
November 1990 Report No. STAN-CS-90- 1342

Modeling Concurrency with Geometry

bY

Vaughan Pratt

Department of Computer Science

Stanford University

Stanford, California 94305

To appear in POPL-91

Modeling Concurrency with Geometry

Vaughan Pratt t
Computer Science Department

St anford University
Stanford, CA 94305

pratt@cs.stanford.edu

Abstract
The phenomena of branching time and true or noninter-
leaving concurrency find their respective homes in au-
tomata and schedules. But these two models of compu-
tation are formally equivalent via Birkhoff duality, an
equivalence we expound on here in tutorial detail. So
why should these phenomena prefer one over the other?
We identify dimension as the culprit: l-dimensional au-
tomata are skeletons permitting only interleaving con-
currency, whereas true n-fold concurrency resides in
transitions of dimension n. The truly concurrent au-
tomaton dual to a schedule is not a skeletal distributive
lattice but a solid one ! We introduce true nondeter-
minism and define it as monoidal homotopy; from this
perspective nondeterminism in ordinary automata arises
from forking and joining creating nontrivial homotopy.
The automaton dual to a poset schedule is simply con-
nected whereas that dual to an event structure schedule
need not be, according to monoidal homotopy though
not to group homotopy. We conclude with a formal defi-
nition of higher dimensional automaton as an n-complex
or n-category, whose two essential axioms are associa-
tivity of concatenation within dimension aud an inter-
change principle between dimensions.

1 Background
A central problem in the semantics of imperative com-
putation is the construction of convenient models of
computation embodying the apparent aspects of both
branching time and true or noninterleaving or causal

t This work was supported by the National Science
E’oundation under grant number CCR-88 1492 1.

concurrency.
Milner [Mi180] has made a convincing case for includ-

ing the timing of nondeterministic choices in any com-
prehensive model of computation, distinguishing linear
time (all choices made at the outset) from branching
time (choices made on-the-fly to take into account the
latest information). Park’s not ion of bisimulat ion equiv-
alence [Par811 has emerged as a particularly fine equiv-
alence of labeled transition systems, though not so fine
as to abandon the idempotence of choice. Two recent
comprehensive yet complementary accounts are given
by Bergstra and Klop [BK89] and their student van
Glabbeek [Gla90], with the latter also addressing true
concurrency in more detail.

The most natural computational setting for branch-
ing time would appear to be transition systems or state
automata, where the branching is naturally represented
by that of the automaton. These may be “unrolled” to
yield synchronization trees so as not to represent other
information. However Nielsen, Plotkin, and Winskel
have defined event structures as an extension of sched-
ules with a conflict relation to represent branching time,
about which we will have more to say later.

Lamport [Lam861 and independently the present au-
thor argue against the interleaving model of concurrency
on the ground that “exactly what is interleaved depends
on which events of a process one takes to be atomic”
[Pra86, p.371. When a supposedly atomic action is “re-
fined,” which from a pragmatic viewpoint can be taken
to mean “looked at more closely to reveal its substruc-
ture,” the interleaving model can be seen not to have in-
terleaved the subactions, having been forced to commit
itself in advance to a particular level of granularity. This
failure to interleave subactions is characteristic not of
true concurrency but rather of mutual exclusion. Thus
in an interleaving model the truly concurrent execution
of two atomic events cannot be distinguished from the
mutually exclusive execution of those events.

Castellano et al [CDP87] formalize this intuition with
a simple example showing that interleaving semantics is
not preserved under refinement (where refinement is de-
fined as substitution of a complex behavior for an atomic

behavior),
served.

but that partial order semantics is so pre-

The natural computational setting for true concur-
rency is that of schedules or partially ordered sets of
events. If branching time can be moved from automata
to schedules [NPW81], can true concurrency go the
other way?

Van Glabbeek and Goltz [vGG89] strengthen the re-
sult of Castellano et al in several ways. First they give
a stronger example to show that step semantics (a form
of concurrency intermediate between interleaving and
partial orders, permitting multiple but synchronized ac-
tions at each clock tick) is, like interleaving semantics,
not preserved under refinement. Then they extend the
linear time result of [CDP87] to encompass branching
time. Finally they point to ST-bisimulation, a delight-
fully simple extension of the notion of Petri net mark-
ing due to van Glabbeek and Vaandrager [GV87] that is
preserved by refinement yet supports branching time, as
an example of a semantics that models true concurrency
and furthermore treats branching time, all without re-
quiring partial orders.

Now ST-bisimulation comes within striking distance
of the problem we just posed of moving true concur-
rency to the automaton model. However Petri nets are
neither schedules nor automata, but a symmetric combi-
nation of both, in that Petri nets alternate the vertices of
schedules, as transitions, with the vertices of automata,
as places.

The main contribution of this paper is a geometric
model of concurrency. This model completes the pas-
sage of true concurrency to automata by redefining the
schedule aspects of a Petri net, namely its transitions
represented in Petri nets as vertices, as higher dimen-
sional transitions of an automaton! This also yields a
model that is in our opinion mathematically more at-
tractive than Petri nets, certainly those with unbounded
place capacities.

There are two side contributions. One is a much
needed tutorial on the duality of schedules and au-
tomata around which our introduction has revolved and
which continues to play a role in the sequel. The other
is the application of n-categories or n-complexes to con-
currency theory, as a formal model of higher dimensional
automaton, for which we contend they are more natu-
rally adapted than other extant algebraic structures.’

1 Among other recent applications of so-called Australian cate-
gory theory to concurrency is an application of enriched categories
to the abstract modeling of time a la Floyd-Warshall, presented
to a category audience [CCMPSS]. We regret not having had the
opportunity to present this at POPL-88 or POPG89.

2 A Geometric Model of Com-
putation

Our thesis is that both branching time and true con-
currency can be described together in a single geomet-
ric model. Branching time is represented literally by
branchings of geometric objects, exactly as one would
picture it. In particular we treat a transition system
as a one-dimensional space consisting of edges (its tran-
sitions) meeting and branching at vertices (its states).
True concurrency is represented by dimension: an n-
dimensional cell (element of space) is used to represent
the concurrent execution of n sequential processes, and
its boundaries represent the starting or halting of some
of those processes.

Our geometric view is closely related on the one hand
to ST-bisimulation [vGG89], and on the other to Pa-
padimitriou’s geometrical model for database concur-
rency control [Pap86, chap.61.

To be cryptically succinct, we propose to extend inter-
leaving concurrency to true concurrency by filling holes,
and then to extend true concurrency to branching time
by putting some of those holes back.

So what is a hole? Consider two automata, each hav-
ing two states and one transition and accepting the re-
spective regular sets CA and b, each consisting of one unit-
length string. With interleaving concurrency the con-
current execution of these two automata is their prod-
uct, a square whose four sides represent four transitions,
accepting the regular set ab + ba as in Figure B’ four
pages hence.

