
February 1990 Report No. STAN-CS-90-1304

A Model of Object-Identities and Values

Toshiyuki Matsushima and Go Wiederhold_ - --

Department of Computer Science

Stanford University

Stanford, California 94305

ECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 0704-0188

I a REPORT SECURITY CLASSIFICATION 1 b RESTRICTIVE MARKINGS

!a SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION /AVAILABILITY OF REPORT

,
!b DECLASSIFICATION /DOWNGRADING SCHEDULE

1 PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

;a NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
(if djlpkdbk?)Stanford University -

;c. ADDRESS (City, State, and ZIPCode) 7b ADDRESS (City, State, and ZIP Code)

Iepartment of Computer Science
Stanford, CA 94305

Sa NAME OF FUNDING i SPONSORING 8b OFFICE SYMBOL g PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If app/icdb/e)
DARF'A N00039-84-C-0211

8~ ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

Arlington, VA PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO NO NO ACCESSION NO

I 1 TITLE (Include Security C/JssificJt~on~

A Model of Object Identities and Values

12 PERSONAL AUTHOR(S)

13a TYPE OF REPORT 13b TIME COVERED
Research F R O M 1988 TO- February 1990

16 SUPPLEMENTARY NOTATION

17 COSATI CODES 18 SUBJECT TERM S (Cont,nue on reverse If necessary and Identify by block number)

FIELD GROUP SUB-GROUP

19 ABSTRACT (Continue on reverse If necessary and identify by block number)

--~_ ~~
An algebraic formalization of the object-oriented data model is proposed.
The formalism reveals that the semantics of the object-oriented model
consists of two portions. One is expressed by an algebraic construct,
which has essentially a value-oriented semantics. The other is
expressed by object-identities, which characterize the essential difference of
the object-oriented model and value-oriented models, such as the relational
model and the logical database model. These two portions are integrated by a
simple commutativity of modeling functions.
The formalism includes the expression of integrity constraints in its
construct, which provides the natural integration of the logical database
model and the object-oriented database model.

20 DISTRIBUTION /AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
0 UNCLASSIFIED/UNLIMITED 0 SAME AS RPT 0 DTIC USERS

22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include AfeJ Code) 22c OFFICE SYMBOL

DD Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

S/N 0102~LF-014-6603

A Model of Object-Identities and Values
Toshiyuki Matjsushima, Gio Wiederhold

February 23, 1990.

Abstract

In this report, a formalization of the object-oriented data model is proposed, which inte-
grates value-oriented models and object-oriented models by providing a simple semxrtics of
object-identity.

The formalism reveals that the semantics of the object-oriented model consists of two
portions. One is expressed by an algebraic construct, which has essentially a value-oriented se-
mantics. The other is expressed by object-identities, which characterize the essential difference
of the object-oriented model from value-oriented models, such as the relational model and the
logical database model. The value-oriented portion represents the abstraction of the real world
objects, while the object-oriented port.ion represents the existence of the real world objects.
These two portions are integrated by a, simple commutative diagram of modeling functions.

The formalism includes the expression of integrity constraints in its construct of classes.
which provides the natural integration of the logical da.tabase model and the object-oriented
database model. More specificaUy, we will show that a tlatalog program ca,n be expressed as a,
collection of classes in our model.

As an a#pplication of the formalism, formal guidelines on database design are also discussed.

Contents
1 Introduction 4

1.1 Formalization of Object-identity . 4
1.2 Integrity Constraints . 7
1.3 Outline . S

2 Data Algebras 8
2.1 Multi-valued IJniversal Algebra. 9
2.2 Definition of Da.ta Algebra . 1 0
2.3 Fundamental Operators . 1 1

2.3.1 -Aggregation . I 1
2.3.2 Recursive Aggrega,tion . 11
2.3.3 Abstraction . 1’L
2.3.4 Restriction . 13
2.3.5 Sequence Construction . 1:3
2.3.6 Ba.g Const ruc t ion . 113
2.3.7 Set Construction . L-1
2.3.S Categorization . 1 1

2.4 Many-Sorted Data Algebra . 1.5
2.5 Generaked Data Algebra. 1.5
2.6 Named Data Algebra . 16
2.7 Hierarchy of Data Algebras . 16

3 C-Classes 17
3.1 C-Class Construct . 1s

3.1.1 Definition of C-Classes . 1S
3.1.2 Esa.mples of C-classes . IS
3.1.:3 Primitive C-Classes . 20

3.2 Universal Language . 20
3.2.1 tJniversa.1 Renaming . 20
3.2.2 Local Renaming . 21
3.2.:3 Esistence of Universal Language . 22

3.3 Fundamental Operator on C-Classes . 22
3.3.1 Aggregation . 2’2
3.3.2 Recursive Aggregation . 2:3
i3.3.3 Abs t rac t ion . 24
3.3.4 Restriction . 2.5
3.3.5 Set Construction . 2.5
3.3.6 Categorization . 2.5
3.3.7 Generated C-Classes . 2fi

3.4 Hierarchy of C-Classes . ‘Lb;
3.5 Conceptual Order and Fundamental Operators 27
3.6 Generalization and Specialization . 28

4 Models and Instances 29
4.1 Value-Oriented Model of C-Classes . 30
4.2 Object-Oriented Model of C-Classes . 30
4.3 Induced Mapping on Instances . :32

5 Database Design 36
5.1 Entity C-Classes and Abstract C-Classes . 36
5.2 The Concept Model . 3s

5.2.1 Design Process . :3S
.5.2.2 The Concept Model and Its Semantics 40
5.2.3 Two Kinds of Predicates . 4 1

6 Expressibility of Concept Model 43
6.1 Relational Model Semantics . 43
6.2 Datalog Sema,ntics . 44
6.13 IQL Semantics . 47
G.4 IRIS Semantics . 50

7 Future Work 50

8 Conclusion 51

A Database Operation 52
11.1 Q u e r y .52
A.2 Update . 52

A.2.1 Insertion . 52
A.2.2 Deletion . rj2
A.2.3 Modification . 53
A.2.4 View Update . 53

B Methods, Overloading, Encapsulation 53
B.l Method by Function . 53
B.2 Overloading . 54
B.3 Encapsulation by Subtype Matching . 54
B.4 Application to Database Security . 54

C ADL Sample Session 55

1 Introduction
In recent years, many attempts have been made to formalize the semantics of the object-
oriented model. As the result of these efforts, several models have been proposed [AK S9],
[LR 891, [KW S9],[CW 891. Roughly spea,king, these models are logical database models with
typed variables. Their a.pproach is to incorporate a structured knowledge representa,tion, such
as comples objects, object-hierarchy, iato a logical representation paradigm. However, the
semantics of object-identity is not captured in these models. Although [AK 891 forma,lize
object-identity in their model, the semantics remains complicated. Basica.lly, what they ha.ve
done is to “push” object-identity into a value-oriented framework consisting of logic and types.
However, a.s discussed later, the notion of object-identity is something t1la.t will never fit into
the value-oriented paradigm.

In this report, a formal semantics of an object-oriented model is proposed, which approaches
the issue from the opposite direction. We try to incorporate a. logical knowledge representa.tion
into a structured knowledge representation paradigm. We will show that our approach pro-
vides a natural forma,liza,tion of object-identity and a simple integration of the object-oriented
paradigm and the value-oriented paradigm.

This report 1la.s two main objectives. One is to provide simple and elegant semantics of
object-identity, which integrates value-oriented models and object-oriented models. The other
is to extend the formalization of objects so that the integrity constraints a.re included.

1.1 Formalization of Object-identity
In this section, we first provide an overview of the origin a?.nd the role of object-identity in
knowledge representa.tion, using the discussions in the literature listed above. Then, we provide
an outline of our formalization of object-identity.

The semantics of object-identity is obtained by considering a ba.sic aspect of a knowledge
representation. Namely, any knowledge representation is only an approximation of the real
world knowledge. The existence of objects in the real world cannot be captured by the values
of expressions. We consider an exa,mple. Let us assume tha,t a concept ‘person’ is expressed
by name a,nd address according to the following schema in the sense of [AK S9]‘.

Location = [city:S’fring, street:String, n~~nzber:Integer],

Person = [nunle:[f irst:String, lnst:Strin,g], nddress:Locntion].

In most cases, we can completely identify each individual person by providing the na*me and
address. However, there is a possibility that two distinct persons with the same name a,re
living at the same‘ place. The occurrence of these persons cannot be characterized by the
va.lues of attribut’es ‘name’ and ‘address’. We can come up with two relevant solutions for
this problem. One is to provide more afttributes for expressing the concept ‘person’. However,
t.he real attributes of a person are almost infinite in number. So, even if we introduce many
att!ibutes for ‘person’, we cannot eliminate the possibility that some distinct persons a.re
expressed by the same set of attribute values. The other solution is to provide a key attribute
to express the uniqueness of each individual person. However, this does not provide a natural
wa.y of expressing the real world, because it is a.11 a.rtificiaJ attribute. We cannot avoid the
unnecessa,ry semantics of the key attribute. For esalnple, a. ‘social-security-number’ may be

‘!P’e use the not&on esplained in [AK 891 for t,he moment..

ycl.qe 3

implemented as either an integer or a string consisting of digit cha.racters. In order to define
the equality of objects, we have to define it as equality of integer, or equality of string according
to the “implementation.” Further, we have to express the maintenance of the key attribut,e
explicitly in the higher level semantics. For example, *‘Once an instance is crea,ted, the key
attribute should not be altered”, “there should not be more than one instance whose key
attributes are identical.” Since the sema.ntics of “real existence of objects,’ is just that, of a. set
with the equality relation, it is not desirable that the semantics of the implementa.tion appears
in higher level sema,ntics.

The problem is essentially due to the inherent incompleteness of our representation. There-
fore, rather t ha.n expressing the uniqueness of an occurrence in the real world by a.t t ribute va.l-
ues, we need soirlething that specifies the existence of occurrence. The oh ject-identi ty serves
this role. It is important that an object-identity is not a value. Instead, it is an entr*y point
for information access in our kno\vledge. In other words, it is the reference to knowledgebase.
Hence, as discussed in [LR 891. it provides the basis for object sharing, which is the nlost
important a.dvantage of introducing object-identities in a practical system.

Let us come back to the previous example. Suppose that a person na,mecl “Jolln Ford”
lives at “2260 Yale Street Pa.10 Alto”. Moreover, suppose that a person named “Mary Ca.rter”
lives with him. These fa,cts are cspressed by:

'POOl' = [~?(ln)l;:[first:b‘.JoIZIZ)‘, last:“Ford”], nddress:‘LOlO~,

'POO2' = [nume:[Jirst: “i\~ury”, lust:“Carter”], cddress:'LOlO'],

'LO10 = [city:“Pa/o&to”, street:“E’ule”, number:2260].

What happens if the name of the street where John lives is changed from “Yale” to “IIa,rvard’,?
Since John lives at the loca,tion ‘LOlO’, the expression of the location becomes:

‘LOlO’ = [city:LbPaloAlto”, street:“Harvard”, nwnber:2260].

Hence, after the change, \ve can say that both John and Mary are living on Harva.rd Street.
The point is tha.t ‘LOlO’ corresponds to the existing location on earth, and John and Mary’s
a,ddress is expressed by r-efemi,nq to ‘LOlO’. Thus, when its street name has been changed, the
change is propaga.ted properly.

So far, we have seen the origin of object-identity and the role of object-identity in the
knowledge representation. To summarize:

l The object-identity corresponds to the real existence of objects in the real world, which
cannot be captured by the the value of expression.

l The object-identity provides the basis of object-sharing. An object-identity is the refer-
ence to represented knowledge. which is exactly what is to be shared.

Next we claiin tl1a.t in order to take full a.dvantage of object-sha.ring, attribute va.lues of a.11
object should be object-identities.

[AK ~91, [CL\/ Sq] allow complex values2 as the values of attributes. It provides us t,he
complica,ted espression of objects. Namely, in the above example, [fir.st:“.John”, Iast:“Ford”]
is a. comples(st,ructured) value. However, this approach has a disa.dvantage. If we allow
complex values, there is a,n inherent possibility that the subexpression of a comples value

we llse the terlll “cotnples valw” inst.ead of “complex object,“. They clon‘t carry object-icleiltit,y.

would be changed. Since a substructure of a value ca.nnot be shared. it will cause costly
update maintenance. Of course, the schema is designed so that the attribute value of ‘name’
is really a value and not sharable, because it is quite natural to express a person’s name as a
value. However, even in this case, we can show an esample that demonstrates the necessity of
sharing objects.

Let us consider an additiona. concept, ‘BusinessCazd’.

Busi~2essCurd = [compu?~!/:String, title:Strilzg, nume:[f irst:String,last:String]]

Assume that John’s business card is expressed by:

‘Boll’ = [co7npany:iLCDLI‘,, tltle:“salesmnll’,, nul12e:[f%rst:iLJohn*‘, last:“Ford”]]

What happens if John marries Mazy and changes his last na.me to “Carter”? We have to create
a new value:

[fir.St:ii.Joh12”, lust:‘bCurter”],

and replace
[f irst:“.Johl2”, lu.~t:L’For#‘].

The creation of the new value will be costly when the structure is large. Furthermore, we have
to replace ‘name’ of both ‘Pool’ a.nd ‘Boll’.

If there is no need for the object-sharing, the comples value would be reasonable. However,
if we have more than one concept that shares a same value, as in above example, we should
incorporate with object-sharing. Thus, in this case, the following schema will be preferable.

Nume = [f irst:String, Iust:String] 7

Person = [wme:;Yume, clddreas:Location],

BusinessCard = [compuny:String, titleString, name:Nume].

The point is that every attribute should refer to an ob.ject with object-identity. Therefore,
it is not desirable to design such a schema as the original ‘Person’ with complex-value [first:
String, lnst:String] as attribute va.lue. The schema must be changed dramatically when we
add a new schema object like ‘B11sinessCarcl’.

In order to demonstrate the idea. more clearly, we repeat the discussion with the following
schema. In this case, the attribute is not a comples value, but just a va.lue.

Person, = [n.ame:String, employer:Stri:?zg]

BusinessCurd = [co~rbp(lny:,Strillg? r~ume:String].

The information about John will be expressed by:

‘Pool’ = [7)u7ne:‘b .JohnFord”, en2ployer:“CDB”]

‘Boll’ = [company?CDB”, title:iisClle.sm(112~‘, nume:‘i.John,Ford”]

If he changes his company from *.CDB” to *‘HAL”. WC have to change the employer of ‘Pool’
and the company of ‘Boll’. Therefore, rather than Ila.ving value-a.ttribute, we should have
only attribute referring the object-ident,ity of other objects. Xamely,

Boll’ = [conzpn.n~:‘E000’, titlc:‘Slll’, nnme:‘j1-012’1.

‘NOl2’ can be associated with a string va,lue “CDB” or “HAL.”
To summarize, in order to make use of object-sharing fully, it is preferable that a schema

object doesn’t have ‘value’ a,s an attribute value3. Instead, attribute value should be an object-
identity referring to another object insta.nce. In particular, it is not desirable to have complex
va.lues as attribute values.

lMoreover, since the attribute names? such a.s ‘name’,‘employer,, can be regarded as access
functions, we get the following flnt representation.

nnmr(‘Pool’) = ‘X012’. enzl.‘loyer(‘Pool’) = (EOOO’,

c0mpany(‘B011’) = ‘EOOO’, titZe(‘B011’) = ‘Sill’, ww2e(‘BOll’) = ‘Pool’.

Thus the information about John is expressed by the partial functions from object-identities to
object-identities. We call this represent ation spxe object-identity space, which will be precisely
formalized in Section 4.2. The semantics of this representation is quite simple.

However, the above representation does not have an important feature of object-oriented
representation. That is the explicit structuml representation of knowledge. One of the big
advantages of frame or comples object in knowledge representation is that they provide the
structure of knowledge that we ca.n easily ima,gine and manage. Of course, we can espress the
semantics of complex-object in first order logic by some transformation [CW 891. However, if
we express it in first order sentences or formulas, the structure is concealed in the semantics of
sentences. Hence we have to interpret the first order sentences to get the structure. Therefore,
we should integrate the object-identity space with a structured complex-value representation.
In Chapter 4, we have a simple and elegant formalization that integrates them. The outline
of the integration is as follows. First, we provide tire syntactical construct of schema objects.
Next, we provide the value-oriented model, i.e. an algebraic model with (complex) values.
Then we provide the model expressed by the object-identity space. Finally, we provide the
mapping that combines object-identity space and a.lgebra.ic representation of complex-values.
The compatibility of object-identity spa.ce represerrta tion and algebraic representation is es-
pressed by a simple commuta.tive dia,gram.

1.2 Integrity Constraints
In the conventional approach as [AI< $91, [KW 891. schema objects are defined with the struc-
ture expressed by types. Then logical formulas are constructed on top of the objects (Rules in
[AK 891, O-formulas in [KW 891).

