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ABSTRACT

We investigate the complexity of reasoning with
monotonic inheritance hierarchies that contain, beside
ISA edges, also ROLE (or FUNCTION) edges. A ROLE
edge is an edge labelled with a name such as
spouse-of or brother-of. We call such networks
lSAR networks. Given a network with n vertices and
m edges, we consider two problems: (P,) determining
whether the network implies an isa relation between
two particular nodes, and (P,) determining aN isa
relations implied by the network. As is well known,
without ROLE edges the time complexity’ of P, is
O(m), and the time complexity of P, is O(r?).
Unfortunately, the results do not extend naturally to
ISAR networks, except in a very restricted case. For
general ISAR network we frost give an polynomial
algorithm by an easy reduction to proposional Horn
theory. As the degree of the polynomial is quite high
(O( mn’) for P,, 0( mn’) for P,), we then develop a
more direct algorithm. For both P, and P, its com-
plexity is O(n3 + m*). Actually, a finer analysis of
the algori thrn reveals a complexi ty  of
0( nr(log r) + n*r + n3), where r is the number of dif-
ferent ROLE labels. One corolary is that if we fix the
number of ROLE labels, the complexity of our algo-
rithm drops back to O(n’).

1. INTRODUCTION

Inheritance systems are a common framework for
representing knowledge, in both AI and the database
community. In these systems objects are organized
hierarchically, and properties of objects are inherited
by those below them in the hierarchy. For example, if
it is recorded in this knowledge base that mothers are
parents and that parents are responsible people, it
may be concluded that mothers too are responsible.

As is well known, an inheritance system may be
represented by a directed graph. The vertices in the
graph are all of the same kind, and they each repre-
sent a class of objects. Arcs, on the other hand, come
in several varieties, and there has been less uniformity

among the various inheritance schemes in this respect.
Beside the basic ISA type of arc, denoting class inclu-
sion and common to all systems, other types that
have been mentioned are ROLES (or FUNCTIONS),
RELATIONS, and IDENTITYs. In the past few years
much attention has been paid to the issue of cancella-
tion of inheritance, that is, to systems which allow an
object to override some property that it would other-
wise inherit from another object higher in the hier-
archy. These systems have been called nonmonotonic
(since the set of properties does not increase
monotonically as one descends the hierarchy); in con-
trast, systems without cancellation have been called
monotonic. Most recent research in inheritance
systems has been concerned with the semantics of
inheritance. In particular there have been several
results relating cancellations to nonmonotonic logics
(Etherington, 1987),  (Touretzky, 1986),  (Touretzky et
al., 1987).

Our concern in this paper is different, as we look at
the complexity of reasoning with inheritance net-
works. Consider a network with vertices V and edges
E, and let IV1 = n and IEI = m. As is well known, if
all the edges are ISA edges (such simple networks
have been called tuxonomic) then in time O(m) one
can determine whether the network implies an ISA
relation between two particular nodes, and in time
0( nm) (and therefore in time 0( n3)) one can find all
the implied ISA relations in the graph. If E contains
other types of edge or if cancellation is allowed then
the problem becomes harder. We know of relatively
few results in this direction, including ones by
Touretzky (1986) and Borgida  (1989). Some relevant
results involving negative and positive links are found
in Thomason  (1986). There are also results involving
RELATIONS and IDENTlTYs in Thomason  (1989). We
know of no results on the particular problem we con-
sider, which is to allow E to contain ROLES as well as
ISA edges, and to prohibit cancellation; we call these
ISAR networks. We preclude cancellation not
because we consider it unimportant, but because we
would like to understand the monotonic case frost. As
will be seen, it is by no means straightforward. The
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problem lies in a new closure rule that is provided by
the interaction between ROLES and ISA edges. Con-
sidcr for example the following graph:

pent rpanc-of

I ,motkcw s eat
Intuitively, since mothers are parents, spouses of
mothers are also spouses of parents. In other words,
an ISA relation is implied about the two right nodes.

Of course, this intuitive claim needs to be formal-
ized, and we will indeed do that. We will then con-
sider the complexity of determining the implied ISA
relations in such a network. In a very restricted type
of ISAR networks we will be able to salvage the O(m)
and 0( nm) results from the simple taxonomic cast.
For general ISAR networks we will offer a slightly
costlier U(n’ + m*) algorithm to find all the implied
ISA relations. Actually, a finer analysis of our general
algorithm reveals a complexity of 0( nr( log r) + n*r
+ n’ ), where! r is the number of ROLE labels in the
network (we distinguish ROLE labels which are dis-
tinct, like brother-of and spouse-of, and actual
ROLE edges, in which ROLE labels may be repeated).
Note that we have r I m, but we do not have m 5 n*,
since, unlike ISA edges, we may have multiple ROLE
edges between two nodes (the spouses of mothers are
exactly the joint-tax-payers of mothers). Among other
things, this finer analysis takes us back to O(n3) for
an r bounded by a constant. As this is close to the
best known algorithm for simple taxonomic networks
it seems unlikely that this result can be signiGcantly
improved.

