
February 199 1 Report No. STAN-CS-9 l- 1350

A Programming and Problem Solving Seminar

bY

E. Chang, S.J. Phillips, J.D. Ullman

Department of Computer Science

Stanford University

Stanford, California 94305



A PROGRAMMING AND PROBLEM SOLVING SEMINAR
bY

Edward Chang, Steven J. Phillips and Jeffrey D. Ullman

This report contains transcripts of the classroom discussions of Stanford’s Computer
Science problem solving course for Ph.D. students, CS304, during Winter quarter 1990, and
the first CS204 class for undergraduates, in the Spring of 1990. The problems, and the
solutions offered by the classes, span a large range of ideas in computer science. Since they
constitute a study both of programming and research paradigms, and of the problem solving
process, these notes may be of interest to students of computer science, as well as computer
science educators.

The present report is the ninth in a series of such transcripts, continuing the tradition
established in STAN-CS-77-606 (Michael J. Clancy, 1977), STAN-CS-79-707 (Chris Van
Wyk, 1979), STAN-CS-81-863 (Allan A. Miller, 1981), STAN-CS-83-989 (Joseph S. Weening,
1983), STAN-CS-83-990 (John D. Hobby, 1983),  STAN-CS-85-1055 (Ramsey W. Haddad,
1985),  STAN-CS-87-1154 (Tomas  G. Rokicki, 1987),  and STAN-CS-89-1269 (Kenneth A.
Ross, 1989).





Contents

1

2

3

4

5

6

7

8

9

Introduction 2
1.1 DataSheet  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 The Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Superabundant Numbers 14

Tiling a Hall 23

Constructing a Star Map 29

Generalized Hi-Q 35

Playing God 41

CS204 Problem Statements 50

CS204 Class Notes 56

Conclusions - JDU 94



Chapter  1

Introduction

The original descriptions of the course problems appear on the following pages. These
descriptions were handed out on the first day of class.

1.1 Data Sheet

Time/Place: Tuesdays and Thursdays, llam-12:15pm,  in Terman 101.

Instructor: Jeffrey D. Ullman, 338MJH, ullman@cs, 723-1512.

Office Hours: Rosemary Napier (see below) can schedule appointments Monday and
Wednesday afternoons, after 2:15 pm.

TA: Steven J. Phillips, 408MJH,  phillips@cs,  723-0618.

Course Secretary: Rosemary Napier, 34OMJH,  &&ail,  723-3825.

Course Format: We shall generally follow the pattern set by Don Knuth for the course.
There will be five problems, with two weeks for each problem. The TA will take notes and
distribute them to the class; we plan to turn the notes into a TR, eventually.

CS304  should be both challenging and fun. Students are encouraged to cooperate in
teams of two or three to solve the problems. We recommend the traditional policy that
two people should not team up on more than one problem. Cooperation among teams
working on separate programs is reasonable, and will not be regarded as “cheating.”

Grading: We plan to follow the DEK policy that all participating in the course will
receive an “A” grade. Solutions to the problems, including code, will be graded by the
TA for your own information. When handing in a solution, please document your code
reasonably, but especially include a clear description of the data structures and algorithms
used, and an analysis of the running time, where appropriate. It is also helpful to describe

2



briefly any failed approaches and anything you would do to improve matters if you had
had more time.

Computing Resources: I assume that class members will be able to find cycles on de-
partmental machines. Let me know if you are having problems getting enough computing;
I’ll find something for you. There are no restrictions regarding programming language.

Caveat: Apparently, CS304 traditionally requires more work than typical 3-unit courses.
That may be true this year as well. I hope you will find it worth the effort.

CS304 PROBLEM #l: Superabundant Numbers
Due Monday, Jan. 22

The abundance of an integer n is the sum of the divisors of n (including n itself), divided
by n. Integer n is k-abundant if its abundance is at least k.

For example, the sum of the divisors of 6 is 6 + 3 + 2 -+- 1 = 12, and 12/6 = 2, so 6 is
2-abundant. As another example, the sum of the divisors of 120 is

120 +60+40+30+24+20+15+12+10+8+6+5+4+3+2+  I= 360
so 120 is 3-abundant. It happens that 6 is the smallest 2-abundant number and 120 is the
smallest 3-abundant number. They happen to be exactly 2- and 3-abundant, respectively,
but it is generally possible that the smallest k-abundant number has abundance greater
than k.

Your assignment, should you choose to accept it, is to write a program that finds the
smallest k-abundant number for k = 1,2,. . . . How high can you go?

I’m not sure whether the following approach will turn out to be best, but you might
consider the investigation started by SJP, who looked for those numbers that are more
abundant than any smaller number. In his honor, let’s call them Phillips numbers. Can
you find the first m Phillips numbers for some large M.7 What is the density of Phillips
numbers? That is, how many Phillips numbers are there between the first k-abundant
number and the first (k + l)-abundant number?

CS304  PROBLEM #2: Tiling a Hall
Due Monday, Feb. 5

This problem is based on what, according to my son Peter, was the Princeton undergrad-
uate programming contest problem for 1989. He says that the contest was won by an
outsider, Nate Thurston (who is Bill Thurston’s son, and goes to Reed College), whose
solution was declared to be “constant time.” I’m not so sure that is right, since by my
calculation, it takes n(logn)  time just to read n, the length of the hall. Well, no matter:
let’s see what you folks can do with it.

The Problem

Given an integer n and a collection of “tiles,” determine whether a “hall of length n," that

3



is, an n x 4 rectangle can be completely tiled by some combination of the tiles. Each tile
may be used as many times as needed, but only in the orientation(s) given in the data.
That is, tiles may not be rotated, slid horizontally ( across the hall), or mirror-imaged. They
may be moved up or down the hall. By “completely tiled,” we mean that the rectangle
must be completely covered, and no tiles may overlap.

Tiles

A tile is a subset of a 4 x 4 array of squares. We use 1 to represent a square that is
“present” and 0 to represent absence. When drawing tiles, we shall use the orientation in
which vertical corresponds to the long dimension of the hall and horizontal corresponds to
the width of the hall. For example, suppose we want to tile the hall with dominos. Then
the seven tiles in Fig. 1 must be given as input.

0000
0000
1000
1000

( >a

0000
0000
0100
0100

(b)

0000
0000
0010
0010

( >C

0000
0000
0001
0001

(4

0000
0000
0000
1100

( >e

0000 0000
0000 0000
0000 0000
0110 0011

( f ) k>

Fig. 1. Seven tiles representing a domino.

Tiles (a), (b), (c) and (d) 11a ow us to use a domino vertically, in the first, second, third,
and fourth columns of the hall, respectively. Tile (e) lets us lay a domino horizontally,
flush left, (f) 1e s us lay it horizontally in the middle two columns, and (g) lets us lay at
domino horizontally flush right.

Tiles need not be connected. Here is a possible tile.
0010
1000
0111
0010

We shall, however, guarantee that tiles are presented as low in the grid as possible. That
is, you can count on at least one square in the bottom row being 1.

Input Format

You will be given a file consisting of tiles, one to a line, followed by a line with a #, and one
or more lines cant aining hall lengths. A tile is writ ten as sixteen O’s and 1 ‘s, representing
the rows of the 4 x 4 array, from the top. For example the problem consisting of the tiles
of Fig. 1, in order, with the two hall lengths 57 and 90 would be coded as the file

4



0000000010001000
0000000001000100
0000000000100010
0000000000010001
0000000000001100
0000000000000110
0000000000000011
#
57
9 0

For this example, any hall can be tiled by dominoes, so the correct answer is “\Yes, Yes.”

How Bad Can Tiling Problems Be?
-4n interesting side issue is how hard can an instance of this tiling problem be? One way
to measure difficulty is to ask what is the shortest hall that can be tiled by a set of tiles.
Of course, some sets of tiles do not allow any n x 4 hall to be tiled, but among those that
do, what set of tiles has the largest minimum-length hall that it is possible to tile? There
are some  other possible measures of badness that we shall discuss after we’ve had a chance
to understand the problem.

CS304 PROBLEM #3: Constructing a Star Map
Due Monday, Feb. 19

This problem is a modification of one suggested by Bob Floyd, who says he posed it in the
1973 edition of CS304 (th en CS204),  but “nobody did much with it.” My version is, up to
a point, simpler. At the end of this description, I’ll discuss the Floyd version, and some
sample data will be provided if you care to tackle it.

Trantor, the center of the galactic empire, is at galactic coordinate (O,O, 0), of course.
The Earth in this coordinate system is at (lO,lO,O). A ts ronomers on the two planets are
cooperating to produce a 3-dimensional map of the stars in a recently discovered cubic
globular c1uster.t  The stars of this cluster occupy the cube with opposite corners at
(O,lO, 0) and (l,ll, 1); that is, its center is at (.5,10.5,  .5), slightly closer to Earth than
Trantor. Figure 1 shows a perspective of the situation.

A photograph of the CGC is taken from Trantor, with the camera pointed along the
y-axis, so the CGC appears in the first quadrant of the photo. The scale of the photo is
such that the CGC appears to be projected on a plane one unit in the y direction from
Trantor, i.e., the equation of the plane is y = 1. As a result, the photo is approximately,
in l/lOth scale. It is important to understand that stars near the “back” of the CGC will
tend to appear slightly closer to the origin than stars near the “front.”

Another photo of the CGC is taken from Earth, with the camera aimed in the --z

t: Current astrophysical  theory says  that the cubic
of the universe, were  taken out of the box last.

globular  cl usters are the galaxies that, at the creation

5



E (lO,lO,O)

Fig. 1. View of Trantor, Earth and the cubic globular cluster.

direction. Again, the scale of the photo is such that the CGC appears to be projected ontodirection. Again, the scale of the photo is such that the CGC appears to be projected onto
a plane one unit from Earth.a plane one unit from Earth. This plane is in the -x direction from Earth; that is, itsThis plane is in the -x direction from Earth; that is, its
equation is 2 = 9.equation is 2 = 9. Again the scale is about l/lOth,  but the CGC appears slightly larger (byAgain the scale is about l/lOth,  but the CGC appears slightly larger (by
about 10%) from Earth than Trantor.about 10%) from Earth than Trantor. Figure 2 shows the geometry of the photographs,Figure 2 shows the geometry of the photographs,
viewed from above.viewed from above.

I f photo

’ /
I
I /
I ’
5’

photo

IJ
T

Fig. 2. Making the photographs.

Data
Unfortunately, due to imperfections in the photographic process, the stars do not neces-
sarily appear in their proper positions. All horizontal and vertical positions have been

6



“jiggled” by adding a random number chosen uniformly in the range (-10e6,  +10W6).
Note that has roughly the effect of moving stars by up to lo-’ units, since the scale of the
photos is about 1110th.

We shall provide a file containing the observations of lOTOO  stars, one to a line. ,4
sample line is

8.280807e-02  7.724439e-02  l.O42154e-01  9.302261e-02

The separating characters are tabs. The first number is the horizontal (x-axis) projection
of the star onto the photo at Trantor, and the second number is the vertical (z-axis)
projection at Trantor. The third number is the horizontal (y-axis) projection at Earth,
and the fourth is the vertical (z-axis) projection at Earth.

It is important to remember that the data carries the answer. That is, the ith star
in the view from Trantor is the same as the ith star in the view from Earth. Given this
“hint,” it is a simple matter to estimate the true location of the star from its two views,
compensating as best one can for the random noise. However, your program must not take
advantage of the hint. To be safe, you should take some prefix of the data (working with
all 10,000 stars is tough), separate the Earth and Trantor views (awk is good for this step),
sort one of them (sort is good here), and read the data that way. Let your program try
to figure out which Trantor star best matches which Earth star.

The Problem

Your task is to take the first n stars, for as large an n as you can, and reconstruct the star
map. That is, you should determine the galactic coordinates of each star. As I see it, you
face three demons.

1. You need to remember enough calculus that you can figure out which star from Trantor
most closely matches which star from Earth. (Again, remember either to permute the
order of the stars as seen from one of the planets, or write your program without bias
in favor of matching the ith stars from each planet.)

2. As n gets large, the best matches are not always the true matches. For all 10,000
stars, about 10% of the matches will be false. Sometimes there is nothing you can
do. For example, two nearby stars may be “jiggled” enough that they get switched;
i.e., their images at one planet match the other star at the other planet. Other times,
one can hope to correct, because certain matches lead to implausibly large distances
between the observations of “matching” stars at the two planets.

3. Also as n gets large, comparing each star at Trantor with each star at Earth becomes
painfully slow.

The Original Variant

In the original Floyd problem, there was no jiggling of data, i.e., projections were exact,
to the precision of the computer. However, he didn’t tell the students where the second
photograph was taken. If you’d like to tackle this problem, we’ll also provide an image
taken from a space station somewhere in space. The camera was aimed at the point
(0, lOTO), and the scale is such that the image appears to be 1 unit in the direction the



camera points, just as for the other two observations. .
The data for this variant will consist of 100 stars, in the same format as was described

above, with no perturbation of data. The first two numbers are the horizontal and vertical
positions from Trantor, and the second two are the horizontal and vertical positions from
the space station. However, in this data, the stars have been permuted, and you should
not assume that the two observations on a line are of the same star. Your problem is to
find the position of the space station and reconstruct the star map.i

CS304 PROBLEM #4: Generalized Hi-Q
Due Monday, March 5

Last summer, Peter, Scott, and I drove the car back from sabbatical in Princeton (well ac-
tually, Scott read comics in the back seat, Peter drove, and I held the TripTik).  Somewhere
in the middle of Kansas, or some state that looks remarkably like Kansas, we stopped at
the only restaurant whose existence the AA-4 acknowledged for 30 miles in either direction.

While we were waiting for our chickenburgers or something, we found that a game
board had been put on each table. The board (Fig. 1) had 15 holes arranged in a triangle,
and a supply of pegs. To start, you put a peg in each hole. Then, you removed pegs from
certain holes, depending on your route; remove this peg if you are traveling west, this one if
you are on an odd-numbered interstate, and so on. Then, you had to remove all the other
pegs by jumping. That is, if a, b, and c are three consecutive holes along any diagonal or
horizontal line, a is empty, and b and c have pegs, you can move the peg in c to a and take
the peg in b off the board.

Fig. 1. Game board from Kansas restaurant.

We tried the game without success until our chickenburgers arrived. Then we tried
the chickenburgers; nothing much there either. Peter and I agreed that if we had a laptop
along, we could have solved the problem easily, because there are only 215 configurations
to worry about. Scott pointed out that one of the Teenage Mutant Ninja Turtles (the one

t: Actually,  this  problem  is still  easier  than the one  posed  by Prof. Floyd,  but if I told you why, I’d be
giving away the store, so I’ll discuss it in class  by and by, instead.

8



with the superpower to solve meaningless games quickly) could have solved the problem
without a laptop. However, this game  reminded me of one I played when I a kid, called
Hi-Q. This puzzle had 45 holes arranged as in Fig. 2, with only the center hole left empty
initially. Jumps were allowed horizontally and vertically. I never had much success with
that one either.

Fig. 2. Hi-Q board.

We’re going to develop a solver for Hi-Q type problems, where jumping in horizontal
and vertical directions only is permitted. (Aside: do problems with a hexagonal grid and
three jumping directions reduce to the square grid problem?) The generality comes from
the shape of the board. We shall assume boards are located in the first quadrant of the
plane, and we shall give the contents of the columns, starting at column 0 and proceeding
right, until the last column that contains a hole. Each column will be given on a line, and
will consist of the y-coordinates of holes in that column. We use i-j as a shorthand for the
list i,i -t 1,. .., j.

Following the columns will be a line containing the keyword empty and a list of one or
more pairs of x-y coordinates representing the initially empty holes. The list of pairs can
be spread over several lines, but each pair is on one line, surrounded by parentheses. Pairs
are separated by white space. For example, the Hi-Q board itself could be represented,
among other ways, as in Fig. 3. If the eight corners of the board, instead of the middle,
were left empty initially, then the lines

empty (0,3) (03) (33) (53)
@,5) @,3) (5,O) (3,O)

would replace the last line in Fig. 3.
You can be certain that the board will be presented flush against the x and y axes.

Also, we shall guarantee that the dimension of a board will not exceed 20 x 20; i.e., the
grid points are a subset of (0,. . . ,19} x (0,. . . , 19). You may also assume that the board
is connected.

The object of the game is to remove all but one peg. In the original Hi-Q game,
you got extra credit for leaving the last peg in the center, but we shall not make such
stipulations part of the input. If you cannot remove all but one peg, try to leave as few
pegs as possible. We’re not going to put a time limit on your program, but after about 10
minutes, everyone will lose interest and walk away.

9



3 , 4 9 5
5,4,3
3 - 5
O - 8
O,L2,3,4,5,6,L8
5,6-8,0-4
3 - 5
3 - 5
3 - 5
empty (4,4)

Fig. 3. Input format example.

Some Additional Questions

Can you characterize the configurations for which there is a solution? A quick test for a
solutionless configuration, even if it missed some, would be a big advantage in searching
for a solution, so perhaps a better way to phrase the question is: find a polynomial time
test with a high probability of recognizing a solutionless configuration and a very low
probability of declaring a configuration with a solution to be solutionless.

Finally, consider one-dimensional boards. Can you give an (efficient) algorithm to
test whether a configuration on a one-dimensional board has a solution? Is the problem
formally intractable?

CS304 PROBLEM #5: Playing “God”
Playoff Thursday March 15

Writeup due by Monday, March 19

In the days before Dungeons and Dragons, one of the things nerdy teenagers did was play
a card game called “God.” On each round, one player was selected to be the god. The god
made up a rule whereby cards could be played on a pile, which was constructed in a line,
so all played cards were visible. An example of a (too simple) rule is “only a red card can
be played on top of a black card, and vice versa.” To begin play, all cards but one were
dealt to the players, and the last was turned up to start the pile.

In turn, players offered cards for the top of the pile. If the play meets the god’s rule,
then the card is allowed to stay on the pile; otherwise it is withdrawn to the player’s hand.
Play ends when one player gets rid of his last card. That player, and the god, each score
an amount equal to the sum of the cards remaining in the other players’ hands.

Selection of God Rules

The scoring system suggests that the god should pick a rule that is nontrivial, but deducible
with some effort. If a rule is too easy, then everyone will catch on quickly and get rid of
their cards at approximately the same time. The score will tend to be low, as no one will .