In our model, each schema object, called C-ckss, consists of type and a restriction IJjaed-
icnte. The type expresses the structure of knowledge representation, which will be referred
to a.s a comples object, a hierarchy of objects in conventional object-oriented models. The
restriction predicate will espress the integrity constraint of the representation. Let us consider
“absolute temperature,’ as a. simple esa.mple. It ca.n be espressed by the positive real numbers.
The structure [vi11 be realized by the algebra R with operations +, -, * etc. The integrity
constraints will be expressed by the predicate 11(x) G (X > 0) expressing “positiveness.”

By including the integrity constraints as the basic component of each object, we can show
tha,t every unit. of knowledge ca.n be cspressed by objects. Even a logical formula can be

expressed by an object. In the conventional aSppro& a logical fornmla(ground fact) is a value
in the sense that if every substructure of two logical formulas are the same, then those logical
formulas are the same. However, as discussed in Chapter 5, even a logical formula cannot
be treated as a8 value, due to the inherent incompleteness of our knowledge representation.
Rather, it should be expressed by an object that carries a unique object-identity.

If ule express knowledge by objects, we can provide a representation of the rcr11 wo1*1d thut z’s
closer to our intuition than expressing know/edge by logical fornzdcl.s; 012 complex OhjcCts. \Ve

will discuss this ma,tter in deta,il in Chapter 5.

1.3 Outline
The outline of this report is as follows.

In Chapter 2, we introduce a notion of data algebra that is an abstraction of data. Roughly
speaking, the data algebra is the combination of type and integrity constraints. The type part
is expressed by a universal algebra, and the integrity constraints pa,rt is espressed by a boolean
function. The data a.lgebra. provides the basis for the semantics of value-oriented data. model,
which is discussed in Chapter 4.

In Cha.pter 3, we introduce a notion of C-class that formalizes schema objects. A (.1-cla.ss is
a construct that expresses a5 unit of real world knowledge. As mentioned earlier, in conventional
models such as [-;\I< S9], [KW 891, those units of knowledge are expressed by comples objects
and logical formu1a.s. The C-class is similar to class in the usual object-oriented larrguaGges,
such as Smalltalk, and CLOS [WT 891. A C-class is a combina.tion of syntactical expressions
of type and restriction predicate, the type specifies the structure and the restriction predicate
expresses integrity constraints. A restriction predicate is a first order formula with implicitly
typed variables, which is essentially a restricted form of O-formula [Iiw 891. We also iutroduce
a hierarchy among C-classes to espress the hierarchy of knowledge.

In Cha.pter 4, we discuss the main theme of this report, object-identity. First we forma.lize
a value-oriented ,model of C-classes. Then we define a object-oriented model of C-cI~~.sse.s; by
introducing the object-identity space. This object-oriented model represents the c1ea.r sema.ntic
distinction of a. value-oriented model and an object-oriented model. F‘urt.her it clarifies the role
of object-identity in the knowledge representation.

In Chapter 5, we consider the C-classes in detail and provide some kinds of C-classes. It
reveals that even a logical representation of knowledge cannot be ca.ptured in a value-orieuted
paradigm. We discuss which knowledge should be value and which should be object a.s the
database design issue. We introduce the concept model as a knowledgebase model.

In Cha.pter 6, we demonstrate the expressibility of the concept model, by simulating t,he
semantics of other models, such as datalog, IQL[*4K 891.

In Appendices, we briefly discuss database operations, inherita.nce and overloading. The
semantics of database operation is quite simple, especially for queries. Furthermore, we provide
the copy of the actual session performed on the prototype system that has been implemented.

2 Data Algebras
We introduce a notiou of cl&a algebraa to express instauccs of schcula. objects. The notion of
data algebra is an abstract forma.liza.tion of cornples objects wit,11 int.egrity constraints. wbicb

will serve a.s a value-o,riented model of schema objects later. We assume a basic knowledge of
the universal algebra, as found in p.22 - p.60 in [BS 811.

2.1 Multi-valued Universal Algebra
In order to define the notion of da,ta algebra, we provide a precise definition of multi-dued
j’lr.action, partial function, and an extended universal algebra. If the rca.der does llot like
nla.thematica,l details, he/she may read only the last paqraph of this section.

Let A and B be sets, and let 2A and 2B be the power sets of A and B respectively. Then,
a. function from 2A to 2B is called a multi-dued function4 from A to B, if it sa,tisfies the
following condition.

v’u E 2”, f(u> = u f({xl)*
XEU

\Ve denote the multi-valued function as:

f::A - B.

It is ea,sily proven that the composition of multi-valued functions is a,lso a multi-valued
function. Namely,

f::A - B,g::B - c’ + gof::A - c’.

A multi-valued function f is called total if

f::A + B, kc E A, f({x}) # 0.

Note that \ve can construct a category consisting of sets as objects and multi-valued functions
as morphisms. The identity multi-valued function id*4 on a set A is the identity function on
24

For a multi-valued function f from A to B, we ca11 always define the quclsi-inverse flrnction
f-’ from B to A.

vv E 28, f-‘(V) $2 {x E A I (f(x)n V) # S}.
A multi-valued function f from A to B is called irzjective if f-l of equals ir1.4. The function f
is called sur:jective, if fof-’ equals icl~.

A pnrtid function f from A to B is a multi-valued function from A to B such that for each
clement of A, the cardinality of its ima.ge is no more than one,

The domain a(f) of a partial function $ is:

Any &nction h from A to B can be rcgardecl as a multi-valued function. Namely, we can
define a0 multi-valued function ^h by:

“A lnult.i-valued function from A to B is equivalent to a binary relatSion on .4 x B.
5’131e operator . can be considered as a funct,or from the categor! of sets to another category consisting of set.s a~

oI)jects and multi-valued functions as morphisms

In the rest of this report, we use the following simplified notation so long as it causes no
confusion. For a multi-valued function from A to B, for an element x of A, and y of 13,

f(x) Y f({:u}), (f(x) = y) (5 (f({x}) = {y}).

Moreover, we introduce a virtual element ~1 to express “undefinedness”, which is called the
72uZZ &ue. The null value 111 is a. common element of all sets. For a multi-valued(pa.rtia.1)
function f, we denote

f(x) = VI,
if

f({x}) = 0.

Now we extend the notion of universal algebra. A multi-valued universal algebra A is
a pair of a set A and a family {fi}iEl of multi-valued functions. AII the notions, such as
homomorphism, isomorphism, are redefined using multi-valued functions instead of functions.
Simikrly, a. partial-vah~ea! universal dyebra is a multi-valued universal algebra such tha,t all
the functions are partial.

The notion of data algebra. is defined by multi-valued universal algebras. However, in order
to make the discussion simple, we only consider partial-valued universal algebras in the rest
of this report. The reader can consider the partial-valued universal algebra as usual universal
algebra, except for the esistence of null value. Hence, we use the term “universal algebra”
instead of “partial-valued universal algebra” from now on. But readers should remember t1la.t
functions are partial.

2.2 Definition of Data Algebra
In this section, we provide the definition of the data algebras. A data algebra S is a pair o
universal algebra 6 A and a* restrktion function ?. Namely,

6 = (A,r), A = (A, {fi}iEI), r : A -+ 2,

where 2 is the two-element boolean algebra.,

2 = ({O,l}, A, v, 1).

fa

Further, we assume that each data algebra contains a. special element null ucrlue ~1. :\s
mentioned before, the null value expresses “undefinedness.” For each function, if one of the
arguments is nuII value then its value is also null value.

A data algebra is the abstraction of a, collection of da,ta with operations on it. For esanlple,
“positive numbers” would be expressed by a data a.lgebra:

(R, r), r(x) %’
7

where R is the universal a.lgebra of real numbers.

6We should remember that this universal algebra is a partial-valued universal algebra defined in the previous
sect,ion. We can regard it, as if it was a usual universal algebra by introducing a null-value ~1 as a common value ot
all universal algebra.

‘1More precisely, r is a function on the domnzn of A. However, we describe it as a function on A. SimilarIF,
throughout this rc~port~, we treat, A a.nd its domain interchangeably so Ion g Gas the meaning is clear. For esanlpleT for
give universal algebras A, B, we would st,ate something like “a mapping from A t,o B”. The meaning is “ a tnappitl,-:
from a domain of A tIo the domain of B.”

2.3 Fundamental Operators
We introduce operations among data a1gebra.s. These operations will provide the interpreta-
tions of fundamental operations on C-classes. which will be introduced in Chapter .3. Each
operation happens to have a corresponding construct in relational algebra or SQL. However,
we should note that these opera.tors have not been obtained by a mere extension of relational
algebra, but by the consideration of knowledge representation, a,s their names suggest. We
could say that one of the reasons of the success of relational model is due to the fact that
the relational operations have a. correspondence to a higher level of mental processes, such a.s
abstraction of concepts. This will be clear when we introduce the fundamental operators on
C-classes in Cha,pter :3.

2.3.1 Aggregation

The a,ggregation operator constructs a8 complex structure out of data a1gebra.s. It. is simi
Cartesian product operator in relational algebra.

Let Q be a set of symbols, a.nd let a, be a. mapping from @ to a set of data algebras,

where p; is the projection from lJr=, Ai to A;, and o designates a composition of mappings.
We denote t.he a.ggregation by

In particular, if @ is equal to (1,. . . , n}, we denote it

n

rI Si .
i=l

Moreover? if Si is equal to a data algebra S for each i (1 5 i (n), we denote S” instead of
ny=, Si. Furthermore, if we write the aggregated data algebras as:

S” x s, srr x s x S’,

for given data algebras S, S’, S”. etc, it means that we are assuming t,he following implicit
sequencing,

.c?(i) = S”,cYp) = S,@(3) = s’.

2.3..2 Recursive Aggregation

In order to provide an algebraic model for recursive types, we introduce I.ECUM~M clggregation.
Let G’ be a directed graph with nodes I;’ and labeled edges ET

G = (V, E).

We denote an element of E by (n, m, r), which means that there is an edge from n. to 71% labeled
by 1. Further, let CY be a mapping from U to a set of data algebras, where U is the subset of
V such that each element ‘11 of U doesn’t have any edge that comes into ZL,

U def {u E V 1 +A (u, ‘11, I) E E)},

a(n) = (B,,s,) (12 E ri).

Then, the recursive aggregation with respect to G’ and CY is defined as follows.

b’n E V, AndLf Bn (n E U)
hn,m,l)EE A(?n,l) (n 4 Ii)

V(n. m.1) E E A,,/ = A,

‘drt E V, r,(2) def 1 (1 E L(4)
0 (otherwise)

The functions t, are multi-valued functions from A,, to 2, which is defined as follows.

A(n,m,l)EE(S~“~ (m,l)> (n 4 b-1

Sn (otherwise)

where s,(2) = 1 (z = 4
tn(x) (otherwise)

Note that the elements of A,(n 4 U) have an infinite structure in general. We may regard
those elements as infinite trees. However, since we allow null va.lue vl as the common element
of every algebra, we can espress elements with a. finitely recursive structure. The function t,
is well-defined, if the recursive definition assigns consistent values to each subtrees. A41tllough
the restriction function r is a partial function, it is well-defined on the elements with finite
structure and cyclic structure. The aggregation defined a.bove is a special case of the recursive
aggregation. In fact, if we assume:

v = @, E = 8,0(f) = Af(f E CD),

we get the original aggregation operator.

2.3.3 Abstraction

The a.bstra.ction operator constructs a new data algebra ignoring some of the
a data algebra. It is simil.ar to t,he projection operator in relational algebra.

substructures of

For f E <p, let Af be a universal algebra., where (P is a, set of symbols, and let Q be a subset
of a. Let us consider the following data algebra n

S = (n Af. r).
fC@

where rIf@ Af is the product algebra of {Af}fc~. Further, let PQ be the projection from

l-If,@ 4 to rIgE@ A,. The abstraction Y(S, !P) of the data algebra S with respect to !I! is
defined as: -

where

F(x) = 1 (if 3y E f$+),r(y
0 (otherwise)

2.3.4 Restriction

The restriction operator imposes a new restriction on a data algebra. It is similar to the
selection operator in rela.tional algebra.

Let S = (A,r) be a da.ta algebra, and let s be a mapping from the domain of A to 2.
Then the restriction with respect to s is

(A.rr\ s)

The restriction is denot WI bv O(S? s).

2.3.5 Sequence Construction

The sequence construct,ion operator constructs a data algebra consisting of sequences of ele-
ments of a data algebra.

Let S = (A, r) be a data, algebra. The sequence algebra Seq(G) derived from S consists
of the direct sums of t lie product algebra A’” (i = 0, 1,2, . . .), and the relevant restriction
function rseq,

Seq(G) = (CF!,A”, rsep)
v:c = (x1,22, . . . , 57,) E Seq(b), (7I = 0, 1, ‘2, . . .)
rseg(cc) =

Given a class of universal algebra,s. The set of finite sequences of elements of the algebras
in the class forms a universal algebra. with functions, length, concutennte, 12~11, reverse, etc.
We designate it by SEQ. N’e assume that the direct sum XrzoAn is a suba.lgebra. of SEQ by
embedding it in SEQ.

2.3.6 Bag Construction

The ba.g construction operator constructs a data algebra consisting of bags of elements of a,
data algebra..

Let S = (A? r) be a data, algebra. We ca.n define a congruence relation N in the direct sum
algebra. Y;;I”=i A’” as follows. For elements Z? g of Seq(G),

8The direct, sum is al~avs a partial-valued algebra..,

the sequences 5 and ij’ are equivalent with respect to w; z N jj’, if n equals
a permutation 0 of order n such that

m, and there esists

(x1,. . .) 21,) = @a(I>, . . . , q+)).

Then the OCICJ algebra derived from ci consists of the quotient algebra of S,“,,A” with respect
to N and the restriction function rbag. Since the restriction function rseq of Seq(S) has the
sa,nze value on the equivalence class of N, we can define the restriction function rbag of Bag(6)
by:

%g([q) = rsef#),

where [?] is the equiva.leuce class with respect to N containing 2. Similarly, \ve can construct
a universa,l algebra BAG a.s a quotient algebra of SEQ. As in the definition of Seq(Ci), we
assume tha.t the a.lgebra.ic part of Bag(&) is a subalgebra of BAG by embedding it in BAG.

2 . 3 . 7 Set Construction

The set construction operator constructs the data algebra consisting of finite sets of elements
of a data algebra..

Let 1; be (A, r). The set algebra Set(d) is the collection of finite elements of A that satisfies
r. The definition is as follows. First, we define a restriction function s on Bag(G). We denote
a.11 element of Bag(6) by [?I], where Z is an element in Seq(S). Then.

:c = (x1, x2, . . . , .L’,)
s([T]) (ief 1 (if (i # j * Xi # Xj))

0 (otherwise)

Nest. let SET be the universal algebra of finite sets with functions U(union), n(intersection),
-(difference), etc. Then set algebra of Set(G) is obtained from O(Bag(S),s) by regarding its
algebraic component as subalgebra of SET. Namely,

@(Bag(O, s) = (C~&A”/-, rhclg A s).

2.3.8 Categorization

The categorization opera.tor constructs a new data algebra by categorizing elements of a data
algebra. with respect to the values of some substructures. It is simi1a.s to the grouping constrllct>
of SQL without a.ggrega.tion functions.

Let Cp be a set of symbols, let q be a subset of @ and. let 9” be the complement of !@,

Further let ,3 be a mapping from Cp to a set of universal algebra.
following data. algebra. 6.

Now let us consider the

Then the ccltqorizcltiorz Okra. ‘li) of 6 with respect to @ is:

fl(6, !P) = O(Y(6, Q) x Set(Y(6, UC)), rfl).

The restriction function rn is defined as follows.

mttG YN =
1 (Vz E y,r(xEz) = 1)
0 (otherwise),

2.4 Many-Sorted Data Algebra
So far, we have introduced the notion of da.ta algebra based on universal algebras. In t.his
section, we extend the notion to many-sorted universal algebras instead of universal algebras.

First we consider a many-sorted algebra with sorts S. For a, sort s in S, let us denote the
universal algebra of the sort s by A,, and let d(s) be the collection of all subalgebra of A,.
Further let d(S) be the closure of Us,=s d(s) with respect to the Cartesian product operator.

A set of data algebras D is the many-.sorfed data nlgeLrcl.9 with sorts S, if

v’s E D 6 = (A,r), A E J-Q S).

We call the data algebra of the following form as the primitiue data algebra of sort s.

S = (A,, r) (s f 5’).

We assume that any primitive data algebra of sort s will never be derived from primitive
algebras of different sorts with fundamental operators. Namely, any data algebra of the form
(A,, r) (s E S) will never be derived from another data algebras of the form (A’,, r) (s’ E
5’ - {s}) with fundamental operators.

From now on, we assume that data a.lgebras axe constructed on a many-sorted algebra,
even if the sorts S is not specifically stated. In another word, data, algebras are generated from
primitive data algebra in the sense defined in the nest section.

2.5 Generated Data Algebra
For a given set of data algebras, we can generate da.ta a.1gebra.s by the fundamental opera.tors,
such as aggregation, restriction, a.bstra,ction etc. VVe call a, set of data algebras algebraic
family of clntn algehs if it is closed under these operations. For a set D of data algebras, we
can consider the minimum algebraic fa.mily of data?. algebras that contains D. We call it the
algebraic closure of D and denote it a.s D. Since the intersection of algebraic families is also an
algebraic family, it is obvious tha.t there esist.s a, unique algebraic closure for any set of data
algebras. In fact, the closure of D is the iir tersection of all algebra.ic families that contain D.

