
July 1990 Report No. STAN-CS-90-1321

Tools and Rules for the Practicing Verifier

bY

Zohar Manna and Amir Pnueli

Department of Computer Science

Stanford University

Stanford, California 94305

In Carnegie Mellon Computer Science:

A 25-year Commemorative,

ACM Press, 1990.

Tools and Rules for the Practicing Verifier*

Zohar Manna Amir Pnueli
Stanford University 1 Weizrnann Institute of Science]

and
Weizmann Institut,e of Sci (‘1 w4

July 3, 1990

Abstract

The paper presents a minimal proof theory which is adequate for proving the
main important temporal properties of reactive programs. The properties we con-
sider consist of the classes of invariance, response, and precedence properties. For
each of these classes we present a small set of rules that is complete for verifying
properties belonging to this class. We illustrate the application of these rules by
analyzing and verifying the properties of a new algorithm for mutual exclusion.

1 Introduction

In this paper we present a minimal proof theory that is adequate for proving interesting
properties of concurrent programs. The simple theory is illustrated on a single example,
which is a new and interesting algorithm for mutual exclusion [SzySS].

There are several points we would like to demonstrate in this paper. The first and
main point is that a very little general (temporal) theory is required to handle the most
important properties of concurrent programs. The types of properties, on which a prac-
ticing verifier (hoping that such a position will eventually become a standard in any
quality assurance team) typically spends most of his time, usually fall into two or three
simple classes. By presenting a simple but complete set of rules for verifying properties
belonging to each of these classes, we provide the practicing verifier with precisely the

*This research was supported in pxt by the National Science Foundation under grants CCR-89-11512,
and CCR-89-13641; by the Defense Advanced Research Projects Agency under contract N00039-84-C-
0211, by the United States Air Force Office of Scientific Research under contracts AFOSR-90-0057, and
by the European Community ESPRIT Basic Research Action project 3096 (SPEC).

tDepartment of Computer Science, Stanford University, Stanford, CA 94305
iDepartment of Applied Mathematics, Weizmann Institute, Rehovot, Isra.el

1

tools he needs. This pragmatic approach can be nicely complemented by a more theo-
retical presentation of a comprehensive theory of a language of specification (temporal
logic would have been our choice), its power to express a wide spectrum of program
properties, and a comprehensive proof theory and investigation of its completeness (see
for example [MP89a]). H owever, it may be an educational mistake to require the study
of such a comprehensive approach as an essential requisite for the pragmatic application
of the verification tools that result from the general theory.

Consequently, the approach we take in this paper is to circumvent the general theory
of temporal logic and proceed as directly as possible to the introduction of the classes of
properties that are most frequently verified, and to the proof rules that are appropriate
for their verification.

There are three classes of properties we consider in this paper, and believe to cover
the majority of properties one would ever wish to verify.

l Invariance - An invariance property refers to an assertion p, and requires that p is
an invariant over all the computations of a program P, i.e., all the states arising
in a computation of P satisfy p. In temporal logic notation, such properties are
expressed by up, for a state formula p.

l Response - A response property refers to two assertions p and q, and requires that
every p-state (a state satisfying p) arising in a computation is eventually followed
by a q-state. In temporal logic notation this is written as p+- Oq. In the Unity
notation (see [CMSS]), this property is called a leads-to property, and written as
P H 4.

l Precedence - A simple precedence property refers to three assertions p, q, and r. It
requires that any p-state initiates a q-interval (i.e., an interval all of whose states
satisfy q) which, either runs to the end of the computation, or is terminated by an
r-state. Such a property is useful in order to express the restriction that, following a
certain condition, one future event will always be preceded by another future event.
For example, it may express the property that, from the time a certain input has
arrived, there will be an output before the next input. Note that this does not
guarantee that output will actually be produced. It only guarantees that the next
input (if any) will be preceded by a,n output. In temporal logic, this property is
expressed by p +- (q U r), using the unless operator (weak until) U. More complex
precedence properties refer to a sequence of assertions qo, ...q,-l, and replace the
requirement of a single q-interval, by a requirement of a succession of a qo-interval,
followed by a ql-interva,l, followed by a q,-l-interval.

According to the cla,ssification of properties in [AS85], the invariance and precedence
properties are safety properties, while the response properties are liveness properties.
Referring to the classification of properties in [MPSSa], the response properties defined
here are a special case of the responsiveness class defined there (which allows p and q to

2

be past formulae rather than assertions). The class of precedence properties and proof
rules associated with it have been introduced first in [MP83].

We refer the reader to [MP89b] for a top down approach, which attempts to present
the most general proof rules that cover as many properties as possible. Here, however, we
take the opposite approach of presenting rules that are closely tailored for the restricted
classes that are most frequently needed. This reduction in generality is justified only
if we can demonstrate a gain in the convenience and efficacy of using those rules for
verifying properties that fall in these classes. This brings us to the second point we wish
to make in this paper.

The paper contains no new theoretical results. Rather, it recommends the adoption
of a set notation for expressing the control state of a system with an unbounded, and
even dynamic, set of processes, within the framework of old and tried proof methods,
such as [La1m77, MP84] (see also [PZSG] w here this set notation has been introduced for
the analysis of probabilistic algorithms).

The algorithm we have chosen to verify, is an ideal example for demonstra,ting the
acute need for formal verification of concurrent programs, as well as the style and level
of verification that is currently possible. We refer the reader to [SzySS] for some of its
important features, such as using single-writer bounded shared variables and enjoying the
property of linear delay. These features make this algorithm a significant improvement
over most of its predecessors.

Although the algorithm appears to be quite simple and innocuous, the only way we
could convince ourselves of its correctness was to construct the formal proof outlined in
this paper. Szymanski presented an informal proof, which is a,s convincing as informal
proofs can be. In fact, our formal proof derives its main ideas from a formalization of
his informal arguments. However, if the question of correctness is crucial, such as having
to decide whether to include this algorithm as a contention-resolving component in a
hardware chip, we see no way but to carry out a formal verification.

We have learned two lessons from carrying out this verification exercise. The less
encouraging lesson is that it requires a non-negligible deal of creativity and dexterity in
manipulating logical formulae to come up with the appropriate set of auxiliary assertions
(and other constructs needed for the proof). This is so even if the correct intuition is
given and all that is required is to formalize that intuition. The more encouraging lesson
is that, once the appropriate constructs have been found, the rest of the verification
process, which requires the construction of the verification conditions (proof obligations)
a,nd proving their validity, can to a large extent be automated. It is not that we have
come up with a surprisingly new automatic theorem prover. But inspection of the kinds
of assertions generated for a proof of an algorithm like the one we study here, convinced
us that for a large and interesting class of algorithms all these assertions belong to a
decidable class.

3

2 Programs and Computations

The basic computational model we use to represent programs is that of a fuir transition
system. In this model, a program P consists of the following components.

0 I/ = (260, u,-1) - A finite set of state variables. Some of these variables repre-
sent data variables, which are explicitly manipulated by the program text. Other
variables are control variables, which represent, for example, the location of control
in each of the processes in a concurrent program. We assume each variable to be
associated with a domain, over which it ranges.

l C - A set of states. Ea,ch state s E C is an interpretation of V, assigning to each
variable y E V a value over its domain, which we denote by s[yl.

l I - A set of transitions. Each transition T E 7 is associated with an assertion
p7(V, V’), called the transition relation, which refers to both an unprimed and a
primed version of the state variables. The purpose of the transition relation p7 is
to express a relation between a state s and its successor s’. We use the unprimed
version to refer to values in s, and the primed version to refer to values in s’. For
example, the assertion x’ = x + 1 states that the value of x in s’ is greater by 1
than its value in s.

l 0 - The precondition. This is an assertion characterizing all the initial states, i.e.,
states at which the computation of the program can start. A state is defined to be
initial if it satisfies 0.

We define the state s’ to be a T-successo7Q of the state s if

(5 4 I= i%(v) V’),
where (s, s’) is the joint interpretation which interprets x E 17 as s[x], and interprets X’
as s’[x]. Following this definition, we can view the transition r as a function r : C H 2’,
defined by:

7(s) = {s’ 1 s’ is a 7-successor of s].

We say that the transition r is enabled on the state s, if ~(5) + 4. Otherwise, we say
that r is disabled on s. We say that a state s is terminal if all the transitions T f 7 are
disabled on it. The enabledness of a transition T can be expressed by the formula

En(T) : (3V’)p& V’),

which is true in s iff s has some 7-successor.

-A ssume a program P for which the above components have been specified. Consider

0 : so, Sl, s2, . ..)

a finite or infinite sequence of states of P.

4

We say that the transition 7 E 7 is enabled at position Ic of 0 if T is enabled on sk.
We say that the transition r is taken (completed) at position k + 1, k = O,l,. , . , if sk+l
is a 7-successor of Sk. Note that several different transitions can be considered as taken
at the same position.