10



be caught with many cards. If the rule is too hard, everyone will play as if at random,
and the expected number of cards with which anyone is caught will be low as well. (Aside:
how low?) Ideally, from the point of view of the god, one player should figure out the rule
immediately, and get rid of his cards quickly, while the other players are stumped and get
rid of cards only by luck.

There are some constraints on legal rules that the god may use. First, while many
good rules are “O-memory,” in the sense that playability of a card depends only on the
previous card played, it is permissible to use a rule in which the playability of a card
depends on the entire pile. Example: “The sum of the cards on the stack, modulo 13,
must be a prime.” However, the following must be satisfied.

1. The rule depends only on the stack contents. No “I pass them crossed” or “Anything
Sally plays is OK, but anything anybody else plays is wrong.”

2. There must be at least 10 cards playable in any situation. This rule must be under-
stood to apply on the assumption that an infinite supply of cards exists. Otherwise,
with any rule and any stack of 51 cards there is only one card playable. An example
of an illegal rule: “each card must be of one higher rank than the previous card on the
stack, with Ace following King and Deuce following ,4ce.” (Only 4 cards are playable
in any situation.)

Even with rule (2), it is possible that the game will reach a situation where there are no
legal moves for any player. Example: “A letter card must follow a number card, and vice
versa.”

Some Example Rules

Consider the following possibilities, for example.
1. If the rank of the card played is equal to or higher than the rank of the top card, then

the two cards must be of the same color; otherwise, they must be of different colors.

2. The difference in the ranks of the cards must be no greater than 3, in the “end-around”
sense (e.g., Deuce is distance 3 from Queen).

3. A letter card may not be played if either of the top two cards are letter cards.

4. Face cards (J, Q, K) pla e must be of the same color as the top card. Other cardsy d
must be of a minor suit (C, D) if the top card is a major suit (H, S), and vice versa.

The Problem

You should write a program to run on neon that will play “solitaire” God, interacting with
a controller program being built by SJP. Your program starts with 51 cards, and the Ace
of Spades is assumed to be the initial card on the pile. You make a play by writing a card
in a file of your own directory named play.gd. A card is represented by two characters,
the first being the rank (A, 2, 3,. . . ,9, T, J, Q, K), and the second the suit (C, D,
H, S). A serial number, in decimal, followed by at least one blank, must precede the card.
For example, if your 105th play is the six of spades, you (re)write your file to contain the
six characters

11



105 6s
The controller will then rewrite a file in its own directory (presumably SJP’s directory)

named out come. gd, to cant ain

1. The serial number of the play,
2. The outcome (Y if successful, N if not), and
3. -4 recap of the current state of the pile, consisting of cards separated by blanks, from

the bottom.

For example, the controller might respond with the file contents
105 Y AS TC 8D JH 3s KC 4D 5H 6s

meaning the play of the six of spades was accepted, and the pile now consists of the nine
cards listed.

Scoring
Your score will be the number of plays you make, until you either run out of cards, or
reach a state where no card in your hand is playable. The controller will stop after 51
consecutive unsuccessful plays, but we shall verify that during that time you have tried
every card remaining in your hand. (Nuance: if your program believes it knows the rule,
it might try to drive the pile to a state in which no move is possible, to lower your score.)
Points are awarded to the team with the low score; the number of points is the sum of the
differences between that team’s score and the other teams’ scores.

Writing God Programs
We shall write some god programs of our own, but we shall also accept god programs, as
C functions to be compiled with the controller, from those teams that wish to write them.
Remember, the quality of a god program is measured by how high a score the winner can
achieve.

k-our  function should have two parameters rank and suit of type char, representing
a single card, and it should return int 1 (if the play is accepted) or int 0 (if not). You
should assume that the first card on the pile is the Ace of Spades, and remember (using
global variables whose names begin with gd) whatever you need to know about the state
of the pile.

12



1.2

JDU

S J P

SQ
E T
AS
VG
DK
DC
AT

MG
S R
AH

The Participants
Professor
Jeffrey D. Ullman

Teaching Assistant
Steven J. Phillips

Students
Sean Quinlan
Eric Torng
Anton Schwarz
Vineet Gupta
Daphne Keller
David Cyrluk
Albert0 Torres
Michael Greenwald
Scott Roy
Alan Hu

DP Dan Pehoushek



Chapter  2

Superabundant Numbers

January 9

The second scheduling of CS304  got off t’o a good start, with eleven enthusiastic partici-
pants in attendence. JDU explained that the course had been planned for Autumn, but had
clashed with the comprehensive exams. Quick introductions were made all round, and a list
of the names of all participants (and their abbreviations for these notes) will be available
soon.

Before we start the (approximately) mathematical details of the day’s discussion, it is
appropriate to quote from A progmmming  and problem solving seminar, by Kenneth A. Ross
and Donald E. Knuth, for a little history of the course:

George P6lya originated the idea of a problem solving course many years ago,
and George Forsythe had promoted the idea in the computer science department.
The course [has] esisted [at Stanford for] 21 years.

We launched quickly into a discussion of superabundant numbers, the topic of problem
1. SR and AT had a head start, being among the brave few who defied the comprehensive
exams and attended the one lecture of CS304  in Autumn, but the discussion soon broadened
to include most of the class.

Let us denote the abundance of a number n by Ah(n),  and let p denote an arbitrary
prime. JDU noted that Ab(1) = 1, Ab(6) = 2, and Ab(120) = 3. Put more suggestively,
the first numbers that are respectively 1, 2 a,nd 3 abundant are 1 !, 3! and 5!. By Engineers
Induction, the first n-abundant number is (212 - l)!. But no such luck __ although AH
found it intuitive that factorials should have high a*bundance,  they are not always the most
abundant. [What is the smallest factorial that is not a Phillips number?]

AT gave us the derivation

Ab(Pf) = (l+p;+...+p”,lpP
k+l _ 1

Pi=
P”(P - 1)

and erased the subscripts after JDU said that the simplest notation is the best. Thus

Ab(p”)  = -+ -
P

14



DK showed that

Ab(pkq’) = (l+]‘+~~~+pk)(l+q+...+q~)/pkq’
= Ab(p”)Ab(q’),

which gives us an expression for abundance in terms of prime abundance. DK and others
noticed that this multiplicative property generalises to any two numbers that are relatively
prime. DK described a dynamic programming technique for calculating a table of abundances
in an analogous way to the sieve of Eratosthenes.

AH brought up the question of whether arbitrary abundances can be obtained, and SR
gave an outline of why the answer is affirmative: Ab(pk) tends to p/(p - 1) as /C + 00, so

Ab(rI P? 1 a n(P;l(Pi - 1)) for large Ici

= n(l + l/(pi - 1))

> 1 + c l/(24  - I>,

and VG noted that since pi, the i’th prime, is about i log i,

Ab(fi pf’) diverges with J l- clx
- = log log r.

i=l e xlogx

With that out the way, we decided to determine order statistics on the smallest lo-
abundant numbers. We assumed without justification that the approximation above works
well enough when each ki = 1, and obtained

Ab( fi p”’ ) z ec “R e log r.
i=l

VG noted that n > 2’ so that Ah(n)  = O(log logn). The rest of the class did some trickier
calculations for a while that turned out only to be a harder way of showing that Ah(n) =
O(log log n). A highlight was DP showing that n = rr + r e log n/ log log n. [Take logs of
both sides, divide by log r and substitute once for r.]

SR mentioned the problem of representation of the large integers that will be needed in
the programs, and it was decided that the best to deal only with the prime factorisation of
a number. AT stated that a search in some number theory books revealed no formula for
perfect numbers, and he expects there to be no formula for Phillips numbers or for the first
number whose abundance is more than some variable. JDU concluded by asking how big
the abundance gap can be between adjacent Phillips numbers.

January 11
The following fact, derived on the 9’th, was left out of the notes: The multiplicative

increase in the abundance when you replace a number with k factors p by one with k + s
factors p is 1 + *.

We started the day with computing troubles: AH had been reprimanded for using Neon
for background brute force computation of Phillips numbers, but there is no other readily .
available source of cycles for such computations. JDU found the idea of having a computer

15



on which no-one is allowed to program pretty ridiculous, and resolved to find out before the
next class what computing resources can be used. He said that the new HP workstations
will probably be up and running by the end of the quarter [round of laughter], and in the
meanwhile all class members are being given accounts on Nimbin. A mailing list has been
set up; the address is cs304@nimbin.

Some programs had been written since the first class (and last quarter too), with the
following results: AH had computed the first 26 Phillips numbers, finding that r26 = 166,320
and the first 4-abundant number is 27,720. I-Iis  results are in his directory ajh/public/phillips.
MG computed Phillips numbers up to abundance 10 last quarter, using carefully optirnised
search methods and incremental calculation of abundances and values of products of primes.
AH ran his program overnight, while MG’s program took only 2 minutes of CPU time. Said
JDU, “Algorithms do matter !” AH ably defended his program, saying he likes some quick-
and-dirty data to work with and ma.ke conjectures about, as a first step in solving a problem.
DP also did some programming, and handed out a list of “lower bounds on the minimum
largest prime factor in k abundant numbers” which indicated about how many primes are
needed to obtain abundances up to 1% His method was to calculate the abundance of high
powers of successive initial segments of the list of all primes. He also handed out a list of
estimates of the first 4, 5, 6 and 7 abundant numbers, obtained by search and trial and
error. He will mail everyone a list of the first 32K prime numbers; VG pointed out that the
program “primes” in the games directory produces primes very fast.

The next order of business was the discussion of some very interesting facts about Phillips
numbers that will be helpful in focussing the search for high abundance. AT noted again
that

Ab(p”)  = p -
1

p - 1 P”(P - 1)
and that it easily follows that any Phillips number should be a product of consecutive primes
starting with 2, and SQ added that the powers in the prime expansion must be monotonically
decreasing. A few attempts were made to prove the last statement, which was widely believed
to be true, but we might have to wait for the write-ups before seeing a rigorous proof of
it. In the attempt more formulae similar to the one at the top of this handout we derived,
and JDU said that formulae for the increase of abundance obtained by adding factors of a
prime are very useful for inclusion in a program. DP stated that in the prime expansion of
a Phillips number the exponent of a small prime should be about the log to the base of that
prime of the largest prime in the expansion. Proof by inspection. . .

SR. posed two questions which were quickly answered by the class: can successive Phillips
numbers have decreasing powers of small primes? (yes) and about how many different prime
factors does a large Phillips number have? (log n/ log log n proved in the last class).

While discussing how to obtain a Phillips number from previous ones, SR came up with
a conjecture: each Phillips number can be expressed a.s the product of a single prime and
a smaller Phillips number. Again this was widely accepted as true, but not proved. AT
provided a counter-example which was refuted, then he proved the conjecture in the case
that the Phillips number has a prime factor that appears in no smaller Phillips number:

Let p = pl be a Phillips number, with p a factor of no previous Phillips number. If I is not
a Phillips number then there is some Phillips number nl. such that m < I and Ah(m) > Ab( I),

16



so
Ab(mp)  = Ab(m)Ab(p) > Ab(l)Ab(p)  2 Ab(Zp),

which is a contradiction. SR wondered why the argument doesn’t work if p is a factor of m
- the reason is that then Ab(mp) # Ab(m)Ab(p).

SJP invented a dubious form of lottery to help divide the class into teams. The results:
Team 1 is DK, DP, VG; Team 2 is SR, ET, AS; Team 3 is MG, DC, SQ; and Team 4 is AT,
AH.

JDU described the concept of the “profile of a Phillips number” - the exponentially
decreasing graph of number of factors versus the index of a prime, in the prime expansion of
the Phillips number. He asked if there could be a continuous “optimal profile” if non-integer
powers of primes were allowed, and conjectured that a Phillips number would be
this optimal profile. MG thought that starting from an optimal profile might not he1
as one would still need to search for nearby Phillips numbers.

SR asked if there is an asymptotic relationship between powers of 2 and 3 in
numbers. JDU suggested that perhaps Ab(ak) e Ab(3m)  or something similar.

close to
p much,

Phillips

After some more discussion of DP’s idea relating the powers of small primes to the largest
prime in a Phillips number, the class concluded that approximate and exact relationships
between the prime factors of Phillips numbers are exactly what is needed to guide the search
of a program to efficiently seek out abundant numbers.

January 16

Some preclass banter:

This is a really hard problem. SR

You ain’t seen nothin’ yet! JDIr

JDU started the class with a thorough algorithmic treatment of the problem of multiply-
ing large numbers of primes to display very abundant numbers. Let’s say we have n k-bit
numbers. An obvious way to form their product is to multiply the first two, then multiply
the product by the third, then by the fourth and so fifth. A problem with this is that if we
aren’t using exact arithmetic, errors in early multiplications propagate a long way. A better
way is do the multiplications as if the numbers were the leaves of a binary tree.

Let M(x, y) be the time taken to multiply a x-bit number by a y-bit number. The linear
approach uses time

n-l
c M(k, ki),
i = 1

while the divide and conquer (tree) approach uses time

logn n
c --@f( k2’-l, k2’-‘).
i= 1

If ,‘ll(x,y) = xy then both are O(k2n2). However the situation changes when 1M(x,  y) >
xy. The Schonhage-Strassen algorithm does multiplication in just over n log n time, but is
the best algorithm only for numbers of more than 25000 bits. This is experimental evidence

17



based on Doug McElroy’s work on calculating ;r~ to a gazillion bits (JDU); McElroy took
about a month to implement the algorit,hm.

A simpler fast multiplication algorithm is due to Karatsuba and Offman, and works
better than the trivial algorithm for numbers of more than 500 bits. If we have 2 2k-bit
numbers AB and CD, the product is

(AC)22k + (AD + BC)2” + BD.

Doing the multiplications in the obvious wa.y gives us the recurrence M(2k) = 4M(k) +0(k),
which is no improvement. However we can get by with only 3 multiplications:

(A + B)(C + D) = AC+AD+BC+BD,

so we have
(AD+UC)=(A+B)(C+D)-AC-BD.

We now have the recurrence M(2k)  = 3M(k) + O(k), so M(k) = O(k10g23),  and log, 3 is
about 1.59.

In the tree approach the last term in the sum dominates and is about (k210g’+‘)1*5g  =
kn 1.59( 12 = 0( ( kn)1*5g).

In the linear approach the numbers we are multiplying are not the same size, but we have
M(k, ki) < M( k, k) = ik1a5’, so the time in this case is C ik’*5g  = O(k’*5gn2).  We see that
the tree scheme is better if we are using fast multiplication.

SQ asked if this was useful for this problem, since one can use floating point numbers. He
asked how to do comparisons efficiently between numbers represented by their prime factors,
and why we would need to multiply our numbers out anyway. JDU replied that floating
point overflow will be a problem because of the large numbers this problem deals with, and
that comparison should probably be done by cancelling common terms and then multiplying
out. Multiplying out will also be useful for presenting the very abundant numbers. (Impress
your friends with your pages of digits, or cover the walls of your bedroom with a 25-abundant
number. Trivia question: How abundant a number do we really need to cover the walls of a
typical dorm room?)

SR asked if lisp systems use fast multiplication for their infinite precision rational arith-
metic, and MG said it has been done in some experimental systems, but not on anything we
have available.

MG has been using exact rationals, but has hit some combinatorial walls, so his team
are working out what precision is needed in the calculations, as a function of the desired
abundance. Their method is to exa.mine  the rationals that will arise in the computation, and
use enough precision to distinguish between them a.nd to represent their differences. JDU
warned that he thinks one may need 2” bits to represent the difference between two n-bit
rationals, or at least 2n bits.

SR decided we should ignore implementation details for a while, and said can we talk
about how to solve the problem. Each team &scribed their current approaches to the
problem:

Team 2 which is SR, ET, and AS spoke first. SR described how they have focused on the
problem of optirnising k and j in n = pkqJ, keeping n constant.

AB(p32)  = Ab(n)(  1 + o(p’, k)), and

18



A&4
AB(;) = (1 + +,j -s))’

where o(ai,j) = ,--. JDU observed that TV is a curious function, and is not well
defined for some arguments; SR explained it as a notational convenience, apologised
and continued:

Ah(E) < Ah(n) iff
Q”

1 -ta(PW < 1
1 + a(q”,j  - s)

iff g(pr, k) < o(q’,j - S)

iff
1 1

Pk+l - 1 < j 3+1q- -1
ifF q~-~+l  < pk+l

iff j< z(k+l)+s-1

i f f  &k+l)-1.

The last line follows from letting s tend to 0. Similarly if we consider Ab($n) we get
j 2 c(k + 1) - 1. So j + 1 = c(k + l), or f$ = 2, i.e. the exponent + 1 is inversely
proportional to the log of the prime. Thus the continuous profile has f(p) = E - 1,
where f(p) is the exponent of p.
SR stated that in the discrete case this analysis gives a band of about 3 possible values
for f(p) given 1 exponent. This relates to MG’s attack on the problem, where he used
two exponents (of 2 and 3) to bound the choices for exponents of larger primes.

Team 1 which is now DK, SQ and VG. DK explained that they set the largest prime, and
used it to restrict the size of the exponents of smaller primes. They still have exponen-
tial blowup in work with increase in abundance, but JDU thinks this is unavoidable.
SQ calls their method “horizontal bounding”. Let p, be the largest prime, and let
p = ,/G. Consider the largest pair of primes with exponents of at least 2: if their
product is more than pr + 1 then removing one factor of each and multiplying by p, + 1
reduces the size of the number, and increases the abundance (this last fact was only
implied, check it). This gives us the estimate that the point at which the exponents
switch from 1 to 2 is around &. JDU conjectured that the point where the i’th step
occurs is about pFIi. SQ noted that this analysis can be done between each pair of
steps to further limit the search.

Team 3 now consisting of MG, DC, DP. (Tearn changes were due to language incompati-
bilities.) MG said they were trying to calculate numbers of high abundance without
calculating all smaller Phillips numbers. They are not optimistic about getting more
than H-abundant Phillips numbers. They can find all Phillips numbers up to abun-
dance 11: there aren’t too many. There are only 482 Phillips numbers of abundance
less than 9, and somewhere around 800 of abundance less than 10. JDU said there
seems to be a fundamental exponent of growth of Phillips numbers in terms of abun-
dance, of the number of Phillips numbers, and of growth of the number of primes in a

19



Phillips number. Are the exponents the same, or related in a simple way? SQ noted
that the continuous profile can be used to get very abundant numbers (not necessarily
Phillips numbers) very easily.

