
ings of the Twelfth ACM Symposium on Operating
Systems Principles (Dec. 1989), ACM.

. [8] FLoYD, R.” Short-term file reference patternsin a
UNIX environment. Tech Rep. TR 177, Univer-
sity of Rochester, Department of Computer Science,
Mar 1986.

[9] GRAY, C. G. Performance and Fault-Tolerance in
a Cache for Distributed File Service. PhD thesis,
Stanford university, Department of Computer sci-
ence, 1989. In preparation.

[10] HowARD, J. H., KAZAR, M. L., MENEES, S. G,
NICHOLS, D . A., SATYANARAYANAN, M., SIDE-
BOTHAM, R. N., AND WEST, M. J. Scale and per-
formance in a distributed file system. ACM Trans.
Comput. Syst. 6, 1 (Feb. 1988), 51-81.

[11] KAZAR, M. L. Synchronization and caching issues
in the Andrew fille system. Tech. Rep. CMU-ITC-
058, Informatiom Technology Center, Camnegie Mel-
lon University, June 1987.

[12] LAMPSON, B. W. Designing a global name service.
In Proceedings of the Fifth Annual ACM Symposium
on the Principles of Distributed Computing (Aug.
1986). ACM, pp. I-10.

[13] MANN, T., HISGEN, A., AND SWART, G. An algo-
rithm for data replication Research Report 46, DEC
Systems Research Center, 1989.

[14] MOCKAPETRIS, P. Domain names — concepts and
facilities. Request for Comments 1034, Networ k
Information Center, SRI International, Menlo Park,
CA, Nov. 1987.

[15] MONTGOMERY, W, Measurements of sharing in
MULTICS. In Proc. of Sixth ACM Symposium on
Operating Systems Principles (1977), ACM, pp. 85—
90.

[16] NELSON, M. N., WELCH, B. B., AND OUSTERHOUT,
J. K. Caching in the Sprite network file system. ACM
Trans. Comput. Syst. 6, 1 (Feb. 1988), 134-154.

[17] OusTERHOUT, J. K., COSTA, H. D., HARRISON, D.,
KUNZE, J. A., KUPFER, M., AND THOMPSON, J. G. A
trace-driven analysis of the UNIX 4.2BSD file sys-
tem. In Proceedings of the Tenth ACM Symposium
on Operating Systems Principles (Dec.1985), ACM,
pp. 15-24. Published as Operating Systems Review
19, 5.

[18] SATYANARAYANAN, M., HOWARD, J. H, NICHOLS,
D. A., SIDEBOTHAM, R. N., SPECTOR, A. Z., AND
WEST, M. J. The ITC distributed file system: Prin-
ciples and & sign In Proceedings of the Tenth ACM
Symposium on Operating Systems Principles (Dec.
1985). ACM, pp. 35-50. Published as Operating
Systems Review 19.5.

(19} SCHROEDER, M. D., GIFFORD, D. K., AND NEED-
HAM, R. M. A caching file system for a program-
mer 's workstation. In Proceedings of the Tenth ACM
Symposium on Operating Systems Principles (Dec.
1985). ACM, pp. 25-34. Published as Operating
Systems Review 19, §.

[20] STUGIS, H, MITCHELL, J., AND ISRAEL, J. Issuesin
the design and use of a distributed file system. Op-
erating Systems Review 14, 3 (July 1980), 55-69.

(21] SUN MICROSYSTEMS, INC. SunOS Reference Man-
ual, 1988.

[22] TerrY, D. B. Distributed name servers: Naming
and caching in large distributed computing environ-
ments. Tech. Rep. UCB/CSD 85/228, Computer
science Division (EECS), university of California,
Mar. 1985. The author’s PhD thesis.

[23] TERRY, D. B. Caching hintsin distributed systems.
IEEE Trans. Softw. Eng. SE-13,1 (Jan. 1987), 48—
GA,

[24] THOMPSON, J. G. Efficient analysis of caching sys-
tems. Tech Rep. UCB/CSD 87/374, Computer Sci-
ence Division (EECS), University of California, Oct.
1987. The author's PhD thesis.

/O