This automaton contains a hole, namely the interior
of the square. To formalize this, embed the automaton,
treated as a graph, in the Euclidean (real) plane. For
definiteness locate its states at the lattice points (O,O),
(l,O), (0, l), and (1,l) (the corners of the unit square
[0, 112; y is oriented negatively in 8’). Take the initial
state to be the origin, and take the four transitions to
be the four sides of this square. The hole is then the
interior of the square.

To “fill the hole,” take the interior of the square, a
surface, as the ninth component of this product automa-
ton. The four vertices, qua states, and the four edges,
qua transitions, comprise the other eight cells of what
we shall refer to as a cell complex.

These nine cells represent the nine possible “states” of
the concurrent automaton. Four states are completely
idle (states in the usual sense), four have one constituent
automaton active, and one has both constituents active.
This last may be described as a two-dimensional or “su-
perficial” transition. It provides a notion of “joint tran-
si tion” of two processes.

Van Glabbeek and Vaandrager [GV87] have in-
troduced ST-bisimulation, in which not only places
(Stellen) of Petri nets but transitions (7hnsitionen,

2

whence ST) are marked in a state (an assignment of
tokens to vertices). (It is extraordinary that this simple
and intuitively clear extension of the notion of Petri net
state has not been proposed before!) The relationship
with ST-bisimulation may be easily seen by consider-
ing the corresponding example for Petri nets. As usual
a one-transition automaton becomes a Petri net simply
by converting its transition from an edge to a vertex and
adding two edges to represent respectively the pre-event
or input arc and postevent or output arc, each incident
on the one transition. The concurrence of two such nets
is “smaller” than that of the corresponding automata,
being just their juxtaposition, having for its vertices not
the Cartesian product of the vertices of the underlying
nets as was the case for the automata but rather their
disjoint union.

If we mark the initial place of each of the two compo-
nents of this juxtaposition and then play the usual “to-
ken game ,” we obtain four possible markings of places,
corresponding to the four vertices of the square au-
tomaton. If however we extend the token game as in
ST-bisimulation to permit transitions to be marked,
we obtain an additional four markings each involving
one transition (the four edges of the square), together
with a single marking involving both (the interior of the
square), completing the promised correspondence.

There are three trivial generalizations we can make
immediately. First we may increase the number of au-
tomata executing concurrently. With three automata
we obtain a cube in the obvious way, with four a 4-
cube, etc. We refer to the d-dimensional elements of
such a complex as d-cells, with O-cells or points corre-
sponding to the old notion of state, l-cells or edges the
old notion of transition, and the higher-dimensional cells
constituting a new notion of concurrent transition.

Second, we may let the i-th automaton, for 0 5 i < d,
run for rni transitions, provided its graph forms a chain
so that it accepts just one string, of length rni. Our unit
cube then expands to a larger complex of size ni mi.

Third, we may label transitions. If we associate alpha-
bet X:i with the i-th sequential automaton for 0 5 i < d,
we may label its edges in the standard way for automata.
To extend this to higher dimensions we require for each
subset of this set of d alphabets the alphabet formed as
the product of that subset, yielding 2d alphabets. Each
n-cell is then labeled with an n-tuple of labels from the
appropriate alphabet, namely that corresponding to the
subset of automata whose activity is represented by the
cell. All completely quiescent states (O-cells) are labeled
with the unique 0-tuple, indicating the absence of activ-
ity. l-cells are labeled with 1-tuples, as in an ordinary
automaton. 2-cells are labeled with pairs (a, b) indicat-
ing the joint execution of transitions a and b, and so on
for higher dimensions.

Less trivial is the next generalization, which imposes

order constraints. For any two transitions of different
automata we may require that one not start until t’he
other has finished, a precedence constraint. We shall
call such a collection of constraints a schedule, the term
used in (inter alia) the Macintosh world for PERT charts
or pomsets.

With this generalization the second trivial generaliza-
tion now becomes redundant, since we can achieve the
effect of a sequential automaton having m transitions by
using m concurrent one-transition automataconstrained
to execute in a specified sequential order. To simplify
the model we therefore withdraw generalization two.
This restricts our basic automata to single-transition
automata, more conventionally called events. We may
now describe each precedence constraint as holding be-
tween such events i and j, without having to further
specify a particular transition within each event. These
constraints, which we write as i < j, then amount to
a partial ordering of the set (or multiset in the labeled
case) of d events.

We saw already that the square (2-cube) had nine
cells. More generally the d-cube has 3d cells. The num-
ber three arises as the possible states of an event: initial,
transition, final, or 0, T, 1 for short. Each cell can then
be identified as a d-tuple over (0, T, 1) = 3. The stan-
dard interpretaiion of i < j is to exclude ~11 cells save
those whose j-th event is 0 or whose i-th event is 1.

In place of { 0, T, 1) we may take the unit interval
[0, l] on the real line, whose interior (0, 1) corresponds
to T alone and whose endpoints are the correspondingly
named elements of (0, T, 1). Then the d-cube becomes
the unit cube [0, lid in d-dimensional Euclidean space
Rd, having a continuum of points rather than just 3d.
Now one quite reasonable interpretation of i < j is to
restrict to the polyhedral subspace of the cube consisting
of those points whose i-th coordinate is greater than
their j-th coordinate. This corresponds to permitting
events i and j to run concurrently but without letting
j get ahead of i. For any partial ordering of events
this subspace is convex and can be easily shown to have
volume k/d! where k is the number of linearizations of
the partial order, being the (essentially) disjoint union
of k tetrahedra one per linearization.

However this is not the proper analog in Rd of sub-
spaces of 3d, since it cuts faces into tetrahedra. The
appropriate real-valued analog further restricts the sub-
space to those points such that either the j-th coordinate
is 0 or the i-th coordinate is 1. But this is exactly how
we expressed the condition for 3d. In fact i < j was in-
terpreted without mentioning T at all, being expressed
solely in terms of the initial and final states of an event,
regardless of what structure we impart to its interior.
Unlike the interpretation of i < j in the previous para-
graph, the subspace of Rd given by the standard inter-
pretation is not convex. However, as will be seen to be

3

important shortly in our approach to nondeterminism,
it contains no holes.

3 Schedule-Automaton Duality
With this last generalization we have passed from un-
scheduled to scheduled activity, the latter being the
essence of the pomset model [Gra81, Pra82]. From a
mathematical perspective we have passed (at least in
the finite case) from the Birkhoff-Stone duality between
sets (of events, as points of a finite discrete topologi-
cal space) and Boolean algebras (of states) to the much
richer Birkhoff duality between posets (still of events)
and distributive lattices (still of states).

The Birkhoff duality is becoming better known in the
CS community of late. However there remains consid-
erable confusion in both the mathematical and CS lit-
erature over the difference between Birkhoff duality and
Stone duality, perpetrated in our opinion by an unwar-
ranted enthusiasm for topological methods to the ex-
clusion of combinatorial. It is very helpful to see these
distinctions clearly when working with our geometrical
model of concurrency. Hence we give here an overview
of this duality and its application to concurrency.