VG derived a fact that he found while trying unsuccessfully to prove SR’s conjecture: Let
p” IT,, and pkfl 1~~. Let 7rr be the largest Phillips number less than r,/p, and assume that
r,/p is not a Phillips number. Then Ab(n,)  2 Ab(nn/p),  and Ab(r,p)  < Ab(r,).  Suppose
that t is the exponent of p in ;TT,. Then

A&P)
t+2 - 1

= ~~bh) pt+2 _
P P

< Ab(n,),

k+l
Ah/P) = A&bz) ‘k+l 1 ‘I 5 A+,),

P
and so

k+1 t+2 - 1

Ab(Tn)  ‘kfl : ‘I ;,+2P -P
< Ah(G)

so that k < t + 1, i.e. k 5 t. Put into words, if n, is not p times a previous Phillips number
then the largest Phillips number less than q/p has at least as many factors of p as 7r,.

The last order of business was computing resources. JDU announced that some work-
station managers would each give one student an account on their workstations. Interested
students should send a request to mumick&ayuga,  gangolli@wolvesden,  phipps@solitary or
plotkin@goblin.

January 18

Today we discussed the progress of all the groups, and JDU started a riot by providing
a simple way to generate lots of large Phillips numbers. First the progress reports:

Team 3 (MG, DC, DP) ran a program overnight, to look for H-abundant numbers, but
forgot to set a flag to limit the precision used in the calculations, so had no success. They
determine bounds on the abundance of a number using a certain number of primes, then
search for the first number with more abundance, which must be a Phillips number. They
have encountered some of the combinatorial problems inherent in the search for abundant
numbers - one cannot get around the fact that the number of primes needed is exponential
in the abundance. (Experimentally they have found that the number of primes needed
for abundance k is about Fk, the k’th Fibonacci number.) They are trying to avoid other
problems stemming from doing calculations with large infinite precision numbers, and are still
working on ways to bound the precision needed for floating point operations. SQ proposed
they use logarithms of the large quantities, both to keep sizes reasonable and to speed
operations by replacing multiplications by additions.

The other teams all seem to be working from the continuous optimal profile. MG pointed
out that the Phillips numbers jiggle a lot around the profile. DK and MG tried to prove
bounds on the amount of jiggling, without success. Team 2 (SR, AS, ET) noted that the
continuous curve f(p) = $ - 1 dips below the z-axis, giving a cutoff point for the last
prime. One can calculate a ormula for c in terms of abundance, or do binary search. TheP
resulting profile gives a lower bound on the size of a number with the required abundance, .
so we have a good starting point for searching. AH asked if a Phillips number can always

20



be obtained by one of the 2’ jiggles (rounding up and down) around the profile (no). AS
truncates each prime, then increments primes which have been truncated the most until
the desired abundance is reached. He conjectures this gives Phillips numbers (the famous
Schwarz  conjecture), but doesn’t always get the jmt number with the required abundance.
There was general agreement that this “tweaking the profile” approach isn’t really producing
the goods.

When JDU first thought about the problem about a decade ago he thought “Aha!  A
knapsack problem.” We have a collection of items, the primes p; (the 9th occurence  of the
prime p). We have derived formulas for the relative abundance increase arising from another
factor of a prime. Let v(p,i),  the value of pi, be the log of this abundance increase. Let
zu(p,  i), the weight of pi, be logp. The task is to pack the knapsack, whose weight capacity
is the maximum size number we want to consider, with as much value as possible.

The greedy technique is to add items with the best value to weight ratio - this works
well at first but isn’t good when the knapsack is almost full. An interesting point is that the
sequence of numbers produced by the greedy algorithm consists only of Phillips numbers.
This is easily seen by looking at a graphical representation of the problem. Label the x-
coordinate with weight, and the y-coordina.te  with value/weight. We can represent a number
by drawing a rectangle for each prime factor, with the width being the factor’s weight and
the height being its value/weight ratio. The value (log of the abundance) of the number is
the total area of the rectangles. If we add items (prime factors) in the greedy order, what
we get is an infinite descending staircase. The number at the end of any stair must be a
Phillips number, because all unused items have a smaller value/weight ratio than the chosen
items, so replacing chosen items by unused items will lower the graph, thus reducing the
total abundance.

The TA lost track of the 10 simultaneous discussions at this point. Some people found
it hard to believe that there is such an easy way to generate guaranteed Phillips numbers;
JDU had to resort to proof by intimidateion.

The combinatorial problems arise again when we wish to find the first E-abundant Phillips
number. One way is to use the greedy algorithm to get close to the required abundance,
then to fiddle with the remaining space in the knapsack. DK thinks it is dumb to reduce the
problem to a NP-complete problem; the question now is whether one can find a polynomial
time algorithm algorithm for this particular knapsack problem.

January 23

JDU started the class with a proof that the greedy algorithm produces Phillips num-
bers, similar to the proof given in the class notes of l/18. The numbers generated by the
greedy algorithm form a strict subsequence of the Phillips numbers, which the class dubbed
the Ullman numbers. JDU conjectured that the Ullman numbers are pretty sparse in the
Phillips numbers. DP observed that experimentally there are not many Phillips numbers
per new prime. There is at least one Ullman number with each new prime, so the Ullman
numbers in fact form a significant proportion of the Phillips numbers. SR commented that
experimentally it seems like not much tweaking is needed to get from an Ullman number to
a nearby Phillips number. AT tried unsuccessfully to prove that adding a greedy step to a
Phillips number always produces a Phillips number.

Todays progress report is summarised in the table below.  Team 2 are searching only for

21



Ullman numbers so far, as their method based on the discredited Schwarz  conjecture led
up a blind alley. Team 3 can achieve greater abundance, but are still concentrating on the
problem of guaranteeing numerical safety without infinite precision. Team 4 is using the
SR-hypothesis.

T e a m  A b u n d a n c e  Runtime Comments
1 first 22 13 hr @ 10 mip 2203t2587’.  . . 135.. .833.. . 6612.. .231431.

3 x 10’ numbers searched
2 23.00048 15 mins Ullman number
3 first 18 1.5 hr @ 1 mip 2183105776.. .13*. . . 373..  . 2112.. .24499

Searched 4 x lo5 numbers
4 first 11 8 hrs 2103654.  . . 2g2.. .487

Found all smaller Phillips #‘s

Team 3 uses horizontal and vertical constraints to limit searching, so has a search space
about a hundredth of team l’s, and their program is roughly ten times faster.

Numerical errors are significant in this problem - a number whose abundance is cal-
culated as 23.00000001 might not even be 23-abundant. The absolute error in adding n
numbers is about Jn times the error in each (JDU). DP asked how difficult it is to get
accurate logs. According to SQ most Unix systems guarantee accuracy to the last bit. Some
systems have an e-log routine, for taking log(1  + E), but the class found that it disagreed
with the standard log and was thought to be faulty.

We then started on problem 2, tiling a hall, the topic of the next chapter.

22



Chapter  3

Tiling a Hall

January 23 continued

The problem can be summarised as follows: there is a hall of width 4. We are given a
collection of tiles (subsets of a 4 x 4 square) and a hall length, and must decide whether the
hall can be completely covered with tiles. Note that the 4 x 4 squares that contain the tiles
can and will overlap, but the tiles cannot overlap, though they will interlock. For example,
if #, X, 0 and + represent different tiles, then a fully tiled hall of length 5 could be:

JDU described how the problem can be viewed as an automaton problem: the state is
the contents of the top 4 rows giving 216 - 1 states. (SR: “Oh, this is easy. 216 is small.“) A
transition corresponds to laying a tile in the first 4 unfilled rows of the hall - if the hall is
tilable, then it can be tiled with a sequence of tiles each of which helps fill the first unfilled
row of the hall. The nFA will have several choices per state. There is 1 input symbol, 0, and
a the label of a transition is the number of rows of the hall that are completely filled by that
transition. In the above example, if the 0 tile was the last to be laid down, the transition
would be labelled  with 4 0’s.

Al Aho gave a CSD colloquium talk recently about Bell Labs’ experience with grep. The
problem is to generate automata for pattern recognition. Before working on Unix, Thompson
wrote an efficient nFA simulator, but found that converting to a dFA first to allow a quick
scan worked better most of the time. On some strings (such as “a.......” which matches an
‘a’ a certain distance from the end of a string) the dFA has an exponential number of states.
The current grep, egrep, creates a dFA lazily, producing states only when they are needed,
and buffering recently used states.

DP asked if the question is to minimise the number of holes in a hall (no, just to answer
yes or no to “is a hall of length n tilable?“) JDU pointed out that doing an nFA simulation

23



is fine if the required hall length is 35, but not if it is 35 gazillion. If arithmetic can be done
in time independent of the size of the numbers (laughter in the class) then there is a constant
time (independent of n but depending of the tiles) solution to the problem. SR said we need
a kind of pumping lemma, and AS realised we will need to find cycles in the nFA. AH noted
that the simple cycles will have less than 216 states. MG noted that often all long halls will
be tilable, and AT suggested using a Mealy machine, with transitions on tiles, that outputs
0 when a row is full.

JDU said we will be looking for cycles with a fixed number of 0%. DK and SR asked
why one can’t use a connectivity test to see whether the final state (hall full) is reachable
from the start state (hall empty). The reason is that this answers “is a hall of any length
tilable?” instead of “is a hall of length n tilable?”

SJP did a random team assignment: Team 1 is SR, DC. Team 2 is MG, DP, ET. Team
3 is AS, AH, DK. Team 4 is VG, AT, SQ.

January 25

JDU led the class with a discussion of the use of closed semirings in path-finding problems.
A closed semiring is an algebraic system based on a ring. It consists of a domain D, +, and
x. + is infinitely associative and commutative, while x is asssociative  and distributes over
infinite sums: a xzl bi = Czl ab; if Czl bi exists. Similarly for multiplication on the right.
0 and 1 are the identities for + and x respectively. 0 is a x-annihilator. The Kleene star
operator a* = 1 + a + a2 + . . . makes sense.

We wish to consider a graph labelled with elements of the domain, and compute

c label(p)
path Pn-,,,

where label(p) is the product of the labels along the path p from n to m.
Some examples of closed semirings are:

l The Boolean domain D = (0, l}, + = V, ⌧ = A, a* = 1. In this case the above sum
is 1 iff the nodes n and 712  are connected.

8 Dis the non-negative reals, + = minimum, x = addition, so that
= 0. The sum gives the length of the shortest path from n to m.

a* = min(0,a,a2,.  . .

l D is the set of regular of expressions, + is union, x is concatenation, and a* is the
usual Kleene closure. + has identity 4 while x has identity 6. The sum gives a regular
expression for all paths from n to m.

JDU went on to say that probably none of these closed semirings will help us with our
hall tiling, but he does think that there is a structure that will be helpful.

Next he described the Kleene algorithm for calculating the above sum for an arbitrary
graph. Take a node Ic, its arcs labelled  ai from its predecessors pi and arcs labelled bj to
its successors S j , and perhaps a self-loop labelled c. (If there is no self-loop we can insert
one labelled  with the multiplicative identity). For each arc u from a predecessor pi to a
successor sj replace its label d by d + a;c* bj. Some care must be taken if u is a loop. This
procedure effectively eliminates the node k, which can therefore be removed from the graph.
We continue this till we are left only with nodes n and m.

24



SR noted that if a set of tiles can tile hall lengths a and b with (a, b) = 1, then they can
tile any hall beyond a certain length, certainly beyond ab. VG proved this: consider the
numbers 0, a, 2a,. . . , (b - 1)a: since (a, b) = 1 this forms a complete residue system modulo
b, so adding multiples of b to these numbers gives all numbers past (b - 1)a.

Thus the problem reduces (SR) to finding the hcf of all cycle lengths, then determining
the threshold at which all multiples of the hcf are tilable. This gives a constant time solution
(assuming arithmetic is constant time). JDU asked how many equations must be solved,
and how high the threshold can be. We are writing programs, not just theorising, so the
constant in “constant time” matters.

AT did some calculations on the number of states in the nFA. Recall that the state
encodes the contents of the top 4 rows of the hall. The first row cannot be full, so 212 states
are eliminated. If the bottom row is empty the top row must be empty, eliminating 28 states.
If the top row is not empty then the leftmost bottom square must be full. This works out
to 215 - 211 states .

MG and DP form all combinations of tiles inside the 4x4 square. They can then fill the
bottom row on each move, so the state needs to encode only the top 3 rows of the hall,
giving 212 states. The number of composite tiles is no more than (the number of tiles)*, and
is certainly no more than 215. SR noted that this seems equivalent to forming the original
nFA and collapsing the e-moves. MG says it is doing the collapsing once instead of many
times.

DC thinks that one shouldn’t do all this work for easy instances of the problem. JDU
asked if there are ways to try for an easy solution first, before constructing the large nFA.

Everyone decided they wanted a time trial at the end of the fortnight, where each group
brings a collection of tiles to test everyone else’s programs. A tentative date for the compe-
tition is Tuesday February 8.

JDU thinks that finding the hardest set of tiles (those with the largest finite minimum
tilable hall length) may be harder than than the original problem. AT gave some small sets
of hard tiles. A pair of tiles with minimum hall length 12 is:

x x
x x

Ba
x x
x x

X XEmX X
X X

Three tiles with minimum hall length 28 are:

Lastly four tiles with muinimum hall length 84 are:



January 30
Class started with abundant numbers again. ET, SR and AS described their program for

finding the first k-abundant numbers. They generate a list of millions of primes, then a list
of millions of Ullman numbers, and then do efficient search to find the smallest k-abundant
number for any k < 32. The speed of their a.pproach is limited mainly by the generation
of primes, which is the best we could hope for. Search is restrained by finding the first
k-abundant Ullman number as a first guess, then using the current best guess to severely
limit the choice of factors that can be deleted from a number or added to a number such that
the number remains feasible (such that other factors can be deleted or inserted to regain
a number smaller than the best guess, with abundance > k). For 7r21 1398 numbers are
searched, while 7r 23 requires 336 numbers to be searched, with only 3 updates to the best
guess. 7r28 takes about 5 minutes to calculate (most of the time spent reading in the list of
Ullman numbers) and contains about 7 million digits.

Before we say goodbye to abundant numbers, a correction needs to be made to an earlier
set of class notes. The offending line was

“[Team 21’s  method based on the discredited Schwartz conjecture led up a blind
alley.”

AS pointed out that

the “Schwartz conjecture” says that you can come up with a really good subse-
quence of Phillips numbers by starting with the number one and adding successive
powers of primes in the order in which they help you achieve high abundance rela-
tive to size, where the helpfulness of prime p at power k is given by the coefficient
of the optimal curve on which (p,k) lies.

The conjecture thus appears to be no more than a statement that the greedy  technique
works.

NOW on to problem 2. SQ asked that the hall length be limited to 231. SR said that
the Kleene algorithm will give a variable for each minimal cycle in the graph. MG has been
trying to reduce the nested expressions, like (4 + 6*)* given by the Kleene algorithm, without
success yet.

JDU introduced semilinear sets. Consider vectors [al,. . . al,] over integers. A vector
addition system (VAS) is a set of vectors vl,. . . , v,. We are given a vector w and asked
for non-negative integers bl . . . b, such that C bivi  = w The decidability of this problem was
open for a long time, till Ernst Mayr found an algorithm, whose time seems non-elementary
(not bounded by any tower of 2’s). Fortunately we need only consider VAS’s of dimension
1, i.e. semilinear sets. Given a basis v. and periods v1 . . . vn then [vg : ~1,. . . , vn] represents
{ vo + Ci bivi 1 integers bi}. Actually only 1 period is needed, as a semilinear set is a union
of semilinear sets with 1 period. The point of all this is that the expressions generated by
the Iileene algorithm are semilinear sets. Thus we need to develop routines for manipulating
these sets (especially for reducing expressions like (a + b*)* as soon as they appear).

SQ said it isn’t obvious how to reduce such an expression efficiently; said JDU, “I’m not
going to write your code for you!”

DP asked how to turn an arbitrary graph into a set of tiles. JDU described a method:
for each arc i + j in the graph, add a tile with j in binary in the top half, and i in binary in

26



the bottom. This lets us encode an arbitrary graph of up to 255 vertices. AS noticed that
the tiles could interfere in unexpected ways, which we could avoid if each tile had two l’s
in the bottom of the leftmost column. This lets us safely encode graphs of 64 states. JDU
pointed out that a weight 4 code will prevent interferences (each number is coded with by a
number with exactly 4 l’s) giving us 70 states to use.

DP asked if one can get a graph that somehow encodes an NP-hard problem, such as
forcing the programs to look for a Hamiltonian path when given a certain hall length. JDU
thinks not. If semilinear set operations are done in constant time then there is a cubic time
algorithm. The question then is how fast the semilinear sets can grow.

We philosophized about the difficulty of the problem for a while. VG think this problem
is harder to get started on than problem 1. JDU and SJP still aren’t sure how hard a
set of tiles can be. JDU thinks that there is a program that will work quickly in practice.
SQ noted a trade-off: if there are lots of tiles there will be lots of interference, so an easy
solution. JDU thinks the semilinear sets won’t blow up in practice, as the simplifications
will be taking gcd’s of lots of numbers. JDU suggested using a brute force program and a
complicated solution running in parallel, to give a fairly quick solution for both easy and
hard instances of the problem.

One last correction is in order: the idea of combining tiles before constructing the NFA
was wrongly accredited in the last class notes. The idea is in fact due to ET.

February 1

The first topic of discussion was the difficulty of the tiling problem. DC finds it similar to
AC-unification (unification with some operators associative and commutative) which is NP-
hard. He has been trying to reduce the unification problem to the problem of determining
if two NFA graphs are equivalent. JDU thinks the equivalence problem is easy: form the
cross-product automaton, each state of which corresponds to a pair of states, one from each
automaton. The equivalence problem reduces to determining whether any pairs of the form
(final, non-final) are reachable in the product automaton.

SQ described some attempts at reducing expressions representing hall lengths. The no-
tation derives from production systems. e is the non-terminal representing hall lengths. He
considered expressions given by:

e : : =  lp 1 (lqe)*

or
e ::= (lP( lq)*)*.