The remainder of the article is organized as follows.
In section 2, we briefly define the semantics of ISAs
and ROLES, and based on these we provide provably
complete conditions for determining all the implicit
ISAs entailed by a given ISAR network. In section 3,
we formally define the graph theoretic problem. In
section 4, we briefly recall the results on taxonomic
hierarchies, all weU known. In section 5, we finally
turn to the complexity of reasoning with ISAR net-
works. In section 5.1, we extend the results of
section 4 to a restricted kind of ISAR networks which
we caU “equi-multiple inheritance”-ISAR (EMI-ISAR)
networks. We then turn to the general case. First, in
section 5.2, we provide a polynomial algorithm which
reduces the problem to that of determining entailment
by a propositional Horn theory. The degree of the
polynomial turns out to be quite high, and so, in
section 5.3, we give another, more direct algorithm,
whose complexity was discussed above. Finally, in
section 6 we summarize our results, compare them to
previous results of which we are aware, and point to
some open questions.

2. THE SYNTAX AND SEMANTICS OF ISAR
NEWORKS

In order to bc able to define our problem we first
present the syntax and semantics for monotonic ISAR
networks. Their syntax is dcfmed as follows.

Definition I: Let V and L be two disjoint sets. An
EAR network is a triple < V,E,,E, > where
E,d/ X V, E,H X V X L and it satisfies:

1) If (a,b,p)EE, and (a,c,p)EE, then b = c;
2) If peL then there are aeV and bd such

that (a,b,p)EE,.

V is the set of vertices, L is the set of ROLE
labels, E, is the set of ISA edges and E, is the set
of ROLE e&es.

The second condition in the above definition is not
essential, but it guarantees that any ROLE label
indeed labels at least one ROLE edge, which is con-
venient. We now defme their semantics.

Definition 2: L e t  N  =  <V,E,,ER> b e  a n  ISAR
network and L the set of ROLE labels of N A
model for N is a pair -C D,+ > where D is a set
and I/ is a (total) function on VUL such that:

1) If aeV then rC/(a)cD;
2) If PEL then &I) is a partial function from

DtoD;
3) if (a,b)EE, then Il/(a)qh(b);
4) if @*b,pW, then rCl(b) = ti(P)(ti@))-

Next we define two isa relations, one semantic and
one syntatic.

Definition 3: L e t  N =  <V,E,,E, > b e  a n  ISAR
network. The binary relation isa, on V is
deftned b y : isa,(a,b)  ifT for  every model
< D,ll,> for N, it is the case that $(a)+(b).
We will denote the fact that isa,(a,b) holds by
N j= isa(a,b).

Definition 4: L e t  N =  <V,E,,E,> b e  a n  ISAR
network. The binary relation isa, on V is the
smallest set satisfying:

I) If (a,b)eE, or a = b then (a,b)Eisa,;
2) (Rulel) If (a,b)eisa, and (b,c)Eisa,  then

(a,c)eisa,;
3 )  (R&2) I f  (a,b)eisa,, (a,c,p)EE, a n d

(b,d,p)EE,  then (c,d)Eisa,.

We will denote the fact that isa,(a,b) holds by
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Ntisa(a,b). There is also the well known direct algorithm for p,:

The n&t theorem ctiablishes that Isa, and Isa, are
actually the same rclatim.

Theorcun  I: (Soundneas and Completeness) Let
N = < V&E, > t : an ISAR network. For every
ad and bd, N+a(a,b) iff N+isa(a,b).

Proof (+)Note that if (a,b)EE, then Nf=isa(a,b);  and
also that Rule1 and Rule2 are sound with respect to
our semantics. (+)We omit this part of the proof; it
will be included in the long version of this paper.

Note that if E, is empty then the ISAR network
reduces to a simple taxqnornic inheritance network.

3. FORMAL PROBLEM DEFINITION

Given the syntax and semantics of ISAR networks, we
’ now formally defme the two firoblems we will be

addressing.