The sequence 0 is defined to be a computation of P if it satisfies the following re-
quirement s:

0 Initiality so is initial, i.e., SO I= 0.

l Consecution For each j = 0, 1, the state sj+l is a T-successor of the state sj, i.e.,
sj+l E 7(sj), for some 7- E 7.

l Termination Either 0 is infinite, or it ends in a state sk which is terminal.

l Justice For each transition T E 7, it is not the case that T is continually enabled
beyond some position j in a (i.e., 7 is enabled at every position k > j)
while T is not taken beyond j.

For a program P, we denote by Camp(P) tlie set of all computations of P. We say that
a state s is P-accessible if it appears in some computation of P. Clearly, any 7-successor
of a P-accessible state is also P-accessible.

We assume an underlying assertional language, which contains the predicate calculus,
and interpreted symbols for expressing the standard operations and relations over some
concrete domains. We refer to a formula in the assertional language as an assertion.

For an assertion p and a state s such that p holds on s, we say that s is a p-state.
For a computation cr : so, ~1,. . ., such that sj is a pstate, we call j a p-position.

Set Notation

We introduce the following notation to facilitate a compact representation of sets of
natural numbers.

A set specification consists of a list of one or more set specijers, where each specifier
is either a single natural number, or an interval specifier of the form u..b, for a 5 b,
natural numbers. The set defined by the interval specifier a..b consists of all the integers
not smaller than n and not la.rger than b, i.e.,

(n..b) = (m 1 a 5 m < b}

The set defined by a list of specifiers is the union of the sets defined by the individual
specifiers. Thus, the set specified by { 1,3..5,7} consists of the natural numbers

5

In the following, we define on several occasions a family of sets A, indexed by natural
numbers. These definitions immediately extend to define sets indexed by general set
specifications as follows:

A SPl ,--.&‘k = U Au.
aE{spl ,--#k}

Thus, A1,3..5,7 is given by

AI u A3 u A4 u A5 u AT.

3 The Program as a Fair Transition System

The program we wish to study can be given as

MUTEX ::
flag: array[O..n - l] of 0..4 where f Zag[O..n - l] = 0

ml I I WI I I *** II Pb - 11 1
Each process P[i], i = 0, n - 1 of the program is given by:

local j : [0.x - l] where j = 0

a,: loop forever do
begin

eI : Non Critical
e2 : flag[i] := 1
& : wait until Vj : 0 5 j < n : (f lag[j] < 3)
l4 : f kzg[i] := 3
&, : if 3j : 0 5 j < n : (flag[j] = 1) then

begin
e6: fZng[i] := 2
e7: wait until 3j : 0 5 j < n : (fhg[j] = 4)

end
e, : f Zag[i] := 4
e, : wait until Vj : 0 5 j < i : (fZng[j] < 2)
e,,: Critical
e,,: wait until Vj : i < j < n : (f lug[j] < 2 V flag[j] > 3)
e,,: f lag[i] := 0

end

Below, we identify the four components of a fair transition system, namely, state vari-
ables, states, transitions, and precondition, for the MUTEX program. This identification
enables us to view the program as a fair transition system, and apply to it the verification
met hods that will be later presen tee-I for a. general fair transition system.

6

l V - The state variables are given by

Lo, . ..h. f lag[O], flq[n - 11, j0, j,-1.

The variables Lo, . . . , LIZ, are control variables that range over subsets of (0, n -
1). At any state of the computation, Lk, for k = 0, 12, contains the indices
of all the processes that currently are ready to execute the statement labeled lk.
Variables f lag[O], flag [n - l] naturally represent the current values of the corre-
sponding program variables. The variables jo, . . ., j,-1 represent the current values
of the local variable j of the processes P[O], P[n - 11, respectively. As we will
see below, we assume that a compound test such as Vj : 0 5 j < n : (f lag[j] < 3)
is performed by several atomic tests, each checking the current value of f lag[j] for
some j. The variable j; indicates that the next flag value to be tested by P[i] is
f Miil-

l C - The states consist of all the possible assignments to the state variables of values
in their respective domains.

l 0 - The precondition is given by the assertion

n - l

0 : (L o = (0, . . .) n - 1)) A (L.12 = 4) A A ((f~~9[il = 0) A (5 = 0))
i=O

Thus, at the initial state of the program, all processes reside at the location lo,
and the values of flaqI01. flag[n - I] and of jo, jn-l are all zero.

To express the movement of control effected by the transitions, we introduce the following
;I hhrevi ations:

move(i,k,m) : (Lk = LI; - {i}) A (J!& = Lm u {i})

Clearly, move(i, k, in) describes the movement of control within process P[i] from J?k to
&m, while stay describes the case that the control does not move in any of the processes.

Note that the movement of control from lk to J!, is represented by claiming that the
new value of the set Lk, which contains the indices of all the processes that currently
reside at lk, equals its old value minus the process i that has moved away. Similarly, Lm
is updated by the addition of i.

The Transit ions

Before presenting the actual transitions corresponding to the MUTEX program, we present
a general approach to the assignment of transitions to compound tests, such as the tests
a,ppearing in statements -Qs, 15,&, &, and &II of the program. These tests all perform a
check of whether a certain condition p(j) holds for a31 or some j = 0, n - 1. We do not

consider the interpretation of such tests as atomic, assuming them to be fully completed
by a single transition, as a realistic representation of what really happen in concurrent
systems. Instead, we consider them as molecular (see [PZ86]), and assign a separate
transition to the check of p(j) for each individual j. We refer the readers to [MPSSc]
for an analysis of the same program under the assumption of atomic compound tests, as
well as a comparison of several versions of molecular compound tests.

There are three types of compound tests that appear in the MUTEX program. We
discuss each of them separately. To represent an intermediate situation in the perfor-
mance of a compound test by the process P[i], we use the state variable j; that points
at the next value of j, for which p(j) should be tested. In the representation we consider
here, ji is initiated at 0 and incremented by 1 to get to the new index to be tested.
Consequently the value ji = n indicates the completion of the compound test.

In [MP89c] we also consider other orders in which the range O..n - 1 can be scanned,
and study the effect the different scanning orders may have on the behavior of the
program. In fact, we show there that the program is correct if we follow an ascending
scanning order, which is the one adopted here, and is incorrect for any other scanning
order.

In defining the transition relation p7 corresponding to the transition r, we adopt the
following convention. We present a compact transition relation R,, which contains the
conditions under which T is enabled, and the effect T has on the variables it may modify.
The full transition relation ,07 is given by a conjunction of R, with a list of clauses u’ = u
for each variable u whose primed version does not appear in R,, i.e., a variable that is
obviously preserved by Y-.

Assume that the following compound test appears in the program for the process
P[;], for some predicate p(j) which depends on j.

L!,: wait until Vj : (0 < j < n) : p(j)

With this statement we associate the transition T,.[;], whose compact transition relation
is given by

R&l : (i E LT) /I
i

b . = n) A move(i, r, s)]
V [(ji < n) A p(ji) A stay A (jf = ji + l)]
V [(ji < n) A lp(ji) A stay A (ji 5 ji)]

The first clause of this formula corresponds to the case tha,t the compound test has
terminated, as is identified by j; = n. This means that for each j = 0, n - 1, we have
encountered a state in which p(j) was true. By no means is it implied that there ever
was a, state in which p(j) held for all j = 0, n - 1 at the same time.

The second clause of this transition corresponds to the case that ji is still in the range
0 7 “‘7 n - 1 and p(j;) is found to be true. In this ca,se, ji is stepped up, but control still
remains at &.

The third clause corresponds to the case that p(ji) is found to be false. Several
strategies are possible at this point. Some implementations may decide to restart the
testing cycle from the beginning, and consequently reset ji to 0 on detecting a false p(ji).
Other implementations leave ji as it is and will try again to test p(j;) until it is found
to be true. The clause presented above is general enough to cover both these strategies
by requiring only that ji does not increase. Obviously, if we prove the program to be
correct under this more general representation, the results will hold, in particular, for
the two specific implementations we have described above.

Next, let us consider a statement of the form

&: wait until 3j : (0 5 j < n) : p(j)
&:

With this statement we associate the transition rT[i], whose compact transition relation
is given by

RT[21 ’ (’ ’ LT) *
[P(ji) A mov+, r, S)]

V [lp(ji) A stay A (j,! = (ji + l)lllod n)]

The first clause of this formula corresponds to t,llc> case that p(ji) is found to hold. In
this ca,se, the process P[i] moves on to .C,.

The second clause corresponds to the case that p(ji) does not hold. In this case P[;]
remains at k’, and ji is stepped to its next value. The incrementation of ji is done modulo
n, so that the value following n - 1 is again 0.