Conversely, we ca,n consider the minima.1 set of data algebras that generate a given set D
of data, algebras. More precisely, we ca,n consider the set r;(D) of data algebras such that:

page 16

l the algebraic closure of K(D) conta.ins D.

IL(D) I) D.

l among the sets that satisfy the above condition, h;(D) is minimal. Na.mely, for a set of
data algebras E, if

E I D and K(D) 1 E,

then
D = E.

It is not difficult to prove the uniqueness of K(D) up to isomorphism, if D is finite. Namely,
it is not only minimal but also minimum. So we call it the kernel of D. The kernel of a set of
data a1gebra.s will provide the building bricks t,o construct the data a1gebra.s.

2.6 Named Data Algebra
The notion of data algebra will provide a structure of the space to express our knowledge.
However, the structure itself is not enough. For example, we can express ‘*absolute temper-
ature” and “half line” by the same data. algebra a,s “positive numbers”, Ivhich is defined in
section 2.2 as an esa.mple. Moreover, we don’t want to a.llow operations such as:

1°K + 2cm.

Thus we need to distinguish the data, a.lgebras that are espressions of “absolute temperature”
and “half line.” Hence, we attach na.mes to all algebras to distinguish them. We don’t allow
algebraic operations between the elements of data algebra,s with different names. A named
nlgebrcz is expressed by a tuple:

(ns, AS, rd.
In the rest of this report, we assume that every data algebra is named. However, when we
don’t have to consider the name explicitly, we use the previous notation without a na.me.

2.7 Hierarchy of Data Algebras
In the later chapters, we will see tha.t data algebras play the role of model of a knowledge
representation (schema representa.tion). In order to express the hierarchy of knowledge. we
introduce mappings among data algebras. First we assume that there esists a partial order
5 among names of data algebras. If n 5 n’, we say that. the name n is a. wbnalne of n’. A
subtype mapping is the mapping from a data a.lgebra to another da.ta a.lgebra., which is defined
a,s folio ws .

Let us consider the many-sorted data algebra on the sort 5’. Let d be the set of universa.1
algebras corresponding to the sorts.

d = {A, 1 s E S}-

Let. D be the many-sorted data, algebra on 5’.

D = (6 = (n5, AS, r$)}.

A subtype mapping p from a data
satisfies the following conditions. Let

algebra 6 to a.nother data algebra 6’ is the mapping t1la.t
us assume that:

CI = (ri,A,r), 6’= (u’.A’.r’).

l Case 1: The data algebras S and S’ are primitive algebras.

- The name n is a subname of n’ and the algebras are the same.

n 5 n’ and A = A’,

- The restriction function r is stricter than r’ and the p is the inclusion mappilrg.
Namely,

Vx E A,r(zj = 1 =+ r’(z) = 1,

a(p) = {x E A 1 r(x) = I},

v17: E 8(p), p(x) = x.

l Case 2: The da.ta algebras 6 a,nd S’ are compound algebras:

S = (IL. n Ai, rj, 6’ = (n’, n A’;, r’).
zE@ LEat

- The name n. is a subname of n’; n 5 n’.
- The attribute a’ is a subset of @; a’ C a,.
- For each f in a’, there exists a subtype mapping PJ from (Af , q (r)) to (A;, ;r/(r’)),

where

Tj(rj(x) = 1 (if 3Y bf(Y) = 4 A (T(Y) = 1) >
0 (otherwise),

nf is the projection from IIgE@A, to Af .
Similarly for Kfl($1.

- Let II be the projection from IIfEa Al to ITfEat AJ. Then,

Vx E IIfcq AJ, r(x) = 1 * r’((KfEppfj 0 II(x)) = 1,

Fvhere rjEatPf is the product mapping:

vx E IIfEW b E a’, Q((~fEWPf)(“)) = Pf(Qd 1.

- The subtype mapping p from S to 6’ is defined by:

p = (qcwf) O II*

We say that S is a subtype algebra of 6’ if there exists a subtype mapping from 6 to 6’.
If there esists a subtype mapping from 6 to S’, S’ will be a model of a more general concept

tlmn the concept that has the model S. We will discuss it precisely in Chapter 3.

3 C - C l a s s e s
In order to formalize the construct of schema objects, we introduce the notion of c-c1a.G’.
First we define t.he structure of C-classes.

“Cklass is a kind of class. The let(t.er (: in ‘G&xss” is intended to suggest collcepl.

3.1 C-Class Construct
The set I? of C-classes is defined as follows.

3.1. I Definition of C-Classes

The intended meaning of symbols is:

l The name *+ of ef is a symbol that designates the name of the C-class y. The symbol is
unique to each C-class.

l The attributes set Qr of y is a set of function symbols that designate attribute names.

l The attribute value u7 of y is a mapping from ip, to the set of C-class names in I’.

l The structural sentences 7’7 of y aze a set of sentences that define the algebraic structure
of a universal algebra, which specifies the structure of the representation.

l The ausiliary sentences A, of y is a set of sentences thak defines new functions and
predica.tes concerning y. A, is used to simplify the espression.

l The restriction formula R, of y is a well-formed formula with one free variable. This
formula specifies a subset of the domain of the universal aalgebra defined by Tr. It is the
restriction condition on the domain.

The above construction provides a language for conceptualization of the real world. But,
we should keep in mind that our conceptualization is always incomplete. Since any object in
the real world has almost infinitely many attributes, our conceptualiza,tion of the object will
be only an approximation. We should distinguish between “real conceptual world” and “our
conceptualization.” The real conceptual world is the complete conceptualization of the rea.l
physical world. In the real conceptual world, a concept can be characterized by the set of
attributes. Namely, any two distinct concepts have different sets of attributes. However our
conceptualization may not be complete, two distinct concepts may be expressed with identical
attributes. Therefore we need C-class names to identify each distinct concept. (It is true that
we can carefully choose attribute names Gr so that any distinct concepts are expressed with
different attributes in our conceptualizakion. However, it becomes fairly difficult to design
schema in such a way, if the schema is big. Moreover, if the schema will change in the course
of time, the maintenance of consistent a.ttribute na.mes will be much more difficult.)

3 . 1 . 2 Examples of C-classes

We use the prefix notation for +,-, > etc., instea.d of the conventional infix notation. The
only exception is equality =.

l Integer In our model, we treat integers as the instances of a C-class.

Integer = (integer, 8, I, T1ntEger, A lnteyel., TR l/E),
where
Tint eger = {k vy t (2, y) = +(y, J).

VT vy VIZ t (x,t(y,z)) = t(t(:Ly).2),
etc.},

/“l!Jt I!)

A Integer = {kc Positive(xj = > (x, 0): etc.}.

l People
People is conceptualized by name a.nd a,ge in this example.