The latter reduces to

(lp)* 1 (lp+q)* 1 (l*+*Q)*  1 .  .  .  1 (1p+(“-‘)q)*

DK used some simpler notation to describe reduction of expressions given by

e ::= e* 1 el V e2 I el + e2

She noted that
(avb)+c= (a + c) v (b + c),

(a V b)* = n* V 6*, and

27



(q + ez + ez)* = 0 V (el + e; + e; + eTJ.
Any expression given by the above productions can be reduced to an expression of the form

0 V (el + e; + ei + ez + ,. .)v(f;+.f;+.f;+f3*+...)V...

Both DK and SQ are describing how to evaluate the result of operations on semilinear
sets. JDU’s  notation for semilinear sets may be useful here.

MG described how he implemented these semilinear sets. He represents a semilinear set
as a table of small integers and all multiples of a single factor beyond a threshold. When
reducing a semilinear set to this form, he keeps a table of small integers modulo the length of
the smallest cycle. More precisely, to represent all values of the expression ax + by + cz, say
with (a, b, c) = 1, a < b and a < c, he steps through all low values of the expression, till all
conjugacy classes mod a have been obtained. All integers beyond the last generated value are
values of the expression. A similar result holds if (a, b, c) # 1. An example: 6x + 10~ + 152
generates the integers O,lO, 15,20,25,30  and 35, which span all the conjugacy classes of 6,
so all integers greater than 35 are values of the expression. The runtime  of this algorithm is
quadratic in the size of the smallest cycle in the equation.

If we implement Kleene’s algorithm always working with the smallest cycles first, we
need only small tables to represent all the sets, and the semilinear set operations should be
efficient.

DC and SR described a method based on forming an equation for each set of cycles
in the graph (hence an exponential number of equations). Each equation is of the type
ax + by + cz = 72, where a, b, and c are cycle lengths. If we are given a value for n, we must
find non-negative integer values of the variables x, y and z that satisfy the equation. In two
dimensions we can draw a graph corresponding to the equation, and we wish to find a lattice
point in the first quadrant through which the graph passes. SR generalised this to higher
dimensions, and thinks that finding an integer solution is exponential time (in the number
of variables or the cycle lengths?)

VG said there is a well known algorithm for solving such equations.
DP starts with the state space of size N, and each arc labelled 1. The graph of the

NFA can be easily converted to this form, assuming we form combinations of tiles before
constructing the NFA. For each state he records all the distances < Ic in which that state
can be reached from a fixed state. This takes O(Nlc) time. In a similar way in order N*k
time one can record all the cycle lengths < k through each node. Then there is a number c,
N* 5 c < N* + N, such that all tilable hall lengths are of the form c + C;(cycle-length;)
where the sum is over any collection of cycles in the graph. The reason is that the whole
graph can be traversed once within c steps.

28



Chapter  4

Constructing a Star Map

February 6

I assume you want to talk mainly about progress on problem 2 today. JDU
Progress? What progress? SR

That said, we moved on to problem 3. In Bob Floyd’s original version of the problem
the cluster was spherical, probably with a Poisson distribution for the radius and uniform
distribution for the angle. One was given 2 views, and had to work out where the second view
was from. SR noted that as long as there are lots of stars, and they are distributed reasonably,
then the distance of the second viewpoint can be easily determined by the apparent size of
the cluster. MG noted that if one knows the position of a reference point, say the corner
(O,lO,O) of the cluster, then the density of stars around that point gives an indication of the
viewer position. AS pointed out that the edges of the view will be corners of the square.

After making the cluster, JDU jitters the position of each star’s image on the film by
10e6  of a unit. The jitter is uniformly distributed in a cube of side 2 x 10w6. The error is
independent for each view. Each star image then defines a tube of radius lOa inside the
galaxy within which the real star can lie. We get a possible error in combining the two views
if a tube crosses two tubes from the other plate.

DK described the problem in terms of a bipartite graph, with a node for each star image
on each plate, where an edge is drawn between two images if they are on different plates
and their tubes cross. What we are looking for is a kind of minimum weight matching in
this graph, where the weight of an edge depends on the extent to which two tubes intersect.
AH suggested RMS weighting. DK noted that one can get a partial matching by a greedy
method, then jiggle it (by augmenting paths) giving a polynomial time (in 10 000 stars)
solution. Further comments were lost in the ensuing chaos.

JDU showed that one cannot resolve 2 stars that are coplanar with both viewpoints -
one gets a quadrilateral where we don’t know at which pair of opposite corners the two stars
lie.

JDU has a program that generates a cluster of any number of stars with any jiggle size.
The output gives the earth and Trantor co-ordinates of each star together, so the correct
answer is known, and the programs’ results can be easily checked against the correct solution.
SQ asked whether it is better to give an impossible solution that has lots of good matches,

29



or a bad feasible solution. The answer is that we will only know once both strategies have
been implemented and tested on random clusters.

With 10000 stars there is about a 10% chance of error for each star. The probability
that a tube of a star from plate ,4 meets a wrong tube from plate B is the probability
that 10000 bullets of radius low5 hit a tube of width 10B5. The total bullet hole are is
10000 x (10-5)2 = 10-6, while the tube area is 10w5, so the probability of a bullet hitting
the tube about is 1 in 10. This has been verified experimentally.

SR decided that the JDU’s version of the problem is too easy, and wants to try Floyd’s
version. Said DK, “I like a problem once in a while that we can actually solve.”

VG asked if the mystery viewpoint will be at a lattice point. JDU: no, but the size of the
image limits the possible viewpoints. How many exact points are needed to determine the
viewer position ? 3 and 4 were popular guesses. The shape of the image gives hints about
the orientation. If the cubic case is too easy JDU will construct some spherical clusters. The
clusters for this problem will contain about 100 stars, which might not be enough to define
the cubic shape well.

SR suggested dividing the plates into subsquares, and using the density of the subsquares
in the two views. JDU asked if one can get from a small feasible region for the second view
to a smaller region by local approximation. AT brought up the orientation of the camera. It
was agreed that the bottom of the plate should be parallel to the xy-plane, and there should
be no views from directly above or below.

SQ suggested chunking views (with the chunk size depending of the jiggle size), then
using the solution to the first problem to determine the feasibility of each of a finite number
of views, and choosing the best match.

DP said that FFT’s (Fourier transforms) may be useful. Maybe small moves only change
some of the frequencies in the transform.

Teams were selected: (1) SR, MG, DK. (2) DC, AT, AS. (3) AH, SQ, DP. (4) VG, ET.
There was a little discussion on problem 2. SQ thinks he can make some nasty sets of

tiles. DP thinks he can’t. Test2 and Test3, JDU’s  test sets of tiles, turned out to be easy.
The example random set of tiles turned out to tile every hall length. All the groups will
have programs running by Thursday, though most aren’t confident about using them in a
competition.

February 8

We did a little elementary geometry today, determining the distance between rays from
the two viewpoints Earth and Trantor. Let a star be seen at (x1, zl) from Trantor, and let
a star be at position ( y2, z2) as seen from Earth. The view from Trantor is along the y axis,
and the Earth view is along the x axis, so the two rays are parametrised by (xl&i, ~lt) and
(10 - s, 10 + y2s,t29). The distance between a, pair of points, one on each line, is the square
root of

(10 -S- x1t)* + (10 + y*s - t)” + (-72s - 21t)*.

We want to minimise this expression; its two partial derivatives are

2(-(10-s - xlt) + y2( 10 + 92s - t) + Z&S - zlt))  and

2(-40 -s - xlt) - (10 + y*s - t) - z+*s - 21t)).

30



Setting both to zero gives us a pair of linear equations in two unknowns, which is easy to
solve. Said DP: “We can do this. You don’t need to finish it.”

So we returned for a last time to problem 2. We had a terminal set up for demonstration
of the tiling programs, but only team 2 (MG, DP, ET) 1la a program ready to demonstrate.d
Their program sets up the FA determined by the precombined tiles, throws out useless states,
derives information about cycIes  from which it determines the behaviour for all large hall-
lengths, and answers small hall-length queries by simulation. The program is fast on small
tile sets, but a large random set of tiles makes a huge number of combined tiles and hence
a huge FA, and their program is slow in this case.

Getting back to problem 3, SR described a way to determine Earth’s position in the
hard version of the problem (where Earth’s position is unknown). Take three well separated
stars near the boundary. They cannot match all triples of stars in the other image - the
corresponding images must have separation at least the largest height in the triangle formed
by the stars in Earth’s view. Thus we can try matching the three stars against all feasible
triples in the other view (in each orientation). Each match determines a position of Earth
which can be checked for feasibility. DK suggested using density information to reduce the
number of triples that need to be considered. SR suggested using 6 stars on the outside of
one view, to force three of the stars to be near the outside on the other view, thus eliminating
most of the search.

ET and VG noted that if the stars are symmetric in the cluster there will be lots of
“correct” orientations or positions for Earth. However all we are looking for is one correct
position - we don’t care how many there are.

There was a lot of loud and fractured discussion about using the clustering of stars to
determine the Earth’s position. AH thinks there won’t be large clusters. JDU gave numerical
support for this: if n darts are thrown uniformly at a dart board that is divided into n blocks,
the expected largest number of darts in a block is about $$-&.

AH suggested first solving a l-dimensional version of the problem, where all views are
from the xy-plane. JDU thinks this is not much easier than the general problem. He
suggested scattering test views on a sphere, guessing which one is best, then moving small
distances while improving the correlation of the two views. Does this converge to a solution?
Are there local minima? (AT, DC: Yes. If the cluster is roughly symmetric there will be
local minima across lines of symmetry.) How do we rate the guesses? AH thinks one must
be careful rating the guesses - if the measure of goodness is the sum distances of the tubes
then an infeasible solution looks too good. AH suggested calculating the effective jiggle in
the star positions induced by moving the viewpoint a little.

February 13

Some more progress has been made on the tiling problem. DP and MG improved their
program. DK’s program works well on small sets of tiles, but is slow if there are lots of
cycles. MG described how the gcd of all cycle lengths can be obtained by simulation to
length 2n - 1, where n is the number of states in the graph: for any cycle length k in the
graph, there is a cycle through the start node of length no more than 2n - 1, including the
cycle. Then to answer queries we would need to simulate out to at most n*, after which
every multiple of the gcd will be tilable.

JDU related the ideas behind the test cases: test 2 has lots of cycles, and was designed to



kill a program that tried to solve the problem by conversion to a deterministic automaton.
Tests 1, 5 and 6 were meant to be one cycle with a single cycle branching off it, with the
cycle lengths relatively prime. Errors in the encoding made some smaller cycles possible,
but the current versions should be as intended. Tests 3 and 4 are random, and are supposed
to have huge state spaces, though 3 is trivial and can tile any hall length.

AT SQ and VG ’ plIrn ement the Kleene algorithm on the fly, lazily. They keep a variable
for each state, and equations in terms of these variables determined by the edges in the
graph. For instance A = C + 1B would represent a state A with null transition to C and
transition on 1 to B. They repeatedly expand the start state, solving recurrence relations
whenever they appear. This gives a starring operation, which can be evaluated using tables
as described by MG. Variables are expanded in a breadth-first manner, the shortest terms
being expanded first. This technique is having problems as it is running out of memory.

Returning to problem 3, SR introduced a novel way of looking at the problem. Consider
the plane through the center of the cluster and the 2 viewpoints. If we are dealing with
orthographic projections, instead of perspective views, then the distance of a star from this
plane is independent of the viewpoint. Since the bottom of the camera is aligned with the
xy-plane, the position of the described plane determines 1 or 2 possible positions of the
unknown viewpoint. Hence we can rotate a line (the image of the plane) around the center
of each view, and have a probable match when the function relating the number of stars to
distance from the line is the same in the two views. In other words we transform a view
into the density function of number of stars in terms of distance. Finding the viewpoint can
then be done without matching individual stars, instead just counting the number of stars
in bands. SR doesn’t know how much the distribution changes as the lines are rotated. He
suggested making the stars fuzzy, so that the distribution changes continuously as a function
of the angle of the line.

DP asked about FFT’s and JDU talked about the Fourier transform. Given a time se-
quence al, u2,. . ., say a digitised sound signal: the n’th frequency is given by CEO ai cos( %).
It is large if the signal has a component of that frequency. For example the component of
frequency 2 is given by

a1 - a2 + a3 - a4 + . . .

In 2 dimensions this generalises to C a;j cos( %) cos( y). In reality the transform should be
done in the complex domain, rather than in the real domain as described, so that we get
both the magnitude and the phase shift at each frequency.

SR wants to compute the distance transform for all rotations of the line in a small time,
and hopes that it can be done fast, like the Fourier transform.

It is getting late in the fortnight, so some programs need to be written. VG and ET have
started programming the simpler version of the problem, where the viewpoints’ positions are
known.

February 15
SR continued developing his technique for solving the hard star problem. We choose k

bands of stars parallel to the line (which is the image of the plane through the two viewpoints
and the center of the cluster). A value of the distance transform is a vector of the number
of stars in each band; the number of different values is 5 2kn, since each star can cross into
or out of each band at most once. We can construct all these values, sort them in the two

32



views, and in time linear in the number of values we can run up the sorted lists and find the
best match. Constructing all the distance values could be done quickly by constructing the
set of events (eg. a star crossing into a band), then sorting by angle.

How many bands are needed? The number of stars in a band can be approximated by a
normal distribution (if the number of bands is quite smali) with variance g2 = 2np( 1 - p),
where p is the probability that a sta.r will be in the given band. We want to find the
probability that the number of stars in this band in different views is equal; if we normal&
the distributions to have mean 0, then we want the probability that the sum of 2 normally
distributed variables with mean 0 is 0, which if we assume the variables are independent
is rk. The expected number of matches is then no more than (2kn)2(,h)k

whichrys less than 1 for large enough k. SR conjectures that choosing k around 6 0”: 10 will
be good enough for the problem.

AH pointed out that the normal distribution approximation gets worse as the number
of non-overlapping bands increases; if we use overlapping bands then the variables are not
independent so our analysis breaks down. We also have variations induced by changes in
perspective in the two views, so we would have to make do with approximate matching of
the distance vectors. If we get a few almost ma.tches  we could check them using a program
for the easy version of the problem. VG thinks this approach might get too many matches,
as we expect roughly the same number of stars in each band, and perspective induces errors
around 10%.

JDU asked if the plane must always appear level in one of the views. The answer is no
- take any non-level plane through the Earth view and the center of the galaxy; rotating
Trantor around this plane would make Trantor’s view of the plane rock back and forth around
the horizontal.

VG gave some surprising results for the simple problem. Taking 10 000 stars with 10s6
or 10e5 error on the plates his team’s program found the original star positions. Even with
10e4 error the original positions were found with only 3 flips. JDU found many more errors
this in his testing and analysis. With 10m6 jiggle on the plates each image on Earth’s plate
defines a tube of width 4 x low6  in Trantor’s view. The fraction of the total area of the
view covered by the tube is 4 x 10w5, so with 10 000 stars we expect 0.4 stars to hit the
tube. VG confirmed that their program had produced possible match lists of average length
1.4, but they found that matching stars to the nearest unmatched star on the other plate,
and pairing off the closest pairs of stars first, gave the original cluster without errors. Their
program produces a list of possible matches for each star in Trantor, then sorts each list by
closeness of the matches, and sorts the Trantor stars by the closeness of their best match. It
then runs through the stars matching each with its best unmatched neighbour. Even with
10m5  jiggle this simple scheme gave a perfect matching.

They derive the lists of possible matches by considering Trantor in the view from Earth.
As seen in this view, the tube of a star in Trantor’s view extends from Trantor through the
cluster, and the section of the cluster it cuts through is determined by the angle between
the ray and the y-axis (the angle between the ray and the bottom of the cluster, in Earth’s
view). They sort the stars in Earth’s view by this angle, or equivalently by A. The possible
matches for a star S in Trantor’s view are then all stars in a range of angles around the angle
defined by the S’s ray.

AH asked if the uncanny accuracy they obtain could be because the star positions were

33



given in correctly sorted order in the input, and don’t get permuted during the program
execution. JDU suggested that the problem was porting the random star generator between
machines; VG’s team had also changed the generator slightly ( using double precision instead
of single precision). Said JDU: “I will send you my Littered and permuted] data, and I bet
you won’t get it right !” We’ll see the results in Tuesday’s class.

February 20
Tuesday’s enigma was solved - when VG’s group changed the error variable in the star

generator from single to double precision they caused the error to be read in as 0. With a
correct generator they now get 8 flips in 100 stars, and about 1000 errors in 10 000 stars, as
expected.

MG pointed out that if the position (O,lO,O) (the corner of the cluster) is known in the
mystery view then the viewpoint can be easily determined to be one of at most 4 positions.
His team is working on the version of the problem where the view is centered on the center
of the (round) cluster.

SR discussed matching small numbers of stars in the bands given by his method, to
exactly determine the viewpoint. Given two matchable stars at (~1, Si) and (Q, 0,) in polar
co-ordinates, let the line representing the plane be at angles cy and ,B from the horizontal in
the two views. Then the distance from the first star to its plane is r1 sin& - cy), this must
equal the corresponding expression r2 sin( e2 - ,B) for the second star. Choosing one more
star in each view to pair off gives two equations in 2 unknowns cy and & which could be
solved numerically.

MG has programs that display clusters of stars, and generate views of (the center of)
clusters from mystery viewpoints. So far his team is only considering orthographic projec-
tions.

Again class and problem boundaries do not coincide, so will proceed to the next chapter
for the second half of today’s class.

34



Chapter  5

Generalized Hi-Q

February 20 continued

JDU introduced problem 4 by describing some HiQ facts he had learnt from Thane
Plambeck. A 1970 paper by De Bruijn gives an easily computable attribute of sets of pegs
that remains invariant under peg jumping. Consider the plane colored with three colors so
that all three colors are present in any three cells that are horizontally or vertically adjacent.
Take the sum over all the pegs of the color of the cell they are in, where the sum of two
different colors is the third color, and any color added to itself is 0. The colors then form the
non-zero elements of GF(4), the Galois field on 4 elements. GF(p) consists of the integers
modulo p, and GF(pk)  is all degree k - 1 polynomials with coefficients over GF(p). Thus
GF(pk)  looks like 0, 1, x, x + 1. To determine the product operation in GF(4) we need to
find an irreducible polynomial of degree k over GF(p); in our case x2 + x + 1 is the only
choice. It is easy to see it is irreducible since substituting 0 or 1 for x doesn’t give 0. Setting
this polynomial to 0 gives us xX = x + 1, which determines the product operation. Now the
color sum is just Cpegs (i,j) Xi+j. As an example of why this is invariant under jumps: say
there are pegs on (i,j) and (; + 1,j) but (i + 2,j) is empty. Performing the jump gives a
peg only on (i + 2, j), and x~+~+J = x2.ri+j = (x + l)x’+j = .‘+j+’ + x’+j.  One can also use.
the sum C x2-3.