Finally, let us consider the statement

& : if 3j : (0 5 j < n) : p(j)
then [J!, : . ..I
else [& : . ..I

With this statements we associate the transition rT[i], whose compact transition relation
is given by

[(I. = 12) A move(i,r,t)]
RT[i] : (i E L,.) A V [(jl < n) A p(ji) A nzove(i,r,s)]

V [(ji < n) A lp(ji) A Stay A (ji = ji + l)]

The first clause of this formula corresponds to the case that the search for a j that
satisfies p(j) 1las been completed, apparently without finding such a j. Consequently,
the result of the compound test is false and we proceed to the else cla,use.

9

The second clause of the formula corresponds to the case that the current value of j;
satisfies p(j;). This means that the test is successful and we proceed to the then clause.

The third clause of the formula corresponds to the case that the current value of j;
does not satisfy p(j;). We therefore step j; to its next value and stay in place.

Having considered the general form of the transitions associated with the three types
of molecular tests we have in our program, we proceed to present the transitions for the
program.

We recall that according to our set nota,tions

Li, ,i2,...,im = Li, U L;, U as- U Linz
L.z..k = LiULi+1U...ULk for i < k

Below, we list the transitions associated with the process P[i]. For each such process
there exist one or more transitions corresponding to each statement. For the statement
labeled by e, we denote the corresponding transition by ~~[i] and the associated compact
transition relation by R, [il.

l R,[i] : (i f Lo) A move(i, 0,l)
This transition corresponds to the case tha,t I’[i is at k’o and moves inside the loop]
statement.

l R1[i] : (i E L1) A (stay V nzove(i, 1,2))
This compact transition relation consists of two clauses representing a non-deterministic
choice. The first clause corresponds to the case that the process P[i] decides to
remain in its non-critical section for awhile longer. The situation that, from a cer-
tain point on, a process remains forever in its non-critical section (which we want
to include) is represented by this process consistently choosing this clause of the
transition relation from that point on.
The second clause of the compact transition relation corresponds to the case that
P[i] decides to quit its non-critical section and move from l1 to &.

l R,[i] : (i E L2) A mo ve(i, 2,3) A (.fZa g�☯i] = 1) A (ji = 0)

This transition corresponds to the case that the process P[i] moves from k’2 to e3
while setting fZng[i] to 1. A ccording to our convention, flag’[k] = faag[k] for all
k # i. Note that since e3 performs a molecular test, we reset ji to 0 on entering !3
as preparation for the compound test to be performed at !3.

-o R3[i] :

i

[(I- = 7 2) A nzove(i,3,4)]
(’ ’ L3) A ’[cj: < n, A (fzag(ji) < 3) A StCL?J A (jl = .ii + l)]

’[(ji < n, A (fzag(ji) 2 3) A StCL?J A (ji 5 ji)] 1

10

The first clause of this compact transition relation corresponds to a successful
termination of the test, as a result of which, P[i] moves to &. The second clause
corresponds to the case that the next tested value of ji satisfies fZag[ji] < 3, as a
result of which, ji is incremented to its next value. The last clause corresponds to
the case that a tested fZag[ji] is found to be greater or equal to 3. In this case, we
allow resetting ji to any value not exceeding its current value.

l Rd[i] : (i f L4) A move(i, 4,5) A (fZag’[i] = 3) A (ji = 0)
Process P[i] moves to k’s while setting fZag[i] to 3 and resetting ji to 0.

l Rs[i] :

(

b . = n) A move(i, 5, S)]
(i E L5) A V [(j: < n) A (fZag[j;] = 1) A move(i, 5,6)]

V [(ji < n) A (flag[j;] # 1) A stay A (j;' = j; + l)] 1

The first clause of the compact transition relation corresponds to the case that the
test has terminated unsuccessfully, and consequently P[i] moves to es. The second
clause represents the case that fZag[j;] = 1. Consequently, P[i] moves to &. The
last clause corresponds to the case that the current value of j; does not satisfy
fZaCJ[j;] = 1. Consequently, the process stays in the test and steps j; to the next
value.

l RG[i] : (2’ E L6) A move(i, 6,7
Set fZag[i] to 2 and j; to 0.

l RT[i] :

> A (fZag’[i] = 2) A (ji = 0)

(i f LT) A [(f Zag[j;] = 4) A move(i, 7, S)]
V [(fZag[j,] f 4) A stay A (jd = (j; + 1)mod 12)]

The first clause of the compact transition relation represents the case that f Zag[j;]
equals 4. In that case the search has terminated and P[i] moves to &. The second
clause corresponds to the case that fZag[j;] does not equal 4. In tha,t case the
sea,rch continues by stepping j; to its next value.

l Rs[i] : (i E L8) A move(i, 8,9) A (fZag’[i] = 4) A (jr = 0)
Process P[i] moves from & to & while setting fZag[i] to 4 and j; to 0.

l Rg[i] :

i

Kj . - i) A nzove(i, 9, lo)]
(i E L,) A V [(j: 1 i) A (fZag[j;] < 2) A stay A (j,’ = j; + l)]

V [(ji < i) A (fZag[j;] 2 2) A stay A (ji I j;>3

The first clause of the compa.ct transition relation represents a successful completion
of the test, which runs for j; ranging from 0 to i - 1. P[i] moves to &lo. The second

11

clause represents the case that j; < i and the current j; satisfies fZag[j;] < 2.
Consequently, the process increments j;. The last clause represents the case that
the current j; does not satisfy f Zug[j;] < 2.

l RI&] : (i E LEO) A move(i, 10,ll) A (ji = i + 1)
The activity of the process inside the critical section is represented by the single
transition that moves from !I, to ,!?,I. This represents the commitment that, dif-
ferently from the non-critical section, the activity within the critical section must
always terminate. Note that on moving to l11 we reset j; to i + 1 to initialize the
search at & to start from that value.

l h[i] : (i E L&I

[(j. = n) A move(i, 11,12)]
V [(j: < n) A (f ZUg[j;] < 2 V fZag[j;] > 3) A stay A (ji = j; + l)]
V [(ji < n) A (2 5 f Zag[j;] 5 3) A stay A (jf 5 j;>l

The first clause of this compact transition relation corresponds to a successful
termination of the test. Consequently, P[i] moves to J!~~. The second clause cor-
responds to the case that j; < n and f Zag [j;] < 2 V f Zag [j;] > 3. Consequently,
process P[i] moves to the next value of j;- The third clause corresponds to the
case that 2 5 fZag[j;] 5 3. alld therefore ji is reset to any value not exceeding itIs
current value.

l RI&] : (i E LIZ) A move(i, 12,0) A (fZag’[i] = 0)

Process P☯i] moves from & 12 to the location at which the main loop restarts another
execution of its body, while resetting fZag[i] to 0.

4 Invariance Properties

For an assertion p, we say that p is (generally) valid, and write I= p, if p is true on all
possible states. All the known tautologies and theorems of the predicate calculus are
obviously valid.

We say that the assertion p is valid over the program P (also described as being
P-valid), and write P I= p, if p holds over all the P-a,ccessible states.

Clearly, if the assertion p is P-valid it is an invariant property of the program P.
That is, it holds over all the states that can arise in any computation of the program P.

In this section we present several proof rules that are adequate for proving the in-
variance of an assertion p over a program P, i.e., proving P I= p.

We will illustra,te these rules by proving the main properties of the program MUTEX.

To facilitate the expression of properties for this program, we introduce the following
not a*tion:

12

The main invariance property of the program MUTEX can be expressed by the asser-
tion NIO 5 1. This assertion limits the number of processes that can be concurrently
executing at & 1o, which corresponds to the critical section, to be at most 1. Thus, we
have to prove

P I= (No L 1)
for the MUTEX program.

Since most of our reasoning is done within the P-validity framework, we omit the
prefix “P I=” and simply write p to mean P I= p. The only exception to this convention
are rules that deal at the same time with both general and P-validity, such as the IMP

rule presented below.

IMP

(Import) rule: (I= P> 1 (P I= PI-

This rule states that if the assertion p is generally valid, it is in particular P-valid. It is
used to import general validities into the P-validity fra,mework.

M P

(Modus Ponens) rule: (13 + 4, P> t- 4.

This rule infers the P-validity of q from the P-validity of p -+ q and q.

The above two auxiliary rules are independent of the particular program analyzed.
The following INV rule refers to the elements of the program, and is the main working
tool for establishing invariance properties.

The rule uses a special case of a particular formula, to which we refer as the verify-
cation condition of the transition r, relative to the assertions p and p. This formula has
the form

In this formula, ,07 is the transition relation corresponding to 7, and q’, the primed
version of the assertion q, is obtained from q by replacing each variable occurring in q by
its primed version. Let s and s’ be two states. Since p7 holds over the joint interpretation
(s,s’) iff s’ is a T-successor of s, and q’ states that q holds over s’, it is not difficult to
see that

If the verification condition (p A pT) + q’ is P-valid, then every T-successor
of a p-state is a q-state.