P,. Input: an ISAR network N = < V,E,,E,>
and a pair of vertices xy in V

Output: ‘yes’ if N j= isa( ‘no’ otherwise

P,. Input: an ISAR network N = < V,E,,ER >
Output: an ISAR network N = < V,E,‘,E,>

such that E,’ = ((xy): N #= isa(

If IV( = n and COMP, is the time complexity of P,
(i = 1,2), then clearly we have COMP, 5 n*COMP,,
since we solve P, by solving P, for each pair of nodes.

In the rest of this paper, the number of vertices,
IVl, will be n, the number  of edges, IE,I + IE, 1, will
be m and the number of ROLE labels, IRI, will be r.
Note that r I m and m 5 rn*.

4. SIMPLE TAXONOMIC HIERARCHIES: A
REVIEW

In this section we briefly review the well-known
results for the case in which the network contains
only ISA edges.

Theorem 2: There exists an O(m) algorithm for P,.
Proof. Use, e.g., the depth-frost  search (DFS) algo-
rithm for directed graphs (Aho et al., 1974).

in fact, DFS may be used to find in O(m) time UN the
nodes reachable from a given node. We therefore have
the following:

Corollary 1: There exists an O(nm)  algorithm for P,.
Proof. Run a DFS from each node.

Theorem  3: There exists  an O(n’) algorithm for P,.
Proof. USC the dynamic programming algorithm of,
e.g., (Ah0 et al., 1974).

In fact, there exists a theoretically even better dgo-
rithm for P,, whose complexity is about O(n*.‘).
However, this theoretical result has not been trans-
lated to a practical advantage.

We mention  the.se results for two reasons. First, ad
these are the best known results for taxonomic net-
works (and of course the linear result for P, is
provably optimal) they form a lower bound for what
we might expect for ISAR networks, and are good ref-
erence points against which to test our results.
Second, the details of the algorithms mentioned above
provide good insight into the qualitative increase in
difkulty of ISAR networks. In the next section we
discuss the DFS algorithm, and why it can be
extended only to a limited class of ISAR networks.
The dynamic programming algorithm, on the other
hand, does not extend at all as far as we can see.
Briefly, it relies on the property that if a path is
decomposed at any vertex then each component is
itself a path; that is true for simple taxonomic hierar-
chies, but not for general ISAR networks.

5. ALGORITHMS FOR BAR NETWORKS

We now address the two problems defmed in
section 3, P, and P,, in the context of general ISAR
networks. We start with a very efficient algorithm for
a restricted class of ISAR networks. We then give an
easy algorithm for the general case whose complexity,
though polynomial, is uncomfortably high. Finally,
we give a low polynomial algorithm for the general
case.

5.1 EMI-ISAR networks

The DFS algorithm for taxonomic hierarchies extends
paths into the graph, backtracks chronologically when
a path is blocked, and never traverses the same edge
twice. In this section we extend the algorithm to
ISAR networks, introducing two major modifications.
First, paths are extended in a way that is more com-
plicated than simply following ISA edges. Second, in
order to guarantee that we do not lose completeness
by not traversing edges more than once (which guar-
antees linearity) we will need to impose a strong
restriction on the network. Given the space limita-
tions on this paper, we will only illustrate the algo-
rithm through an example. Consider the simple
network in Figure la.
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C d e f

Zintegers, 2 +:nonnegative 2,
Ckrationals, R:reals, R+:nonnegative R,
1x1: the absolute value function, x2: squaring function

Figure 1

Now consider the query ‘isa({289},R+)‘. This query
should succeed due to the path shown in Figure lb,
which consists of three types of edge traversal: going
back on ROLE edges (e.g., Z+ to Z), going up ISA
edges (e.g., Z to Q), and going forward on ROLE
edges (e.g., R to R+). We will call these respectively
left, up and right traversal. Left and up .traversals  have
no preconditions. Right traversal has a precondition
that it not immediately follow a left traversal, and that
the last left traversal to precede it was along a ROLE
with the same label. To implement this we maintain a
stack as we develop a path: up traversal does not
affect  the stack, back traversal pushes the ROLE label
onto the stack, right traversal pops the stack (and has
the precondition mentioned above). Figures 1 c- 1 j
illustrate the stack at all the .vertices along the path in
Figure lb.

Lemma 1: Let N be an ISAR network. Then
N b isa S there is a path of the sort
described above that starts at x with an empty
stack and ends at y with an empty stack.