VG noted that if the sum is 0 then there is no final configuration with only one peg.
JDU asked if one can characterise how sparse a region of the plane must be so that there

is no solution. In the 1 dimensional case the set of configurations is a regular set (this is
an exercise in Manna’s 1974 book). Thane Plambeck has a DFA with about 17 states that
recognises the set.

AT had made progress in this direction. If there is a hole of length 3 then the problem is
unsolvable, and if there is a hole of length 2 it can only be spanned by moving in tiles from
both directions. If there is an even number of pegs in a block on say the left end, they must
all be jumped right (otherwise a hole of length 3 or a peg isolated by a hole of length 2 will
result). If there is an odd block of pegs on both ends the problem is unsolvable. This gives
a linear time algorithm for solving the 1 dimensional case.

Thane Plambeck had a regular expression something like (ll)*(Ol)*OO(lO)*(ll)* for solv-
able peg configurations in 1 dimension. He showed that the problem is unsolvable if there
are two holes of length 2.

SR, asked how hard the brute force simulation method is in the 2 dimensional case (very .

:3ri



exponential). JDU suggested thinking of running things backwards - this gives a grammar
for solvable peg arrangements. Unfortunately the grammar is context sensitive. There is
a theorem that if all productions increase the size of the expression then the language is
context free, but DK noted that the size of the equivalent context free grammar can be
exponential.

AT described some progress on problem 2. His team’s program still runs out of memory on
sets of tiles that give lots of short cycles. He gave some notation for semilinear sets: 3; 0,7,oo
represents 3* + 7.3*. Then 4 . 3; 0,7,00 gives 3; co, 4,11. He noted that the representation
is efficient: ICI + CzI < IGIl + I&l, IC* = II, and IC1CzI = min(lC& I&l).

February 22

With JDU away for the day we talked about HiQ with Thane Plambeck (hereafter TP).
AT first gave a sequence of theorems about the 1-D game:

1. Let A be a peg, then A can not go to the left without using a peg already to its left.

2. Let A, B be pegs where B is to the right of A, then B can not go more than 1 position
to the left of A without using a peg already to the left of A. Proof by induction on the
number of pegs between A and B.

3. A configuration with a hole of length 3 is unsolvable.

4. A configuration with 2 or more holes of length 2 is not solvable. Proof by induction
on the length of the gap between the holes.

5. In a configuration with an extreme odd cluster, both possible moves involving only
pegs in the cluster lead to unsolvable configurations. Proof by induction on the size of
the cluster.

6. A configuration with an extreme odd cluster and a hole of length 2 is unsolvable.

7. A configuration with 2 odd extreme clusters is unsolvable. (The first move leaves one
of the previous cases.)

8. In a solvable configuration with an even extreme cluster, the move suggested by AT’s
algorithm leads to a solvable configuration, since this move must be made in any
solution.

9. AT’s algorithm works. 7 and 8 give partial correctness, and the number of pegs is
decreased at each stage, giving total correctness.

10. The length of any solvable configuration is 1 or even.

AT then gave a long case analysis to find a regular expression representing solvable
configurations. TP described a neat way of finding the regular expression: think of playing
backwards. Starting with 11(01)*00(10)*11  ( w iic is obviously solvable) a backwards play1 h
involves moving the 00. Moving the 00 to the left (which corresponds to doing a leftward jump
backwards) gives us 0100 -+ 0011, so we get the expression 11(01)*0011(10)*11.  Repeating
these L-moves gives us 11(01)*00(11)*(10)*11.  Doing an R-move gives 01001 + 01110, so the

36



above expression becomes ll(Ol)*llOl(ll)*(lO)*ll, and the 00 has been eaten. Reflection
of the above expressions gives more terms to the RE, and running the 00 all the way to the
left or right gives some special cases.

AT thinks it is NP-compete to decide, given a 2-D board position, to decide if there is a
play ending with k or less pegs. He has shown that using pegs only to the left of a vertical
line, one can move at least 2 to the right of the line. Is there a limit? TP answered in the
affirmative. The book Winning ways for gour mathematical plays, volume 2 by Berlekamp
and Conway describes just this problem under the name “sending a scout”. They give
minimum numbers of pegs needed (behind the line) to send a scout out a distance 1 to 4,
and prove that a scout can’t be sent out further than 4 pegs from the line.

The book Ins and outs of peg solitaire by John Beasley states that it is an unsolved
problem whether there is a polynomial time test for solvability in 2 dimensions. TP has
tried to prove AT’s version of the problem (is there a reduction to < k pegs?) NP-complete
by reduction from Hamiltonian circuit, but could not construct nodes. The idea is to embed
the graph in the grid with pegs, so that there is a single tracer peg that jumps around the
graph visiting all the nodes. Most of the weight of the graph must be in the nodes for the
reduction to work, and one must be careful to avoid generating new tracers. When the tracer
reaches a node it must be able to make a choice of which edge to take out. Furthermore the
tracer needs to be able to enter a node through any of the edges incident to it. It is tricky to
construct a node with these properties. TP managed to prove NP-completeness if the lattice
can have “concrete pegs” that can be jumped but are never moved or removed.

TP thinks it would be neat to prove the problem NP-complete, and thinks one could
publish such a result. It would also be neat to show that the language of tilable configurations
is regular if the board is of fixed width.

February 27

First a couple of corrections from last time: The author of “Ins and outs of Peg Solitaire”
is John Beasley, and a scout cannot be sent out further than 4 pegs, as we show below.

SR gave his latest star map results. Performing the band transform as described in the
last few lectures, they get 1 or 2 band transform matches in about 1.5 seconds with 100
stars using 10 bands. The program considers 700 different angles (corresponding to 700
different band transforms). If the number of bands is kept constant then their algorithm
runs in O(n log n) time. They haven’t implemented the matching of individual stars inside
a region to get an exact position for the mystery view, and are working only with jitterless
orthographic projections.

DC has been working on a program to generate an algorithm for reduction of peg posi-
tions. The idea is to find a canonical system so that no backtracking is needed. He described
confluence systems. Say we have rewrite rules 011 + 100 and 110 + 001, we consider com-
binations of these: 0110 + 1000 and 0110 ---) 0001. To eliminate backtracking we add the
rules 0001 + 1000 and vice versa. Unfortunately the system of rewrite rules now accepts too
many peg configurations. He has been working on a two dimensional version of a confluence
system.

TP gave the nifty proof that a scout cannot be sent out more than 4 pegs above a line.
The idea is similar to what we saw in De Bruijn. Let CT = w z 0.61 < 1. Then a2+o = 1.
Now give each board position a number, as shown here.

37



1

u6 u5 u4 u5 cl6
us u7 CT6 u5 a6 a7 us
ug us a7 u6 a7 us ug

The numbering below the line continues infinitely in all directions. The value of 0 was
chosen so that each jump reduces or preserves the sum of the numbers covered by pegs.

The sums of the first few rows below the line are
u5 u6
-+-l - a  l - u = a3 + o4 = 02’ then

u6 u7
-+-1 - 0 l-0

= a4 + a5 1 03,

then g4 and so on. Hence the total sum below the line is & = 1, so no matter how many
pegs we have below the line, we can’t get a peg into t’he hole labelled by 1, so the 5’th row
can’t be reached.

The book “Winning Ways” that we mentioned in the last class contains other examples of
such “pagoda functions” (so called because of the shape of the above picture). For instance,
if we are given a board with certain holes empty, and wish to jump pegs till only those holes
are full (this is called a reversal problem), then we need to label the board with numbers so
that the sum on the inside (the original empty holes) is greater than the sum on the outside.
The numbering must ensure that a peg jump can’t increase the sum. Here is an example:

-1 0 -1
1 1 1

-1 1 0 1 0 1 -1
0 1 1 2 1 1 0
-1 1 0 1 0 1 -1

1 1 1
-1 0 -1

Initially the middle 4 squares are empty. The sum of their numbers is 6, while the outside
sum is 4, so the reversal problem is impossible.

Note that the fastest a pagoda function can increase is like the Fibonacci sequence, since
the sum of 2 adjacent values is no less than the next value.

A question was raised: are there arbitrarily large dense solvable 2-D boards? TP: yes.
Arrange the pattern 10(11)*0011 in rows, with three empty rows, so that when each row is
jumped to just one peg, these pegs line up in a column with the same pattern.

AT has done some more work on the 1 dimensional case. He gave a polynomial time
algorithm for determining if a peg configuration can be reduced to k pegs. Say we are left
with 1000001000001000001, then the sets of pegs used to get each final peg are disjoint and
non-interleaved. Now consider a contiguous section [;,j3 of the board (i.e j - i + 1 adjacent
positions, with some pegs as given at the start of the game). This section satisfies one of
four conditions:

38



1. The section is not solvable (reducible to 1 peg).

2. It is solvable using only holes in the range [i, j].

3. It is solvable using 1 extra hole to the right.

4. It is solvable using 1 extra hole to the left.

Construct a linear graph, with 2 nodes for each position on the board. The graph loos like
0 --) O’-+ 1 -+ l’---) 2 --) 2’+ 3 --) . . . Add an edge i --) j if case 2 above holds. Similarly
for edges i’ + j’, i --+ j’ and i’ --) j. Now the length of the shortest path from the first
node to the last node in this graph is the least number of pegs that the configuration can be
reduced to.

The weighted version of the problem is NP-complete, by reduction from this version of
the knapsack problem: given weights n;, is there a set A such that CiEA ni = k?

The reduction is as follows: for each weight n; use two pegs, weighted 0 and ni7 next to
each other and with 3 spaces on either side. Then choosing which way to jump in each pair
amounts to choosing a set A.

FIRE DRILL.

March 1
JDU described a method for pruning the large search trees that a HiQ program would

have to search. There may be lots of possible moves at each configuration. Give the possible
moves a lexicographic ordering, say giving higher priority to moves that start higher, or are
at the same height and are further to the left. Do only the most preferable move at any
stage, as well as any move that the preferred move interferes with or renders impossible.

DK pointed out that the preferred move can eventually interfere with just about any
position on the board, by a sequence of peg jumps. In simpler terms, there is no commuta-
tivity of moves in this game. SQ noted that the program could choose to do the preferred
move first, or never. In other words, if the preferred move is ever done, it must be done first.
You can also hash the configurations of the board that arise in the search tree, to eliminate
multiple paths to the same configuration.

JDU suggested keeping track of infeasible configurations, using de Bruijn coloring, or
SR’s 4-coloring.  We could also keep track of the possible positions for the final peg at the
end of the game, using a pagoda function: color a final position 1, and color points at L1
distance k from it with 0‘. The weight of a diamond around the final position decreases
exponentially, so the pegs must be fairly dense around the position for it remain feasible. SR
noted that there will generally be lots of feasible final positions given by this coloring, since
the position of each peg is feasible. JDU suggested finding all solvable configurations of say
3 pegs, and constructing pagoda functions weighted high on the three pegs. DI< thinks this
won’t eliminate many configurations that l-peg weighting doesn’t eliminate. MG noted that
we don’t actually reduce the size of the search space much by these techniques, since we have
to keep all configurations for which at least one final position is possible. DK would like
to restrict the problem to having a pre-determined finish position, to allow better heuristics
and search tree pruning.

SR doesn’t like the idea of brute force search without good heuristics. He thinks coloring
each peg one of four colors, then eliminating all but one color, and ending the game by

39



hopping around the lattice of the pegs of that color, should work. He also suggested using
clustering (reducing clusters of pegs to one peg then eliminating the remains).

AH asked how hard the problem is in general. How far ahead does one need to think when
playing the game? Most thought the problem is hard, with early decisions being important.

SJP showed that the problem “Is there a sequence of jumps leaving less than k pegs” is
NP-complete, by reduction from Planar-3SAT (ref: David Lichtenstein Planar formulae and
their uses, SIAM Journal of Computing Vol 11, no. 2, 1982).

SQ asked what hard configurations are known. (Just the few given with the HiQ game,
though Beasley and Conway have more configurations.) DC suggested running the game
backwards and forwards at the same time.

Said JDU, “We’ve had too much theory on this problem, and not enough practice.”

40



Chapter  6

Playing God

March 1 continued
We moved on to discussing the god-game. There was some confusion on the current rules

of the game, so here is a summary:
Each team will write a god program and player program, in a language of their choice.

On the day of the competition, each team’s god will play against all the other teams’ players.
Thus your player will have to play against the gods of all the other teams.

Each game is between one player and one god. The game starts with the ace of spades
on the table. The player has the other 51 cards, and repeatedly plays a card, which is either
accepted or rejected by the god. The god’s rule for which cards to accept must depend only
on the stack of accepted cards on the table. At early stages of the game there must be a
reasonable number of acceptable cards, so that the play is not too sluggish (the 10 card rule).
The play ends when the player has had all his cards accepted, or when he has had all his
remaining cards rejected since the last accepted card. The score of the player is the number
of plays he takes to get to either of these end states.

The player with the lowest score and the god both receive a number of points equal to
the difference between the highest and lowest scores, amongst all players playing against the
god (i.e. amongst the players belonging to each team except the team who wrote the god).

A good god program (one that will score highly) will use an acceptance rule that can
be understood quickly be a good player program, but is not so easy that all players will
understand it. A good player program will recognise lots of rules that can be fairly quickly
recognised. Remember that all your player needs, is to be able to recognise all the rules that
all the other players recognise, and then a few more.

March 6
MG thinks there is too wide a choice of rules available in the god game. He asked if the

competition could be divided into two rounds. In the first round the programs would watch
the play of other programs, so that the gods would know the level of skill of the players, and
use appropriate rules. SR thought the scoring technique already provides the checks and
balances to make the god rules reasonable. There was some discussion on MG’s thoughts.
The resolution is that if someone wants such an eavesdropping feature it could be added to
the controller.

JDU described the prisoners dilemma. 2 players simultaneously choose a 0 or 1. If they
both choose 1 they each get a small minus score. and if both choose 0 they get a small plus.

41



However if they choose differently, the one who chose a 1 gets a large plus, and the other gets
a large minus. In a contest in which programs played prisoners dilemma against each other,
it turned out to be beneficial to arrange beforehand to collaborate with another program,
which you would recognize by a prearranged sequence of first moves. Could we do the same
in the god game? A problem is that god must use a rule that depends only on the contents
of the stack of cards on the table. However, god could still determine his opponent, and
hence his rule, by the first card(s) played.

JDU described a glitch in the scoring: a rule that forces longer plays, by not having many
cards acceptable, would have a bigger difference between best and worst plays. Thus the
scoring is biased towards hard gods, that force long games. It might be better for the points
allocated to be the ratio between the excess plays of the best and worst players, where the
number of excess plays is the total number of plays less 51.

AT asked if the rule a god uses can change from game to game - it could be easy for
one player, and hard for the rest. JDU said try walking out of the competition room after
using a rule like that.

AH described his technique for solving the easy version of problem 3 (he had missed class
after thinking of this technique). Given photos of a cluster taken from Earth and Trantor,
with no jitter: each star defines a plane through Earth, Trantor and the star, and the angle
of elevation of this plane can be easily calculated from either view. Sorting the stars in both
views by this angle and matching 1 to 1 gives the correct match. (Actually if some stars share
the same plane they can be matched arbitrarily - they can’t be resolved using the photos.)
If there is jitter, AH hypothesised that the same technique (just sorting and matching 1 to 1)
gives the best possible match by a variety of norms (Lr, La7 L,) photographs. His program
found matches that were by all norms better than the “correct” match.

Returning to the problem at hand, SR thinks that the essence of the problem is coming
up with the correct representation for god rules. He envisions having a vast library of rules
that have been used before, on which the player has been trained, and basing plays on these
rules. After some discussion it was decided that the best way to use such a library would be
to play the card that the most rules would accept. If the card is accepted we’re happy. If
the card is rejected we are still happy, since we have at least halved the number of possible
rules.

SR suggested using DFA’s to represent rules. If the rule is l-memory (depending only on
the top card on the table) then the DFA will have at most 52 states. If it only uses the suit
of cards played it will have 4 states. However the number of attributes that a god could use
is large (eg. suit, rank, color, one-eyed jacks, suicide kings, . . . ) and god can use an arbitrary
amount of memory, so the number of potential DFA’s is huge. Hence DFA’s might not be
the right representation. JDU noted that DFA’s are more suitable for representing regular
languages than regular expressions are, if there is memory.

There were various suggestions for reducing the space of rules, such as determining first
which attributes god is using. SR will ask John Woodfill (a grad student who has worked
on recognising regular expressions) for ideas. VG noted that there are algorithms that run
in polynomial time for learning regular expressions. Unfortunately polynomial time is not
good enough for us - we need to learn a rule in less than 51 plays.

AH suggested using a collection of routines, each looking for different patterns, and

42



suggesting plays.
JDU thinks we’ll have to develop an “expert system”, or more specifically a driver or

controller into which one could plug concepts (such as suit and rank) that can be added as
they become necessary.

MG asked if all cards must be playable in some game, for a fixed rule (yes). Thus the
rule “only reds are playable” is not acceptable, though “accept only red cards after the first
red card has been played” is.

DC suggested building up simple concepts using boolean connectives. SR described the
version space algorithm (ref Tom Mitchell, “Generalisation as Search”, Artificial Intelligence
1982). Given a space of rules that are partially ordered by specificity, we keep track of the
set of rules consistent with a sequence of (positive and negative) examples of the concept.
We keep only the most general concepts MG and the least general concepts LG in this set.
When we see a positive example, the set MG moves down7  and when we see a negative
example, the set LG moves up. A problem with this technique is that MG and LG might
be exponential size. Valiant proved that under certain simple conditions MG or LG will be
just one rule (singleton sets).

SQ gave a progress report on HiQ. His program solves the 33-peg HiQ board in 1 second,
and the 45-peg board in 6 hours. He is using no heuristics, and thinks he could easily get
the run time down to 1 hour. He gets down to 2 pegs in about 15 minutes. VG said that
by hand he also jumped down to 2 pegs in about 15 minutes. AH: “Congratulations, Sean!
You’ve duplicated Vineet!”