Person = (pcIb.son,, (name, age), ~~~~~~~~~ Tperson, Aperson, Rperson).

~~~,~~~~(nnn?e)  = string, vpErson(nge)  = integer,

where string and integer designate the C-classes that have algebraic structure of st.rings
a*nd integers,

TpeTSO = { V.cT(  7tnme(s),  string) A T(age(x),  integer),
V.cVy wme(modi  f y(x, person, y)) = y,
VxVy nge(mocZif y(x,person, y)) = y}.

where modify designates the function that modifies the attribute values of C-classes.

A~‘e,.so71 = (Kc OlclPer.son(x) e age(x) > 60, etc},

Rpersoll(X) E ((0 5 CLge(Xj 5 200) A . s s).

l Rational Numbers
The structured values, such as rational numbers, are also expressed by instances of a
C-class. The expressions of rational numbers are expressed by:

Ratiordes = (7’~L~iOllCL~,  (12?17)1,  dell), VRaLional,  ‘rRaLiona/y  ARational, Rrational),
where
VRational  (Izum)  = L’RatiolLal(  &?i)  = integer,

TRational
= {VctVb num(n) = x A num( b) = u A den(n) = y A clen(  b) = ‘v

nu~(+(a,  bj) = i-(*(x. v), *(q y)) A den(+(a, b)) = *(Y/47
etc.},

ARational  = {Vx Invertible(x) F l(num(x)  = 0), etc}.
Rrntional(x) = l(clen(:c) = 0).

0 Set -of-Integer
A set of a concept is expressed as a C-class without attributes. We assume that a.
predicate symbol T is provided to designa,te the instance-class relation. We ako assume
that each set C-class has a standard predicate In, such that In(x,y) mea.ns x is in a. set
y. We will extend this example to a8 general case later.

Set-of .-Integer  = (set-of -integer. 8, -L Set,  Asetisj-Integer  7 RSetdj-Integer  ),

Tset = {u( x, y) = u(y. CC),  n( x, u( y, 2)) = u(n(x, y), n(x, z)), etc.),
RSet-oj-Integer(x) = (&/ In( y, :c) * T( y, integer)).
A-Set-o  j-Integer =  ( ‘v”.r O n e - E l e m e n t ( x )

Gyvz In(y,z) A In(z,x j * y = z), etc. 1 .

In a.bove esamples, we ha,ve introduced relation symbols T and In. From now on. we FISH INC
these symbols are part of t,he basic construct of C-classes.



3 . 1 . 3  Primitive C-Classes

Let us consider a concept with some attributes. We may say the concept is constructed by
the concepts that acre attribute values of the concept. To formalize this intuition, we impose a
condition on the structural sentence Ty of the C-class with non-empty attributes. If it is not
specially declared, we assume that any C-class with non-empty attributes has the structural
sentences T7 containing the following sentences Ty”,

Let <p, be { fi, . . . , fn}, then
Tf = { VXV’y fi(mOdif ZJ(X, fi, y)) = ?J 1 i = 1, . . . , 12 } U

{ ‘V’X T( f;(X), V-y( fi)) 1 i = 1,. . ., n}

The function symbol mocli f y designates the function that modifies the a.ttributes  of C-classes.
The typical model of the sentences T: is the cxtesian product of the attributes specified by
v,. Hence a,ll the C-classes are constructed out of its attribute C-classes, if their attributes
are not empty. In this sense, if a C-cla.ss  has no a’ttributes, we ca,ll it a primitive C-clws. A
C-class that is not primitive is called compound C-chss.

In the last esa.mple  of Section 3.1.2, we ha,ve shown that the set of integers is expressed
as a, primitive C-class. Later, we will extend this example to express the set of my C-class
as a primitive C-class. This may seem a little bit strange, because it contradicts the term
“primitive.” It may be considered that the set of a C-class should be formalized as something
complex. We use the term “primitive” meaning “structureless.” In a model theoretic sense, a
set C-class is structureless, the operations that are a,llowed to them are the standard union,
intersection, etc. There is no algebraic operation that accesses its “sub-structure.”

3.2 Universal Language
Since the description of concepts is essentially local to each concept, there may be inconsis-
tency in the name of function symbols and relation symbols. For esa.mple,  a person can be
concept ua.lized by a, C-class Person:

Person = (person. {/lame, addrF.w), vperson,@,@,  TRUE).

On the other hand, a subconcept Student of Person may be expressed by a C-class Student

Stuclent = (student, {s_ncLme, 7*esiclence}, Ust,dent, 0,  0 ,  TR,UE).

In this case, s-name and resiclence are intended to express the name a,nd t*he a&lr.ess of the
student respectively. So, in order to designate the intended equivalence of these symbols, we
need a5 common langua,ge. We call this common langua.ge  universnl  lnngeqc of I’. Later, we
need the common la.nguage to define the hierarchy of the concepts. The precise definition is
a.s follows.

3 . 2 . 1  Universal Renaming

In order to describe t,he correspondence of attribute names of C-class descriptions7 we define
the notion of rewming as follows. For i being 1 or 2, let Li be a first order language nlade of



set Y; of varia.bles,  set .Fi of function symbols and set 72; of predicate synibols.  A rennnhl,ng CY
from Lr to L2 is a collection of injective mappings from L’i to );2,  Fr to Fz a.nd 721 to X2:

such that it preserves the similarity types of function symbols a,nd predica.te  symbols. Namely,
if a function symbol f has n arguments, c~f(f)  1a. so 11a.s n arguments. Similarly for predica.te
symbols. Note that the renaming cy induces a injective ma,pping from Li to L2.

Let L(y) be the la,nguage generated by the symbols of the description of y. Then a la.nguage
L is the universnl  lnnguage of I’, if there exists a set IV of rena.mings such that:

In a, practical case, we may require
mapped to the same symbol in the u

that the symbols of the same intended meaning will be
niversal language. In the a,bove example,

ckpeTson(nu7ne)  = ostudent(  xnunze),

aperson (address) = ostlbdent ( residence).
llowever these are meta-conditions. Theoretically the morphisms :V determines the semantics
of symbols. If we have

ctpeTson  (name) = aStUdent (reside  I) ce ),

it means that the ‘name’ of ‘person’ has the same sema,ntics as ‘residence’ of, ‘student’, although
it is different from the common meaning of the words “na.me” and “residence.” The set N of
renamings is called universal renaming of I?.

3.2.2 Local Renaming

In the actual programming, it is difficult to describe the global semantic equality from the be-
ginning. We can only specify the semantic equality loca.lly, i.e. we only provide the renaming
between the description languages of C-classes. In the above esa.mple,  we may provide the
re~~a.n~w ~Student,Person from L(St&ent)  to L(Person).  When we have provided renaming
between the description languages of individual concepts. we expect that there exists a uni-
versal renaming, which is compatible with those renamings. Before considering the eJxistence,
we introduce the conditions that those locally defined renamings should satisfy.

Let G be a subset of I’ x r\, and let J be the set of injective renamings among L(y)%, such
that

J = {%l,YZ I %,yz : ml) - L(Y2)  (WY2) E c:>,

We ca’ll (G, J) as the semuntic  local renccming  of I if the following conditions are satisfied.

1. Transitivity

where 0 is t,he composition of mappings.

2. Rolitc Independence



3. Acyclicity The binary relation G has no cycle.

The first condition expresses the global semantic compatibility of the morphisms. If a3
symbol s is semantically equiva.lent to a symbol s’ and s’ is equivalent to s”, then s should be
equivalent to .4’ by the transitive rule of equivalence relation. The second condition designates
the consistency of the inherited attributes. The third condition describes the relevant structure
of a hierarchy.

Note tha.t we can elimina.te  the first condition. In fact, the second condition guara,ntees
that we ca,n estend (G, J) to another semantic loca,l renaming (G’, J’) so that G’ is transitive.

3 . 2 . 3  Existence of Universal Language

If we have a local renaming, there exists a universal language and universal renaming such that
the universal rena.ming is compa.tible  ivith the given local renaming, under a certain condition.
Let us define a, partial order j, on I? by the binary relation G.

Theorem 1 Let I? be a set ojconcepts, w-d let (G, J) b e n semuntic  local rennming of I?. If G
is at most colrntubly infinite, nncl f bus the finite minimal elements with respect to <G, then
there exists u univewd lw2gwrge  L und the universal renuming N of IT to L, such thut

where
*fir = {or 1-f E IT}.

3.3 Fundamental Operator on C-Classes
In order to construct complex C-classes out of given C-classes, we define several operations
on C-classes. These operators axe some a.bstraction  of the mental process of human beings to
create new concepts out of esisting concepts. These fundamental operators correspond to the
fundamental operators for data, algebra,s. In fact, the fundamental operators on da.ta algebras
will provide the models of the funda,mental operators on C-classes.

3.3.1 Aggregation

For given C-classes, we can create a llew C-class by introducing a C-class name, attribute
na.mes that correspond to given C-classes, a set of sentences that specifies the structure simi1a.r
to a Cartesian product such that the attribute names are designating projections. Let 7 be a
sequence of C-cla,sses.

and let Cp be ii, sequence of s~r~~bols  \vith the same length as 7,

<p = (fl..h..*.Jn).



We express each component C-cla.ss in 7 by:

Then the aggregation II(nn, -7. a) of 7 is defined as follows.

l The name 72~ of the aggregation is the symbol that is compatible with other C-classes.
Namely, the symbol never appears as the name of other C-class.

l The symbols in @ are the attribute names of the aggregated C-class lI(nn, 7, @a).

l The attribute value zq is the mapping from the components of 9 to the set T of C-classes,
such that

1 < Vi 5 72, Vn( fi) = 7;.

l The structural sentences Tn is similar to Ty” for a C-class y with non-empty attributes.

Z-I = (V.7 Qy f;C mOdiflJ(X,f;,y))= J/ 1 i  = 1 . .  .n) U
{VX T(‘;(x), ?>lml(f;)) 1 i = 1 . . .IL}.

The symbol modify is the function symbol for the modifier of attribut#e  values.

l The auxiliary sentences may be any definition of new function symbols and relation
symbols that simplify the description.

l Each component of the aggregation should satisfy the restrictions that are imposed on
the attribute value C-classes. The restriction predicate Rn is defined by:

RJI(X) = i R.i(f;(x))-
i = l

The a.ggregation  of C-classes has a model that corresponds to the aggregation of data
algebras, which was defined in section 2.3.1. This will be discussed later.

3.3.2 Recursive Aggregation

Let G be a directed graph with a set of C-class names V as nodes and labeled edges E. Let U
be a collection of nodes in V, such that there is no incoming edge. Further let TV be a subset
of V that contains U,

u c_ l/1/’ c_ if-.

We assume that for elements of W, C-classes are given. We denote an element of E as (n, In, g),

which designates the edge from n to m with label y. Let 9 be a set of symbols that has one
to one correspondence with I’,

!P = {fv 1 L’ E v }.

The recursive aggregation fi(~,c, G, a> with respect to G, @ and IV is defined as follows.

l The symbol 71~ is a, new C-cla.ss name.

l The symbols 9 are the attribute na.mes.



l The attribute values are provided by the one to one correspondence of @ and V.

vu E v, v#J = 0.

l The structural sentences express the nested structure defined by G. Let V be (~1, . . . , vk);
we consider V as a, sequence.

Te = {VXI . . .Vxk fv,(consn^(zl,.  . . , x/,-))  = xi 1 i = I,. . . , k} U
cwf?J(4 v> I ‘u E v > u
wwfu(~>>,  4 I (v, ,w) E E )

l The auxiliary sentences include recursive definitions of restriction predicates for compo-
nent C-classes.

where the VI is intended to designa,te the null value in universal algebra. For v in V - W,
the “v’th” component of fi(G, a) is a. C-class with recursive structure.

l The restriction predicate designates that each component should satisfy its own restric-
tion predicate,

Rfi(x) z /j R,(f,(x)).
L’E v

3 . 3 . 3  Abstraction

Let y be a C-class
y = (n,, $7 I’-/, TT, A,, R&

and let \I, be a subset of a,:
9 = ($9,. . .- .c/m) c @,.

The a,bstraction Y(nr,y, Q) of y with respect to \I, is defined as:

The definition of ny, Ty, and AT are similar to those of a.ggrega,tion.

l ny is a symbol, which designates the nanre of ‘Y (71~.  y , \II, ).

l q is the set of symbol that designates the attributes of the new C-class.

l The attribute values are the sa.me as those of y, ,

l Ty is the structural sentence defined as follows.
‘Tr = {VX V?J gi( mOdify(  2, g;, y)) = y 1 ,i = 1 . . . rn) U

{VX T(gi(x),V,(gi))  1 i = I.. . n?}.
l The restriction relation Ry is defined a.~:



3.3.4 Restriction

The restriction operator replaces the restriction formula of a C-class by the conjunction of the
original restriction formula and an unarv predicate lo. For a C-class y,

y = (12,, (IL,,  ‘uy, z,. A,, Ry),

the restriction of */ by an unary relation S is

3.3.5 Set Collstruction

For a C-class y

the set of y is defined as follows. This definition is an generalization of the example discussed
for Set-of _I?ztege?b before. The relation symbols T and In have the same meaning as in the
example of Set-Of -Integer.

where
Iis,, E (vy In(y, :c) + T( y, ~2~)).

The structural sentences of Set(ns,t, 7) are just the theory ‘rset of set for any C-class m/.
The ausiliary sentences Aset may be defined arbitrarily to meet the appropriate description
of C-classes. Although Rset says nothing about the cardinality of the set, we assume that the
cardinality is finite. More precisely, we only consider finite sets as the model of the set C-class
Set(nset,  y). Combining Set operation with restriction operation, we get a more general set of
C-classes. More specifically, subsets of the set Set(n set, 7) of a C-class y will be espressed by
applying a restriction operator to Set(ns,t, 7).

3.3.6 Categorization

Once we get the notion of the set construction of a C-class, we can categorize the elements of
the set by concerning some attributes. In the categorization, we ignore the other attributes
that are not interested. We obtain Q set of set of’ CL conceyt by taking a categorization. We
define the categorization operatora,s follows. Let y be a C-class, and let the interested attributes
q be a subset of the attributes <p,?

The categorization n(n.,, y, !P) of the C-class 7 with respect !I! is:

‘*We  assume that t,he free variable of these forlllulas are the same



3.3.7 Generated C-Classes

Fire can consider the closure by the fundamental operators on C-classes in the same manner
as data algebras. The universal fumily of C-classes is the set of C-classes that is closed under
fundamental operators. And the universal closure of C-classes is the minimum universal family
t.hat contains the C-classes.

3.4 Hierarchy of C-Classes
To formalize the hierarchy of concepts, we introduce a partial order among C-classes. We
assume that Cklusses  are described in a universal language. If concepts are precisely espressetl
in the real conceptual world, we can express the hierarchy of concepts by referring to onl!
attribut,es.  Na,mely a concept has more attributes than its superconcept. Thus we can express
the conceptual hierarchy by inclusion of attributes. Roughly speaking, we can fornmlize  it as
follows. Let, c,c’ be concepts, and let the attributes Qcr @,I be the attributes of c, c’ respectively.
Then c is the subconcept of c’ if and only if

However as we discuss in Chapter 4, our conceptualization is incomplete. Hence we cannot
specify the hierarchy only by its attributes. We need to specify t.he hierarchy explicitly by
introducing an order in the concepts. So we introduce an artificial partial order -x, on the
names of C-classes. Let n,i ,n2 be the name of C-classes yi,y2 respectively. We sa,y ni is a
subname of n2 if

We a.ssume that the type matching predicate T that is introduced in Section 3.3.5 satisfies the
following condition,

Vnl’dn;!  nl 5 n2 + (k T(z,nl)  * T(z,  n2) )

We include above sentence as a part of our theory. With this name hierarchy, we introduce a
hierarchy among C-classes.

Let yl, 72 be C-classes,

yi = (ni,  Qi7 Vi,  Ti, Ai, Ri) (i = 1,2)*

Then y1 is a subclass of 72
71 i Y2,

if the following holds.

@2 G a17  Vf E @2,  4~llfN 1 c(D2(f)),

I =  v’z &(+)w * R2(4,

where c(Vi(f)) designates the C-class with name vi(f) (% = 1,2), and

Since exh C-class ha.s a unique name, \ve could have defined t.he hierarchy only by the
name hierarchy. However, as we discussed above, the na.me hierarchy is a# compromise for our



incomplete conceptualization. Therefore it is natural to reflect the effect of attributes in the
definition of C-class hierarchy as much as possible. Thus the attributes of C-classes play the
major role in determining the hierarchy of C-classes.

We should note that we can have the most general C-class in the following way. First we
assume that there is the greatest element, say top, in the name hierarchy. Then, the most
general c-class 7T is:

YJ- = (top.@, &8,8, TRUE).

We assume that the theory T= of equality is always implicitly included in the structural
sentences for any C-class y.

T= = (Vx x = x> u (VxVy 2 = y 3 y = x)
u{vxvyvs  (x = y A y = 2) * x = z}.

Thus if we express I& to be empty, it means the structure is specified only by T=. Na.mely, it
is just the structure of a set.

3.5 Conceptual Order and Fundamental Operators
The conceptual order is the realization of semant.ic hierarchy of concepts. There is a close
relation between conceptual order and the funda#mental  operators, as shown in the following
theorem.

Theorem 2 Let y,y’, 7 = {7i}y=l  and r/ = {7~}~=, be C-classes. Moreover, let n cr.nd n’ be
new C-class names such that n 5 d.

l Aggregatioan
For attribute names @,

(1 L VJ’i I n,yi 5 7: ) * (I@, 7, fP> 1 II(n’, 7, G)).

l Abstraction
For a subset @ of the attributes of 7,

l Restriction
For a unary predicate S,

l Set Construction

y 5 7’ * Set( n,r) 5 Set(n’, y’)

* C’ntegoriantion
If the set of attributes q is common in y and y’, then

The proof of the theorem is easv. so it is omitted.



3.6 Generalization and Specialization
In our mental processes, we generalize severa, concepts by taking the common attributes of
those concepts. For example, we get concept ‘mammal’ by generalizing ‘dog’, ‘cat’, ‘monkey’.
etc. On the other hand, we specify a concept as the semantic intersection of several concepts.
For example, the natural number is described by the semantic intersection of integer and
positive number. We formAize  these mental processes using the conceptual hierarchy provided
above.

Let us assume that a conceptual hiera.rchy  -( is given. First we introduce some notations.
Let {y; }FZ1 be a set of C-classes. If the least upper bound of {y; }yZl with respect 5 exists.
we denote it by

If n = 2, we denote it by

n

i=l"
v 1'

I 71  v 72s

Dually, the greatest lower bound of (7; }yZ1 is denoted by
n

A
A .ir 7

i=l

By definition, the operator V and A a,re commutative and associative. Furthermore,

c Yi = (YIV(Y:!V(~‘*(YTI-I  v7n)***),
i=l

i 7i = (71  A (Y2A(*-.(Yn-1  Am>***).
i=l

Now we define the generalization and specialization.
The generalization of (7; }rZl is defined by the least upper bound VP, 1 e/i. In particular
the generalization of two C-classes y and y’ is y V y’. ,4s stated above, any generalization
is described by the operator V. We call V the generalization operator. The definition of the
specialization is similar to that of the generalization. We replace V a.nd “least upper bound’?
in the definition of generalization by A and “greatest lower bound” respectively. We call the
operator A the specialization operator.

Similarly, we introduce operators V, A in the C-class names, according to the name her-
archy.

Due to theorem 2, we have the following theorem.

Theorem 3 Let 7,~‘~ 7 = {7~}~z1,~ = {7:}& be C-classes.

.a Aggregation
Let 7 A ? be the sequence (71 A yi, . . . , yn A yk>, and let 7 V 7 be (rl V 7; . . . 7n V q:,).