Sequential computers alternately work during a tran-
sition and then rest up at a state. This scenario is con-
ventionally rendered as a graph whose vertices represent
either transitions or states. If transitions then we have
a PERT chart or schedule, and the edges of the graph
denote precedence relations, possibly labeled with dura-
tions indicating bounds on the time from one transition
to the next. If states then we have a machine or uu-
tom&on whose edges are transitions from state to state,
possibly labeled with attributes of the transition. But
which picture is the right one?

The Petri net answer is neither: transitions and states
should be granted equal rights by both being vertices.
These then serve as respectively the conjunctive and dis-
junctive elements of an intriguing logic of concurrency.

The duality theory answer is both: for at least a cer-
tain class S of schedules and class A of automata they
depict the same scene because S and A are equivalent.
Not isomorphic, which would imply a l-l correspon-
dence between the elements of S and A, but equivalent
in the sense of a l-l correspondence between the isomor-
phism classes of S and A. (This is exactly the category
theoretic notion of equivalence.)

Here is a simple special case of this equivalence.
A finite schedule S that is just an unordered set of n

jobs (transitions) to be done in parallel is very easy to
compile into an automaton. The automaton is just the
power set 2’ drawn in the standard way with the empty
set at bottom as the start state and S at top as the
final state, and edges between just those sets differing
by exactly one job, with that job labeling that edge. For

the automaton to be in state Y means that the set of
jobs done thus far is Y. This is the Hasse diagram of its
lattice, i.e. the smallest DAG whose transitive closure is
the inclusion order c between subsets. This lattice is of
course a Boolean algebra, meaning a distributive lattice
with a complement operation.

It is helpful to regard the states of the automaton as
2” bit vectors of length n, with bit x being 1 in state
Y just when job x has run by the time that state is
reached. Then the set operations Y U Z and Y n Z are
bit vector operations such that in each bit position they
are just V and A.

Decompilation is traditionally harder than compila-
tion, but in this case decompilation is just as easy as
compilation. Given such an automaton A, form its
power automaton 2A, consisting of certain sets of states
of A.

Now if an automaton were simply a set of states,
2A would mean the power set of A. But that would
be huge-and fortunately wrong. The right way to
form the power widget 2 w of a widget W is to take
all widget maps from W to 2. This works provided
there’s a sensible way to construe 2 as a widget. The
automaton A is a lattice, and luckily the poset 2 is
schizophrenic enough to be also the lattice 0 5 1 of truth
values. Hence we take for 2A all lattice maps (homo-
morphisms) from A = 2’ to 2, meaning functions that
preserve the lattice structure, i.e. j(0) = 0, j(S) = 1,
fwJZ)=f(Y)WZ), and f(Y n Z) = j(Y) A j(Z).
It can be easily seen that preserving this much implies
preserving complement as well, so these are also Boolean
algebra maps.

So what maps does this give us? One function that
satisfies the desired conditions above is the predicate jz
that tells of each state whether job x has run yet. But
looking at A as 2” bit vectors, this is just the function
that watches bit x. As long as bit x works reliably,
when Y U Z is formed bit x will appear to be computing
Y= V Z=, and dually for n. But this is what the above
conditions require. So these functions are lattice maps.
They are in fact the n projections of 2x onto 2, 2x being
the product of n copies of 2. That they are different can
be seen by their behavior on singleton states. Hence
these maps form a set isomorphic to X, that is, having
cardinality IX]. That it is only isomorphic and not equal
is why the duality is only an equivalence and not an
isomorphism!

And these are all the lattice maps there are from A
to 2. For j can’t be 0 on every singleton or it would
make j(S) = 0, S being finite. But j can’t be 1 on
two or more singletons since that would make j(0) = 1.
So j must be 1 on exactly one singleton {x}. But now
j({x} n Y) = j({x}) A j(Y) = j(Y) whence j(Y) = 1
exactly when x E Y, making j = ji.

But the theorem is that decompilation back to sched-

ules works for an isomorphism class of automata, so we
aren’t allowed to refer to states as singletons per se.
However this is no problem: we can spot the singletons
by context as being just those states immediately fol-
lowing the start state, namely the atoms of the Boolean
algebra. So we revise the above argument to work for
all automata isomorphic to 2’ by substituting “atom”
for “singleton.”

So we now have a l-l correspondence between all iso-
morphism classes of finite sets and some set of isomor-
phism classes of finite Boolean algebras. But the reader
well knows (though it is some work to prove) that every
finite Boolean algebra is isomorphic to the power set of
some finite set, and so we have the promised equivalence.

But this very special case of Birkhoff-Stone duality is
as boring as the natural numbers, since the finite sets fall
into isomorphism classes according solely to their car-
dinality n, one class per number, and correspondingly
there is just one isomorphism class of Boolean algebras
of cardinality 2”.

So the picture so far is that if schedules are just un-
ordered sets of jobs, there is, up to isomorphism, just
one schedule of each size n and one matching automa-
ton of size 2”.

This duality can now be spiced up in two essentially
orthogonal ways, a combinatorial one due to G. Birkhoff
[Bir35] and a topological one due to M. Stone [Sto36].
Remarkably, that these ways were orthogonal passed un-
noticed until pointed out by H. Priestley in 1970 [Pri70].

Keeping everything finite, Birkhoff duality generalizes
the discrete schedules to partially ordered schedules, and
generalizes the automata to distributive lattices. On the
other hand, keeping the automata Boolean, Stone dual-
ity generalizes everything to the infinite case. In order
to allow every Boolean algebra to be viewed as the com-
pilation of some schedule Stone generalizes schedules of
jobs to schedules of sets of jobs called (nowadays) Stone
spaces. Instead of running individual jobs one must now
run sets of jobs at a time, and only in those combina-
tions that are permitted. The automaton produced by
compiling such a schedule will now be a proper Boolean
subalgebra of the power set of the set of all jobs in the
schedule, due to the schedule restrictions eliminating
some states, e.g. those containing only finitely many
jobs.

Stone did extend his Boolean duality to distributive
lattices [Sto37], but purely topologically rather than via
the more natural blend of order and topology devised
by Priestley. As Rota put it, “Stone’s representation
theorem of 1936 for distributive lattices closely imitated
his representation theorem for Boolean algebras, and as
a consequence turned out to be too contrived.” [Rot731

Priestley simply equips the schedule with both
Birkhoff’s partial order and Stone’s topology to make it
a partially ordered Stone space, a set bearing two struc-

tures, that of a partial order and that of a topology,
Stone’s in this case. The partial order deals with the
absence of complementation, generalizing Boolean alge-
bras to distributive lattices, and dually on the schedule
side, sets to posets. The Stone topology, which resides
on the schedule side, caters to the phenomenon whereby
a countably infinite Boolean algebra, and by the same
token a distributive lattice, can have a countably infinite
subalgebra not isomorphic to its parent, by forbidding
those combinations of jobs (i.e. subsets of X) corre-
sponding to missing elements of said subalgebra.