13

The INV rule is given by

I N V 11. v-)p

12. o+cp
13. (P A pT) -+ 9’ for every 7 E 7

P

The INV rule uses an auxiliary assertion P which, by premise 12, holds initially, and
by premise 13 is propagated from each state to its successor. This shows that v is an
invariant of the program, that is, it holds continuously over all computations of P. Since,
by 11, the a,ssertion p implies p, it follows that p is also an invariant of the program.
Example Consider the trivial program with a single state variable x, the pre-condition
x = 0, and a single transition 7 whose transition relation is given by p,. : x’ = x + 1.
Observe that this program has a single infinite computation, given by

(x : o), (x : l), (x : 2)) . . .

We wish to prove for this program the trivial invariance property

x > 0.-

To prove this property, we use the INV rule with p = ‘f3 : (x 2 0). The rule requires
showing the validity of the following three premises:

Il. (x > 0) + (x 2 0)

12. (x = 0) -+ (x 2 0)

13. ((x 2 0) A (x’ = x + 1)) + (x’ > 0)

Clearly a11 the tllree premises are generally valid, which establishes the invasiance of
x 2 0.

We proceed to establish several invariants for the program MUTEX, which together
will yield the desired result.

Simple Invariant s

First, we establish a list of invariants that connect for each i = 0, n - 1 the location of
P[i] with the value of fZag[i]. To facilitate the expression of these invariants, we define

Fr; = {i IO 5 i < n , fhg[i] = k}.

Thus, Fk, for k = 0, 4, denotes
recall the abbreviations

the set of indices i sllc.11 Ila,t fZag[i] = k. We also

14

F’, ,i2,...,im = Fi, U Fiz U s ss U Fi,
F.t..k = FiUFi+lU...UFk for i < k

Using these notations, the invariants relating the location of processes to their flag
values can be expressed as relations between Fk and L, for various values of r and k.

IFO. F. = Lo.2
IFl. Fl = L3,4
IF2. F2 & L7,s
m. F3 c L5,6,8
IF4. F4 = L9..12

IL5. L5 C F3
IL6. L6 2 F3
IL7. L7 & F2
ILS. Ls & F2,3

The invariants IFO,..., IF4 restrict the locations at which P[i] can reside when the value
of fZag[i] is 0, 4, respectively. For example, the invariant IF4 claims that the value of
f Zag[i] is 4 if P[i] is at one of the locations &, l12. The invariants IL5,. . . ,I118 restrict
the value of f Zag[i] while P[i] is at the locations es,. . . ,&s, respectively. For example,
the invariant IL8 claims that when P[i] is at & its flag value must be 2 or 3. This is the
only location in the program in which the value of the flag is not uniquely determined.

Let us see, for example, how an invariant such as IF1 is established. To prove Fl =
L3,4, we actually prove

(i E FI) * (i f J&I),

for every i = 0, n - 1. We apply the INV rule with p = v : (i E F,) t-) (i E L3,4).
There are three premises to verify.

Premise 11 is trivial since 9 = p for our ca,se. Premise 12 requires showing that 0
implies Fl = L3,4. It is not difficult to see tha,t 0 actua.lly implies Fl = L3,4 = q5, since
initially there are no processes whose flabcf va,lue is 1, a,ncl there acre no processes residing
at either ~!3 or &.

The premise that requires more attention is premise 13. Here we are called for writing
a separate implication of the form (p A pT) -+ P’, for every transition r in the program.
There are some simple heuristics that let us discard immediately many transitions as 1
automatica.lly guaranteed to preserve 9. The simplest and most effective one is:

All transitions that do not modify any of the variables on which p depends
are gua,ra.nteed to preserve V.

This heuristic leads immediately to the conclusion that, for the assertion Fl = L3,4, we
should only be concerned with the following transitions that we consider one by one (we
represent the transitions by the unique locations with which they are associated):

Q2[i] - The transition relation for this transition implies (i E LL) A (i f Fi), since it
causes P[i] to move to e3 and sets fZag[i] to 1. Consequently, it implies p’.

15

!,[i] - Even though this transition can potentially modify both L3 and Lq, it does it
in a way that preserves L3,4. Consequently, the transition relation implies (F{ =
F,) A (LL4 =7 L3,4), which ensures that v is preserved.

&[i] - The corresponding transition relation implies i 6 FI (the transition sets fZag[i]
to 3)) and i 41 Li 4 (the transition leaves &). Consequently, v’ is established, as
both sides of the kquivalence become false.

It is clear that these are the only transitions that modify any of the variables on which
p depends.

We conclude that (i E Fl) +-+ (i E L& is an invariant assertion, and therefore so is
F1 = L3,4.

Proving Mutual Exclusion

Having prepared the machinery for proving invariance properties, we may proceed to
establish the main invariance property of the MUTEX program, namely, that of mutual
exclusion.

We refer the reader to [Szy88] for a detailed explanation of the basic ideas on which
the MUTEX program is based. Here we extract just the main observations. The tortuous
path a process has to follow on its way from the non-critical section at el to the critical
section at & 1o, can be partitioned into several segments. We refer to the location e4 as the
doorway, to the section &.7 as the waiting room and to the section &.12, which contains
the critical section as the inner sanctum.

The basic claims on which mutual exclusion is ba,sed are the following:

Cl. Whenever a process enters an empty inner sanctum, i.e., Lg..12 changes its value
from empty to non-empty, the doorway is locked, i.e., L4 = 4. The doorway
remains locked until the last, process lea\r~s the inner sanctum. This implies the
inva,riant

A0 : pk..12 # #> + (J54 = 4,

which claims that if Ls..12 is non-empty then L4 must be empty. If we believe this
to be a true invariant, then the fact that L ,se12 is non-empty should prevent any
new processes coming to & to cross over into &. The only thing that can prevent
processes from crossing over is if f Zag[j] o some process equals 3 or 4. Thus, wef
must a#lso have

Al : (L3..12 # 4) -+ (L3..12 f-l -F3,4 + 4).

Note that we require that one of the processes in !s..12 has a flag value of 3 or 4.
This is because a flag value of 3 which is held by a process at [5,6 is unstable in the
sense that it ma,y very soon change to 2 a.gain, by the statement at &.

16

C2. If a process i is at !10..12, then it must be the minimal (having the least index
all the processes in !5..12. This is expressed by the invariant

> f0

A2 : ((k < i) A (i E L10..12)) --+ (k 4 L5..12)-

C3. If some process is at & 12, then all the processes in k'5.-12 must have a flag value of 4.
This is expressed by the invariant

A3 : 0 i E L12) A (k E L5..12)) ---) (k E F’).

Thus, as soon as a process enters the inner sanctum the doorway gets locked. This leaves
the processes in the waiting room and the inner sanctum isolated from the rest of the
processes and lets them compete for the entry to the critical section. By claim C2., only
one process at a time can reside in the region tlo..12 which includes the critical section
- the process whose index is minimal among all the processes in ~!5..12. It follows that
mutual exclusion is maintained.

If we were working in a framework such that the compound tests are considered
atomic, then the conjunction

VO : A0 A Al A A2 A A3

could have been shown to be invariant from which, by Aa, mutual exclusion would have
followed.

Unfortunately, we have to deal with molecular tests, which require an extension to the
above list of invariants. Consider any region of consecutive locations that is mentioned in
one of the previous invariants, and which is preceded by a compound test. For example,
elo..l2 is such a region, where the relevant compound test is the one at &. The assertion
A2 states that if k < i and i belongs to L10..12, then k cannot be in L5..12. In the atomic
case, one of the considerations used in proving this assertions is that P[i] cannot pass
the atomic test at & if k < i is anywhere at t5..12. This is because the simple invariants
connecting flag values to locations imply that f Zag[k] 2 2 while P[k] is at ~?5..12.

In the molecular case, the test at & is not passed in one step. Process P[i] may
reside at & for several steps, checking the values of f Zag[j;] for various values of j;. The
important question concerning k, is whether P[i] has already tested the value of f Zag[k].
This can be observed by checking whether ji > k. If j; is greater than k, then we know
that the value of fZag[k] has already been tested and found satisfactory, i.e., smaller
than 2.