For a new C-clnss name n, n’, n”, a sequence of attribute names 9,

II A n’ = 12” + n(n,r, (a) A r@‘,y’. @) = r[(n”. y A -7, @),

n V n’ = n” * rx(n,,+D) v rI(n’,+lq 5 rl(n”> -; v 7/1,  (a).



l Abstraction
For a common subset Cp of littributes of */,r’,

n A 12’ = n” * T(n,y, @) A ~(n’,y’, a) = T(n”,y A y’, (a),

n V 12’ = 12” * Y(n,y, a) V  T(n’,y’, S) =  Y(n”,y V y’, %).

l Restriction
For ci unury P redicate s’,S’,

n A n’ = n” * @(7, s A s’) = @(y, s) A @(y, 59,

n V 12’ = n,” * WY, s v S’) = qy, S) v q7, S’).

0 Set Construction

n A n’ = n” + Set(n, 7) A Set(n’, 7’) = Set(n”, y A 7’),

12 V 72’ = n” * Set(n,r) V Set(n’, r’> 5 Setjn”, y V 7’).

VVe should note that in the previous two theorems, we always have to specify the name hierarchy
to obta.in a reasonable result. The name hierarchy is an artificial hierarchy and we have to
assign the order in the names of C-classes so that they are compatible to the natural semantic
hierarchy of concepts.

To summarize, we have introduce the notion of C-class and an order among them to
formalize concepts and the semantic hierarchy of concepts. Moreover we have introduced
formal operators on C-classes that provides a formalism of mental processes that produce new
concepts out of existing concepts. Finally, we have provided some theorems to show that the
forma.lism provides the natural relation between the fundamental operators and the concept
hierarchy, which is one of the verifications of the correctness of the formalism.

4 Models and Instances
So far, we have discussed the notion of C-classes, which is the formalization of database schema
objects. Now, we are going to discuss the actual data that will be in a database. We regard
a, da.tabase  as an expression of the real world. Each concept in the real world is expressed by
C-cla.ss  defined in the previous chapter. Each occurrence of concept is expressed as an instance
of C-class.

In the framework of a value-oriented model, an instance of a C-class is just an element of
the data algebra that is the model of the C-class. The occurrence of a compound C-class is
determined by the set of attribute values. However, as we discussed in Section 1.1, we cannot
capt,ure  the real e,xistence of the occurrence in this paradigm, because our conceptualization is
always incomplete, i.e., an approximation of the real concept. We need something other than
acttribute  values to distinguish the occurrences in the real world. It is so-called object-identity,
which will be formalized.

In this chapter, we first define the value-oriented model of C-classes. A value-oriented
inode of C-classes is a collection of data algebras that are specified by the C-classes. ‘I’he
data algebra provides the space where the structure of the real world objects are expressed.
Nest,, we will estend the value-oriented model to object-oriented model by introducing the
object-identity space.



4.1 Value-Oriented Model of C-Classes
Let r be a set of C-classes generated by fundaOmenta81 operators from a set ro of the primitive
C-classes, and let

D =  ({b-,  1 6, =  (n,, A , ,  r-J, y E r}, dn )

be the pair of a many-sorted data algebra with the sort 5’ genera,ted  by I’“, and the name-
hiera.rchy In of data a.lgebras.  Then D is called a value-orieded l,zoclel of I’, if the following
conditions a.re sat isfied. [*et y be an element of l? such that:

0 Primitive C-Classes
Each primitive C-class 7 satisfies:

- The universal algebra A, is the algebra. corresponding to a sort in S.
- The restriction function of 6, is the interpretation of R,. We assume that each

predicate will be interpreted ass a function to 2, where 1 is regarded to be TRUE.

l Compound C- Cla,sses
For any compound C-class 7, A, is a subalgebra of Il/Ea7AVcf~.  Typically, when T’. is
equal to T:? A, is isomorphic to the product algebra IIJ~Q~A,(JJ  itself.

- Each function symbol f in Qr is interpreted as the projection from nfEQ-, A,(,) to

A+f)-
- The restriction function rY is also the interpretation of R,.

For a C-class 7 corresponding a concept, an element of the data algebra & represents an
occurrence of the concept as a value. We call the element a v&e instmce of 7. Furthermore,
t,he data algebras should be compatible with the hierarchy of C-classes. Namely,

vyd7’ E r, 7 5 7’ 3 3p,+ : s, -+ &+, (P~,~,  is the subtype mapping from 7 to 7’).

For the top C-class, we have a model 6~ that is set theoretically isomorphic to the set of
object-identities. which will be formally introduced in the nest section.

ST = ((fi,@), 1).

4.2 Object-Oriented Model of C-Classes
‘l’he value-oriented model of a C-class provides the base of the algebraic structure for expressing
occurrences of concepts. In this section, we extend the value-oriented model by the notion of
object-identity. We will introduce object-itlejztity spnce to express the real existence of objects.

Let D be a value-oriented model of I’ as defined in the previous section. Let 0 be the pair
ot’ a set Q with a.n appropriate cardinality, a collection F of partial functions from 52 to itself.
\tVe call C! the object-identity spclce. Further, let I be a. collection of partial functions from fl
t20 a data, algebra,s in D for each 7 in r. Na.mely,

D = {&l-l E [‘I,



The partial function ty is called the instnnce mapping of 7. The domain c3(7
the object instances of 7.

Then, an object-oriented model ./U(I) of C-classes I’ is a triplet

wrj = (DJV),

which satisfies the following conditions.

l Let 7, 7’ be ilt I. If 7 5 7’ then

a(7) c 8(7’) and V’w E a(7) z;(w) = py,y~02y(w).

j of I.-, is called

where pyIyt is the subtype ma,pping from 7 to 7’ in the value-oriented model D. This
condition shows the compatibility of the hierarchies of the object-identity space and the
value-oriented model D. Note that the hierarchy of C-classes in the object-identity spa,cc
is expressed by the set inclusion of the domains of instance mappings.

l For each function symbol f that appears in the description of C-classes, there is a. corre-
sponding part,ial function o(f) in J=.

l The ma.ppings o(f) ‘s are relat,ed to the value-oriented interpretations v(f)‘s via the map-
pings I in the following way. Let us take a function symbol f that appears in the descrip-
tion of C-classes, which has a. signature” nln2 . . . n, + n, where n and n;‘s axe concept
nanlps of C-clxses 7, 7;‘s. Then we have the commutative equation:

1 0 o(f) = u(f) 0 Ty-I z;,

t

A
.lL s

where
U(f) 1 II?=1  Si + S, O(f):  On + IQ,

rFzl li is the product mapping of 2; (i = 1, . . . It):

The data algebra. C; corresponds to the C-class 7, a.nd 1 is the instance mapping of 7,
similarly da.ta?.  algebra, 6, and instance mapping 1; for 7; (1 < i 5 nj.

“The definition of signattIre is provided in [GB $51.



The above commutativity is the essence of our model. It clearly separates the “object-
oriented part” and “value-oriented part”. We call it jundamental  commutativity. Further, it
demonstrates the essential difference of a,n object-oriented data model and a value-oriented
data model. The difference between object-oriented model and value-oriented model lies in
the object identity. There are several features other than object-identity, which are generally
considered to characterize an object-oriented model. such as complex object, inheritance, etc.
However, as we will see later, the semantics of those features can be ca,ptured  by the algebraic
construct, such as types, aggregation operators, when we express instances as elements(values)
of a data algebra.

The set of insta,nce mappings {zy 1 y E I’} is ca#lled a.n schema instance of r.
The object-identity space fi is a flat12 set wit.1~ a set, of partial funct,ions. The value-oriented

model D provides a structure on a, which is &led v&e spnce of I. The instance mapping
of a C-class expresses the correspondence between ob.ject instances and value instances.

We ha.ve a natural ordering for schema instances. Let the object-identity space 9 a.nd
value-oriented model D be fixed, and let I a,nd I’ be schema instances of I?:

I = by 17 E q, 1’ = {L;I 3’ E r}.
\;\‘e call the schema instance I the schema subinstance of 1’ and denote it by

I 5 I’,

if
Vy E r, 2; is an extension of fry.

This ordering is useful when we consider the schema instances of C-classes with recursive
structure. Obviously, the order is a partial order. If I a.nd I’ coincide on the intersection of
t.heir domains,

VT E r, vx E q24 n 8~~3, +) = 2;(x).
we call them compatible. It is easy to prove that any set of compatible schema instances hws
the least upper bound with respect to the above order.

4.3 Induced Mapping on Instances
In this section, we discuss how the funda.mental operators on C-classes are interpreted in the
object-oriented model.

The induced fundamental operators are the mappings that transform instance mappings to
ot.her instance mappings. For given C-classes, we ca.n create new C-classes rising fundamental
operators. Accordingly, for the created C-classes, we can create instance mappings out of
instance mapping of original C-classes. In this section, by the term “instance mapping”, we
mea,n a, partial function. from object-identity space to a da,ta algebra, which may provide an
object-oriented model. As discussed later, the induced insta.nce mapping will not provide an
object-oriented model for a certain kind of fundamental operators.

Let us assume that an object-oriented model M(r) of I? is given:

“BY the t’errn flat we mean that no element of the set has a. slllxtructure.. 3



We assume D and 0 are fised. As defined before, an instance ma.pping  sy is a partial function
from the object-identity space 0 to the data algebra &. We denote the domain of an instance
mapping 2? by b(z,). Let 2y be the instance mapping of y in I,

l Restriction
Let S be a unary predicate that is intended to impose a restriction on y. The induced
restriction operator 6(., S) is defined a s:

O(O(?.,,  S)) dzf {w E d(2,) 124 S)(2,(w)) =  1  >

v/w E a(o(l,)))  6(1,)  S ) ( w )  d:f zy(w).

Intuitively, the induced restriction operator takes only insta.nces that satisfy the predicate
S. Note that the predicate symbol S is interpreted as a mapping from 6, to 2.

l Abstra.ction
Let Q be a subset of @. The induced abstraction operator ??(s,  q) is defined by:

a(T(z,, !P)) dsJ a&J,

v’w E a(T(2,)), qzy, Q)(w)  d&f  Pa 0 2&d),

where PQ, is the projection from IIfeaAf to IIgeqA,.

l Aggregation
The induced operator for aggregation is different from the above operators, because it
is a constructive opera.tor. Let 7; be a C-class and let 2; be the instance mapping for m/i

(’ 1 , n). Then the induced aggregation operator II(.) is defined as follows. The
do,“,n’&k((zr  . . .2,))) of the induced mapping is a new subset of $2 that has one to one
correspondence to II?=, a(2;) with a ma.pping E:

E: a( rq(2*,  . . . , 2~))zII~z~3(  2i).

Then the induced instance mapping is defined by:

There is a certain technical details, a*bout the a.ggregation  operator. If we have alreaxly
an instance mapping 2 for the aggregated C-class, we impose a condition to the invention
of object identities so that the newly derived instance mapping is an extension of the
esisting one.

e Recursive Aggregation
The induced operator for a recursive aggregation is obtained by inductive limit of gen-

erated instances. More precisely, we first define an inflational operator to produce new
instances. Then we take t,he limit of successive applications of the operator.
Let G’, V, E, U, IV and <p be the same as in Section 3.3.2. Let I be the set of C-classes
corresponding V, and let D be the object-oriented model of I’,

r = {7[‘ I 11 E V}. D = {&( 1 11 E V}.



Further, let Z be the collection of all schema instances of I’. PVe define a,n operator <iis
from the Z to Z. Let I be in 1,

I={z,:S24,~uf V}.

where v designates the least upper bound with respect to the schema instance ordering
defined at the end of section 4.2. The instance mappings [w(1) is defined as t,he minimal
schema instance that is compatible with I such that it satisfies the following condit,ions.

uhere S( [rr~(I),)) and cS( j.,,) are codomain of <M;(I), and cS(l.,) respectively, and r9 is the
project ion correspondin g the edge (w, u, g). Note that [w(l) may not be unique 13.  For a
given schema instance I, we construct a monotone increasing schema insta,nce  sequence
-v In rzU by applying (CW successively.

Since { I,,,}~~zo forms a compatible set of schema instances, we can obtain the inductive
limit I(,, as the least upper bound of the set. Then we define the induced schema instance
fi(G, @. IV) as I,:

V = (2’1~ 212,. . . ,v,}, IO0 = (iif2 - Sv, 1 1 I i I n+

fi(G, a’, W) = ii@,, . . . ,&)).

By definition, the instance mappings for the C-classes in W will not change with <rrr. We
call IV the set of stnGle C’-classes. If W is equal to V, the recursive aggrega.tion  reduces
to the original aggregation defined above.

l For a. set construction, we can naturally induce an instance ma.pping. The induced
instance mapping describes the instances with all the possible finite sets of original in-
stances. More precisely, let 2 be an instance mapping of a C-cla.ss  y.

a: Q - sr.

Then induced mapping J by set construction is a minimal instance mapping such tha,t its
codomain includes all finite sets generated by the codoma,in of ?.

S(J)  3 {{XI, 22, * - . , X,} 1 Xi E S(2) (1 5 i 5 n), ‘71, = 0, 1,2,.  . a}.

The induced ma,pping is not unique. If the C-class Set(n, 7) has non-null instance map-
ping rsEt from the beginning, we construct the instance mapping 1 so that 1 is the estension
Of lsrt *

‘3t~ct~ually, (\I’ is a multi-valued function. However, we consider it ;\s au ordinary function by taking 011e of tl~c>
values. ‘I‘lle  existence of [iv can be easily proven using the fundamental comnllltat,ivit,y.



l Categorization
The induced mapping for the categorization is obtained by the composition of induced
mappings of set construction, aggregation, and restriction operators, according to the
definition of the categorization.

We should notice that the induced instance ma,pping may not be unique for (generalized)
aggrega.tion,  and set construction. This is due to the fact tha.t these operators require object-
identity invention [AK S9].

Furthermore, we can introduce operators on instances that correspond to generalization/specialization
operators.

Let yi be a C-class,

^ii=(ni, Qi, Vi7  Tiy  Ai, R;) (i = lY2)7

and let (lYIfe~,A;,j,  r;) be the data algebra corresponding to y;. Further, let 2; be an instance
mapping of e/i, a.nd let Pi be the projection from IIJ~Q,A;,J  to II~~Q~~Q~A;,~ (i = 1, 2). If

the induced generalization a.nd specialization of 11 and l.2 are clefined as follows.

0 Generalization
The induced generalization operator V is defined as:
- if the intersection of @r and @z is not empty,

- if the intersection of Qr and Q2 is empty, the domain of 2li?22 is the same as above,
and

bIV 2):-2 fi + ST = ((%0),1)

w - ;i: ( inclusion mapping ).

0 Specialization
For the specialization operator on C-classes, we ha.ve the following induced specialization
operator K. The opera,tor  K is defined as:

Xlthough we can derive new instances by induced operators, we should note that these
instances are just, possible ca.ndidate instances in our model. However, in intuitive sense, if
a, C-class is derived by the funda.mental operator otther than aggregation or set construction,
the insta.nce  mapping should be obtained by the induced operators. We should note that
our object-oriented model is fairly general. Hence we would get a variety of “actual models”
according to the wa,y of providing insta.nce  ma,ppings. To provide instance mappings by the
induced mappings of the funtlamenta~l operators is a. canonica.1 wa.y of obtaining an object
oriented model.



5 Database Design

5.1 Entity C-Classes and Abstract C-Classes
In our object-oriented model of C-classes, there ca.n be more than one object-identity corre-
sponding to one element of data algebra. Because our conceptualization is incomplete, we
cannot characterize the rea.1 existence of objects by their attribute values. However, in order
to provide a representation, we should assume that t,he existence ca,n be described by attribute
values for certain concepts at least in a closed domain of the real world. This is a ma,tter of
knowledgebase design.

Hence it is important to analyze in which case a C-class should be characterized by its
attribute values, or more generally, in which case the object instances are equivalent to the
value instances. Namely, we should consider when we should require the instance mapping of
C-class to be injective. In this section, we consider two kinds of C-classes that the instance
mapping will be injective. One is the algebraic C-class, the other is the logical C-class. Further
we claim that even the insta.nce mapping of a logical C-class has the inherent possibility of not
being injective, because our knowledge represent.ation is always incomplete.

First, we introduce and discuss the algebraic C-classes. Let us consider the concept string
for exa.mple. What are the instances of st,rin,g ‘? It depends on the context how we consider
the concept. We can say t1~a.t  every string a,ppea.ring  in the real world ca.n be an instance of
C-class String. Consider the following sa,me sentences.

0 “string” is an instance of String.

l “string” is an instance of Stning.
The string “string” in the first sentence is an instance of String which is different from the
instance “string” in the secorarr! sentence. However, we often need to aabstract  the real occur-
rences of String and rega.rd the many instances as a same object. This is exactly wha,t the
value-oriented model of C-class String is intended to be. The universal algebra AString is the
abstra,ction of real occurrences of strings with abstracted functions such as lelzgth, conctrtenute.
The algebraic model Astrl,iy is virtual and doesn’t exist in the real world. However, we want to
treat the virtual model, such as the algebra Aslriltg, as if it esisted in the real world. In other
words, we want to allow the conceptual existence of the abstract objects. So we introduce a.
category of C-classes whose instances are virtua.lly  the same as the domain of an algebra in
the value-oriented model. Namely, the instance mapping is injective. We call such C-classes
nlgebrnic  C-clusses.  An algebraic C-class is a. kind of “literal.”

Other than algebraic C-classes, t.here is a.nother  kind of C-classes that instance ma.pping
should be injective. It is the C-cla.ss  derived from a logical relation. We can express a. nary
logical relation by a C-class with n attributes. Since an occurrence of logical relation is nothing
but an element of a subset of the Cartesian prodtlct  of doma.ins(object-identities), it is exactly
characterized by its attribute va,lues. We call snch C-classes loyical C-classes. The notion of
logical C-classes will be discussed in detail with an example later in this section.

Note that the notion of algebra,ic C-classes and logical C-classes are not determined by
object-oriented models. Ra.ther,  it is required in the meta level. In other words, it is a design
issue of knowledge representation whether we require a C-class to be a,n algebraic or logica.
C-class. \I\-’e call a C-class an trhtmct  c’-clrrss, if we impose a restriction that its instance
mapping is injective.

The abstract c-c lasses st,rictl into tile value-oriented data model. If all the C-cla)sses,v fit



a.re abstract C-classes, any object-oriented model is essentially the same as a value-oriented
model.

We call the remaining C-classes entity CI-clnsses, whose instance mappings are not, intended
to be injective. The entity C-classes are the representation of the “esisting  objects” in the real