SQ’s program searches about lo6 nodes at the lo-peg level on the 45 peg board before
finding a solution with 2 pegs remaining. He caches 400 000 positions. Doubling the cache
improved the run time by about 30%. JDU thinks a 32-bit address space could encode all
the positions found on the way to a l-peg solution to the 45 peg board, thus eliminating
repeated searches.

Dividing into .5 teams of 2 people (who haven’t worked together yet) proved tricky. A
greedy match failed when the last two unmatched people had worked together. Eventually
the following teams were devised:

(1) DI(, DC. (2) AH, SR. (3) AT, MG. (4) ET, SQ. (5) VG, AS.

March 8

JDU has written 6 gods, which can be found in /mnt/ullman/cs304  on nimbin,  and
phillips/CS304/public/godgame  on neon. The file README describes the rules used by
each. One of the rules allows suits played round robin, but if the size of the pile is divisible
by 5, then any card is playable. The idea of this is so that some players would throw out
the only rule that is relevant (a suit progression rule) because it has exceptions.

JDU is wary of snake oil salesman in computer science ~ people who think programming
is easy, and hard problems can be solved by, say, neural nets: if the program doesn’t work,
kick it and it’ll learn its errors. He thinks an effective approach is not to use fixed rules, but
to determine affinities of cards with previous plays (where affinity must be a programmable
and tunable notion), so the player wouldn’t be thrown off by exceptions.

SQ asked if players play the same god more t’han once during the competition (no, SO no
learning can be done during the competition).

43



There was some discussion on the reproducibility of god’s behaviour, and it was decided
that a god must always behave the same on the same set of card plays. This is a consequence
of god’s behaviour only depending on the stack of accepted cards on the table.

A note of etiquette: it is illegal for the player to check his plays before playing them, by
executing his own copy of the god program, and testing the plays to see if his copy of the
god will accept them.

MG has worked on constructing rules from simple attributes, using binary connectives.
He hasn’t written code, but would generate all rules up to a fixed complexity (about 1600
rules), and keep track of those that have made no errors on the cards so far. He thinks the
results are promising in a limited way - he thinks a program will quickly recognise any rule
that can be represented by the attributes and connectives, but will die on any rule that is
not covered, such as JDU’s  mod-5 rule. Keeping track of rules that are correct only most
of the time might fix this fragility. Even with this modification, this kind of player would
break if the god switched to a different rule in the second half of the game. SQ noted that
rules with lots of connectives will not be good, as no person would construct a rule like that.
However, a rule that seems simple to a person could become complicated when written in
terms of a small set of attributes.

A few attributes that a god might use are: color, suit, rank, picture, major, minor,
high/low, letter/number, one-eyed jacks, suicide kings, rank range, n’th from last, n’th from
start, stack length, sum of ranks, . . . . Note that the first two can be used to construct all
other attributes.

A god could use arbitrarily obscure mathematical relations, but as MG observed, the
whole point of this problem is psychology, not math. If it were math the problem would be
intractable. A player can’t recognise all possible attributes and rules, so one must aim to
code all the likely ones. JDU thinks the teams will be able to write programs that would
beat, say, a typical freshman. AH: “Hey, some of my friends are freshmen!”

SR thinks that the advantage of using neural net ideas is that a neural net is robust -
each time the god disagrees with a rule that is given by a net, the net moves a little in the
rule space. This makes it resistant to rules like JDU’s  mod-5

JDU is interested to see if the best player needs to understand the rule well, or whether
one can play well without explicitly representing the rule.

SR talked about learning l-memory rules, i.e. relations between cards. He thinks a
collection of feature demons will be useful (using the terminology of Rumelhart’s  work on
recognition of blurred words: he had low level demons looking for vertical or horizontal lines,
shouting their finds to the next higher level, which would be looking for letters, which would
signal the demons looking for words.) JDU: “This reminds me of the joke in which a search
plane flies over a desert island, and the pilot says ‘Nope. On second thoughts it says HELF’
77

AS asked if the kind of generalisation that neural nets do, matches the generalisation
that we need in the god-game. As an example, a net that chooses cards according to the
total rank mod 17 is likely to fail badly if god is choosing cards according to the total rank
mod 18.

JDU: construct a string of O’s and l’s for a rule, with a 1 when the rule matches the
god’s play. We want a union of things that match the play so far, which is a kind of exact
match problem. Exact match is NP-complete, but approximations would work fine for us. If

44



we are constructing rules with intersections and unions, then covering is the essence of the
problem. SQ noted that this isn’t true when the rule changes halfway through the game.

Some quotes for today:

Just think of this as a social game played by teenage nerds. JDU

If you look at this not rigidly like in neural nets, instead maybe use fuzzy
logic. . . AH

Oh, don’t start me on fuzzy logic! JDU

March 13

SQ asked if there are any good heuristics for the covering problem we described in the
last class. JDU suggested using a greedy approach. If the god rule just depends on the
suit of the top card on the table, and the suit of the next card to be played, then we wish
to cover the acceptance string (the string of l’s and O’s with a 1 when the card played was
accepted) by a disjoint sum of traces, for the 16 possible rules of the form: if the top card has
suit1 then accept only suit2. A trace is again a string of O’s and l’s, with a 1 when the rule
is applicable and consistent with the play. We throw out rules that are inconsistent, then
repeatedly add to the cover a remaining rule that covers the largest number of remaining l’s
in the acceptance string.

This technique may be adaptable to slightly more complex rules, but might not be of any
help for complex rules. If the rule depends on more attributes, we have a harder covering
problem. MG is doing something similar to covering, finding the simplest rule that is correct
at least 80% of the time, as well as trying to find an “exact cover” that is correct all the
time. He has added a type system to his method, so that instead of having 1600 rules he
now has only about 270, giving him room to add new attributes.

AH and SR found an AI article on Eleusis, a game similar to the god game, that is
claimed to have been invented in the 1970’s (though the god game existed earlier). The
paper does some ad hoc things, and talks about similar techniques and approaches to the
problem as we have in the last few classes, but doesn’t seem to achieve any results.

It was decided that the competition should be on Thursday during finals week. This
will give the teams time to write powerful players. Although AS will work on developing a
player, he won’t make the competition - “I don’t have to be there for the final victory.”

SQ brought up the question of how to score inside a player, in other words how to
correlate the recommendations of various rules. The probability of a rule being correct when
it says a card will be accepted is &-, where tp is the number of true positives so far, and
fp is the number of false positives. We want to scale this so that we won’t favor rules that
hardly ever give a positive: & x A. The reason SQ doesn’t use the obvious expression

t p + t n
tp+fp+tn+fn

is that the player who always answers no will be correct about 80% of the time.
JDU gave the analogy of the stock market: there are lots of rules that predict the

behaviour of the stock market till yesterday, but have no correlation with its behaviour
tomorrow, as many people often discover. That said, SQ noted that even with a dictionary
of about 100 rules, and using his scoring technique, his player performs better than the trivial
players. He keeps all the rules, and scores each of them at each play, to get the traces. He
also does some evaluation to determine the next play: For each remaining card, he tries out
each rule on it, scoring a yes or a no. His scoring technique, described above, estimates the -

45



probability that a rule is correct given that it says yes, and similarly for no. He looks at
II( 1 - Pr[correct 1 said yes]) and lI(l - Pr[correct  ] said no]), where the products are taken
over all rules’ responses on a fixed card. The final decision is yes or no depending on which
product is smaller. The reason for the above form of the product is that if a rule has been
totally correct so far, and predicts that the card will be accepted, then the first product will
be zero, so the correct rule’s voice won’t be drowned out.

AH and SR have also been looking at t,he problem of correlating the choices of a number
of rules. The put a prior distribution on the rules, and each play tweaks the weight of all the
rules, by Bayesian analysis. SR described the form of their rules: S; = Vj + accept class Ck,
where Si is a state variable, such as the suit of the last card, the sum of the ranks mod 5,. . . ,
Vj is a value, and Ck is a card class, like hearts or picture cards.

JDU expressed surprise that some people want to use rules that have been wrong on
some plays. AH explained that if the rule uses concepts that are not in the program, then
the player has no choice but to use rules that err. The hope is that some rules that the
player has available will approximate the correct rule.

JDU thinks that the programs we see at the competition will be able to beat people.
AS noted that they will be fragile, and described how a program measuring word length,
number of sentences in a paragraph, and number of semicolons, can grade school essays in
close correlation with teachers’ grades. However, if a student writes gibberish with long
words and lots of semicolons, the teachers will pick it up while the program won’t.

AT has thought up a god program that doesn’t rely on its rule being recognised by only
some of the players. It accepts everything until a magic card is played, then makes the player
play cards only in a strange sequence. To satisfy the lo-card rule he allows other plays if
the magic card is played before 10 cards have been accepted. The variation in the number
of plays of a player playing this god is large, essentially just the variation of a single random
variable. A similar rule is that if the first card played is red, the rule is easy, otherwise it is
hard.

MG noted that this problem is an artifact of the solitaire version of the god game -
such a god rule wouldn’t work well in the original version, where all the players are playing
round robin with the same pack of cards.

Although AT’s rule throws a spanner in the works, JDU will have some proper gods
on hand on the competition day, so it will still be worthwhile to write some good player
programs.

March 15

JDU introduced a taxonomy of techniques for writing a good player. Firstly there is
the statistical method, in which statistical analysis is used to approximate the rule without
understanding it fully. The neural net and feature extraction methods fall under this heading.
An advantage of these techniques is that they are malleable - they are likely to fare well even
if the rule changes during a play, or if the rule uses card features that were not considered
during the design of the player.

The second approach could be called generate-and-test. The player generates a large set
of rules, and tests each one for consistency. This paradigm can be further divided: the player
can keep track of the consistency of component subrules, which are combined to form the
guess at the god’s rule, or it can consider all combinat,ions of the subrules at each step. SQ

46



thinks about 100,000 to l,OOO,OOO  rules can be considered at each step, using 10 seconds on
a 10 mip machine, since the rule analysis involves fast operations on short bit-strings. Thus
a player considering exact rules can probably search faster than a statistical player. The
price such a player pays is in brittleness - if god’s rule is outside the space considered by
the player, he might fail badly.

AH suggested a method for breaking a brittle program: use a rule P most of the time,
but at random points use a different rule Q. However, the generate-and-test proponents
think that their players could easily handle this.

MG thinks that the players will do better than was previously thought. He described how
his player knew nothing of bridge wrap-around ordering of suits, but used a rule involving
the fourth card down in the stack to play well against the god that accepted cards only in
the bridge order. His program uses a generate-and-test technique, and he says it has some
pretty weird rules still under consideration, at the end of a game.

There was more discussion about AT’s rule. JDU suggested that the fraction of cards
playable shouldn’t have wild jumps during a game. The idea of a god rule is to test the
players. We are really conducting an experiment, to see how well a program can learn a rule
from a large ill-defined space of rules, and what type of player will be best suited to the task.

MG described how a random player, playing against any legitimate god, will average
about 400 plays. The least possible number of plays is 52, so there isn’t a very large range of
possible scores. He is worried that the scores will be affected more by random card choices at
the start of a game, than by the quality of the players. Other members of the class thought
this was not likely to be a problem, and anyway we will be playing the players against lots
of gods. It should be clear by the end of the competition, which are the best players.

SR introduced some new ways of looking at a player. Given a set of state variables Si,
we obtain a trace for each, with a 1 at each position that state variable is true. We wish to
predict the next bit in each trace. We have a collection of models for the sequences, which
predict the next bit. As before, we can keep track of the consistency of the predictions of
these models.

Alternatively we can use a Fourier transform to determine periodic behaviour in the
traces. We could also model a trace as a 2 state Markov process: the states are 0 and 1, and
we determine the probability of the next bit being 1 if the last was 0, and vice versa. This
will recognise density and persistence in the traces of the state variables. A more powerful
technique is to determine for each state (0 and 1) the probability distribution on the number
of steps taken before a transition is taken to the other state. If the rule is random, then the
distribution will be exponentially decreasing. If the rule is “alternate colors” then the state
variable “color is red” will have a peak at 1 step. We could start with the exponentially
decreasing distribution, and use Bayesian inference to change the distribution as more cards
are played.

MG noted that this technique will fail to recognise a pattern in a trace like the following:
01101110110111011011101101110 - a more powerful model would be needed for this.

SR described his technique as a decomposition method: he doesn’t think that the table
of traces needs to contain combinations of state variables. The table will have to have a huge
number of state variables, though.

We can incorporate the information given by failllres into this model as follows: if there

47



are lots of rejections before an acceptance, and Si is true for the accepted card and false
for all the rejected cards, then its trace would contain a large value (instead of 1) for the
accepted card.

SR also described what he thinks is a more brittle approach: we keep a time-varying
sequence of tables of states Si against classes Cj, with an entry (i, j) in table k being Yes if
the k’th play was a card in class Cj, the current state satisfied Si, and the play was accepted;
if the play was rejected the entry would be No. A pattern has the form Si =+ Yes(Cj)  or
Si * l Yes(Cj), and similarly for No.

A problem with this technique is that the number of state variables and classes will be
huge, so they couldn’t all be considered at the same time.

The time of the competition was set for llam. on Thursday.

March 20

Results of the Competition

Below are brief descriptions of the god rules used to rate the players. The first few were
given in advance, so were not used in the competition.

l godl: sum of the suits played, mod 4, equals rank of next card, mod 4. Suits are
valued C=O; D=l; H=2; S=3.

l god2: major suit must follow minor, and vice versa.

l god3 difference in ranks no greater than 3.

l god4: letter follows red; number follows black.

l god5: suits go in round robin fashion by position mod 4, but every fifth position is
“wild” (any card may be played).

l god6: card must match one of the previous 3 cards in either suit or rank

l god7: even positions: suits in bridge order; odd positions: ranks alternate >= 7, <= 7.

.  god% ( K A R ) card must have same rank or suit as the card four plays ago. First 4
cards can be anything.

l god9: (KAR) P’ trc ure cards are wild; otherwise must be in descending rank sequence
mod 10, eg: AS, TD, 9H, JH, 8C, etc.

l godlo: (KAR) computes rank + suit, mod 13. Current card must have rank+suit that
is greater than this value, but not a.s much as 5 greater.

l godll: sum of last five ranks equals current rank, mod 3.

l god12: let p = square of previous rank, mod 13. Then p = 0, 1, 3, 4, 9, 10, or 12.
Square of current rank, mod 13, must be equal to or successor (end-around) of p in
this sequence.

4s



l god13: rank of top, plus suit of second, plus square of rank of third plus suit of next
equals 0 mod 4.

l god14  This is an illegal rule. Every other card is playable, no matter what it is.

l god15: (PMU) Add the suit to the rank of the card. The number of one’s in the binary
representation of the sum must alternate even/odd. (eg. AS=4=odd)

l god16: (AH) S ui s‘t
order.

in bridge order except after 3 or J in which case reverse bridge

l godl7: (AT) 8 9 10 wild. Every 3 (neglecting 8, 9, 10) must sum to 15 with J = S Q=9
K=lO.

.  godl8:  ( S R ) suits in order SHDCCDHS...

l godl9:  play a higher red card or a lower black card.

l god20: (DK) odd positions: suit order; even positions: sum of top two card ranks must
be even.

l god21: (DK) play different suit from middle card of pile. Also, card played must be
opposite high/low as second card from top of pile.

l god22: color pattern is (BRRB)*.

The following table rates the various players against many of the above gods. Each entry
is the number of cards played till all cards are down, or every playable card has been played.
The last two columns are given for comparison: the random player chooses for his next play
one of his remaining cards at random, while the circular player tries his remaining cards one
by one in the natural order till one is accepted.

God Team 1 Team 2 Team 3 Team 4 Team 5 Random Circular
7 107 S4 104 88 161 478 126
8 78 60 78 57 69 112 162
9 97 60 245 145 54 207 212

10 127 144 168 166 163 176 153
11 115 117 114 98 127 113 118
12 69 99 S6 129 148 108 154
13 175 120 224 182 162 139 173
15 92 91 SO 111 88 70 94
16 S4 67 S5 103 98 882 149
17 56 S6 76 97 105 70 101
18 104 68 95 S7 581 519 152
19 69 68 151 104 197 103 120
20 131 S6 96 69 0 507 140
21 168 176 156 125 0 217 152

49



Chapter 7

CS204 Problem Statements

CS204 PROBLEM #l: Breaking the Code
Due Thursday, -4pril 19

Let’s see what we can do with simple substitution ciphers, in which a permutation 7r of
the letters is selected, and a message is encrypted by replacing each letter x by r(x). For
example, if part of our permutation is

Letter H E L 0 W R D
r(Letter)  A B C D E F G

then HELLO WORLD would be encrypted as ABCCD EDFCG.
Since there are 26!, or about lo”, possible permutations, trying all does not seem

like the thing to do. We can attack the problem by assuming that all the words in the
original message (called pZaintez2)  are found in /usr/dict/words.  Thus, there may be a
hundred possible words of which ABCCD is an encryption (called ciphertest), and perhaps a
thousand of which EDFCG is an encryption (the double C in ABCCD makes it much harder to
match). However, there are not 100,000 pairs of words that match ABCCD EDFCG, because
the repeated C’s and D’s are quite restrictive. Further, we get some restriction from the
fact that all the letters in the ciphertext represent distinct letters of the plaintext. With
luck or good planning, we can select words of the ciphertext in a good order, and keep the
number of possibilities within reason. There are some other strategies that the instructor
will discuss in class.

A Simple Variation

If that seems too easy, we can observe that /usr/dict/words  does not include words with
suffixes and prefixes, like “nonreentering.” .4ssume  that the plaintext is chosen from words
in /usr/dict/words,  possibly modified by common prefixes and sufExes,  such as re-, non-,
-S, -ing, -er, or -ed. Be careful to use the proper formation rules, like “hate” + “hating,”
or “panic” -+ “panicked.”

A Less Simple Variation

.4dditionally,  suppose that a small fraction of tllc \vor<ls in the plaintext may be words .

so



that do not appear in /usr/dict  /words, even after modification as above, such as “ullman”
or “sparcstation.”

The Enigma Variation

During World War II, -4lan Turing worked, successfully, on a British project to decipher
the German code, which used the Enigma machine for encryption and decryption. The
British had ca,ptured  a copy of the Enigma. machine, a,nd the Germans knew they had, but
believed the workings so complex that the British could not decode messages in a timely
way, even seeing the mechanics of the ma,chine.