Consequently, to adapt the assertion A2 to the molecular case, we should replace
the simple region reference i E L lo..12, appearing there, by the extended reference i E
L10..12 V (i E Lg Aj; > k). By applying such range extensions to the a,ssertions Ao, . . . , As,
we obtain the following assertions:

17

B. : (i E L5 A j; > k) + 1 [(k f Lb) V (k E L3 Ajk > i)]

Bl : (i E &..12) - 3r : (r E LB..12 n F3,4) : 1 [(k E L4) V (k f L3 Ajk > r)]

B2 : [(k < i) A (i E L 10.~2 V (i E Lg A j; > k))] + (k 4 L5..12)

B3 : [(i E Ll2 V (i f LII Aj; > k)) A (k E L5..12)] --+ (k E F4)

Assertions B. and B1 refine together assertions A0 and Al to the molecular case. The
basic idea is to show for any k that if P[i] is either at &.I2 or at ls with j; > k, i.e.,
having already checked f Zug[k], then P[k] cannot be at &, and if it is at l3, then it’s
jk value is be ow some r that blocks it from proceeding into &, by having fZag[r] > 2.1
If P[i] is at es, we can take r to be i itself. If P[]i is at &.12, we can only claim the
existence of such a blocking r, such that P[r] is also at &.I:! and f Zag[r] > 2.

We form now the conjunction

v : B. A B1 A B2 A B3

and claim that it is an invariant of the program MUTEX.

It is beyond the scope of this paper to consider all the transitions and show that each
preserves p. We will, however, consider some of the more interesting cases.

Consider, for example, what transitions may possibly affect the assertion B1. A
critical transition of P[i] is the one that moves from e5 to &. However due to Bo, the
right hand side of the implication of B1 will hold after the transition with r = i and
(due to IL5) fZag[i] = 3. Another potentially critical transition of k is the one that
increases jk beyond r. However, due to fZag[r] > 2, such a transition is disabled. For
this argument to hold it is essential that the indices j in l3 are scanned in increasing
order.

Lastly, we consider the transition of P[r] from & 12 to &, while resetting its flag value
to 0. There are two possibilities. If r is the last process in &s..12, then after the transition
Ls..la will become empty, causing Bl to hold trivially. If r is not the last, there exists
another process, say P[t] in &s..12. Then, clue to B2, which states that r is the minimal
process in &s..12, r must be smaller than t. Therefore, if jk 5 r it is also 5 t. Due to
B3, f Zag[t] equals 4. C onsequently, a,fter the transition, Bl still holds if we use t as a
substitute for r.

5 Response Properties

Next to be considered is the class of respome properties. The typical response property
is expressed by the formula

I--%,

18

for assertions p and q. A sequence of states 0 is said to satisfy the response formula
p=+-Oq if every p-position i 2 0, is followed by a q-position j 2 i. Such a response
formula is said to be valid over the program P (also called P-valid), denoted by P I=
(p=+Oq), if all the computations of P satisfy the formula. This means that every
occurrence of (a state satisfying) p in the execution of P, is followed by an occurrence
of q. We will often omit the prefix P I= when stating the validity of a response formula
over P.

The temporal logic adepts will recognize =+O as the combination of the two operators
=+- and 0 (see for example [MPSSa]). However, for our purpose here it suffices to view
it as a single binary temporal operator, whose semantics has been defined above. It is
very similar to the leads-to operator of Unity ([CMSS]).

The following axioms and rules identify the basic properties of the response operator
=+O.

RFLX

(Reflexivity) axiom:
P =+02’

This axiom expresses the fact that every p-position is trivially followed by a p-position,
namely itself.

TRNS

(Transitivity) rule:

{P+OL W-Or} t- p=i=-Or

This rule states the transitivity of the response operator. It claims that if every p-
position is followed by a q-position, and every q-position is followed by an r-position,
then certainly every p-position must be followed by an r-position.

M O N

(Monotonicity) rule:

{P=+-%, i+P, cl+4Yl k w-OQ”

This rule allows us to replace in a valid response formula the antecedent p by a stronger
assertion fi;, and the consequent q by a weaker assertion @, and obtain another valid
formula.

DISJ

(Disjunction) rule:

{p+-Or , q=+--Or} I- (pVq)+Or

This rule combines the two response formulae, p=+Or and q=+-Or, into the formula
(p V q) =+Or. It allows us to prove the last formula by separately considering the ca,se
that p holds and the case that q holds. In this way it supports proof by cases.

19

The Basic Response Rule

The axiom and three rules listed above are independent of the particular program ana-
lyzed, and describe the basic properties of the response operator. We now present a rule
that enables us to establish the validity of a response formula over a program.

The rule singles out a particular transition 7h, to which we refer as the helpful tran-
sition. It can establish response formulae p=+-Oq, such that a single activation of the
transition Th is sufficient to achieve q. We therefore refer to this rule as the basic or single
step response rule.

R E S P RI. p--+ (qV@
R2. (pT A 63) --+ (q’ V 9’) for every r E I
R3. (PQ A v) + 4’
R4. 9 ---) (q V E+-h))

P=+%

Premise RI ensures that p implies q or p. Premise R2 states that any transition of the
program, either leads from p to q, or preserves p. Premise R3 states that the helpful
transition Th leads from p to q. Premise R4 ensures that Th is enabled as long as p holds
and q does not occur.

It is not difficult to see that if p happens, say at position i 2 0, but is not followed
by a q, then 9 must hold continuously beyond this position, and the helpful transition
7-h is never taken beyond i. The latter fact follows from premise R3, which states that
taking 7j, from a v-state immediately leads to a q-state, contradicting the a,ssumption
that q never happens beyond i. However, due to R4, this means that T,$ is continuously
enabled but never taken beyond position i, which violates the requirement of justice for
Th-

Example

We will illustrate the a.pplication of this rule on the following program.

PI ::

out x,y : integer where x = 0 , y = 0

lo : while x = 0 do

1 i

?-no: x := 1
[@, : y := y + l] 11 Pz:: nzl:

&2 : . . .

This program consists of two processes, PI and P2. Process PI continuously incre-
ments y while waiting for x to become non-zero. Process P2 consists of a single statement,
assigning 1 to x.

20

It
The response property we wish to establish for this program is that of termination.

can be expressed by the formula

(at-& A at-mo) =+O(at& A at-ml),

that states that the event of being at the beginning of the program (at-& A at-mo) is
eventually followed by the event of being at the end of the program (at-& A at-ml).

This property is established by a sequence of lemmas, each applying one of the rules
presented above.

Lemma 1 (x eventually set to 1)

(at-& A at-mo)=+O(at-&I A at-ml A (x = 1))

This lemma claims that eventually the variable x is set to 1 by the process P2, which
then moves to ml. When this happens, process PI is still executing within the loop
region &,J.

To prove the lemma we choose

P : at-& A at-m0

P : at-&l A at-m0 A (x = 0)

7h : rm

4 : at-& A at-ml A (x = 1)

and apply the RESP rule.

It is not difficult to see that p implies 9, provided we prove first the obvious invariant
at-m0 + (x = 0). It is also clear that taking 7;n0 from a p-state leads to a state satisfying
q, a,nd taking any other transition, i.e., 7e0 or 7e1, preserves V. Obviously p implies that
Tm0 is enabled.

Lemma 2 (From Qo to &)

(at-&o A at-ml A (x = 1)) =+-O(at-& A at-ml)

Follows from the RESP rule, by taking v = p and Th = Q,, .

Lemma 3 (From .& to lo)

(at-!1 A at-ml A (x = l))=+O(at-~o A at-ml A (x = 1))

-Follows from the RESP rule, by taking p = p and Th = 7el.

Lemma 4 (From Q1 to &)

(at-& A at-ml A (x = 1))~O(at-& A at-ml)

21

Follows by transitivity (rule TRNS) from Lemma 3 and Lemma 2.
Lemma 5 (From l’o,l to &)

(at-&,l A at-ml A (x = 1)) =+-O(at.& A at-ml)

Follows by the DISJ rule from Lemma 4 and lemma 5, using the equivalence

(at-k& A at- ml A (x = 1)) E

((at& A at-ml A (x = 1)) V (at-& A at- ml A (17: = 1))).

Lemma 6 (From {&,mSo} to {&,m1})

(at-& A at-mo) =+O(at-& A at-ml)

This lemma which establishes the termination property follows by the TRNS rule from
Lemma 1 and Lemma 5. 4

The Well-Founded Rule for Response

The basic response rule supports the proof of response properties which are established by
a single helpful step. As we have seen, even the simple example above requires several
helpful steps to achieve its goal, i.e., termination. When the number of helpful steps
required is small and fixed we can use a sequence of lemmas, each considering a single
helpful step, and then combine their results by transitivity and case splitting. However,
for the case that a large and a priori unknown number of helpful steps is required, we
introduce below a more powerful rule that uses well-founded induction to combine the
helpful steps.

We define a well-founded (embedded] structure (A, E, >-) to consist of the following
components.