world. In a practical design of knowledgebase, the physical objects and events are espressed
as entity C-classes. This design issue will be discussed in the later section. For example,
‘person’,‘animal’,‘company’, ‘meeting’ and ‘order’ are entity C-cla.sscs. Note that the “esisting
objects” should not necessarily be physical objects nor events. It can be some abstract object,
which is still an expression of the existence of “something” in the real world. Basically, anyt,hing
t1~a.t  can be noun will be an entity C-class. Hence, even ‘friendship’, ‘love’ can be entity C-
classes. Actually, the author presumes that the nominalization in the mental process of human
being is essentially the same as creating an entity C-class. The identity of an entity C-class is
chazacterized by its object-identity.

We emphasize aga.in that the notion of abstract C-class and entity C-class is not determined
by its model. The instance mapping of an entity C-class may be injcctive with some particular
object-oriented model. It is a meta level requirement, i.e. design level requirement.

It is controversial whether we should express a logical rela.tion as a C-class. Alt,ernatively,
we can introduce the notion of logical relation as a,nother  construct of our theory. There are
t\vo reasons why we express logical relations as C-cla.sses.

l It may be the case that an occurrence of logica,l relation will be converted to an existing
oh.ject by a certain meta operation, which will be discussed in the rest of this section. So,
it is more convenient to express logical relations as C-classes, because the meta operation
~a.11 be expressed as just a mapping from a C-class to another C-cla,ss.

l It is better to have only C-classes as the basic construct of the model so that we can
treat the knowledge representation in a simple and homogeneous wa.y.

In the rest of this section, we will provide the intensive consideration to the meaning of
entity C-classes and logical C-classes. Especially, we will discuss the meta operation that
converts a logica,l C-class to an entity C-class.

A logical C-cla,ss is a compound C-class that we make up to express a logical relation of
the real world objects.

Let us consider a concept Person with attributes, name, loving. Further, let z be the
instance mapping of Person and a(z) be the domain of 2. The at tribute value 10~17)q(w)
designates the people that w loves.

Person = (person, (name. loving), vperson,  Tpe,.st,,L,  TRUE)

vPe,son (nmne) = String. UPerson(lo’UillY)  = Set-o.f  -Pcrso,n,

For esample,

w, w’ E C)(z), name(w) = “-John”,  nnm.e(u’)  = “RIc~r~y’?.  I$&‘. Iouilzg(w))

means t1ia.t the person w na,med “John” loves the person w’ na.mecl “1,fary.”
A C-class 0 will be a logical C-class with two attributes ‘loves’ and ‘loved’ point,ing  persons;

0 = (clffectiorl.,(lorles,locecl),  LQ,‘TQ.  Rq),



Rv(x) 2 In(loved(x), locing(loue.s;( cc))),

and the structural sentence TV is the one that is simila,r to Ty” for a C-class y with non-
empty attributes. It is important that the existence of the ‘affection’ is derived from the
attributes(state) of the persons. In this case, it is derived from the a.ttributes of the loving
person. The restriction form Rv is not only restrictiolz but aalso the definition of the C-class
0. Na.mely, the existence of instance is exactly specified by fiV. Generally, the occurreuce of a
logical C-cla,ss  y is specified by the the restriction predicate R,. Thus the identity of a logical
C-class should be determined completely by its attribute values. The occurrences of a logical
C-class should be the same if and only if their attribute values are the same. Thus one might
say that a logical C-class can be dea,lt with by the value-oriented paradigm. However it is not
so simple.

We should notice that even a logica. C-class is an approximation of the real world. In
the above example, we specified the C-class oafSection with the predicate RQ. If the predicate
completely specifies an “affection”, the attribute values will determine the equivalence of in-
stances. However, it does not. ‘John loved ‘Mary’ yesterday, i.e. the predicate Il’v held for
‘John’ yesterday, but it doesn’t hold toda.y. Even in such case, we ca,n still think “yesterday’s
love of John for Mary.” The instance of concept acquired an object identity. The reason is
that the specification by the predicate RV had lxked temporal inforn~ation.  If it had included
the temporal attribute, we could ha.ve expressed the “yest,erday’s  love” only by a,tt,ribute val-
ues. Therefore, due to the incompleteness of our representation, even a logical C-class may
end up as an entity C-class. Hence \ve introduce a meta, operation JV that convertas a logical
C-class to an entity C-class. We call Af a non2innlizntion opercltor. The nominalization  oper-
ator corresponds to the mental process of putting a name to a chunk of information that we
acquired.

As discussed above, every C-class may be inherently an entity C-class. However, in order
to organize the knowledge representation. we should impose a’ condition that certain C-classes
are to be abstract C-classes, as discussed in the nest section.

5.2 The Concept Model
In this section, we introduce concept model for data.base  design, and discuss its semantics.

5 . 2 . 1  Design Process

First, we discuss the design of knowledge represent.a.tion. .4s we mentioned in the previous
section, even an instance of logical relation would be a.n instance with object-iderititg.  How-
ever, when we develop a knowledge representa.tion, we have to nssun2e  some of the C-classes
should be abstract C-classes. For example, when we register a new instance of C-class in the
knowledgebase, we have to know whether the instance is already stored or not. -4s we dis-
cussed, we can only believe that we cm distinguish the instances by our representation. This
is a. matter of correctness of knowledge represenbation. Hence, when we design a knowledge
representation using C-classes, it is the main issue wha,t C-classes Lve should regard as the
ba.sic a*bstract  C-classes.

The design process will consists of the following steps.

1. Provide algebraic C-classes, such as Intege?. S’tri?zg,  ,Sc/? .S’e(lclence. Further \ve provide
primitive functions a,nd predicates. For example, { +. -, >, . . .} for Integer,  {union,

i?ztersection,  In} for Set.



2. Choose real world concepts that provide the basis of our knowledge representation a,nd
express them by C-classes. We introduce as many attributes as possible to those C-
classes, so that we can assume that their inst antes  are fully specified by at tribute values,
i.e., the instance mapping is injective. We call such C-cla.sses base C-clnsses.  For example,
a concept person would be expressed by a base C-class Real-Person. We assign as many
attributes as possible so tha.t we can distinguish individual persons. (The concepts,
such as employee, student ca.n be espressed by C-classes derived from Real-Person by
abstraction operator, because we don’t need all the attributes of Real-Person to express
an employee or a student .)
We should note that basic C-classes are inherently entity C-classes, although we regard
them a,s abstra.ct  C-classes. In fact, when we view the knowledge representation throlrgh
a perspective different from the original design or when we add a new C-class into the
schema, a base C-class may become an entity C-class. In such a case, we ha,ve to mod-
ify the schema by a.dding new attributes to the base C-class, in order t.o keep up our
requirement that the C-class should be an abstra,ct  C-class.
The guidelines of selecting ba.se C-classes are as follows.

l Physical objects should be base C-classes. For instance, person!  car, location. etc. So-
cial organizations, such a,s company, may be considered as physica. objecbs.  because
they consists of physical objects, such a,s employee, office, factory, etc.

l Events should be base C-cla.sses. For instance, meeting, accident, order form of
parts, etc.

3. Analyze the relation of base C-classes and check that every necessary logical relation
among base C-classes can be expressed by the attributes of base C-classes. \i?Ie a.dd
new attributes, if necessary. The point is that all information should be included in the
attribzltes of base C-classes.  If so, we can express any information by the C-classes derived
by the fundamental operators from base C-cla.sses. Hence, the integrity constraints of
knowledgebase will be completely described by the restriction predicates of base C-classes.
Thus in order t.o ma.inta.in the consistency, we only have to maintain that of base C-classes.
For example, when we consider a C-class Person and a C-class Cnr, there may be a, logical
relation Owne,rCar. We express them with attributes owns of Person and OUJUP~’ of
Cnr. The attribute o’wns designa.tes  the belongings of a person, and the attribute otc?lel*
designates the owner of a car. Then we will express the Owner&r relation by a logical
C-class with attributes {owner. car}, and the restriction predicate Ro,,,,nc,.sa,l-:

uownercar (own,er)  = person, ‘v,,,,,~~,. = object,

Rownercar (2) 3 In( co I’( X ), owns(o,wner( x))),

where TyO is the sa.me as in section 3.1.3. The restriction predicate mea.ns that the car
car(x) is one of the belongings of the person owner(x).
It is an important requirement tha,t we can construct every logical rela.tiorr by att,ribut.es
and primitive functions and predica.tes  of algebraic C-classes A and base C-cla,sses 6. lf
so, we can construct any logical relation through fundamental operators from ~4 and LJ.
Hence it will allow us to provide the sema.ntics of those logica.  C-classes using induced
instance mappings. VVe will discuss it in the next section.



4. We define appropriate “view” C-classes using fundamental operators. Logical C-classes
will be defined by the (generalized) aggregation operator, while entity C-classes will be
defined by abstractions and restriction operators.

5.2.2 The Concept Model and Its Semantics

-4 concellt r7zorZel  ,U of a knowledgebase is a tuple consisting of C-cla.sses of three kinds together
with a C-class hierarchy 5.

A4 = ((A, B, D), 5).

A is the set of nlgebmic C-clnsses  such as Integer, String, etc. G is the set of lxzse C-clnsses.
2, is the set of all cleriwble C-clnsses,  which can be derived by a. finite applica.tion  of the
fundamental operators from A U B. We should note that the union of A, ,!3 a,ntl D forms the
universal closure of the union of A and B.

The semantics of the model is as follows. Let I be a finite subset of t,he union of A, B, D.
such that for each C-cla,ss  in I’, the C-classes that are the aattribute  values of y is also in I:

\.Ve call such a set of C-classes closed set of C-clnsses.
The semantics of the concept model is provided by an object-oriented model (D, 52, I) of

the C-classes I’ with the following conditions for I. Let 6, be a data algebra in D that is the
model of y in I.

l The instance mapping of a C-class 7 in A is injective and surjective  partial function from
i-2 to &.

l The instance mapping of a C-class y in ‘Z? is obtained by induced instance mapping of the
fundamental operators that define the C-class. For a recursive aggregation, we require
thak the base C-classes are always treated as stable C-classes. We will consider this
ind riced mapping in detail in the next section.

0 The instance mappings of base C-classes espress the instances that are existing in the real
world. The instance mapping of a C-cla.ss y in B would be intended to be injective by the
knowledgebase designer. However, we don’t impose the restriction as part of the formal
semantics. If the instance mapping happens to become not being injective, the schema, of
the knowledgebase should be altered. It is a matter of maintenance of schema.. Note that
a base C-class may be defined with fundamental operator from other base C-classes and
algebraic C-classes. However, the instance mapping is not derived by induced instance
mapping. The instances will be created by update operations of the user.

As we discuss in Appendix A, one of the characteristics of this model is homogeneous
representation of query. There is no distinction between those three kinds of C-classes for
users, so long as query is concerned. A user doesn’t have to consider which C-class corresponds
to the data. stored in the knowledgebase. Each C-cla,ss  would be autonmtically bound to a set
of instances by the system. The homogeneity of C-classes will bring a clear semantics of view
update, which will be discussed in Section A.2.4.



page 41

5.2.3 Two Kinds of Predicates

If the derived C-classes are recursively defined, their instance mappings will not be always
determined nor exist. In this section, we consider this matter further.

First we extend the graph we discussed in the definition of generalized aggregation. We al-
low the la,bels  of edges to be operator expressions that express the other funda,mental operators.
For exainple,

Person = (person, (name, height, father), uperson,  Tperson,  8, TRUE),

vPerson (name) = string, z~pe~sO,z.(hCeight) = Integer,

vpe,,,,(  f ather) = person,

Tall Person = O(tallperson,  Person, ~~~~~~~~~~~~~

fiTall  Person (x) = (height(iT) > 6 (ft.)).

The graph will be:

V = ( person, tallpersou, string, integer),
E = { (person, string, name), (pei-son. integer, height),

(person,, person, .futher),
(tallperson, person. O(tallpersou, l . ~~~~~~~~~~~~~~

We can define a function < from schema instances to themselves in a similar way as in section
4.3. The difference lies in deriving the new instance mapping of the C-classes vd that a,re
derived by fundamental operators other than aggregation.

vu E w, E(r), = &I,

bEvd-l/r/, ( v;u, expr) E E <(I), = (tlle induced instance mapping by eqr).

(if v E v - I/,),
(otherwise).

As shown later in this section, this < will produce a non-sense instance mappings for a,
certain class of restriction operators.

Next, we introduce a meta function symbol getinstances in the language that designates
a.11  the instances of a C-class. For a C-class y and its name ny, getinstances designates the
set of. object-identities in a(%?). Tlle set getinstccnces(n,) can be regarded as an instance of
Set( nset, y ). For example, we consider a base C-class Man and a derived C-class f?iche.stman.

,tlnn = ( man, (nume, wealth,. . .}, u,~,~~~,  Thlan,  0, TRUE),

Richestman = (richestman, (name, wealth}. VRi&estman, TRi,-hestman,  8, RRichestmaTL),

vh.l,,(nanzej  = L!Ric~~est,nan(?lalne)  = strin,g,

v,\~,~( wealth) = vRlch,==tman(  wealth) = integer,

fi Richestman  x( ) = (Vy  I?l($J  tte i?,.stnllce.s(man))  j ulealth( :r) 2 wealth(y) ).



‘I’he getinstances cause the interpretation of predicates to be dependent on the instance
ma,ppings. Hence, it may not be a consistent instance mapping to some C-class definition. For
exanlple, we can express an inconsistently defined C-class:

LVrongNumber = O(wron,gnumber,  IT(n001,  (Integer), (value)), ~~~~~~~~~~~~~~~~~

UWrongNumbel (value) = ,integeT,

R WTOngNllnLbeT(x) E (vy In(y, getinstances(wrongnumber)) + x # y).

We should note that this kind of inconsistency comes from
from a relevant, inconsistent restriction predicate. su ch as

semantics

The operator < defined
the initial scheina insta.nce.

R(x) E (P(x) A -P(x)).

of instances. It is different

a.bove gives us the wrong answer in this case. Let us assume I is

1 -0lntegcr - - Z(ont0, one to one),

a(linteger)  = {w17w27--**}:

Iwrongnumber  = 1.

where I is the null mapping:
14 - 2 (i?(l) = 0).

Then, by definition, we ha,ve:

RI) znteger = Iinteger,  [( I)wtongnumber  = Iinteger  7

In general,

i(l)inte  = Iinteger  7 <(I)wrongnumber  = Iinteger  7

t( <(I) )integer  = Iinteger  3 <(  ((1)  )wrongnumber  = 1,

<( C( 1) )integer  = Iinteger  7 i( i(I))wrongnumber  = 1.

[(In)wrongnumber  =
i

:nteger  [:i z ii yd;’
?

where In designates i”(I). Thus, we cannot have the inductive limit of {1n}r=i. The problem
comes from the fact that I<q~~rongnumbe~ depends on its own instance mapping. More specifica.lly,
the vaAable  y is universally quantified on the domain of the instance mapping. So, I( In )
“oscillates” between Iinteger a,nd 1. The induced mapping of WrongN timber doesn’t provide
an object-oriented model.

According to this observation, we introduce a class of predicates.
First,, we int.roduce  the following syntax sugar to simplify the notation.

(Vx : ny 4) %’ Vx( In(x, getinstances( 12,)) * #),

(3x : ny q) .5lnckreldefE3x(  In(x. getinstances(  A d).

Then the above esa.mple  is denoted by:



page 43

We call the expressions x : ny a explicitly typed variables, and V(3) x : ny a explicitly typed
qziantiJier.  For any first order formula, we can move each explicitly typed quantifier to left
side of the expression, in the same ma,nner as ordinary qua.ntifiers. For example,

Vx:n(T(x)  * 3y:n2P(x,y))

becomes
Vx:n3y:m ~T(x)v P(x,y).

We ca.11 the first order form a normally quantified form, if each explicitly typed quantifier is
placed at the left side of the expression.

If a first order form has a normally qua.ntified form with only existential explicitly typed
quantifiers, we sa.y that it is of type 2. A general first order form is called type 1.

T h e o r e m
opem  tor (

4 If everay restriction predicate is of type 2, then for each schema instance I, the
defined in this section has a fix point IO0 .-such that I is a- subinstance of I(=.

1Ve can prove tha,t the restriction operator is monotone increasing with respect to the order
among instances. So, we can prove < is monotone increasing. Hence, there exists an inductive
limit by the fact mentioned at the end of Section 4.2.

In this section, ~vc ha.ve introduce a forma.1 semantics for the concept model. The semantics
is espressed by a. fised point of (-operakor. The fixed point of i-operator doesn’t exist in some
case. We can consider such a concept model as inconsistent. Theorem 4 shows that some class
of concept model is consistent in the sense that there e.xists  a fixed point of [‘j.

6 Expressibility of Concept Model
In this cha.pter,  we consider the expressibility of our model by simulating other models.

6. I Relational Model Semant its
The relational model ca,n be simulated by a. concept model. Since we will show that da.talog
semantics can be simula,ted  by a concept model in the next section, we can derive this result
as an easy corollazy.  However, we can prove it directly. In this section we provide only the
sketch of the proof.

We express relations as compound C-classes. For esample, a. relation Person{ name, address)
will be expressed by a C-class:

Per.m = (person, (nal)le, address), ~~~~~~~~ Tze,,,,, 0. TRUE),

vpersan(name)  = ‘Upers*n(addTe.~s)  = String.

The rela.tional  operators a.re simulaked by induced operators of the fundamental operators.

s e l e c t i o n  +-+ r e s t r i c t  io72

p r o j e c t  ion - composition of ca,tegoriza.tion a,nd abstraction
pod11ct - aggregai ion

‘“There is a. trivial case that the fixed point, always exisk. If t,here are no recursive aggregation involved in t.hr
definition of the derived C-classes, then the concept model is consistent, i.e., the <-oper&or  has a fixed point. In
fact, for an initial schema instance I, <(I)  is the fixed point.



Furthermore we have a natural interpretation for the natural join operator. It is expressed by
the specialization operator. Let R a.nd S be relations and 7~ and ys be the corresponding
C-classes. Then

RwS t---$ -j/R A ‘?S.

6.2 Datalog Semantics
In this section, we show that the semantics of da.talog can be simulated by the concept model.
First we discuss how to convert datalog rules to C-class definitions. We assume that algebraic
C-classes such a,s Integer, String a.re provided from beginning. We introduce some terminol-