The only question that remains is how to determine
efficiently whether such a path exists. Unfortunately,
in ISAR networks with multiple inheritance we will in
general need to traverse some edges many times. A
simple example exists already in Figure la: if the first
path developed is (289}{ 17}Z+QR,  then at that
point backtracking must occur. If we are not allowed
to traverse the edge QR twice, then we will not dis-
cover the path {289){17}Z+ZQRRiR+, and thus
miss a solution. In special case, however, it is safe to
not traverse an edge twice:

Definition 5: The label of a path is the sequence of
ROLE labels appearing in it, ignoring all ISA
edges.

Dctinltlon 6: A.~I ISAR network ia an cgui-mul@e
fnherftonce-h’AR network (EMI-ISAR network)  if
for any two nodes x and y, all path8 from x to JJ
have the same label.

Ilwowm 4: In the CYK of EMI-ISAR networks there
exists an O(m) algorithm for P,.

Proof. Dcvelop paths of the sort described above in a
depth-first fashion, backtracking chronologically,
never traversing an edge twice.

In fact, just as in the simple taxonomic case, this
extended DFS can be used to discover all nodes to
which a path exists from a given node. We thus get
the following:

Corollary 2: In the case of EMI-ISAR networks there
exists an O( nm) algorithm for P,.

Note that our results hold also when the network
contains cycles.

5.2 Reducing general ISAR networks to
propositional Horn theory

We now start to look at the general case of ISAR net-
works. In this section we pursue an easy way out,
namely to reduce the graph theoretic problem to the
problem of deciding a query about a propositional
Horn theory, which is known to be decidable in linear
time (Dowling and Gallier, 1984). Unfortunately, the
resulting datalog theory will not be linear in the size
of the ISAR network.

Let N = < V,E,,E,> be an ISAR network. We
construct a Horn theory Th(N) as follows. First, for
each three vertices xy,z in N, we construct a clause

isa(x& < - ka(x,z)  A isa

Then, for each four vertices u,xy,z in N and each
ROLE label 2 we construct a clause

isa < - isa(v,z)  A role(l,v,x) A role(l,zy)

Finally, for every pair (a,b) in E, we add a predicate
isa(a,b), and for every triple (a,b,p) in E, we add a
predicate role(p,a,b).

Theorem 5: There exists an O(rn’)  (and thus
O(m n4)) algorithm for P,.

Proof. From Theorem I we have that N + isa
iff Th(N) /= isa( The latter can be decided in
time linear in Th(N). The number of clauses in Th(N)
is O(n3+rn4) = O(rn4).

Corollary 3: There exists an O(rn’) (and thus
O( mn6)) algorithm for P,.
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5.3 An efficient algorithm for general EAR
networks

The degree of the polynomial in the previous algo-
rithm is a bit too high for comfort. We now offer a
more direct algorithm whose complexity ia much
lower.

Defmition 7: A directed AND/OR graph is one in
which the set of edges emanating from each node
is partitioned into sets, each set called an
AND-set of that node (single edges arc viewed as
singleton sets). A path in such a graph is a rooted
tree such that the set of edges in the tree ema-
nating from each vertex forms an AND-set of that
vertex in the AND/OR graph. Searching an
AND/OR graph from a given vertex means
starting with a path consisting of the node itself,
and iteratively extending it.

Definition 8: Let N = <V,E,,E, > be an ISAR
network. The evidence graph of N is the
AND/OR directed graph MD(N) = < VZ,E’>
where

E’= (((k,l),(i,j)): for some p, (i,k,p) and
(j,l,p) are both in E,)

U 1 (((i,k),(iJ)),((i,k),(j,k))): i,j,k h V}.
The first type of edge is shown pictorially below:

iAk a+- (i,j)

j. P _h
rb

(h,kc) - Cj,il
N EVID( N)

The intuition behind the construction is the fol-
lowing: an AND-set of a vertex (i,j) in the evidence
graph is evidence that (i,j) is in the
precisely, we have the following:

isa relation. More

Definition 9: Let N = < V,E,,E, > be an ISAR
network. A path rooted at (a,b) in EVID(N) is
said to be grounded if a = b or for all terminal
nodes (k,l) in that path it is the case that (k,l) is
in E,.

Lemma 2: Let N = <V,E,,E, > be an ISAR network
and i,j in V. Then N/=isa(i,j)  iff there is a
grounded path in EVID(N) rooted at (i,j).

Proof. (outline) By theorem 1, N/=isa(i,j) if and
only if Ntisa(i,j). By induction on the number of
applications of Rule 1 and Rule2 (Defmition 4) we
have that if Ntisa(i,j). then there is a grounded path
rooted at (i,j) in EVID(N). By induction on the the
size of the path we may prove that if there is a
grounded path rooted at (i,j) in EVID( N) then
Ntisa( i,j).