. A - A set of elements.

l B - A subset of /I.

l + - A binary relation on ,A, whose restriction to B is well founded. That is, there
does not exist an infinite sequence of elements of B; PO, PI,. . . , such that

A typical example of a well-founded embedded structure is (&t, Nat, >), where Znt are
the integers (including the negative ones), Nat are the natural numbers (including 0),
and > is the greater than relation. Clearly, > is defined over all the integers but is well
founded only over the natural numbers.

Given two well-founded structures, (&, ,130, +o) and (/II, Bl, +I), we can form their
lexicographical product (A, B, F-), defined 1~~.

l d is defined as A0 ⌧ ,Al, i.e., the set of all pairs (CQ, al), such that a0 E ,A0 and
ctrl E d1.

l B is defined as 130 ⌧ Bl.

l + is defined to hold between (a~,al) f A and (&,a:) f A iff

(Qo)- 4) v [(a0 = a;) A (cq + a;)]

It is not difficult to prove that the lexicographical product of two well-founded structures
is also a well-founded structure.

For +, an arbitrary binary relation over A, we define its reflexive extension > to hold
between a, a’ E A if either a = a’ or a + a’.

The following rule uses several intermediate assertions that hold at the positions lying
between the position satisfying p and the position satisfying the goal q. We denote these
assertions by v;, where i ranges over some finite index set Z, and denote their disjunction
byp = v 9;. Each tin ermediate assertion 9; is associated with a transition pi E 7, that

iEZ
is identified as helpful for 9;.

The rule also requires the identification of a distance function Si7 for each i E Z.
These functions map the states into the set A of a well-founded structure (A, B, +). The
intended meaning of these functions is that they measure the distance of the current
state from the closest state that satisfies the goal q of the formula p=tOq which is the
conclusion of the rule. We refer to the value of the distance function 6; at a state satisfying
pi as the i-rank of tha,t state, or simply as the rank of the state if i is understood from
the context.

Assuming that these constructs have been identified, the following rule establishes
the P-validity of the formula p=+-Oq.

W E L L bvl. $I + (‘Iv 9)
The following premises should hold for each i E Z
W2. for every 7 f 7

(~7 A Pi) + (q’ V V~~~[V$ A (6; + bi)] V [P: A (6; = bi)])

W3. (pTt A Pi) + ((2’ v VjCZ[$ A (si)- sj)])
W4. pi + q V (En(Ti) A (6; E U))

P=+%

.Premise Wl requires that p implies that either q already holds, or the intermediate
assertion 9 (i.e., one of the pi’s) holds. Premise W2 requires that taking any transition
from a pi-state results in a next state which either satisfies q, or satisfies pj, for some
j E 1, and has a (j-) rank lower than that of the original state, or satisfies pi and has
an equal rank. Premise W3 requires that taking the helpful transition 7; from a vi-state,

23

results in a next state which either satisfies q, or satisfies some vj with a lower rank.
Premise W4 requires that any state s satisfying vi either satisfies q, or is such that 7-i is
enabled on it, and the i-rank of s, Si(s) 7 assumes a value in L?.

Assume that all the four premises hold. Consider a computation 0 and a position m
that satisfies p. We wish to prove that some later position satisfies q. Assume to the
contrary that all positions later than m (including m itself) do not satisfy q. By W2 each
of these positions must satisfy some yj and, according to W4, the value of Sj for this
position, to which we refer as the rank of the position, lie within LJ. By W2, the value
of 6j can either decrease or remain the same. By the assumption that >- is well founded
over x3, the value of Sj can actually decrease only finitely many times. Therefore, there
must exist some position Ic 2 m, beyond which Sj never decreases.

Assume that pi is the assertion holding at position Ic. Since q is never satisfied and Sj
never decreases beyond position li, it follows (by W2) that 9; holds continually beyond
Ic. By W3, 7; cannot be taken beyond 3c, because that would have led to a position
satisfying q or to a decrease in S. By W4, 7; is continually enabled beyond k yet, by
the argument above, it is never taken. This violates the requirement of justice for 7-i. It
follows that if all the premises of the rule hold then p +-0 q is P-valid.

In many cases, we may use the same ranking function S for all i E Z. We refer to
these as the case of uniform ranking function. In these ca,ses it is possible to use a simpler
form for the premises W2 and W3, which is given 13~7:

W2. for every T E 7
(~7 A Pi) + (q’ V [Y’ A (6 % S’)] V [pi A (S = s’)])

W3. (~7, A Pi) + (q’ V [F’ A (6 + h’)])

Proving Accessibility

The main response property one usually wishes to prove for mutual exclusion programs
is that of accessibility, by which whenever a process departs from its non-critical section
it is guaranteed to eventually reach the critical section. In our case we will prove a
stronger property which implies accessibility. The property we will prove is

(u @ L+=-O(u E L,).

This property, to which we refer as the homing property, states that from any location
away from the non-critical section, each process P[u] is guaranteed to home back to
the non-critical section. Since in our case, when a process just departs from el it can
return to ll only via the critical section, the homing property implies accessibility. It also
guarantees that processes do not get stuck in any of the locations following the critical
section, such as [,I. The way we establish the homing property is by a sequence of
lemma,s, each showing that a process ca,nnot get stuck in any location, except perhaps in
the non-critica, section. The lemma,s corresponding to locations which involve no tests,

24

such as &&,&,&,&,k’~~, and l12, are trivial and will be omitted. We will concentrate
on the testing locations.

The well-founded structures that we will use are either (%f,~Vai, >), or the lexico-
graphic products of such structures.

Lemma 1 (Not Stuck at P9..,2)

This lemma states that if the process P[u] is anywhere within [9..12, it will eventually
return to &.

To prove this lemma, we prove first two auxiliary lemmas.

Lemma 1.1 (Evacuation of the Waiting Room)

(u E h.12) =+-0 ((u E Lo) v [(u E bL12) A (L 5..8 = 4)])

This lemma states that if P[u] is currently at f9..12 then either it will reach &, or
prior to that, the computation will reach a state in which P[u] is still at ~!9..12, but the
waiting room &.8 is empty.

To prove this lemma we use the following intermediate assertions, uniform distance
function, and helpful transitions:

(P(k,i) : (u E ‘h.12) A (L5..8 # 4) A (i E Lk)
s : (4 * N + 3 - N6 + 2 - 1% + 1% , c (n - jr) + c ((u - j&nod TZ))

r:rELs r:rELT

T(k,i) : Tk[i]

for k E {5..S} and i E {O..n - l}. Thus, we use for the index set Z the set

Z : {(k,i) 1 k E {5..S} , i E {O..n - l}}

Let us convince ourselves that taking any helpful transition decreases the distance func-
tion. Clearly a movement of process P[i] from any location in the range !5..s to a(ny other
location decreases the first component of 6. For example, a movement of P[i] from & to
e,, removes i from &, where it has a weight of 3, and adds it to L7 with a weight of 2.
Consequently, the net change in the first component is -1.

Next, let us consider a transition that involves a compound test. Consider, for exam-
ple, a transition of process P[i] which currently resides at l5. According to &[i] there
are three possibilities. The first possibility is that P[i] moves from l5 to &, decreasing
S by (3,0), i.e., 3 in the first component and 0 in the second component. The second
possibility is that P[i moves from &5 to Cc;, decreasing 6 by (l,O). The last possibility is]
that j; increases by 1, decreasing S by (0. 1). 1(ue to the summand n - j; appearing in
the second component of S.

25

A somewhat more subtle argument is needed for the consideration of the transitions
TT[i]. Here there are two possibilities. Either P[i] moves from ly to &, or j; is incremented
modulo n. In the first case 6 decreases by (l,O). In the second case, we have to show
that ((u - j;) mod n) decreases. First, we observe that, since u E L9..12, .flag[zL] = 4, and
therefore the test at J!T cannot fail for j; = u. We conclude that the second possibility
exists only if j; # u. In that ca,se we rely on the property of the integers, by which if
0 5 ji,~ < n and j; # U, then

((u - j;)nlod n) > ((u - (j; + l))mod n).

It follows that, in the second case, S decreases by (0,l).

Next let us show that any non-helpful transition either establishes u f Lo, or at least
preserves v(k,i) and 6. Clearly, this is true for 7-12[u]. The only other transitions that may
be suspected of falsifying v(I,,i) or increasing 6 are those that may cause new processes
to join !5..s. However, due to the assumption u E Lg..12 and the invariant &, there ase
no processes at !4, and therefore, no new processes can join [5..8. A

Lemma 1.2 (Progress within the Inner Sanctum)

[(u f ~9..12) A p5..8 = d)] =+o(u E LO)

This lemma claims that if now there is no process within the range !5..8 then process
u will eventually proceed to &. Of course, for that to happen, all the processes with
lower indices must arrive to !lo first and depa.rt via l12.