ogy. A simple r,zlZe is a rule with the body consisting of one literal. If a rule is not simple, we
call it a complex rule. We call predicates such as =, < , restrictive predicates and literals such
as X < 1 restrictive literals. We also assume that all rules are rectified15.  Moreover, we assume:

l There is no predica.te  sylnhol t,hat is used with different arity. For example, we don’t
have the rules such as:

p(x,  Y> :- x = Y.
p(x) :- x > 0.

We convert. rules into the forms t,ha.t  will be easily transformed to C-class definitions in the
following way.

1. If the predicate symbols of facts appear as the heads of rules, we add new rules so that
they never appea,r in rules. For exa.mple, the rules:

p(a).
p(x) :- q(x) *

will become
pi(a).
pa> :- pi(X) *
p(X) :- q(X).

2. If there is a variable that is shared by more than one negated literal, and doesn’t appear
in positive literals! we rena.me the variable so tha*t it is not shared by negated literals.
For example,

PM : - 1q(X,Y)  85 -s(XY)  ‘! t ( X ) .
will become
p(X) : - 1q(X,Y)  & TS( x. Z) k t(X).

3. We convert the rules by adding cqua.lit,y litera.ls so tl1a.t the non-restrictive literals do not
share any va.ria,blc.

p(x) :- q(X,Y)  & Y = 1.
will become

15[UL  $81 C:hapter 3.



p(X) :- qcLY>  & z = x & Y = 1.

4. If a negated non-restrictive literal sha,res variables with restrictive liter&, we sepemte
them by introducing “intermedia.te”  equalities. For example,

PW : - 1q(Y,Z)  ,c: Y = x SL z = 1.
will become
P(X) : - 7q(Y’,  Z’) & Y’ = Y k z’ = z & Y = x 8L z = I.

We call the expressions like Y’ = Y, Z’ = Z in the above example the intermediate 1itertrl.s

and distinguish them from restrictive literak by using the equality symbol g instead of
=. So the second rule in the above example is expressed by:

P(X) : - 1q(Y’,  2’) co Y’ GT Y cc:  z’ z z SC Y = x SC  z = 1.

For the rules a.fter the a.bove conversion, we assign C-classes as follows.

1. For each non-restrictive literal symbol, we assign a. C-cla.ss (taking the predicate symbol
as its na.me).

2. For each argument of a non-restrictive literal, we assign numbered literal names as the
attribute names. For exanlple, a literal p(X, Y? Z) has attributes, pl.112,$3. 1>1  corresponds
to X, p2 to Y a,nd y3 to Z. Let us denote the correspondence by cy. In the a.bove esample,

Q(X) = pl, a(Y) = p2, c(z) = p3.

:3. For each variable, we assign a C-class name as follows. We express the assignment by a
mapping r.

l If a variable appears in a restrictive literal, we assign the name of an algebraic C-class
according to the litera,l. For example, if we have ,Y = 1. we get

r ( X )  =  d72teger16.

l Otherwise. we assign the most generic C-class name toj3:

T ( X )  =  tq3.

We should remember that we assumed the existence of t he lllost generic C-cl
YT in the C-class hiera.rchy.

ass top

4. For each attribute, we assign a C-class name in the the following wa.y. LVe determine the
values of attribute value function up for each literal symbol 13. In t.he above esample,

?+l(Pl)  =  -i(X), qw)  =  r(Y),  “p(p3) =  7-(Z).

5. We convert bodies of rules to first order forms with esplicitly  typed qua.ntifiers.  LVe
describe the wa,v of conversion Lvith esa,mples.  LVe espress the conversion with a mapping
d.

‘“If X is [‘aired  wit.11 different, tvpes(C’-classes)  by equalities, \ve assign the least upper bound of those Cklasses to-
the variable X. For esatnple, if 'X = 1’ and ‘X = “~16”  ‘, we assign top to X.



0 restrictive literal
We convert the variables as shown in the following example.

a( X)(self) = 1 (if X is in the head of the rule)
4(x = 1) = 4XXXP)  = 1 (if X is in a, non-restrictive literal p(...))

X:=1 (otherwise)

where self will be the free variable in the restriction predicate of the rcstrict,ion
operator. The va,riable xP designates the instance of C-class p.

l intermediate literal
Let X’ g X be an intermediate literal, inhere X’ is in a negated non-restrictive17 literal
and X is in a restrictive literal. The variable X will be converted in the same way
as in the restrictive literal. We denote it by 4(X). The varia.ble X’ is converted to
&(X/)(x,) where p is the literal symbol that contains X. So X’ z X will be converted
to c\(X’)(x,)  = qqx).

l non-negated non-restrictive literal
We assume that non-restrictive literals a.re pla.ced on the left side of restrictive literak
in the bodies of rules.

$(p(X)) = 3xp  : p.

l uega.ted non-restrictive literal

c#(-p(x, Y)) = vx, :p.

After the above conversion, we add explicitly typed quantifiers for the varia.bles  that
appear only in the restrictive literals.

l If the variable X appears only in a negated literal, we add Y’z : T(X).
l Otherwise, we add 3x :r(X).

We a’rrange the existential quantifiers left side of the universal quantifiers. Next we collect
the intermediate literals for each negated non-restrictive litera. au(1 take the disjunction
of negation of the literals. For example,

p(X, Y) : - -y(W,V)  St s(A,B)  8~ X = W 8~ V = B k A = Y k B = C.

will become

p(X,Y) : - y(W',V') & s(A7B) ,uc W’ = W & V’ = V k X = W 8.~ V = B k A = Y cc_:  B = C.

Then its body will be transformed to:

3c : top 31: top 3v : top 3x, : s kfx, : q ((1(ql(xq) = 11) v +2(x,) = u)) A

(pq5tl.f)  = ‘11 A .cqx,) = c’ A .sl(x,) = p2(self)  A .Kqx,)  = (,I).

Fina.lly, we convert rules to C-class definitions.

li’hIore precisely, we should say non-restrictive and non-illt.ermecliate  literal. IIo\\.cver we use the t$errn  “non-
restrictive literal” in tallis  sense.



l For rules with head literal p(X1, X2, . . . , -Yn) with bodies Bi (1 5 i < m),

p(Sl,X2,...,Xn) : - B2

p(&, X2, . . . , A-J : - B,,

the C-class yp is defined as:

i=l

l For facts, we assign each predicate symbol of facts a C-class. For example, for the
following fat t s,
f( 1,“abc”).
f (

(ia’7 ,“bc”).

we ha.ve

We regard that all the C-classes are abstract C-classes. We construct a. concept model
with:

l Algebraic C-classes, such as Integer, String, are given.

l Base C-classes are those obtained from facts.

l The rest of the C-classes are regarded as derived C-classes.

If we provide the instance mappings for a.11 the base C-classes according to ground fact.s. we
can get the da.talog sema,ntics  as the least fised point of <-operator. If there is no negilt,e(l
subgoal, c is monotone increasing, because the restriction predicates are type 2. Thus < has
the inductive limit as its fixed point. If we have stratification, we ca.n get the least fixed point
of < by the algorithm described in Cha.pter  3 of [UL SS].

6.3 IQL Semantics
We show that our model can espress the semantics of -4biteboul  and Kanellakis’ IQL-motlcl.

In the following discussion, the meaning of notations is the same as theirs, unless it. is
explicitly mentioned. We have the sets of relation names R, class na.mes P, a.ttributes  A. ant1
constants D, and object identities 0. A given schema (R, P, T) is converted by introducing
new class names P’ so that each type expressions appearing concerning T is depth 1. For each
class name p in P U P’,

T(p) = D ) p’ 1 [a,:p,. . . . 7 -4d4 I (P’)  I (14 v 112) I (211  A p2 1),

where p’, p1, p)2, . . . , p, are in P U P’.
For esa.mple,  if we have type assignment,

T(per,solz)  = [~lnn,e:[fil,.st:.~trc.~~g.  ln.st:striny],  nye:integer],



we convert it as:
T(person) = [name:person-name, age:integer],

T( person-name) = [f isrst:string, last:string].

Another example is that:

T( set-of -rational) = {[cl en:integer,  num:integer]}

will be converted to:
T(set-of -rational) = (rational),

T(rationa1) = [den:integer,  numzinteger].

Next we change the syntax of literals in Abiteboul-Kanerakis’ paper. We convert each
literal expression tl(t2) to In(t2, tl), where tl is of type (t2). Furthermore, for a type a,ssign-
ment r for va.ria.bles in rules, we introduce new C-class names so that the value of T is alivays
a class na.me. For exa.mple? if we have a rule:

p([Ai:X,  As:Y]) k q(X). r(Y).

and type assignment for variables:

r(X) = [rlen:integer,  num:integer], T(Y) = integer,

we convert the type assignment by introducing a class name rational1 and a new type assign-
ment :

r(X) = rational, r(Y) = integer,

T( rcdionul) = [dexinteger, num:integer].

Furthermore, for each type expression that appears in a rule, we assign a new class na,me,
which will be a.lso included in P’. We introduce a new class pl

T(p1)  = [AIT( A2:r(Y)].

Finally, we convert the rule using new type assignment and class na,mes, together with newly
introduced va,ria.bles.  For example, the above rule will be:

P(Z) L q(x), r(Y), Al(Z) = X, A2(Z) = Y,
T(Z)  = pl,T(pl) = [A~:T(X),  A2:r(Y)].

We extended the syntax by interpreting Al and A2 as a function symbol.
After this conversion, we have:

0 class names P U P’?

.o the estended type assignment T’ for classes and r’ for variables, (Note tha.t we ca.n assume
tha.t each rule 1la.s the disjoint set of variables),

l new rules with only va.riables as the argument of relation symbols R U {In}.

Now, we crea.te the C-classes according to an extended schema a.nd modified  rules in the
following way. First. we convert the schema into C-classes.



1. T(p) = p’
W;e replace each class name p by p’ in the schema expression a.nd rules

2. T(P) = {P’)
We use set construction.

3. T(p) = p1 V p2

Yp = S&4  rp+

4. T(P) = Pl A P2

YP = %I v YP2’

-ip = YPl A Yp2 +

.5. [AI:pI,  . . . . ATn:pm]
LVe use recursive aggregation to define yp’s.

Ydmmy = fi(clmny,G,@), G = (V?E),

V = (2, E P U P’ 1 p a,ppears in the aggrega,tion  expression.},

E = {(p,p’,  Ak) 1 T(p)  = [&:pl, . . . , A/g’,  . . .]. }

@ is a.ny set of symbols that has one to one correspondence with 11’.

Nest we convert the rules into C-class by the sa.me way a.s we convert datalog  rules. The
only difference is that we may have a functional expression, such as Al(x), as argument of
equality. We can convert such an expression naturally to a first order formula. In the above
esa.mple,  the rule:

P(Z) - q(x),r(y),A1tz) = X,A2@) = y.

would be converted into

yl, = O(p,pl, (3q:q 3y, : A&se/f) = ql(q) A A;?(se!j) = d(y,)) ).

a,y a.nd get
IQL program I’( S, Sin, Sovt ), we ~011

C-classes. Then we define a concept
vert the schema, 5’ a,nd the rules in the
model with

l The C-class yo for the constants D is the only algebraic C-class.

l The C-classes that correspond to the initial ground fact are ba,se C-classes, as in the case
of datalog program.

l The remaining C-classes are derived C-classes.

Then the programs inflational fixed point will be provided by a fixed point of the <-operator.
Note that providing the instance of a schema in the IQL model is the same as providing a set
of ground facts.



6.4 IRIS Semantics
In this section, we briefly show that most of the semantics of IRIS system [I’S 891  can be
espressed by a concept model. W’e provide only a sketch of simulating the IRIS semantics by
the concept model.

Iip to now, we assumed that the a.lgebra,s that appear in the va,lue-oriented  model C-classes
are pa,rtial-valued  algebras. In ordered to capture the semantics of IRIS system, we assume
that they are multi-valued algebras. VVe need no change in our theory, because we can repla.ce
the partial functions in our discussion by multi-valued functions, because the multi-valued
functions a,nd sets form a category as we suggested in Section 2.1.

We formalize the semantics of IRIS system without foreign functions. First we assign
algebraic C-classes to its literals, such as integers, strings. Second we assign base C-cla,sses to
its objects. Finally, we describe the functions by first order sentences and add them to the
auxiliary sentences of C-classes. Then the object-oriented model of these C-classes provides the
semantics of IRIS system. Actually, the semantics is expressed exactly by the object-identity
space of the object-oriented model.

7 Future Work
There are several issues for future work.

l Schema Evolution
As suggested in Chapter 5, object-identity plays an essential role of schema maintena.uce.
It may provide the formal guideline for schema evolution. For example, when a new
concept (schema object) is added to schema, the e,xisting  concepts should be altered so
that base concepts will stay being abstract concepts.

0 Complex Values
We demonstrated that complex value has a.11 inherent disadvantage concerning ma.in-
tenance of consistency of a. knowledgebase, beca,use it cannot incorporate with object-
sharing. However, it has a strong advantage in providin g structured data tha,t a pro-
grammer can easily handle, as discussed in [LR 891. Hence we should introduce the
formalism that can provide the structured da,ta without sacrificing object-sharing. The
author presumes that it would be attained by introducing “local concept.” Namely, the
language provides the construct for defining concepts that are local to a concept. .1
programmer can provide the access method to the local concepts so that the instance of
local concept and its attributes ca.n be sha.red from outside. We should note that this
will bring no change in the semantics of object-identity. .\ny object-identity is inherently
global, because knowledge is global. The object-identity of a local concept is realized in
the “global” object-identity space, as well as tha,t of global concept. The construct of the
local concepts will be introduced for programming convenience.

l Implementation of Concept Model
R.ecently, a, prototype system of Concept, Model has implemented the model as a la.nguage.
The prototype system is written in 12,000 lines of Common Lisp code. The system checks
the integrity constraints a.utomatica.lly. The actual session performed on the prototvpc
system is shown in Appendis C.
There are several technical issues. such as type checking consistency maintenance and
object-binding, which will be discussed in the nest. report.



8 Conclusion
We have presented a formalism that expresses the clear semantics of object-identity and the
essential distinction of the value-oriented model and the object-oriented model. In order to
express the value-oriented sema,ntics, we have introduced the notion of data algebras. The
semantics of object-orientsed  model is expressed by the combination of the object-identit,y
representa tiou and the value-orieuted representation.

Moreover, the formalism has incorporated the logical database model into tllc object-
oriented model by expressin,c logica. relations as classes.

We should emphasize that our model provides the full-advantage of object-sha*riug  using
object-identities, when it is a.pplied to a practica,l system. Yet, it also provides the structured
algebraic semantics.

The concept model based on the formalism has been proposed, which provides the formal
guidelines on knowledgebase design. The concept model is an attempt to represent the esisting
objects in the real norld as fa.ithfully a,s possible. Namely, the instances of base C-classes
are strictly correspoilding to the esisting objects. Then the abstraction of those objects is
expressed by derived C-classes. The model provides a way of expressing a,nd imaintaining  the
integrity constraint,s  c\asil>-.

Acknowledgment
The authors would like to express thanks to Professor Stefano Ceri for the discussion. The
authors also tha.nk to Peter Ii. R.athmann and Dallan W. Quass for their comments on the
draft of this report, and to Marianne Siroker for the careful reading and the correction of
English.

This resea.rch has been supported by contract N00039-84-C-0211 of DAR.PA. The views
and conclusions in this document are those of authors and should not be interpreted as repre-
sentative of the official policies, either expressed or implied, of DARPA or U.S. Government.



A Database Operation
ter, we wiSo fa.r, we have discussed the schema representation of database. In this chap

describe the database opera.tions,  query and upda.te.
11

A.1 Query
The semantics of query is simple for the concept lnodel  M,

M  =  ((/4,0.2?).~).

A query is ba,sica,lly to get instance mapping of a concept y in d u X3 U ‘D. We take the minimal
closed set I’ of concepts tha,t contains m/ in the union of d, L? and ‘P. Then we obtain a fixed
point of < opera.tor  for I?. -4s discussed in the previous cha.pter,  for a certain concept, there
may not exist the fixed point.

A.2 Update
The update is to modify the object-model of concepts, i.e., to modify the instance mappings.
We assume tha,t the value-oriented model and object-identity spa.ce are fixed. Further, we
assume that an>’ update is obtained by composing the following three operations.

A.2.1 Insertion

Basically, the insertion can be done to base concepts. Or when we insert an instance to a
derived concept, it should be transformed to the insertion of a base concept. Thus we cannot
insert t.o a. derived concept obtained by the constructive a.ggregation.  On the other hand, we
can insert a.n instance to a concept derived by the restriction operator. If we allow “null-valued”
attributes, we can insert an instance to a concept derived by the a.bstraction  operator.

The procedure for insertion is as follows.

C’rea.te a new object-identity, say w.

2. Register the values of attributes, say @? of u. More specifically, modify the interpretation
o(.f)‘s of  f in  CD. If the value(object-identity) doesn’t esist., we create and insert it
recursively.

3. Check the integrity constraints. If the constra.ints  are not satisfied, then 11ndo the oper-
al ion. (Signal error.)

A.2.2 Deletion

Theoretically, we don?t allow the deletion of object-identity, beca.use object-identity is some-
thing that expresses the real esisting object. For esa.mple,  even if a person dies, the fact of
the esistence of the person cannot be eliminated from our knowledge. However, in a practical
system,  we may eliminate the object-identity if the object-identity is no longer referred to by
the ol).jects of our interest. This opera.tion is performed b,v a kind of garbage collection.



A.2.3 Modification

When we modify an attribute va,lue of an instance w, we change the interpretation of the
function symbol, say f, that corresponds to the attribute. IGore specifically, we change the
value of o(f)(w). The modification should be compatible with the value-oriented model. If
the object-identity for the new va.lue of o(f)( w is not in the knowledge base, we crea.te a new)
object-identity with the same procedure for insertion.

A.2.4 View Update

Since we have a homogeneous representation of concepts, we can update the knowledgebase

I through derived concepts, whenever it is possible. More precisely, if we can specify a unique
object-identity(instance) to be deleted or modified, then we can delete the instance or modify
the attribute value of the instance. When we insert an object through view concept, if we can
verify the object doesn’t exist a.s an insta.nce  of base concept, we can convert the insertion
operation to the insertion of the object-identity to a ba.se concept.

To summarize, if the update can be mapped to a. unique update at base concept level,
then it can be performed. There is a typical case when update through derived concept ca,n
be done safely. If a derived concept is deriud from J1 crrzd U only through abstractions und
restrictions, then the deletion and ~modijkatiotl  can be mapped to a unique update oj’ the base
concept, because the induced insta.nce ma.pping of the concept derived by abstraction and
restriction has a smaller domain than that of instance mapping of the base concept.

B Methods, Overloading, Encapsulation
The methods and encapsulation ca,n be formalized simply by using functions with subtype
matching. We should note that we don’t distinguish the type and class in our model. A c’-
class plays the role of type. In other word s, each type will be assigned to only one class. Since