Thus Birkhoff’s and Stone’s halves of this beautiful
duality theory are essentially independent. Both halves
have potential computational significance. Birkhoff du-
ality is relevant to scheduling, the main thrust of this
paper. Stone duality is relevant to continuous situa-
tions, e.g. parallel solutions to stock-cutting problems
where the regions can get arbitrarily small without ever
becoming points. It may also prove fruitful in reasoning
about large systems where the number of jobs makes it
uneconomical or infeasible for a scheduler to deal with
individual jobs, forcing it to batch them, the chief diffi-
culty here being that of translating the logic of infinity
down to large but finite numbers.

For our geometry-of-concurrency purposes however
we currently have no application for Stone duality. In
this paper we focus on schedules structured by a par-
tial order, and hence on Birkhoff duality, a finite and
pleasantly combinatorial phenomenon.2

Finite posets are far less boring than finite sets.
Whereas the number of isomorphism classes of sets of
each cardinality goes 1, 1, 1, 1, 1, 1, 1, . . . the correspond-
ing sequence for posets goes 1,2,5,16,63,318,2045,. . . .
So when you are scheduling 7 jobs, there are 2045 differ-
ent ways to schedule them, one of which is the discrete
order, no precedence constraints, at one extreme and
another of which is the linear order (this is only up to
isomorphism, or we would have 7! linear orders) at the
other.

Despite this enormously richer software library (and
this is before we’ve labeled the vertices to say what each
job does, being only up to isomorphism), the story about
schedules and automata remains almost completely un-
changed! To compile S form A = 2’. To decompile A
back again form S = 2A.

It will become clear shortly that these definitions as
they stand are time reversing in both directions. We
couldn’t see this before because sets and Boolean alge-
bras are both isomorphic to their duals. We fix this
by reversing the input to each exponentiation. Thus

5

we actually compile with 2’O’ and decompile with 2Aop,
where X”P denotes the order dual of X.

Remarkably, nothing about our reasoning for un-
ordered schedules needs be changed until we get to the
matter of whether there are any other maps besides the
f=‘s. The arguments involving singletons are no longer
sound, because there may now be fewer singletons, in
the extreme case only one if some job has to go first.
But we achieve the same effect by taking, for each x,
the state {y]y 5 x} (a so-called principal order ideal
because it is generated by one element, z), clearly in
A. This state is the earliest moment at which x could
have run. To make this abstract (remember, we claim
only an equivalence, not an isomorphism), the analog of
“atom” is now obtained by noticing that these states are
exactly those that aren’t the union, or rather join since
this is going to be for lattices, of two smaller states, i.e.
they are join-irreducible. The states we’ve picked can’t
be so represented because x has to be in one of them
and there is no smaller such state. Those we left out
are not principal and hence have at least two maximal
elements, in which case they can be represented as the
union of the principal order ideals generated by each of
their maximal elements.

We now observe that our jZ’s are all distinct because
each first becomes true at its own join-irreducible state.
Furthermore when we compare the fZ’s coordinatewise
by inclusion we find fi C jY (which we can read as “if
x has happened then y has happened”) just when y 5 x
in S. So this ordering of the fZ’s coincides with the
original order on S, showing that 2A is isomorphic to
the original poset S.

This equivalence of the classes of finite posets and
finite distributive lattices is actually a contravariant
equivalence of categories. This means that the corre-
spondence between posets and lattices extends to their
maps, with “contravariant” meaning that correspond-
ing arrows go in opposite directions, i.e. the poset map
f :P- Q corresponds to a lattice map f’ : q’ - p’
between the corresponding lattices.

The adjacent figure contains two diagrams, one in
the category of finite posets, on the left, the other on
the right in the category of finite distributive lattices.
Each diagram has seven objects A through G, primed
on the right. The six goset maps on the left, numbered
1 through 6, go down while the corresponding lattice
maps on the right go up.

Object A is a one-job schedule while A’ is the corre-
sponding one-transition automaton. The map 1 : A +
B is an inclusion which adds job b while the correspond-
ing map 1’ : B’ ---) A’ is a projection, projecting out b.
2 : B - C is an augmentation of the discrete order in
B to a linear order in C. This constraints knocks out
the bottom left corner of B’, represented by an inclu-
sion2’:C’- B’. C ’ is the top and right edges of B’,

straightened out. Now a new element c is added in on
the left; the relevant piece of the diagram is a coproduct
E whose inclusions are maps 3 and 4. The dual of a co-
product is a product; 3’ : E’ ---, C’ projects out c while
4’ : E’ - D’ projects out a and b. Now 5 augments
with a 5 c, again knocking out a corner. Finally 6 adds
two new elements, d after 6 and e spliced in between a
and c.

A’ a0e-c
+lY

o- -a.o

oc E E ’ ;” t” b t”
t+?.o--bO

t 5’
&co-- 05L

I F
I I

15
F’

C

6 t 6’
b d

g -kO- -co b do- %p--.pp

ib C

One may well imagine that distributive lattices would
be harder to visualize than Boolean algebras. This need
not be so. The key to visualizing a distributive lattice
pop is to interpret the precedence constraints of S in
pop . What each constraint x 5 y does is to delete all
states violating that constraint, namely those containing
y but not x. The remaining states retain their original
positions, preserving the geometry of the cube. Thus a
finite distributive lattice is simply an eroded cube.

One immediate application of dualities of this kind is
that it maps colimits to limits in passing from schedules
to automata. This follows from the manner in which du-
ality is obtained as the exponentiation D”, for a suitable
dualizing object D, in the category of posets, yielding
for example D”+Y = D” x DY. Casley et al [CCMP89]
outline a language for concurrency a number of whose
operations are describable as colimits in a category of
schedules; these are therefore carried to the correspond-
ing limits in the dual situation. The language is defined
for schedules having various notions of time, such as

6

real-valued time3, set-valued time, and causal-accidental
time, with posets having merely truth-valued (0 and 1)
time.

4 Event Structures.
The next generalization takes us to the event structure
model [NPW81].4 H ere we specify a symmetric irreflex-
ive binary relation i#j on events, whose meaning is that
not both of i and j may run. In the presence of schedul-
ing we require that i#j and j < k imply i#k, that is,
conflict is a persistent condition. An event structure is
then such a set (V, <, #), V being the set of events.

The effect of the scheduling order < was to erode the
corresponding automaton by deleting certain cells, con-
verting it from a cube or Boolean algebra to a distribu-
tive lattice. (Every finite distributive lattice arises in
this way.) The effect of conflict # is to further erode
the automaton, this time only from the top down (a
consequence of the persistence of conflict), deleting just
those cells such that for some i#j neither the i-th nor
j-th component of that cell is 0, corresponding to states
in which both i and j are either running or have halted’.