To prove the lemma we use the following intermediate assertions, uniform distance
function, and helpful transitions:

v(k,i) : (21 f h.12) A (L 5..8 = 4) A (i E J!&) A (i = min4)

s :
(4 * Ns + 3 - NIO + 2 * Nil + N12 , n - jmin4

T(k,i) : Tk[i]

for k E {9..12} and i E {O..n - l}, and where n2in4 is defined to be the minimal element
of F4 = ~59.~12, if that set is not empty, and 0 otherwise. In the case that Lg..12 is not
empty, rnin4 denotes the minimal index among all the processes currently residing at
~!9..12 and (consequently) having a flag value of 4.

It is not difficult to see that the process with the minimal index is always enabled
and causes a clecrea,se in the value of the distance function, wha,tever kansition in [9..12
it takes. II

We may now return to the proof of Lemma 1. We proceed as follows:

1. (u E L&+-0(21 f L,) by RFLX

2. ((u E Lo) v [(u f L9.12) A (L5..8 = o)]) =+o(" E &)

by DISJ, l., and Lemma 1.2.
3. (,11 E Lg..12) ==+0(21 f Lo) by TRNS, Lemma 1.1, and 2.

26

This concludes the proof.

Lemma 2 (Not Stuck at &)

(u f J++o(u E J&)

To prove this lemma, we establish first an additional invariant, using the INV rule.

B4 : (&,7 # 0) + (L3..5 u L8..12 # 4)

This invaria,nt guarantees that if there is some process in the region &T, then there is
also some process in & 3..5 or in &.l2. It is not difficult to show that the assertion B4 holds
initially and is preserved by any transition. In particular, we may rely on B3 to show
that no process can leave L8..12 while L6,7 is non-empty.

Then we prove two auxiliary lemmas.

Lemma 2.1 (Entering &.12)

(u E L7,+-0((u f L7) A (kL.12 # 4,)

Note that due to the invariant IF4, the set Lg..12 is precisely the set F4, i.e., all the
processes in this region have a flag value of 4. To prove the lemma, we use the following
intermediate assertions, distance functions, and helpful transitions:

p(G) : (u E L7) A (bk.12 = 4) A (L4..6,8 = 4) A (i E L3)
s(3,i) : (

5 * No..3 + 4 * N4 + 3 * N5 + 2 * NG + N8 , ?t- j;

T(3,i) : TJi]

For each k E {4..6,S}

p(k,i) : (u E &) A (&XT = 4) A (i f Lk)

J(k,i) : (
5 * No..3 + 4 - N4 + 3 * N5 + 2 * N6 + lV8 , n - j;

T(k,i> : Tk[i]

where i ranges over { O..n - l}.

As we see, the index set Z is partitioned into the two subsets { (3, i) 1 i E {O..n - l}},
and {(k,i) 1 k E {4..6,S},i E (0.. n - 1)). The transitions corresponding to the first
subset are considered helpful (as we see from PCs,;)) only when h4..6,8 is empty. This is
necessary because P[i] gis uaranteed to progress when it is at !3 only if J&.~,J is empty.
Otherwise, the test at l3 may cause j; to decrea.se, or at least not to increase. The
invariant B4 is used to establish the premise

(U E L7) + V v(k,i)*

(k,i)EZ

Essential to the proof is the observation that some process can move from ~!7 to !s
only if Lg..12 is already non-empty. J

27

Lemma 2.2 (Escaping &)

((u f L7) A (&..12 # 4)) =+Ob E L8)

To prove this lemma, we use the following single intermediate assertion, single dis-
t#a.nce function, and single helpful transition:

5% : (u c L7) A (h.12 # #>
s : (min4 - j,)mod n

Tll : 77[U]

It is not difficult to see that when Lg..12 # q5, flag[min4] = 4, and therefore P[u] will
find flag[j,] = 4, at the latest, when j, = min4. II

We may now return to the proof of Lemma 2. By transitivity, we may combine the
results of Lemma 2.1 and Lemma 2.2 to obtain

(‘(1 f L++=-+ E LB),

as claimed by Lemma 2.

Lemma 3 (Not Stuck at &)

(21 f L5) ==+o(u E L&8)

This lemma is easily proven by tatking

9% : uEL5

s : n - j,

Tu : 75[u]

Progress in the execution of the compound test at !5 is guaranteed independently of the
flag values encountered. mi
Lemma 4 (Not Stuck at 13)

(u E L3)=+O(‘LL f L4)

We define the following sets of process indices

L(j > F,) : (Y 1 I* E L5 , jr > F,)
Block3 : L8..12 u &(j > F,)

where the inequality jr > Fl is defined to hold if Fl is non-empty a,nd jr is greater than
any element of Fl. Consequently, if Fl is empty, then so is L5(j > Fl). Note that by
the invariant Bo it follows t,hat if L5(j > Fl) is not empty, then L4 = qj, which implies
Fl = L3.

2s

The set Block3 represents the set of processes that may potentially block the progress
of any processes currently at l3 (including P[u]). Note that we have to add to &.l2 also
the processes that are in t5 and have already checked f Zag [j] for all j E Fl . This is
because such processes may potentially move to es. On the other hand, processes that
are in & but have not checked f Zag[j], for some j E Fl, can only move to J$,.

We prove the following auxiliary lemmas.

Leiiiiiia 4.1

(u E L3)+-O((u E ~54) V [(u E L3) A (b(j > FI) = 4)])

This lemma sta,tes that if P[u is currently at ~!3 then either it will reach e4, or prior]
to that, the computation will reach a state in which P[u] is still at l3, but no process
P[i] is currently at l5 with j; > Fl.

To prove the lemma, we use

Vi : (u E L3) A (i E Ls(j > Fl))
Si 1 (IL& > F,)I , n - j;)
Ti : qj[i]

for i f {O..n - 1). Th us, the relevant processes are those that are at e5 and have already
checked f Zag [j] , for every j E Fl. Note that no new processes can join Ls(j > F,) since
any process checking f lag[j] , for some j E Fl proceeds immediately to &. a
L e m m a 4 . 2

((u f L3) A (L(j > F,) = d))+-O((u E L) V [(u E ~53) A (Block3 = d)])

This lemma esta,blishes that if P[u] does not reach &, then at least the set Block3
becomes empty. To prove the lemma, we use

v('i,i) : (u E ~53) A (k(j > F,) = 4) A (i E L7) A &..12 # 4)

s(7,i) : (S - N5 + 7 - N6 + 6 - N7 + 5 - N8 + 4 - N9 + 3 - Nlo + 2 - NI1 + N12 ,
((nzinq - j;)lllod 7%))

For each k E {5,6,S}

p(k,i) : (u f L3) A (h(j > F,) = 4) A (i f Lk) A (LX..12 # 4)
s(k,i) : (S * N5 + 7 * A’6 + 6 - N7 + 5 * Ns + 4 * Ng + 3 * ATlo + 2 - Nl1 + Nl2 , 72 - j;)

For each k E {9..12}

p(k,i) : (‘11 f L3) A (L5(j > Fl) = 4) A (i f Lk) A (L5..8 = 4) A (i = nzin4)
s(k,i) : (S - N5 + 7 - NC + 6 * N7 + 5 * Ns + 4 * Ng + 3 * Nlo + 2 - Nl1 + Nl2 , n - j; >

for i E {0..12 - l}. The overall range of k in the ill(l(tx set {(k, i)l 11sed in this lemma is
{5..12}, and as usua,l T(k,i) = Tk[i].

29

Note that Since Ls..12 # 4, no new processes can enter l5. 4
Lemma 4.3

[(u E L3) A (Block3 = $++--O(u E L4)

Note that when Block3 is empty it cannot become non-empty as long as P[u] stays
at l3 with a ,f lag value of 1. At most, processes can accumulate at ~!7. Consequently, WC
use the following constructs:

y(G) : (u E L3) A (Block3 = 4) A (i E L3) A (L4..6 = 4)
s(3,i) : (4 - No..3 + 3 - N4 + 2 * N5 + Ns , n - j;)

For each k f { 4..6}

y(G) : (u E L3) A (Block3 = 4) A (i E Lk)
s(k,4 : (4 * No..3 + 3 - N4 + 2 - N5 + N6 , n - j; >

for i E {O..n - 1).
Note that when L 4..6 is empty, any transition T3[i] is helpful. II
It is not difficult to combine the results of Lemmas 4.1, 4.2, and 4.3, using reflexivity,

disjunction, and transitivity, to obtain the result of Lemma 4, namely:

(u E Lg)==+O(u E L,)

This concludes the proof of the homing property for the MUTEX program.

6 Precedence Properties

Next, we consider properties that acre expressed by the formula

for any r > 0. Adepts in temporal logic will recognize this formula as a nested unless
formula. For our purposes here, it suffices to consider it as a temporal operator of r + 2
arguments.