The Enigma had four wheels, ea.ch  of which had the effect of permuting the 26 positions
that might represent letters. The wheels would be set in a special position each day; the
position for the day known only to the operators of the machine. Suppose the operator
types A. Depending on the position of the first, wheel, A might be in position 10. The first
wheel would translate posit,ion  10 into some other position, say 22. Position 22 on the first
wheel might be next to position 17 on the second wheel, and perhaps the second wheel
translates position 17 to position 3. The process continues through all 4 wheels, and the
final position of the last wheel is translated to a letter. Then, to make matters worse, after
this letter is translated, the wheels move r&tive to one another, something like the wheels
of an odometer, but with a more comples imerrelationship.  Thus, another A would not be
translated to the same letter.

Suppose we are given the wiring and gearing diagram for an Enigma machine. That is,
we know what the permutation of positions is for each wheel, and we know, as a function
of the current positions of the wheels, what the next position will be. However, we do not
know the initial positions of the wheels? and we do not know the plaintext. How can we
decrypt ciphertext under these assumptions?

CS204 PROBLEM #2: Superabundant Numbers
Due Thursda,y,  May 3

The abundance of an integer n is the sum of the divisors of n (including n itself), divided
by n. Integer n is k-abundant if its abundance is at least k.

For example, the sum of the divisors of 6 is 6 + 3 + 2 + 1 = 12, and 12/6 = 2, so 6 is
2-abundant. ,4s another example, the sum of the divisors of 120 is

120 + 60 + 40 + 30 + 24 + 20 + 15 + 12 + 10 + 8 + 6 + 5 + 4 + 3 + 2 + 1 = 360
so 120 is 3-abundant. It happens t,hat  6 is t)he small&  2-abundant number and 120 is the
smallest Z&abundant number. They happen to be exact)ly  2- and 3-abundant, respectively,
but it is generally possible tha.t the smallest, k-abundant, number has abundance greater
than k.

Your goal is to write a program that finds the ak, the smallest k-abundant number
for k = 1,2,. . . . How high can you go?

Some Suggestions

When the CS304 students w~A;ecl  on this problem, the concept of a Phillips number

51



(named for Steve Phillips, the T-4) was useful. -4 Phillips number is a number that is more
abundant than any smaller number. Clearly,  CQ is a Phillips number, but there are many
Phillips numbers that are not CQ for any XL

Solving this problem requires some ( not!  very deep) mathematics, involving prime
numbers. As a warmup, try answering the following questions:

1. What is the abundance of Zi?
3Y. What is the abundance of Zi3j?
3. What is the abundance of 2’1 3i25i3  . . .pj’~ . . ., where pj is the jth prime?

When you start writing code, you may wish to use the source of primes in
/usr/games/primes

This program is a generator of the primes, in order.

CS204 PROBLEM #3: Playing “God”
Due Tuesday, May 22

In the days before Dungeons and Dragons,  one of the things nerdy teenagers did was play
a card game called “God.” On each round, one player was selected to be the god. The god
made up a rule whereby cards could be played on a pile, which was constructed in a line,
so all played cards were visible. An example of a (too simple) rule is “only a red card can
be played on top of a black card, and vice versa.” To begin play, all cards but one were
dealt to the players, and the last was turned up to start the pile.

In turn, players offered cards for the top of the pile. If the play meets the god’s rule,
then the card is allowed to stay on the pile; otherwise it is withdrawn to the player’s hand.
Play ends when one player gets rid of his last card. That player, and the god, each score
an amount equal to the sum of the cards remaining in the other players’ hands.

Selection of God Rules

The scoring system suggests that the god should pick a rule that is nontrivial, but deducible
with some effort. If a rule is too easy, then everyone will catch on quickly and get rid of
their cards at approximately the same time. The score will tend to be low, as no one will
be caught with many cards. If the rule is too hard, everyone will play as if at random,
and the expected number of cards with which anyone is caught will be low as well. Ideally,
from the point of view of the god, one player should figure out the rule immediately, and
get rid of his cards quickly, while the ot’her  players are stumped and get rid of cards only
by luck.

There are some constraints on lega, rules that the god may use. First, while many
good rules are “l-memory,” in the sense that playability of a card depends only on the
previous card played, it is permissible to use a rule in which the playability of a card
depends on the entire pile. Example: “The sum of the cards on the stack, modulo 13,
must be a prime.” However, the following must be satisfied.

53



Some Example Rules

Consider the following possibilities, for example.
1.

2.

3.

4.

5.

If the rank of the card played is equal to or higher than the rank of the top card, then
the two cards must be of t,he same color; otherwise, they must be of different colors.

The difference in the ranks of the cards must be no greater than 3, in the “end-around”
sense (e.g., Deuce is distance 3 from Queen).

A letter card may not be played if either of the top two cards are letter cards.

Face cards (J, Q, I<) played must be of the same color as the top card. Other cards
must be of a minor suit ( C, D ) if t,he top card is a major suit (H, S), and vice versa.

Cards must alternate odd/even ranks, but one-eyed jacks and the suicide king can be
played any time.

1. The rule depends only on the stack contents. r\;o “I pass them crossed” or “Anything
Sally plays is OK, bu anything anybody else plays is wrong.”t

3&. There must be at least 10 cards playable in any situation. This rule must be under-
stood to apply on the assumption that an infinite supply of cards exists. Otherwise,
with any rule and any stack of 51 cards there is only one card pla.yable.  An example
of an illegal rule: “each card must be of one higher rank than the previous card on the
stack, with Ace following Icing and Deuce following Ace.” (Only 4 cards are playable
in any situation.)

Even with rule (2), it is possible that t,he game will reach a situation where there are no
legal moves for any player. Example: “-4 letter card must follow a number card, and vice
versa.”

The Problem

You should write a program to play “solitaire” God, interacting with a controller program
that was written by Steve Phillips. Your program starts with 51 cards, and the Ace
of Spades is assumed to be the initial card on the pile. A card is represented by two
characters, the first being the rank (A, 2, 3,. . . ,9, T, J, Q, K), and the second the
suit (C, D, H, S). For example, to p1a.y is the six of spades, you put GS<newline> on the
standard output. You will then receive on your standard input the character Y (yes, the
god accepted your play) or N (no, bhe god rejects your pla,y),  followed by a <newline>.

The controller program is found in
portia:~ullman/controller

and Portia:  ~ullman/controller  . c.

Scoring

The controller counts the number of plays you make. It stops the game when either you
run out of cards, or you ha,ve pla,yecl all the cards in your hand and had each rejected. (The
controller also makes a minimal attempt to clct,cct looping situations where your program

53



repeats a failed attempt without first trying all your cards.) Your score will be the number
of plays made minus 51. That adjustment helps a&void a situation where only god programs
that reject most cards can produce large scores and therefore large variations.

Writing God Programs

There is a template god program in Portia: -ullman/god. c that will enable you to
implement god rules by following the simple comments found in that file. If you wish
to write your own programs, they must expect from the controller cards in the form
<rank><suit><newline> a,nd must produce responses of the form <Y or N><newline>,
on the standard input and output, respectively.

CS204  PROBLEM #4: Traffic Light Controller
Due Thursda.y,  June 7

These days, it is quite common for traffic lights to have bumpers that sense cars approach-
ing from any of the four direct ions. -11~0, it appears that each town has its own computer
that reads bumps and follows some simple algorithm to decide whether to switch the light.
A typical algorithm is to switch a light’ only when either

1. A bumper in the red direction is bumped but there is no bump in the green direction,
or

3A. There are bumps in both directions, and a time-out has occurred, e.g., the light has
not switched for two minutes.

This algorithm is amazingly dumb, considering that one computer knows about bumps at
all the lights in town. I think people can design much more effective algorithms.

The Map

ESC is writing a simulator for a simple road map. I suggest that trying your ideas on
a 5 x 5 grid of two-way roads would be a reasonable test. There are thus 100 bumpers,
four at each of the 25 intersections. Cars appear at the edges of the map at random, at
a rate you select. It is possible to assume cars travel along the roads without turning or
disappearing, at the speed limit set for t,hat  road, unless the car stops for a light. I am led
to believe that turning, appearing, and disappearing cars will be options allowed by the
simulator.

The Problem

You are to write a program that accepts a. data. structure representing all the bump/no-
bump information at the intersections and modifies the structure to reflect any changes in
the setting of lights. You can switch lights arbitrarily; there is no “yellow” period unless
you program one in. Each call to your procedure represents one second of elapsed time.
The physics of automobiles (e.g., they slow down; they don’t stop on a dime) has been
built into the ESC simulator. There is also, I am told, a rudimentary intelligence, in that
if cars are still traveling throl:gh an intersection in one direction, and you turn the light

54



green in the other direction, the cars wa,iting in that direction will not move. Details of
the structure will be provided in a “manual” ESC is preparing, but I want to get people
thinking about algorithms now.

The question of what is a “good” a.lgorithm  is a bit subtle. I propose that minimizing
the average time it takes a car to pa.ss through the map is a good idea. However, we also
want to avoid, say, stopping traffic in one direction and letting it flow unimpeded forever in
the other, so maximum delay should also be low. Setting both directions green and hoping
for the best will be regarded as an error, a,ncl may cause a crash, of both the cars and the
simulator. Finally, we want to avoid failing to admit cars to the grid as they appear on
the border, or “gridlock” conditions where queues at a light have grown so long that they
block traffic at another intersect i,)n.

55



Chapter 8

CS204 Class Notes

CS204 - Who They Were

A\\’
B.JG
BL
CJ
c: LV
E R
ESC
E T
HH
.JD
.JD I’
I<F
11 I\.
MN
MPF
MT
PF
P 1; \,\’
PS

Aaron  Wallace
Bruce Goldman
Ben La.i
C’llris .Jones
Carl \jVit.t\v
Eric Rose
Eclwarcl  Chang
Eric Teller
Hugh Holbrook
,Janles Drew
.Jeff l~llnmn
Fiat hleen  Fischer
;Clichael  Iiillianey
Ma.son Ng
Alike Fmnl;
Ma.rl; Torrance
Perry Friedman
Peter Wagner
Piyush Sha#h



Day 1 - April 3

Professor IJllman (.JD U) welcomed everybody to Stanford’s first Unclergradua,te Programming
a.ncl Problem Solving seminar. A similar course for first yeax  graduate students has been t’aught
for t’he pa.st  two deca.des,  with the goal of introducing them to research rnethods and to each
other. Since (we espect)  the course consists predominantly of seniors, JDU remarked that most
of t,he people probably already knew each other. A quick survey, however, revealed that this
was act,ually  not the case, perhaps due to St8a,nford’s  very a,ccessible  and decentralized computing
resources, and we tool; a moment to introduce ourselves.

During the quarter the class will work on four “unsolved” problems, the first one being the
decrypt.ion  of simple substitution ciphers from short sa,mples  of ciphertest, and the final three
to be determined la.ter. Although the cla.ss  is expected to discuss the problems openly and
freely, actual “solutions” to each problem will be produced in teams of three. JDU noted that,
a.ccording to (X304 tradition, no person should be on the sat.me  tea,m with a,ny other person
more tha,n once, with the intent that people should become better acquainted with all of their
co11 ea.gues. Solutions cVI‘11 consist of a brief (3-5  page) paper describing the problem and whatever
va.ria.tion(s) was considered, a proposed approa,ch  to the problem, and an evaluation of how well
the chosen a.pproach worked. Directions for future work  (hs-pothetica,l,  of course) sl~oulcl also be
discussed if the solution is not complete or entirely sa.tisfactory. JDU also remarked tl1a.t  the
pa,ra,met,ers  of the problems were never immut~a.ble;  if a, problem was too difficult, it could be
restrict,ed, and if a. problem was too straightforward, it could be extended.

At this point, .JDU paused to call for questions or comments, a.sking people to resta,te  their
names, since he ha,cl  already forgotten them since the introcluctions. Nobody volunteered. JDIT
then amended, “Anybody want to speak a.nonymously ‘?” ET wondered how the graduate students
had faxed on t,he other problems. JDU a,nswered  that he wa,s, in fact, not a,waxe of any work on
most of the problems, and that even if he was, he probably wouldn’t tell. Perhaps novel and
interesting a,pproaches would be discovered tha,t n:a.y. BL asked whet,her  it was O.K. to call him
.Jeff  . . . “of course.7’ The class then discovered tl1a.t grading was a ta,boo  subject; .JDU simpl!*
a.ppealecl,  “Sl;ip a problem if you ha,ve  to, but pour your hea.rt,s  into it,.”

Finally, we turned to the problem of decrypt,in g a, simple sllbstit,ut8ion  cipher. We consider
permuta~tions  of a, normal 26 chara.cter  alphabet. .JDU suggested a database oriented approa.ch.
ITsing a.n\. on-line dict’ionary  (e.g. /usr/dict/words  on Unis) we can. generate n-ary relations
consisting of \~ords of length n. Let word?r be the relation of words of length n, with each field
corresponding to the appropriate letter. The select,ion opera.tion  0 ca.n be used to select certain
t,uples (i.e. words) from a, relation; thus ass& words) \vill consist of tuples corresponding t80



evods with the same  t’hird a,ncl fourth letters. The projection opera,tion  n- reduces  the a,rit,y of a
rela,tion by projecting only specified fields.

Example:
~~1,$2,$3,$.~(c7~3=S~(word,5)) =  < H E  L 0  >

< F I; N k' >
< F U R Y >

. .

A third database opera,tion  is t,he bina.ry  join M. A join R bi!sj S would produce a relat’ion
whose tuples a,re generated from pairs of tuples, one from ‘72 and one from S, such that the itI1
field from ‘rt wa,s  equal to the jth fielcl  of S.

The cla.taba.se  fra.meworli,  therefore, ca.n be oukecl  a,s follows.

1. Pick some ciphert.ext lvorcl and produce wordn, where n. is of course the length of the word.

2. Select tuples ba,secl on repea,tecl  lett,ers in the encrypted word (pattern match for equality)
a.ncl project only the non-recluncla.nt  fields. Let ‘7?. be the resulting relation.

:3. Repeat, 1. and 2.. na,ming t#lie resulting relation S.

-il. .Join ‘71.  and S, equat,ing  fields based on repeakecl  letters in the encrypted words.

5. Repeat 13. a,ncl 4. for t,he remaining \vorcls.

Esa.mple: Given t#he ciphert,est8  -*.4BC’C’D  EDFCG” we generate the 7-ary relation

\vhich we expect to conta.in the t.uple < H E L 0 W R D >. This woulcl decipher the messa,ge  as
%ello world”, but the relation ma,y conta,in other t.uples if t,he solution is not unique.

Some strategy is required in picking the words t’o a,tta,ck.  Peter suggested picking \~orcls
thak had the most letters in common; JDIT a.greecl,  aclding  that the most restricted words \~oulcl
ha,ve the smallest relations ancl \voulcl therefore be most, e%cient.  .JDU a.lso  remarkecl  t’hat, the
ciphertest “ABBCB” was especially useful, since it ha.cl only a, single possible translation ~ i.cl.
“geese”, “asses”, or “error”. “So I wa.s  wrong; it happens!” CJ suggested that very long wo~‘cls
would also ha,ve sma,ll relakions.

There is still a.nother type of constra.int  that* has j-et to be accounted for. Since a permutakion
is injective,  two clifferent  encrypt.ecl letters cannot represent the sa.me decrypted letter. In the
a,bo\:e  example, for inst,a.nce,  the t,uple < H E L 0 D L Y > will a,lso be in the genera.ted rekion,



corresponding to the incorrect decryption “hello dolly”. At some point,-it is necessary t’o select
for inequalities.

,4 lively cliscussion  a.bout, when to select for inequalities ensued. If we select for inequalities
at the very encl, as a postprocess, we will in general produce a number of intermecliake  relations
with incorrect tuples. This ma,y ma.ke the join opera.tions  significa.ntly  more costly (selection a.nd
project,ion  a,re linear, a. more palatable excess). On the other hand, it n1a.y be even worse to check
for duplicates after (or even during) every join.

.JDU suggestecl t,ha.t the size of the intermediate relations ma,y peak in the middle. If so, it
may be advantageous to check for duplicates after every join only when the size of the relations
are near the pea.k, a.ncl  then post-process to elimina,te  the (hopefully) f‘ew incorrect8 decryptions.

PF suggested making use of letter frequencies as an alternative approa,ch  to decryption. If the
ciphertest is long enough, such a statistica. analysis would proba,bly be significantly easier t,han
the database oriented a,pl)roach.  For short sa,mples, however, a. sta,tistical  a.pproa.ch  will probably
not work. It 1na.y  be worthwhile t,o consider how long the ciphertest, shoulcl  be before switching
techniques. .dlso, the st,atistica.l  a.pproa.ch will not yield all possible decryptions.

As the class drew t,o a. close, we discussed a few of the possible va,ria.t,ions  for the problem. If
one of the encrypted \\:orcls  could possibly come from outside the dictionary (i.e. a \vildca.rcl),  the
brute force approach of simply ignoring each word, one a,t a, time, would yield potentia,l  solutions
with about,  11 times as much computation, where n wa,s  the number of words in the ciphertest.

Similarly, if i words could come from outside the dictionary, the computa.tion  woulcl be 11
( 1i

times haxclcr .
CW suggestecl ciphertexts in which word brea,ks  were hidden, which is certa.inly  one of the

more dificult I-a,riat,ions if we assume the ciphertests remain short.
JDU promised to bring a.11  article on the ENIGMA machine to class Thursclay.  Remember,

“it’s supposed t,o be fun; it’s supposed to be interesting. If it’s not’, t,ell me about it!”

Day 2 - April 5

(An encr>.ption  program has been ma,cle available: look on Portia for “ullman/crypt a.ncl source
in “ullman/crypt.  c.)

PI\:W and B.JG a.nnounced t ha,t they had implemented a. solution for t,he simple substitut,io~l



ciphers problem, using the dakbase techniques clescribed  ea,rlier. ,4 simple heuristic1  was used
to determine which worcls  to join, and after every join, t8uples  t,hat did not satisfy inequality
constraints were removed.

DS asked how they ha,ndled the overhead involved in generating the basic relations (e.g.
words). PKW answered that they preprocessed the clictionaxy,  and he described a coding and
sorting scheme on /usr/dict/words  that a.llows  for eficient extra.ction of and selection on basic
relations. Consider only words that are no longer than sisteen chaxa,cters.2 Obviously there are
at most sixteen distinct characters in every word, a.ncl each cha,ra.cter  may be assigned a 4-bit
code. The coding is then extended to entire words, producing S-byk  codes. The dictionary is
sorted according to these codes, a,ncl then any ciphertest patt’ern can be ma,tched in O(lg n) time
by binary search of the words ordered by their codes. If a,n index is aclclecl,  t,he time required for
makching is constant. The tuples estracted  in this ma,nner  satisfy local equality and inequality
constraints, a.lthough  the global problem of satisfying inequality const,raints  between words still
renia.1  11s.