In these generalizations the filled-in holes of a given
distributive lattice have not themselves added any in-
formation, since they can be reconstructed from the
distributive lattice by first passing to its dual poset,
taking this to be a scheduling of events, and construct-
ing the filled-in lattice from the poset by the procedure
given above, as a subspace of either 3d or Rd as desired.
However event structures currently provide the largest
known class of schedules to date that we are aware of
for which this holds.

5 Monoidal Homotopy
We now define a preliminary notion of monoidal homo-
topy and use it as the basis for a definition of “true
nondeterminism.” It is expected that a more formal no
tion of monoidal homotopy will be able to be based on
the n-complex model of higher dimensional automata
presented in the concluding section.

A finite distributive lattice is both conj?uent and
simply-connected in the following sense. Given any two
(ascending) paths in the lattice (defined as just the ver-
tices they pass through, the edges can be inferred), the

31nfinitesimally fine interleaving looks like true concurrency un-
til one notices it is taking time L1 or x + y. Truly concurrent real
time requires only L, or max(x, y), a theme developed in future
work.

4As Girard-[Gir81] has noticed to good effect in developing the
notion of coherent space, this generalization can be made inde-
pendently of the preceding one.

‘Without scheduling these are Girard’s coherent spaces, or
rather coherent algebras if we adhere to the duality theorists’ nam-
ing convention for such duali ties.

lattice property uniquely determines two vertices, re-
spectively the meet and join of the union of those paths,
in turn determining (not uniquely) extensions of the
paths to those points to give them a common beginning
and end, this being confluence. And the distributivity
property uniquely determines the appropriate filling-in
of the “holes” in the lattice, yielding a simply-connected
space through which the two paths may be continuously
deformed into each other in the intuitively obvious way,
provided we regard this space as Euclidean, i.e. a subset
of Rd rather than 3 d. By suitably defining the discrete
analog of continuous deformation we may achieve the
same effect in 3d, addressed below, but for now our in-
tuition with Euclidean space will suffice.

In topological language, any two paths with common
endpoints in such a simply-connected space are auto-
matically homotopic, an equivalence relation on paths
[Bro88, Whi49, Whi78]. They become nonhomotopic
when a hole appears somewhere in the space between
them to inhibit their deformation into one another.

Homotopy is ordinarily studied for spaces the move-
ments in which form a group under composition, where
homotopy is inhibited only by holes. The typical irre-
versibility of computation however calls for a monoid.
This in turn calls for a generalization of the notion of
homotopy from grouphomotopy to monoid-homotopy,
leading to other ways of inhibiting homotopy. For now
we settle for the following stopgap notion, defined only
for our present setting of distributive lattices.

Given two ascending paths p, q in a distributive lattice
L having common endpoints, and given a subspace X
of the Euclidean fill-in of this lattice, we say that p and
q are group-homotopic with respect to X when they are
homotopic in X in the standard sense of topology. Given
two ascending paths p, q not necessarily having common
endpoints, we say that p and q are monoid-homotopic
with respect to X when they extend to paths that are
group-homotopic with respect to X.

This generalizes homotopy by permitting paths with-
out common endpoints, the application of which will be
apparent shortly. Henceforth by “homotopic” we shall
mean monoid-homotopic.

We think of decisions involving choices between paths
as essential just when the paths are not homotopic, and
hence of filled-in distributive lattices as deterministic or
choiceless automata. Nondeterminism is the condition
in which there exist paths not homotopic to each other;
we think of the choice between nonhomotopic paths as
an essential decision.

Conflict introduces nondeterminism into distributive
lattices, by selectively destroying confluence in the for-
ward (upward) direction, by making “notches” in the
“top” of an automaton. Two paths on opposite sides of
such a notch are committed to their respective sides and
cannot be extended upward to group-homotopic paths,

7

there being no join to extend to; hence they are not
homotopic in our broader sense. (Since the effect of
persistence is to limit notching to the top, making such
an automaton an order ideal of the distributive lattice
it was obtained from, it follows that for conflict it would
make no substantial difference if we restricted the defi-
nition of monoid-homotopy just to paths with common
beginnings, since any two paths can be extended to have
a common beginning.)

6 Benefits of a Geometric Model
The biggest advantage for us of this geometric perspec-
tive is that it makes the duality of schedules and au-
tomata more convincing. If by leaving two events un-
ordered we have supposedly represented their true con-
currency, how do we then explain the automaton dual to
this discrete poset, namely the four-state four-transition
square already discussed ? The latter is ezactly the au-
tomaton one would expect the interleaving model to pro-
duce!

One answer to this puzzle is to say that such a
square alutays indicates true concurrency, and to rep
resent ij + ji (namely the mutual exclusion of i and j)
by not letting the ij and ji branches rejoin when done.

Our answer is instead to fill in the square to indicate
true concurrency and simply leave it hollow to indicate
mutual exclusion.

We see this approach as having the following benefits.
(i) Naturality. Lines, surfaces, and volumes, attached

to each other in possibly branching ways, are familiar
and easily visualized concepts, requiring relatively little
mathematical sophistication to at least begin to appre-
ciate.

(ii) Flexibility. A greater variety of situations may
now be represented. For example we now can choose
whether ij and ji are to rejoin immediately, a little
later, or never. For reason (iii) (complexity) we will
in general prefer the first, but we may on occasion find
it meaningful to “rip upwards” a little or a long way.

(iii) Complexity. An m x n rectangle contains only
mn squares but (“,+”) paths (between adjacent lattice
points) from start to end. Even if we associate informa-
tion with every square (e.g. by forbidding some), the
geometric representation of this information is of poly-
nomial size in the sides whereas the interleaving repre-
sentation, in terms of the paths, is of exponential size.

(iv) Continuity. Tearing a picture into little strips
is an inherently discontinuous operation. Decomposing
a d-dimensional space as a set of paths through it is
somewhat akin to identifying a TV picture with its one-
dimensional representation as a sequence of scan lines.
A TV serviceman who never saw a screen but only the
scan lines laid end to end may find this perspective nat-
ural, but certainly not a viewer.

We programmers tend to be more like servicemen
than viewers. Years of thinking about individual in-
struction sequences have conditioned us to believe that
the sequence is the correct object of study. If instead we
were to assemble many such sequences, properly aligned,
into a single picture, the resulting shapes that would ma-
terialize would make it much easier to reason about our
processes.

(v) Algebraic structure. Geometry is an “alge-
braically mature” subject, and we are optimistic that
some of this algebra will rub off on our geometrically
based model of computation. Thus far we have in fact
elicited some algebraic structure, but mainly from that
of event structures via duality. We are presently work-
ing on replacing this convenient but limited derivation
with an elementary development of homology based on
monoids instead of groups to yield what we feel will be
a more comprehensive and convincing algebrization. To
be more precise, we base it not exactly on monoids but
rather on their generalization to n-categories [Ehr63] fol-
lowing roughly the lines of Street [Str87], as more ap
propriately expressing the dimensional aspect.