we have C-class hierarchy, there is no sema,ntic  reduction even without the distinction of class
a.nd type. In this chapter, we use the term type instead of C-clnss,  when we use a C-class a,s
type.

B.1 Method by Function
All methods are defined as a function with strong type checking. A method of a C-class y is
defined by a binary function. One argument type for the function is y, the other is the type for
the message. Note that we allow a. multiple function definition in the following sense. For each
function name, we can have the multiple definition, so long as the tuple of the argument types
of the function is different. The tuples of the a.rgument  types are ordered by the product order
derived from the C-class hierarchy. Hence, the compiler will try to pick up the most specific
function definition according to the a,rgument types. For example, if we have the espression

( f:1* 1 . . . x,)

ls, we pick up the function definition of f with the minimal type tuple that matches the types
of (Xi . . . x, ). We require the minimal type t uple to be unique. In a. practical system, if there
exists more tha,n one minimal type tuple, t.hen the compiler will signal an error.

‘s\\‘e use a lisp-like notation of function.>



B.2 Overloading
The overloading of methods is naturally attained, because the most specific function definition
is taken for a particular pair of type and message.

B.3 Encapsulation by Subtype Matching
The encapsula,tion  is realized by the C-class hierarchy. Let us assume that C-cla.ss  n/r is a. super
cla.ss  of 72.

Yl 5 72, 7; = (XI;, ipi, vi, Ti, Ai, Ri) ( i = 1, 2 >

The attributes t1~a.t  are proper for yr cannot be accessed from ~2. In other ivords, t,he argument
to t,he function in CD1 - @z should be an instance of a subclass of yr. Note that we include a
C-class itself to its subclass.

By type casting, we can easily provide a way to define a method of 72 that can a.ccess the
attributes proper to nil. For example, let (JC . e) be the type casting function. If a variable x
has a type y2? a.nd yr is the subtype of 72, then (* yr X) hams  type yr. Then we can define a
function like in the following example.

(defunction fun1 (x : 72, m: *fin)
(f (* 71 x,)...),

l\.here f is the function with argument type yr.

B.4 Application to Database Security
The enca8psulation ca.n be used for da,ta.ba.se  security. In this section, we describe t,he rough
sketch of the idea.. First a user is provided with a set of C-classes that he/she ca,n access.
More specifica.lly, the type names that the user can use for the type declara.tion  is restricted in
the access language. So, we could say that each user has the different access langua.ge.  Let us
denote the set of accessible types for a user u by d(u). We call it ~cess clo*mnin.  The restriction
of a.ccessible C-classes is used as follows, for example. When we want to restrict a, user to access
only instances of a C-class that satisfy a certain condition, it can be easily realized by allowing
the user t,o access only to t,he C-class derived from the C-class by a restriction operator.

A user who can access only some higher level of types is not able to access the a.ttributes
proper to the subtypes of them without a type casting function. Hence, we can impose a.
protection by restrictin g the use of the type casting funct.ion. The protection rnecha.nism is
quite simple. A user is provided with a, set of types that can be used a.s the destination type of
type casting function. In the above example, each user has the restriction for the first argument
of (-k. s). Let ‘P(u) be the set of types that a user u is allowed to use in type casting function.
The set ‘P( .u) is called the clccess range of a user u. Let us call ~1 a superGsiny ‘t/.s;er  of tl~pe ;/ if
P( u ) contains y . If a. user 11 needs a method that should access the attributes of a. type that
are not in t,he access ra,nge nor in the access doma.in, u should ask a supervising user of the
type for defining the function. Then the defined function is shipped to 2~. Each user ‘II. has the
set of give72 functions F(U) that he/she ca.n use other than functions of his/her ofvn definition.
The shipped function is added to F( ‘u). Therefore2  the protect ion is completely characterized
by the triplet (A( II), ‘F(w). J--(U)) o access domain, access range and given functions. \Ve callf
it OCCES~  @~i/ege. Furthermore, we could introduce a releva,nt order to designate t,he strengt,h



of access privilege. Let us denote the set of all access privileges by 7’. Let c\‘, 1(3 be in P.

The access privilege ck is stronger than p, if

Moreover, we can estend the notion of access privilege by assigning  protection with each
of database operations, such as read and write, insert and delete. Let C be the categories of
operations. The extended access privilege II is the collection of mapping from C to P.

We can manage the access of user by II together with the access hierarchy provided by the
pa,rtial order of access privileges.

For example, it is natural to require that write protection is tighter than read protection.
Then, it is expressed by:

Vf E IT, f( ‘write') 5 f( ‘rend’).

We can also introduce the order in TI. For f, g in II, g 1la.s stronger access poiver than f if

v’c E c’,f(c> 5 g(c).
Then users ca.n be organized by IT with this order. For example, a mana.ger  would have

ranger access power than his sta,ff members with this order.

C ADL Sample Session
,&is we mentioned earlier, the implementation of the formalism in this report is in progress. It
is realized as a data description language called ADL(Algebraic Data Language). Currently,
the system is made of 12,000 lines of Common Lisp Code. It ha,s the following features.

1. CLOS-like  Functional Language
It has CLOS-like functional language with strong type checking for hierarchical types,
i.e., it allows subtypes. We ca.n attach a restriction predicate to each class to express the
integrity constra,ints.

2. La.zy Evaluation of Object-binding
The binding of instances to each class will be delayed until necessary. Moreover, the
update of instances are performed according to the local logs of classes. The dependency
of classes, such as “what update of which cla.ss  will a,ffects  which class” is checked at
compile time. Since the object-binding is done according to the local update logs, the
update cost is smaller and we can perform a necessa.ry optimization a.ccording to the
sequences of updates recorded in the logs.

:3. Incremental Class and Function Definition
Yew schema objects(C-classes)  and functions on C-classes can be added after instances

a,re bound to classes. If the new classes contra.dict the instances of ba.se C-classes, all
the further tra.nsa.ctions  may be rejected as inconsistent. The contradicting illstances  of
derived C-classes will be a.utomatica,lly  fised when the object-binding for the classes is
performed.



The current version of the la.nguage is quite tentative and will be subjected to many cllanges
in the future.

There a.re built in classes and functions. For cla,sses, we have ‘top’, ‘bool’,‘number’,‘string’,
‘sequence’,‘bag’, ‘set’, etc. For funct’ions, we have:

plus : number x nurn,ber - n zlm ber ; (add numbers)
minus ..  71 rlmber x n  urn&r - n u m b e r  ; (subtract a number from a. number)
. . .
length : string - number ; (string length)
substring? : string X string - boo1 : (1st arg. is a substring of 2nd a.rg.?)
. . . . etc.

The following is the actual session performed on this system. The lines preceded by ‘*;;” are
the comments, which were aadded a.fterwards.  The highlights are in the second hat.lf of the
session, where the automatic integrity constra.ints  checking, incremental class definition and
object-binding are demonstrated.

ADL[O]> (lisp (reset-kb!))
, 9** Clear all instances and initialize transaction management

rest-kb
;; routine.

ADL[O]> (defconcept person (base entity) (isa top)
((name string) (address location) (age number)
(occupation string) (salary number))

(res (and (gt (age self) 0) (It (age self) 200

(phone string)

>)>

ADL[O]> (defconcept location (base entity) (isa top). .
((state string) (city string) (street string) (number string)
(apartment string) (apartment-number string))

(res true))

ADL[O]> (defconcept student (derived entity) (isa person) ()
(res (equal (occupation self) "student")))

ADL[O]> (defconcept professor (derived entity) (isa person) (>
(res (equal (occupation self) "professor")))

9  ,** We have defined four new C-classes: person, location, student,
*. and professor., ,

ADL[O]> (compile)
** recompile the classes and functions., ,

;; First, we demonstrate a nested transaction and object sharing.
. .,,

ADL[OI> (begin-transaction) [I]
.. begin the transaction.9 ,
** The system supports nested transactions., ,
.. The number in the prompt9 J

ADL[ll> (insert (person (name "John")
"ADL[#l>" shows the nesting depth.



(address (location (state "CA")
(city "Palo Alto")
(street "Yale")
(number "2260")))

(age 20)
(salary 40000)))

ADL[l]> (set john (find person (equal (name self) "John")))
9 ,0. Any instance can be bound to a global variable.
t ,** Note that we don't have to specify the all of the attribute
;; values, because an attribute is treated as a partial function.

ADL[lI> (insert (person (name "Mary")
(address (location (state "NY")

(city "New York")
(street "West")
(number "47")))

(age 18)
(salary 50000)))

ADL[l]> (set mary (find person (equal (age self) 18)))

ADL[ll> (end-transaction)
transaction[ll successfully terminated

ADL[OI> (begin-transaction)[2]

ADL[l]> (modify mary age 25)

ADLClI> (begin-transaction)[3]

ADL[2]> (begin-transaction) [4]

ADLC31> (modify mary age 21)
** We modified Mary's age in the deepest level of the9 ,
;; transactions.

ADL[3]> (end-transaction)
transactionC41 successfully terminated

ADL[21> (output mary)
P ,** We show that Mary's age is actually modified.

[person]:
salary -> [number]:50000
age -> [number]:21
address ->
[locationl:

number -> [string] :"47"
street -> Cstringl:"West"
city -> [string] :"New York"
state -> [string] :"NY"

name -> [string] :"Mary"



ADL[2]> (modify mary address (address john))
** Mary's address becomes the same as John's address9 ,
** The object is shared.

ADL[2]> (output p&son)
a. Now, both persons have the same address.9 ,

InstancesCperson]:::

[person]:
salary -> Cnumberl:50000
age -> [number]:21
address ->

[location]:
number -> [stringl:"2260"
street -> [string] :"Yale"
city -> [string] :"Palo Alto"
state -> [string] :"CA"

name -> [string] :"Mary"

[person]:
salary -> [number]:40000
age -> [number]:20
address ->

[location]:
number -> [stringl:"2260"
street -> [string] :"Yale"
city -> [stringl:"Palo Alto"
state -> [string] :"CA"

name -> [string] :"John"

ADL[2]> (modify (address mary) city "Stanford")
** We change the city of Mary's address to "Stanford".> 9
9 ,** Since the location object is shared, this change is
.* automatically propagated to John's address.

ADL[21> (output p&son)
*. The change is actually propagated.

InstancesCpersonjl::

[person]:
salary -> [number]:50000
age -> [number]:21
address ->

[location]:
number -> Cstring]:"2260"
street -> Cstringl:"Yale"
city -> [string] :"Stanford"
state -> [string] :"CA"

name -> [string] :"Mary"

[person]:
salary -> [number]:40000
age -> [number]:20



address ->
[location]:
number -> [string] :"2260"
street -> [string] :"Yale"
city -> [string] :"Stanford"
state -> [string] :"CA"

name -> [string]:"John"

ADL[2]> (modify john age 300)
, ,*= This change contradicts the integrity constraints that
*a a person's age should be greater than 0 and less than 200.

ADL[2]> (end-transaction)
transactionC31 aborted

a ,*. The transaction in level 2 is rejected.
, ,** Since the modification of the addresses of John and Mary
, 9

ADL[ll>
*. are performed in level 2, it is thrown away.

(modify john age 30)
.* Just one more change in level 1.

ADL[ll> (end-transaction)
transactionC21 successfully terminated

*. The only changes performed in level 1 have been accepted.
ADL[O]> (output person)

.* We show what has been changed.
InstancesCperson;  I::

[person]:
salary -> [number]:50000
age -> [number]:25
address ->

[location]:
number -> Cstringl:"47"
street -> [string] :"West"
city -> [string] :"New York"
state -> [string] :"NY"

name -> [string] :"Mary"

[person]:
salary -> [number]:40000
age -> [number]:30
address ->

[location]:
number -> [string] :"2260"
street -> [string] :"Yale"
city -> [string] :"Palo Alto"
state -> [string] :"CA"

name -> [string] :"John"
9 ,** Only Mary and John's ages have been changed.

, ,** Next we demonstrate the automatic object-binding.

ADL[O]> (output student)



InstancesCstudent]:::
*. No instances are bound to 'student'.I ,

ADLCO]> (begin-transaction)[5]

ADL[l]> (modify john occupation "student")
;; John becomes a 'student'.

ADL[l]> (end-transaction)
transactionC51  successfully terminated

ADLEO]> (output student)
** Now, John is bound to 'student' as an instance., ,

InstancesCstudent]:::

[student]:
salary -> [number]:40000
occupation -> [string] :"student"
age -> [number]:30
address ->

[location]:
number -> [string] :"2260"
street -> Cstring]:"Yale"
city -> [string] :"Palo Alto"
state -> [string] :"CA"

name -> [string] :"John"

ADL[O]> (begin-transaction)[6]

ADL[l]> (modify john occupation "professor")
;; John becomes a 'professor'. He is no longer a 'student'.

ADL[l]> (end-transaction)
transaction[6]  successfully terminated

ADL[O]> (output student)

InstancesCstudent]:::
** He is no longer bound to 'student'., ,

ADL[O]> (output professor)
I I-0 Now he has been moved from 'student' to 'professor'.

InstancesCprofessor]:::

[professor]:
salary -> ktumber]:40000
occupation -> Cstring]:"professor"
age -> [number]:30
address ->

[location]:
number -> [string]:"2260"



street -> Cstring]:"Yale"
city -> [string] :"Palo Alto"
state -> [string] :"CA"

name -> [string] :"John"

1  ,.* Next demonstration shows the integrity constraints involving several
;; C-classes.
. .
, 9

ADL[O]> (defconcept I-am-the-richest (base entity) (isa top)
((name string) (salary number))
(res (forall ((x person)) (gt (salary self) (salary x)))))

;; First, we define a new C-class, which claims that
** it is richer than any 'person'.9 1

ADL[O]> (compile)
** Incrementally compile the schema., 1

ADL[O]> (begin-transaction)[7]

ADL[l]> (insert (I-am-the-richest (name "tyrant") (salary 10000)))

ADL[lI> (end-transaction)
transactionC71  aborted

I I** Since there is already a 'person' whose 'salary' is
I I.* more than 10000, the transaction is rejected.

ADL[O]> (begin-transaction)[8]

ADL[l]> (insert (I-am-the-richest (name "tyrant") (salary 100000)))

ADLCl]> (end-transaction)
transactionC81  successfully terminated

*. No 'person', I earns more than 100000. So, this transaction
*. is accepted.I I

ADL[OI> (begin-transaction)[91
1 I** Now, we try to insert a 'person' whose salary is
;; More than "tyrant."

ADL[l]> (insert (person (name "richman") (age 45) (salary 110000)))

ADL[lI> (end-transaction)
transactionC91  aborted

** Although, "richman"I I satisfies the local constraint on
.- the age,) I this transaction is rejected, because "tyrant"
;; doesn't allow a richer 'person' than him.

9  I** We can use any first order formula to express the integrity constraints.
.* The following example demonstrates the use of quantified first order formulas.9 ,
, I.. Since the schema objects can be incrementally defined, we can express
** complicated query by a schema definition.I 9



ADL[Ol> (defconcept oldest-person (derived entity) (isa person) nil
(res (forall ((x person)) (ge (age self) (age x)))))

ADL[O]> (defconcept the-oldest-person (derived entity) (isa person) nil
(res (forall ((x person))

(if (not (equal self x)) (gt (age self) (age x))))) )
, ,.. Two classes are added. The class 'the-oldest-person'
, ,

ADL[Ol> (compile)
** should be a person who is really older than any one else.

ADL[O]> (output oldest-person)
, ,.* Both 'oldest-person' and 'the-oldest-person' has an
;; instance, because there is only one person with the
** oldest age.

Instances[oldest-person]:::

[oldest-person]:
salary -> [number]:40000
occupation -> [string] :"professor"
age -> [number]:30
address ->

[location]:
number -> [string] :"2260"
street -> [string] :"Yale"
city -> [string] :"Palo Alto"
state -> [string] :"CA"

name -> [string] :"John"

ADL[OI> (output the-oldest-person)

Instancescthe-oldest-person]:::

[the-oldest-person]:
salary -> [number]:40000
occupation -> [string] :"professor"
age -> [number]:30
address ->

[location]:
number -> [string] :"2260"
street -> [string] :"Yale"
city -> [string] :"Palo Alto"
state -> [string] :"CA"

name -> [string]:"John"

ADL[O]> (begin-transaction)[lOl
;; Now, we add one more 'person' whose age is the oldest.

ADLCl]> (insert (person (name "Kate") (age 30) (salary 45000)))

ADL[ll> (end-transaction)
transaction[lO]  successfully terminated

9 ,** Now, there are two persons with the oldest age 30.



ADL[O]> (output oldest-person)
;; so, 'oldest-person' has two instances.

InstancesColdest-person]:::

[oldest-person]:
salary -> Cnumberl:40000
occupation -> [string] :"professor"
age -> [number]:30
address ->

[location]:
number -> [string]:"2260"
street -> [string] :"Yale"
city -> [string] :"Palo Alto"
state -> [string] :"CA"

name -> [string] :"John"

[oldest-person]:
salary -> [number]:45000
age -> [number]:30
name -> [stringl:"Kate"

ADLEO]> (output the-oldest-person)

Instancescthe-oldest-person]:::
** But 'the-oldest-person' has no instances, because9 ,
9 J** there is no person who is strictly older than anyone else.

ADL[O]>



page 64

References
[AK SS]

[BS Sl]

[CC s9]

[CW s9

[FS S9]

[GB S5]

[GM S9]

[KL S6]

[KW s9]

[LR S9]

[LU s9]

[MR. S6

[SP Sl]

[SS 771

[UL s7]

[UL S8]

[WH s3]
[Wh SG]

[WT S9]

Abiteboul S. ancl Kmellakis P.: “Object Identity as a Query Language Prim-
itive”; In Proc. A CM SKklOD ‘89
Burris S. and Sa.nlqpanava.r  H.: A Course in 1/7niver.w~1 .4lgebra, Springer-
Verlag, 19Sl

C&ace F, Ceri S, Crespi-Reghizzi S, Tanca  L and Zicari R: “ l%e L,OC;RES
Project: Integrating Object-oriented data modeling with a Rule-based Pro-
gramming Paradigm” ; Working paper, June, 19S9.

Chen W. and Warren D .: ‘Y2-Logic of Complex Objects”; I2 Proc. .4 C!M
PODS ‘89.
Fishman D.H. et al: “Overview of Iris DBb&S”; HP System Laboratory Tech-
nical Report, HPL-SAL-S9-  15, 19S9.

Goguen J. and Burstall R.: “Imtitutions:  Abstract Model Theory of Corn-
p uter Science.” ; CSLI Technical Report CSLI-S5-30, Center for the Study of
La,nguage and Information, Standard University, 19S5.

Goguen J.A. and Meseguer J.: “Order-Sorted Algebra l”; Working paper,
July, 19S9

Keller A.: ” The Role 01’ Scrnarltics  in Tral&ating View Updates”; Comprlter,
Jan, 1986

Kifer M. and Wu J.: “A Logic for Object-Oriented Logic Programming“; In
Proc. ACM PODS’89.

Lecluse C. and Richard P.: “Modeling Co,mplex Structures in Object-Oriented
Database”; In Prot. A CM PODS ‘89.
Lunt  T .F . : “ikfultilevel  Secur i ty  for Ob.ject-Oriented  Database  Systc‘ms”;
IFIP ‘89.

Maier D.: “A logic for ob.jects”; TR CS/E-S6-012,  Oregon Graduate Center
Technical Report, 1986

Shipman D.: ” The F~l,nctional Data %fodel  and the Data Language DAPLEY;
ACM Trans. on Database S+fem \‘ol.(i, Ko.2. 19Sl

Simth J.M. and Simth C.P.: “Database Abstraction: aggregation and ge’ner-
alization” ; A CM Trans. on Database Syskm,  Vol. 2, No. 2, 1977

Ullman J.D.: “Database Theory - past and Juture”;  In Proc. Sixth 1-1 Ciz/I
Syrnp. on Principles of Database Systems, 19S7

~Jllman .J.D.: Database and Knowledge-base Systems;  Computer Science
Press, 19S9

Wiederhold G.: Database Design; hlcGraw-Hill, 1983

Wiederhold G.: ” 1;’I~sw.~. Ol),jects and databases”;  C’omputer:  D e c .  19%

Winst,on P.H., Horn B.K.: LISP; Adisson  Wesley, l9S9