To define the semantics of this operator, we deal with half-open intervals of the form
[i.. j), for i 5 j. Such an interval consists of all the positions k, such that i 2 k < j. Note
that if i = j, the interval is empty. For the two intervals [i..j) and [j..k), we say that the
second interval is adjacent to (or follows) the first, and observe that their union is also
a half-open interval, given by [i..k). For infinite computa,tions, we allow also intervals of
the’form [i..u) for an integer i and the interval [w,w), which by definition is empty.

Given a computation 0 : so, ~1,. . ., we say that the interval [i..j) is a p-interval if for
every k E [i..j), sk satisfies p. By definition, an empty interval is a p-interval for every
assertion p.

30

A computation cr is said to satisfy the precedence formula p=+qo U . . . Uqrwl U qr if for
every p-position i there exists a sequence of positions i = io < il 5 . . . 5 i, 5 101, such
that [io..il) is a qo-interval,..., [ir-l..ir) is a qr-l-interval, and finally, if i, < 101, then i,
is a q,-position. That is, it requires that any p-position initiates a qo-interval, which is
followed by a succession of 41, . . . , qr-l-intervals, where the q,-l-interval either extends
to the end of the computation or is terminated by a qr-position. Note that this definition
allows some of the intermediate intervals to be empty, and any of them to extend to the
end of the computation 101 (w ic may also be w), and this forces all the succeedingh h
intervals to have the form [lal..lal), and therefore to be empty.

The precedence formula p +-qo U . . . Uqr-l U qr is said to be P-valid if it satisfied by
all computations of the program P.

Let us see how the property of linear wait as claimed in [SzyS8] for the MUTEX

program, can be expressed by a precedence formula. Consider the precedence formula

Ku E L3) A (v E L,2)1+-(21 4 LlO>U(~ E LlO)U(~ $i LlO)U(U E LlO)

This formula considers the question of how many times can the process P[v] overtake the
process P[u] on its way to the critical section. It considers a starting position in which
P[u] has already made public its intention to proceed to the critical section (by setting
f lag[u] to 1, while P[v] 1lams not done so yet. In this starting position P[u] is somewhat
ahead of P[w]. The precedence formula predicts that, following such a position, there will
be an interval in which P[TI] is not critical (i.e., not in the critical section J!,,), followed
by an interval in which P[v is critical, followed by an interval in which P[u] is again]
non-critical, followed by a position in which P[u is critical. Consequently, it claims that]
between the starting position and the entry of P[u] to the critical section, there can be
at most one visit of P[v] to the critical section. Note that the interval of P[v] being
critical can also be empty. This is why we say at most once, Note that this property
does not guarantee that P[u wi] 11 eventually get to the critical section, because any of the
preceding intervals may extend to the end of the computation. In [MPS3] this property
is called l-bounded overtaking.

First let us consider two rules that characterize some of the basic properties of the
precedence operator.

This rule allows us to replace in a valid precedence formula the antecedent p by a stronger
assertion fi, and the assertions 40,. . . , qr appearing in the consequent by weaker assertions
cio, - - * , &, a,nd obtain another valid formula,.

For the nest, rule we introduce the following notations

31

qi1 ,i3,...,im = qil V qi2 V s-s V Qi,
qi..k = qi V Qi+l V a-e V qk for i < k

T E L

(Telescoping) rule:

For each i = 0,. . . , r - 1
pl- ** ‘qiUQi+l”’ I- JJ3--rm*Qi,i+l”’

For the case of i < r - 1, this rule allows us to replace (telescope) the prediction of a
q;-interval fo owed by a q;+l-interval, by the prediction of a single (q; Vq;+l)-interval (i.e.,11
a q;,;+l-interval). For the end case of i = r - 1, the rule allows us to replace the prediction
of a q,.-l-interval followed by a qr-position, by the prediction of a (qr-1 Vq,)-position (i.e.,
a qr-I,,-position).

The next rule is the main proof rule for establishing precedence properties of a given
program.

P R E C R1. P + qo..r

For each i = 0,. . . , r-l,andeachTEr/
~2. (qi A ~7) + qi..r

p+qOU * * - Uqr-1 Uqr

Proving Bounded Overtaking

We are now ready to prove the property of l-bounded overtaking, or linear wait, for the
program MuTEx.

For our case. \ve ta,ke r = 6 and define a,s follows:

p : (u E L3)A (v E ~51~2)

The a,ssertion qo is given by

qo : (u f L3) A (Block3 # 4) A (v E Ll..3)

where Block3 is as defined before, i.e. Block3 = L~.J~ U L5(j > F,).

The assertions ql, . . . , q6 are given by

41 : (u E L3,4) A (Block = 4) A ((‘u E Ll..4,6,7) v [(v E L5) A (jv < u)])

q2 : (‘LL f L5..7) A (L8..12 = 6) A (v E Ll..7)

!I3 : (21 E L5.9) A (L8..12 # 4) A (L4 = 4) A (v E k-9)

cI4 : (‘(1 E L5.9) A (L8..12 # 4) A (L4 = 4) A (v f Llo)

Q5 : (~1 E L,..,) A (L8..12 + 4) A (L4 = 4) A (v E LO..3,11,12)

qc; : (1J E LIO)

32

It is beyond the scope of this paper to check the second premise for i = 0,. . . ,5 and
all the transitions. We will, however, indicate in the table below what transitions qJi]
may lead from qf to qt for f = 0,. . . ,5 and t = 0,. . . , 6. Note that the same transition
may lead from qf to two or more qt’s. By observing that the only non-empty entries in
this table correspond to f < t 5 6, we are convinced that the second premise of the
PREC rule is valid. In computing such successors, we may rely on any of the previously
proven invariant s.

From To: qo q1 q2 q3 q4 q5 q6

Qo To..12 72,12

41 To..12 7-5[u]

(22 7-0..12 75 75

43 To..12 79['u] r9 bl
!I4 To..12 TlO[V]

_ q5 70..12 79[u]

We may conclude, by the PREC rule, that the precedence formula

is valid over the program MUTEX.

Next, we apply the monotonicity rule with fi = p, ijo = @I = q”2 = q”3 : (v $ Llo),
@4 : (v E Lo), u"5 : (v @ Lo), and q"6 : (u E ho). This application is justified by
observing that fi = p, and getting easily convinced that qi implies @i for i = 0,. . . ,6. The
applica,tion !-iclds the formula

Observing that iJ0 = . . . = @a, we may telescope the first four intervals together. This
yields the formula

@-@Ou@4u@5u@6,

which, when substituting the assertions standing for p and @;, lea,ds to

Acknowledgment

We gratefully acknowledge the help rendered by Rajeev Alur, Ed Chang, a,nd Tom
Henzinger who critically read various versions of this manuscript. Special thanks are
due to Roni Rosner for his dedicated technical help and most helpful suggestions.

33

References

[AS851 B . A l pern and F.B. Schneider, Defining liveness, Info. Proc. Lett. 21, 1985, pp.
181-185.

[CMSS] K.M. Chandy and J. Misra, Parallel Program Design, Addison-Wesley, 1988.

[Lam771 L . Lamport, P roving the correctness of multiprocess programs, IEEE Trans.
Software Engin. 3, 1977, pp. 125-143.

[MP83] 2. Manna and A. Pnueli, Proving precedence properties: The temporal way,
Proc. 10th Int. Colloq. Aut. Lang. Prog., Let. Notes in Comp. Sci. 154, Springer,
1983, pp. 491-512.

[MP84] 2. Manna and A. Pnueli, Adequate proof principles for invariance a,nd liveness
properties of concurrent progra,ms, Sci. Comp. Prog. 32, 1984, pp. 257-289.‘

[MP89a] 2. M a,nna and A. Pnueli, The a,nchored version of the temporal framework,
Linear Time, Branching Time and Partial Order in Logics and Models for
Concurrency (J.W. de Bakker, W.-P. de Roever, and G. Rozenbew. eds.), Let.
Notes in Comp. Sci. 354, Springer, 1989, pp. 201-284.

[MPSSb] Z. M anna and A. Pnueli, Completing the temporal picture, Proc. IGth Int.
Colloq. Aut. Lang. Prog., Let. Notes in Comp. Sci. 372, Springer, 1989, pp.
534-558.

[MPSSc] Z. Manna and A. Pnueli, A72 Exercise in the Verification of Multi - Process
Programs, Technical Report, Stanford University, 1989. To appear in a book
dedicated to E.W. Dijkstra.

[PZSG] A. Pnueli and L. Zuck, Verification of multiprocess probabilistic protocols,
Distributed Computing 1, 19S6, pp. 53-72.

[SzySS] B. K. S yz manski, A simple solution to Lamport’s concurrent programming
problem with linear wa.it, Proc. 1988 International Conference on Supercom-
puting Systems, St. Malo, Fra.nce, 1988, pp. 621-626.

34