7 Extensions of Event Struc-
t ures

Despite the fact that event structures were introduced
more than a decade ago [Win80], there have been no fur-
ther generalizations of event structures where the dual-
ity has been maintained. Yet there are many phenomena
of computation each describable with a suitable exten-
sion of this model, some of which we give now. Thus
far we have been able to make these extensions only on
the algebra or automaton side of the duality, where the
higher-dimensional cells are described explicitly. The
role of the cells in making these extensions may once
again be made inessential, albeit almost certainly still
convenient, if a suitable extension of the duality can be
found, a problem we return to later.

Although event structures themselves reside on the
topology side of the duality, the completeness of the
duality up to this point permits us to extend starting
from either side. All extensions considered here will be
to the algebra or automaton side, where the nature of
the higher-dimensional cells, of dimension two and up,
is clear.

Mutual Exclusion. The mutual exclusion of events i
and j is the condition that i and j not overlap. In ST-
bisimulation terms it is the naturally expressed condi-
tion that in no state are transitions i and j both marked.
The corresponding requirement for the geometric model
is of course that no cell exist whose i-th and j-th compo-
nents are both 2’ (for the discrete or 3d model) or both
in the open interval (0,l) (for the Euclidean model).

8

As defined here mutual exclusion is not persistent. We
may have i# j and j < k without i#k since k may not
need the resource that i and j are presumably competing
for. After i and j are done, in whichever order, the two
branches of the computation may rejoin, corresponding
to the rest of the computation not remembering the or-
der.

A persistent version of the mutual exclusion of i and
can be defined using two copies of each of i and j,

arranged as ij + ji, with each of the two events of ij in
conflict with each of the two events of ji. Persistence of
conflict means that the commitment to one of ij or ji

thisis permanent; two paths making
cannot subsequently rejoin.

decision differently

This brings us to the question, to persist or not to
persist?

One advantage of persistence is that it permits our
geometrical model to be dispensed with. However to
the extent that geometry offers the several benefits we
claimed earlier, all of which are compromised more or
less seriously by insisting on persistence, this is at the
same time a serious disadvantage of persistence.

For example persistence destroys the complexity ad-
vantage of geometry. If the computation keeps splitting
into alternatives without ever rejoining, its size grows
exponentially. Rejoining permits a much smaller model
of a given computation when there is much branching.
(The dauntingly many alternative parallel u niverses of
science fiction may similarly be dramatically reduced in
number, say to around 1012’ as a match for the number
of particles in any one such universe.)

It is also particularly distressing to see a local mutual
exclusion requirement, which we can represent with just
a small hole, be blown up into a giant tear in the fabric
of the computation
persistence.

simply due to the requirement of

For these and similar reasons we prefer not to insist
on persistence, and to permit the expression of nonde-
terminism not only by absence of confluence (the status
quo) but also by the presence of holes even where con-
fluence is possible (our proposed extension to the status
w+

Communication. Consider a rectangle representing
two processes X and Y running in parallel. A commu-
nication from X to Y consists of a transmission T by
X and a receipt R by Y. These two events together
determine a point in the rectangle, which we may think
of as the communication. Taking this point as the ori-
gin, divide the rectangle into four quadrants. Think-
ing for the moment in terms of computations being
one-dimensional paths, a particular computation path
passes through three of these, avoiding the quadrant
in which the message would have been received be-
fore it was transmitted. The middle quadrant the path
passes through, diagonally opposite the excluded quad-

rant, represents the period during which the message is
in transit.

The effect of many communications is to erode the
upper left (early X and late Y) and lower right (late
X and early Y) regions of the rectangle, creating two
jagged boundaries each representing the places where
one process must wait for messages from the other. The
boundaries are suggestive of teeth, suggesting the whim-
sical term “jaws of communication.” We refer to the
space between the jaws as the communication corridor.
In the interior of the corridor there is no waiting for
messages; computation may flow unimpeded.

As the rate of exchange of messages increases the cor-
ridor narrows (the jaws close). If this corridor were a
tube with liquid flowing through it, we would expect
such narrowing to impede the flow. In fact we see just
such an effect, attributable to the high cost of commu-
nication.

But we need not think of a computation as a specific
path through the corridor, we can broaden it to reflect
our ignorance of its exact position, just as we would do
for the trajectory of a car on a highway, the accuracy
of which depends on the application. In the limit we
may think of the whole corridor as the computation. If
it contains no holes or failures of confluence (i.e. persis-
tent conflicts) we regard it as a deterministic computa-
tion. Otherwise it is nondeterministic, with the essence
of the nondeterminism residing in homotopy classes (the
equivalence classes of paths induced by homotopy).

The concern of branching time is then with the details
of just where the homotopy classes paste together, since
pasted regions represent regions preceding (or follow-
ing) where the classes diverge (or converge). Synchro-
nization trees are the one-dimensional case of this where
words are pasted together along a common initial seg-
ment, a one-dimensional pasting. In general pasting can
take place not just along curves but across surfaces and
through volumes etc. The pasting need not necessarily
be the maximal such, otherwise branching time would
convey no information not already in linear time. At a
fork earlier decisions correspond to earlier suspension of
pasting, and dually at a join.

8 Directed Cell Complexes and
n-Dimensional Automata

Thus far the discussion of geometry has relied on an
informal intuition about geometry which might be char-
acterized as pastings of fragments of Euclidean space
oriented somehow to represent the irreversibility of com-
putation. This intuition is formalized in the following
notion of higher dimensional automaton.

A sequential automaton or transition system is a

9

graph6 whose vertices denote states and whose edges de-
note transitions. One vertex ~0 is distinguished as the
start state and a set F of vertices constitutes the final
states. The edges are labeled with elements of a set C.
The linear-time meaning of this automaton is defined in
terms of paths in the graph, each determining an ele-
ment of C’. The automaton accepts those elements of
C* that are determined by some path from ~0 to a state
in F. Two such automata are linear-time-equivalent or
trace-equivalent when they accept the same subset of
c*.

In geometric terms such an automaton is a one-
dimensional cell complex whose one-dimensional cells or
l-cells are its transitions and whose O-cells are its states.
We would like a model whose definition reduces in the
l-dimensional case to the above combinatorial notion of
directed graph, and which captures the geometric intu-
itions of the foregoing discussions.

Algebraic topology offers a range of models to select
from, such as CW-complexes and simplicial complexes.
But as far as we have been able to tell, all the extant
notions of cell complex in algebraic topology assume re-
versible geometry too early in their development, and
depend too heavily on structural properties of groups, to
permit their easy adaptation to the irreversible case. We
would be delighted to have a pointer to a counterexam-
ple. The following notion of higher dimensional automa-
ton takes its inspiration not from algebraic topology but
instead from the geometry of n-categories [Ehr63].