--r I.

Ixmma  3: It can bc determined in time O(m’) ahul-
taneously for d vertices in EVID(N) whether
there is a grounded path rooted at them, where
m’ is the number of edges in EVID(N).

Proof. (outline) Conduct a breadth-fmt  search
(BFS) starting fr7m all nodes (I,]) such that (IJ) is in
E,, moving backwards on edges, and extend a path
beyond a vertex only when at least one of its
AND-sets has all its members originate in previously-
reached nodes.

The last lemma points to the reason for constructing
the evidence graph. We now note that m’ is bounded
by the complexity of generating EVID(N). To com-
plete the story, then, it remains to estimate this com-
plexity. We fust show an easy bound, and then look
more closely at the algorithm to improve the com-
plexity.

Theorem 6: There exists an O(n” + m’) algorithm for

Proof. The construction of the edges in EVID(N) that
are due to the transitive closure is done in time O(n’).
To construct the other edges, we look at all pairs of
ROLE edges (i,j) and (k,l), and, if their ROLE labels
agree, add to EVID(N) the edges ((i,k),(j,l))  and
((j,l),(i,k)).  The total number of edge-pairs is O(m*).
Thus the total complexity of the algorithm is
O(n3 + m*).

Recall that in ISAR networks there is no necessary
relation between the number of vertices and the
number of edges. However, if it happens that
m = O(n*), we have that the algorithm is of com-
plexity O(n’). We now improve on this by a more
careful construction of the evidence graph.

Theorem 7: There exists an O(nr(Z0gr) + n*r + n”)
algorithm for P,, where r is the number of dif-
ferent ROLE labels.

Proof. We create the frost  n3 edges as before. Then,
rather than blindly compare all pairs of edges, we do
the following.

1) Create a list for each vertex of all the ROLE edges
emanating from it and their associated label. A
typical list will have the form i: (l,,i,),(l,,i,), . . . .
(where i, i, and i, are vertices, and I, and I, are
ROLE labels);

2) Sort each of these lists by the label component;
3) For each pair of vertices i,j, scan their lists in par-

allel to see which role labels they share. If you
encounter the pair (p,k) in i’s list and the pair
(p,l) in j’s list, add the edges ((k,l),(i,j))  and
W),(j,i)).
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Complexity of the steps:

1) O(m);
2) O(nr(logr))  (note that each list is of length r at

most);
3) O(n*r) (scanning the sorted lists is linear in their

length, r, and there are n* pairs of vertices).

We also note that we have m S n’r, and so the total
complexity of creating the evidence graph is
O(nr(logr)  + n*r + n’).

. Corollary 4: If the number of ROLE labels is bounded
by a constant, there is an O(n’)  algorithm for P,.

We note that as this is realistically the low,:st com-
plexity known for transitive closure, we hould not
hope to improve on this.

6. SUMMARY AND ,DISCUSSION

We have offered new results on the complexity‘of rea-
soning with inheritance hierarchies with ROLES, or
ISAR networks. We defined two problems, P, (deter-
mining whether a ISAR network implies an isa
relation on two nodes) and P, (finding the closure of
the isa relation). Let n be the number of vertices of
an ISAR network, m the number of edges, and r the
number of distinct ROLE labels. To somewhat
crudely summarize our results, we have the following.

EMI- Horn
Rnd;Es  ISAR alg

p, n n mn*

direct fixed

43 labels

m2+n3 n3

m2+n3 n3

The only results bearing directly on ISAR networks
with which we are familiar are due to Borgida (1989).
His results include NP-Hardness for networks with
cancellation, and polynomial results for two other
problems. We do not yet understand well the relation
between his results and ours. There appear to be few
other complexity results. We are aware of Touretzky’s
(1986) polynomial algorithm for parallel networks
with RELATIONS, but do not see an interaction with
our work.

Our results leave open some interesting questions.
Our general result for P, is somewhat worse than the
0( nm) of transitive closure; can it be improved?
Another striking feature of our result is that in the
general case we have identical results for P, and P,,

although at first dance it seems that P, is much
easier. Actually, our experience with the problem
leads us to conjecture that P, is not any easier, but it
would be nice to have a result on that. Then there is
a question about  o ther  ways  to  sa lvage the
O(n),O(nm) results from the simple taxonomic case:
do there exist interesting classes of networks which
permit that other than EMI-ISAR networks? Finally,
what happens when we add other features to the
network, such as RELATIONS or cancellation? We
conjecture that at least in the latter ca.se the problem
in general becomes intractable, which seems to agree
with Borgida’s result mentioned above.
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