Ordinarily we define an automaton as an edge-labeled
graph, and define its operation in terms of the paths
in that graph and the operation of path concatenation.
However we could just as well start with the paths and
dispense with the underlying graph. When passing from
discrete to continuous automata, whose every state tran-
sition can be decomposed as a concatenation of shorter
transitions, this is in fact necessary since they have no
suitable underlying graph.

For qualitatively different reasons we shall similarly
not start from the underlying graph when passing from
one-dimensional to higher-dimensional automata. The
problem is not that suitable underlying graphs cannot
exist, as with continuous automata, but that a suitable
notion of n-graph has proved elusive, and only halfway-
decent notions have emerged to date. The most success-
ful of these would appear to be M. Johnson’s notion of
pasting diagram [Joh87]. However it seems to us that
his definition presently requires both simplification and
generalization in order to constitute a workable notion
of n-graph. Hence as an interim measure we define an
n-complex to be an n-category, with the eventual goal of
redefining it so that it refers to the underlying n-graph

‘We allow multiple edges from one vertex to another. In some
circles the term multigraph is used to distinguish these from the
kind where E C V2.

when that notion is fully operational.
Proceeding topdown, we first define the notion of

concurrent automaton in terms of that of complex, pro-
vide a motivational interlude, then define complex.

An n-automaton A = (Q, C, S, S, T) consists of n-
complexes Q and C, an n-map 6 : Q ---+ C, and subsets
S,T of (the underlying set of) Q. The m-language uc-
cepted by A is the subset of C consisting of those 6(z)
for z in Q such that So E S and tm(x) E T where
s,,, , t, are the m-th boundary operators of Q.

Before defining complexes let us touch ground mo-
mentarily. Our 5-tuple definition parallels the tra-
ditional definition of an automaton as (Q, C, 6, ~0, F)
[HU79], consisting of state set Q, symbol set C, tran-
sition function 6, start state ~0, and final state set F,
along with the usual definition of accepted language.
With the following adjustments the traditional defini-
tion matches ours in the case n = 1, m = 0.

View the transitions defined by traditional 6 as a
pair (E, 6) where E is a set of unlabeled edges and
6 : E -+ C labels them. Rename Q to V for vertices,
move E in with V to form a graph (V, E) and recycle
Q as Q = (V, E). Now revamp C as a l-graph with one
vertex and with edge set old C. Interpret 6 : Q + C
as the obvious graph map. Finally replace (Q, C, 6) by
(Q*, C*, 6*) where Q’ is the set of paths in Q, C* is as
always the free monoid on C, and 6’ : Q’ + C’ is the
corresponding extension of 6 : Q - C from paths of
length 1 to all paths. Take S = (~0) and T = F. This
gives us the desired l-automaton (Q’ , C*, 6*, S, T). We
then rename Q, C, b one more time so as to dispense with
the *‘s. This is the translation of a standard automaton
into our framework.

We now continue with our top-down definitions. Fol-
lowing Street [Str87], we define an n-complex in terms
of l-complexes and 2-complexes.

An n-complex, or small n-category, is a set bearing
the structure of n l-complexes CO,. . . , Cn-r, such that
for all i < j, (C;, Cj) is a 2-complex.

It remains to define i-complex for i 5 2. In the follow-
ing the s, t, 3: terminology is taken from Street [Str87];
we have taken some liberties with the wording of his
definition but not its content. Note that this definition
of a l-complex is as a homogeneous category, namely
one where the object-morphism distinction is not made;
the objects can be recovered as any of either the range
or fixpoints of either s or t, or as the identities of *.
Homogeneity simplifies the extension to n-categories.

A l-complex C = (P, s, t, *) consists of a set P of (ab-
stract) paths, two boundary operations s, t : P - P,
and a binary operation * : Pz ---) P of path concatena-
tion. The domain P2 C P2 of * is the set of consecutive
pairs (2, y) in P2, namely those for which tx = sy. Fur-
thermore the following conditions must be satisfied.

(i) s(P) = t(P) dg PO, constituting the U-cells of C,

while PI = P, the l-cells of C. (So PO s PI = P.)
(ii) x E PO implies sx = x = t z. (Hence s and t are

idempotent, and st = t = tt, ss = s = ts.)
(iii) For all (x, y) E Pz, s(x * y) = s(x) and t(x * y) =

t(Y)*
(iv) (Identities.) 3: E PO implies for all (x, y) in Pz,

X*Y = y, and for all (y, x) in Pz, y * x = y.
(v) (Associativity.) For all (x, y) and (y, Z) in Pz,

2 * (y 3: %) = (x * y) * z.
A ,&complex C = (P,sO,tO,*O,slrtl,*l) is a pair

(Cs,Cr) o f l -complexes CO = (P , so, tO,*o), Cl =
(P, s1, tl, *I) on a common set P such that

(i) PO c PI where P; = s;(P), the set of i-cells. P2 =
P (everything is a 2-cell). (Hence sltl = tl but soti =
SO, and PO C PI s P2 = P.)

(ii) (Interchange.) (~*lx)*o(y*lz) = (~*oy>*1(~*0~)
when all terms are defined.

R e f e r r i n g t o our d e f i n i t i o n o f n - c o m p l e x
(Co,.-, &-I) then reveals it in more detail to be a
structure C = (P,sO,tO,*O,. . .,sn-l,tn-l,*n-l) every
pair (Ci, Cj) of which for i < j is a 2-complex. Evi-
dently PO G PI C . . . E P,, = P.

An n-map or n-functor of n-complexes C, C’ is a ho-
momorphism; equivalently, a function f : P - P’ be-
tween their underlying sets such that f : Ci - Ci is a
functor for 0 5 i < n (i.e. on the l-complex at each
dimension).

It is intuitively clear that associativity is the essential
axiom of concatenation in one dimensional irreversible
geometry. The straightforward extension of this to two
dimensions is that a matrix can be formed as a column of
rows, and that vertical composition of columns is asso-
ciative, and dually it can be formed as a row of columns,
with horizontal composition of rows being associative.

But there is more to it than that. The same ma-
trix can be assembled row by row or column by column.
While this has the same flavor as associativity, it is not
formal associativity in the sense that vertical compo-
sition of columns or horizontal composition of rows is
associative. We therefore require a separate axiom from
associativity. This is the function of the interchange law
in irreversible geometry.

An example of a 2-complex is a polygonal decomposi-
tion of a simply connected region of the Euclidean plane
R2. The edges of the decomposition form a directed
acyclic graph having a single source vertex and a single
sink vertex, as hence do the edges of any of the poly-
gons. This partitions every boundary of a polygon x
into halves SIX and tlx, start and terminal, both lead-
ing from a common source sax to a common sink tax.
If two polygons share an edge then that edge must be-
long to the start of one and the terminal of the other.
It may be verified that any two such polygons x, y for
which tix = siy for i 0 or 1 together form a polygon
meeting these conditions. (Under these conditions the

two halves of the boundary of a polygon may touch re-
peatedly, but if the whole region is 2-connected-no cut
point-they can never cross.) Hence the set of all sim-
ply connected polygons that can be assembled from the
elementary polygons of the decomposition constitutes a
2-complex under the compositions x *O y and x *i y.

The interchange law is evidently sound in this model.
What is less obvious is that it is complete in the sense
that any two ways of assembling a polygon from elemen-
tary polygons (which will take the form of two terms in
the language consisting of constants naming polygons
and the two compositions) can be proved to give the
same polygon using just the two associativity axioms
(one for each composition) and the interchange axiom
under the standard rules of equational logic. This was
claimed by Kelly and Street [KS74], and was more re-
cently extended by John Power to all n-complexes (to
appear). The idea of the proof for n = 2 is that if
u)*i x and y*r z denote the same polygon x, with source
s = sax and sink T = tax, then each term partitions
that polygon via a cut from S to 2”. If these two cuts do
not cross each other then they bound a region UI n z or
x n y with source S and sink T leaving two outside re-
gions of the polygon with that source and sink, and one
then proves equality of those regions separately by in-
duction, completing with one application of associativity
for $1. Otherwise several island regions are produced,
and interchange can then be used to represent each of
these regions as one region from S to T by extending it
out to S and T with l-cells, and then concluding with
applications of associativity of $1.

This shows that n-complexes capture the essence of
ordinary geometry of cells, though without its reversibil-
ity, ruled out here by directing all edges and surfaces.
(This is in contrast to orienting them, where a direction
is specified but each edge has an inverse.) As the ear-
lier sections argue informally, it is just such irreversible
cellular geometry that is needed for a geometric model
of concurrency.

This completes the definition of higher dimensional
automaton and the acceptance criterion most closely
corresponding to language acceptance. This induces a
congruence on the class of such automata. We leave the
further study of this model and associated congruence
and the pursuit of other acceptance criteria and congru-
ences to subsequent communications.

References
[Bir35] G. Birkhoff. On the combination of subal-

gebras. Proc. Cambtidge Phil. Sot, 29:441-
464, 1935.

[BK89] J.A. Bergstra and J.W. Klop. Process
theory based on bisimulation semantics.

11

In Proc. REX School/Workshop on Linear
Time, Branching Time and Partial Order in
Logics and Models for Concurrency, pages
50-122, Noordwijkerhout, The Netherlands,
1989. Springer-Verlag.

[Bro88] R. Brown. Topology: A geometric account
of general topology, homotopy types and the
fundamental groupoid. Halsted Press, New
York, 1988.

[CCMP89] R.T Casley, R.F. Crew, J. Meseguer, and
V.R. Prat t . Tempora l s t ruc tu res . In
Proc. Conf. on Category Theory and Com-
puter Science, LNCS, Manchester, Septem-
ber 1989. Springer-Verlag. Revised version
to appear in Math. Structures in Comp. Sci.,
1:l.

[CDP87]

[Ehr63]

[Gir87]

[Gla90]

[Gra81]

[GV87]

[HU79]

[Joh87]

[KS741

[Lam861

L. Castellano, G . D e Michelis, a n d
L. Pomello. Concurrency vs interleaving: an
instructive example. Bulletin of the EATCS,
31:12-15, February 1987.

C. Ehresmann. Categories structurees. Ann.
Sci. Ecole Norm. Sup., 80:349-425, 1963.

Jean-Yves Girard. Linear logic. Theoretical
Computer Science, 50:1-102, 1987.

R.J. van Glabbeek. Comparative concur-
rency semantics and refinement of actions.
PhD thesis, Vrije Univ., Amsterdam, 1990.

J. Grabowski. On partial languages. Funda-
menta Informaticae, IV.2:427-498, 1981.

R.J. van Glabbeek and F.W. Vaandrager.
Petri net models for algebraic theories of
concurrency. In Proc. PARLE, II , LNCS
259, pages 224-242. Springer-Verlag, 1987.

J.E. Hopcroft and J.D. Ullman. Introduc-
tion to Automata Theory, Languages, and
Computation. Addison-Wesley, 1979.

M. Johnson. Pasting Diagrams in n-
Categories with Applications to Coherence
Theorems and Categories of Paths. PhD
thesis, Dept. of Pure Mathematics, Sydney
University, October 1987.

G.M. Kelly and R. Street. Review of the
elements of 2-categories. In LNM 4.20.
Springer-Verlag, 1974.

L . Lamport. On interprocess communi-
cation. Distributed Computing, 1:77-101,
1986.

[Mil80]

[NPW81]

[Pap861

[Par8 l]

[Pra82]

[Pra86]

[Pri70]

[Rot731

[Sto36]

[St0371

[Str87]

[vGG89]

[Whi49 1

[Whi78]

[Win801

R. Milner. Calculus of Communicating Be-
havior, LNCS 92. Springer-Verlag, 1980.

M. Nielsen, G. Plotkin, and G. Winskel.
Petri nets, event structures, and domains,
part I. Theoretical Computer Science, 13,
1981.

C. Papadimitriou. The Theory of Database
Control. Computer Science Press, 1986.

D. Park. Concurrency and automata on in-
finite sequences. In Proc. Theoretical Com-
puter Science, LNCS 104, pages 167-183.
Springer-Verlag, 198 1.

V.R. Pratt. On the composition of pro-
cesses. In Proceedings of the Ninth Annual
ACM Symposium on Principles of Program-
ming Languages, January 1982.

V.R. Pratt. Modeling concurrency with par-
tial orders. International Journal of Parallel
Programming, 15(1):33-71, February 1986.

H.A. Priestley. Representation of distribu-
tive lattices. Bull. London Math. Sot.,
2:186-190, 1970.

G.-C. Rota. The valuation ring of a dis-
tributive lattice. In Proc. Univ. of Houston
Lattice Theory Conf. Dept. of Math., Univ.
of Houston, 1973.

M. Stone. The theory of representations for
Boolean algebras. Trans. Amer. Math. Sot.,
40:37-111, 1936.

M. Stone. Topological representations of
distributive lattices and brouwerian logics.
casopis Pest. Math., 67:1-25, 1937.

R. Street. The algebra of oriented sim-
plexes. Journal of Pure and Applied Algebra,
49:283-335, 1987.

R. van Glabbeek and U. Goltz. Partial order
semantics for refinement of actions-neither
necessary nor always sufficient but appro-
priate when used with care. Bulletin of the
EATCS, 38: 154-163, June 1989.

J.H.C Whitehead. Combinatorial homotopy
I. Bull. Amer. Math. Sot., 55:213-245,1949.

G. W Whitehead. Elements of Homotopy
Theory. Springer-Verlag, 1978.

G. Winskel. Events in Computation. PhD
thesis, Dept. of Computer Science, Univer-
sity of Edinburgh, 1980.

12