One concrete result is thak there are almost 1,900 solutions t,o the ciphertest “NON SCHMOZ
KAPOP’., including the cryptic “nun holclup  jesus’i.

DS askecl  if the class if:as required to use any pa,rticula.r  progra,mming  language. .JDU said,
“No, use wha,te\.er  language is most suitable.” PIiW and BJG used C, and a.fter some classroom
discussion compa,ring C to LISP, BJG hypothesized tha.t usin g LIslP would require more memory
t ban any equi va.lent C progra*m  . CJ a.rguecl  tha.t  the tracleolf  shoulcl  include implementa.tion time,
and that, presumably, bet.ter algorithms colllcl  be found in the t,ime saved by progra,mming  in
LISP. Laker on, JD1.J  wondered whether it would be feasible to implement a decryption pr0gra.m
using only the Unix shell and n~k, sort, and join. At any rate, PIi\V noted that, as fearred,
the size of intermediate relakions wa.s  frequently several orders of ma.gnitucle  larger tha,n t,he
eventual output. To a,llevia,te this problem somewhak,  a,11  prefises,  suffixes,  and proper nouns
l\:ere elimina,tecl from /usr/dict/words.

Ra.ther tha,n actually computing the intermecliake  relat3ions, ET proposed a, depth-first join
algorithm. Only the relations generated by ea.ch inclividl1a.l word would a.ctua.lly reside in memory;
the output relation would be calculated on t,he fly*.  There 1va.s some discussion as to whether this
a,pproach  would yield a solution in a reasonable a,mount  of time: it, wa.s  genera.lly agreed tha,t
finding a.11 solut’ions  would be prohibitively time consuming. JDU commented that the question
a.t hand was the choice between early-binding and la.te-binding;  any t’wo relations could be called
joined, then clela,ying a,11  computakion  until some opera.tion  wa.s performed on the “result.” JDU

‘Number  of lett,ers in common divided by the product of the words’ rehtion sizes.
‘There axe only swellteen words longer than sixteen chara.&rs.

60



turned to the possibility of n-way  .joins,” a.s suggest,ecl  ea.rlier  by KF. First,, t,he naive algoritShm
for a two-way join is known as the “nest.ed loop join,” i.e. match corresponding fields while
iterating through all pairs of tuples. As a. result,, the join of a relation with m tuples and a
relation with n tuples requires O(~I~,!L)  time. A better  algorithm is the “sort join,” in which the
tuples of each relation are sorted by t’he field matched in the other relation. If more than one
field is to be matched in the join, lesicogra.phic ordering ca,n be used. Following these sorts a
process akin to merging will produce the joined rela,tion.  Using a sort join, 'R IN S requires
O(nlgn + mlgm + I'R w Sl), w lcre 7~ = I’7Z.I  and 171. = IS/. MT pointed out tha,t  t,he resulting1 _
relation is already sorted, which is useful if the subsequent join must ma,tch  the sa,me  fields. To
genera,lize  a two-wai nested loop join to a. three-wa.y nested loop join is obvious; wha,t  is not,
so clear is how to generalize a two-way sort join. Another variant is the “hash join,” which is
O(n + m + IR W Sl).

PKW observed tha,t, before the merge step of t,he sort, join, it would be possible to determine
how la,rge  the output relation would eventSually  be. Assuming that there were severa, relations
to be performed, it would be possible to order the joins such that the smallest relat,ion  would be
generatecl  at each step. .JDU sa,icl that, while this M’a,s proba.bly an example of a loca.1  optimization
tha,t might not be globally optimal, b‘local  search techniques tend to be pretty good.”

,4s an aside, JDU mentioned that, if a. sequence of joins had, in some sense, a.n a.cJ:clic struc-
ture, then the la,st join would be the laxgest.  This would actually be a good thing, since it, would
imply that the correct output was rela.tivelJ*  la.rge  compaxed  to the intermeclia,te  rela,tions.  Unfor-
tunately, because of the inequa.lit!;  constra.ints, a,ny sequence of joins that amrises  in this problem
would not be acyclic.

The semijoin operation, 72 DS, is O( I'Rl + ISI j a,ncl  can be used to “prune” tuples from R.
Intuitively, the operation of the semijoin  is to remove from ‘R. a.11 tuples t#hat  do not matSch  some
t,uple of S (in the a.ppropriat,e  fields). A subsequent join operation nia,y therefore be substantially-
faster. 'R si%, S is obt.ained by remoc-ing  all t.uples from ‘72 which do not match some tuple  of
J%j *(S)

Example: 'R =

For a,ny two-way join ‘72 w T, bot,h ‘T DR. and ‘T 1>‘7?.  will genera.te reducecl rela.tions,  i.e. 110

3“Rougl~ly the way I’m planning t&o take hree of you aud squash you togetIher (if you don’t form teams 1))
Tuesday)!”



subsequent semijoin will be productive. For a series of joins, however, there is no CL pj-iori limit
to the number of productive semijoins.

AIB
1 1

Exa.mple: 73 2 2= 3 3

4 4
5 5

lising the relations clefi

1. 'R = 'R b‘r

2. s = s b’li

3. ‘i?- = ST bs

s=

B C
1 1
2 2
3 3
4 4
5 5

necl above, consider (‘R M S) WI 7. The sequence of semijoi 11s

can be itera,tecl  productively until all three relations a.re empty, a rather inefficient \vay to obtain
t’he empty relation. If we add the tuple < 1 5 > to T, no semijoin opera.tion  is productive, but,
the result of the joins is still empty.

The discussion then turned to the Enigma machine, used by the Na,zis  in World Wax II. .JDIT
distributed a, pamper  about the (successful) British efforts to decode messages from the Enigma.
machine; for the remainder of the class, we tried to rea.ch some understanding for how the machine
worked.

Day 3 - April 10

The results of the voting were announced. The fa.r a,nd awary winner wa,s the traffic lights problem.
The other two problems t8ha,t  we will consider are the abundant number problems a.nd? a,fter  some
deba,t,e,’ the God game problem.

B.JG turned discussion back to the decryption problem by noting that’ “the semijoin  we clis-
cussed last time was most excellent.” Two other groups halve begun obtaining results, both using
depth-first search algorithms as proposed ea.rlier. MPF described his group’s approach in some
cleta,il. The rela.tions genera-ted by each ciphertest word are initially st’ored in nlemory. The
smallest rela.tion is selected, and the first tuple of the relation is used to reduce t’he remaining
relations. Intuit.ively,  \ve axe assuming a particular decryption for the sele&cl  word. The sma.ll-
est. remaining relation is t.hen  selected, and aga.in  its first tuple is used to constra.in  the other

“During which, BT,  surveyed, “How many people want t.o play God?”

62



relat,ions.  This process continues; if at any point one of the c.onstra,inecl  relations reduces to the
empty rela.tion,  we have reached a dead-encl. Otherwise, all tuples of the last remaining relation
correspond to solutions. To find all solutions requires tra,versing  the entire tree. ET a,nnounced
that the full traversal was evidently not intractable; his group was a.ble to find all solutions for a8
four word cryptogram in less than two minutes. JDU wondered whether depth-first search would
fa,re  as well in general, especially if all the word relations were several thousand tuples long. The
claim was put forth that, in the worst ca.se,  depth-first sea,rch  would perform no wol;se than any
other technique.

PKW wondered whether these search techniques were actually clifferent from the databa.se
oriented techniques, or whether they were simply a.lternative  ways for computing joins. After
some discussion, JDU suggested that the dept’h-first search wa,s in fact similar to a nested loop
join, but one in which the loop ordering is determined by relative relation sizes rather than by
a.rbi t rary t uple order. PKW pointed out that, if this were the ca,se, depth-first seaxch  would be
110 more time efficient than a nested loop join, since loop ordering is immaterial when the goaS
is t,o obta,in a(11 possible solutions. The depth-first sea.rch,  however, would be significantly more
efficient in its use of space.

Some considera.tion  was given to the treatment of singleton lett3ers  in the ciphert’ext. Consider
t,he ciphertest,  word “,4BC” and possible decryptions “bar”  and “ca.r.‘, Suppose the letter -bL4”
a,ppea,rs  only once in the ciphertext message. Further suppose t,ha.t the plaintest letters “1~”
a.nd “c” a.re never assigned to a,ny other ciphertest lett’er. The depth-first sea,rch  from “ca.r”
would be redundant following the search from “bar”, since all solutions to the message will he
inclepenclent  of the assignment to ciphertext “,4”. Nobocly  was quite sure how to ta.l;e adva.ntage
of this chara.cteristic.

The discussion turned to decrypting proper na.mes.’ One question which a.rose  wa.s whether
it wa,s possible to detect spurious solutions, i.e. those that provided incorrect decryptions for
proper na.mes. linfortuna.tely, it was pointed out that “there’s no way to make the computer Zen
the fact t,liat.  there’s a, proper name.” Instea,d, we ca.n only a,ssume  tha,t a, proper name is present
if no solution to the ciphertext ca,n be found.

.JDlJ suggested extending every relation with the “undefined” t.uple,  whose fields are uncle-
fined. This tuple would essentially play the role of a. wilclcaSrcl. It wa,s  unclear how to extend
either algorithm to account for this wilclcarcl without encountering a combinakorial esplosion.

Earlier, we observed that if at most one word from an r?-\Ivorcl  rnessa,ge wa.s a wilclcard,  t,he
computation would be at most ?z+ 1 times as hard.” JDU axgued  thak  the 12 + 1 subproblems were

5 JDU. cornnleuted thak “Ullrnan” is already accepted by spell (i.e. is listed in /usr/dict/words), since he
worked previously at Bell Labs.

“One decryptSion, assuming that there are no wildcards present. Then 11 more decryptions, once for each word,
assulning it, to be t,he wildcaxd.



closely related, and therefore the brute force technique could surely be improved. An obvious
possibility is to join according to a, binary tree We expect the binary tree will require roughl>~  lg
the amount of time required by the brute force a.pproa.ch, although the actual time requirements
depend on the relative sizes of the intermedkte  relations. JDU suggested that, conceptually,
the tree might be “upside-down.” Rather tha.n constructing the join bottom-up from the leaves:
there may be some way to construct it t.op-down  from the root. Is there a better way to compute
an n-way join, and subsequently the n (12 - l)-way joins if needed?

As a, final note, PI<\V challenged t*he ot’her groups to decrypt “the quick brown fos jumpecl
over the lazy clogs.”

Day 4 - April 12

Since the Unix dictionary is rea,lly just, a word list for spell, it provides no semantic information.
It is therefore not possible to determine \vhich suffises  and prefixes a.re appropriate for a,ny given
word, leaving a sizable gap in our a.hilit\;  to decrypt actual ciphertest messages. One solutSioii
would be to arbitrarily a,ppend suffixes (and prepencl prefixes) throughout the dictiona.ry,  which
seems to be how s/jeld behaves. The immediate objection to this was that it would produce manJ
spurious solutions, greatly increa.sing t’he complexity of the computation and producing fux%her
empirica,  evidence for the GIG 0 principle. A more promising option is for somebody with access
to a NeXT machine to use its on-line Webster’s dictionary to produce a more complete \vorcl  list,.

JDU began writing what4  a.ppeared  t’o be a, ciphertest messa,ge,  but which was in fact! a,
plaintest sentence in which each letter a,ppears  esa.ctly once. “squdgy  fez blank jimp crwth 170s.“
It seems unlikely t1ia.t  any of the programs yet written will solve this, especially since only one
of the six words is found in the Unix dictiona.ry.

Nobody present had solved “the quick brown fox. . . ?’ either, although there were rumors that
some missing team ha.d. “No doubt restSing  on their la.urels,” JDU commented. The difficult?-
with this sentence is the lack of equa,lity constra,ints, resulting in joins that are very nearly direct,
products. The problem is exacerbated because the basic word relations are very laxge.

JDLJ returned to his ea,rlier  suggestion of pursuing a. top-down approach. One strategy is t,o
partition the ciphertest words int,o groups such t,hat there is very little “a,ffinity” between groups?
with affinity being a, somewhat va.gue notion a,t this point. Each group could be recursix?ely
processed, if necessary a,nd possible; the results \voulcl then be combined somehow. It wa(s  imme-
dia.tely  pointed out that the affinit!*  betSif:een  \vords would depend not only on letter equalities,
but also on letter inequalities, so there would be no wa,y to paxtition a. ciphertext message such
t,hat each paxtition  was entirely independent of the others.

At this point PIiW suggested sampling t,o estinlake  the size of a. join operation. This imme-



dia.tely  reminded JDU of work by one of his previous Ph.D. students, Jeff Na,ughton.  Rather
than sa,mpling some constant number of times, a more accurate technique is to sample until some
(small) number of tuples were successfully joined. Consider the join of two relations witch 1000
tuples each, with the result also being a relation of 1000 tuples. If we sample 1000 pairs of tuples
from the original two relations, t,here is still a 1 in 3 chance that none of the pairs successfully
join. This would suggest that the output relation was empty or estremely small. Instead we
should sample the original relations until, for instance, 3 pairs’ joined successfully. From the
number of samples required, we can then obtain a more accurate estimate of the output’ relation
size. Unfortunately, if the output relation is empty, this procedure will never terminate.

For our purposes, however, estima.ting  t!he size of joined relations is of interest only for finding
the loca.lly  optimal join order. Sampling can be used to determine this directly by organizing the
possible pairs of join rela.tions  into a round-robin, and eliminating each pair a.fter (for inst,a.nce)  3
output t,uples  are found successfully. The fina, remaining pair will probably produce t’he smallest
output relation, rela,tive  to t,lie sizes of its input rela.tions.

We turned again to estimating the a.ffinity  between two words. Suppose each basic word
rela.tion 11a.s 17 and n?. tuples, and each word has i a,nd j distinct letters. Let’ k be the number
of letters thak  the words ha.ve in common. The expression nnz($)“( ?$)(i-k)(J-k)  seems to be a
rea.sona,bly  int,uit)ive estirna.te  for a.ffinit>~,  although the constants shoulcl be a.cljusted  somewhat
to account8  for a,ctua,l  letter frequencies.

To get a better understa.ncling  for the affinit.y  equation, consider a. three-letter a.lpha,bet { a,
b, c } in which the respective letter frequencies are Pa = 0.6, Pb = 0.3, and P,- = 0.1. The
probability tha,t  t,wo ra4ndom  letters will ma,tch is given by:

c P;
&{a.b,c}

For the English alpha.bet  this number is approximately p = 0.07; the a.ffinity  equa)tion  is then
1711z (#)( 1 -p)(l-“)(.i-k).  IT_, sing these values ET ca.lculated  thak the numerous inequa.1it.y  constra8ints
from “QUICK BR.O\VN” acre  roughly equivalent to a single equa.lity  constraint.

To estimate the potential benefit of a divide-and-conquer technique, we first aaalyze t.he cost
of carrying out the straightforwaxd computation. Rcca,ll  that we are interested in a. I;-wa.y -join?
followed by k (k - l)-wa,y  joins. Assume the following:

0 ea.ch relakion consists of 72 tuples

l each 2-wav join procluces  a, relakion with n tuplesI .
’ “ ‘3’ is an esa.mple of a small const,a.nt.”



l both join and union a.re O(n) operations

The initial k-way join requires (k - 1)0(n)  time.
The X: (I,: - 1)-way j oins require (k - 2)0(72)  time each.
The union of all these relations requires (k + 1)0(~) time.”
Thus, the stra.ightforward  computation requires k’O( n ) time.

Analysis of the divide a,nd conquer technique is slightSly  more involved. Let 12. . . k be notation
for the k-wa,J- join of relations ‘RI, ‘R2, . . . , R-k. 1 . . . T. . . k is the (k - I)-way join, excluding the
it” relakion.  Clcick i . . . T. . . I; is then the union of t,he k (k - I)-way relakions.  Let C(k) be the- -
totSa,  cost,. Then

C ( 1 )  =  O(12)

C(k) = 2C( 3 + 0(?2) + 2(( ;)0(72)) + X0(??)

k
O(72) is the join of the rela.tions  produced b,y the two--way rela,tions2

2((i)O(n)) is the cost, of the “cross” joins

k
1 . . . -y c (;+l)...;...k

$fl<L<k- -
a

(X+1)
k

. . .
2

xm c l...,...,
l<?</‘- -2

kO(12) is the cost of t,he unions

Thus C( X:) = O(nk lg k).
As we might have espected from t’he ea,rlier  discussion about join ordering a,ccorcling  to a.

binar!-  tree, \ve can hope to replace a. fa,ctor  of k \\.it.h  lg k. This analJ.sis is certainly suspect
when our assumptions do not hold, especially if joins do not preserve rela.tion sizes. Another
caveat is thak, by our problem clefinition, we do not, expect Ion,0‘ ciphe’tests;  the improvement8
obtained over a brute force t,echniql1e  will be much less tha,n a,n order of rna.gnit.ucle.

“Give or take a fencepost error.



Day 5 - April 17

M;e begin by reviewing preliminary results for the substitution cipher problem ~ see Table 1.
Many of the programs removed proper nouns, recognized by an initial capital letter, from the clic-
tionary. They were therefore unable t’o match “(3hristmas” and failed on sentence 2. In the third
test case, the “no solution” results were blamed on the dictionary; curiously, “minicomputer” is
in /usr/dict/words  but “computer“ is not.g ,411 “no solution” results were essentially immediate.
The hllPF/MT/C)W t earn a.lso solved the “quick brown fox” problem, finding approsima,tely 1,000
solutions after seyera,l  hours.

BJG/PI<W ET/KF/JD PS/A\\’ MPF/MT/CW DS/BL/HH
1 1  min  -24K 5olns 1 m,n , 2-3000 solna. 1 min . ” .;olns immediate, 7?? solna. i m m e d i a t e ,  ??I solns. out of memory
2 immediate. 1 8  .oln; no sollIt  ions no solut10!1~ no solutions immediate, 10 solns. no dOlU  t1ons
3 no solution3 no 30111  tions no  solutionh no solutions immediate, 4 solutions immediate, 4 solutions

Sentence 1: Izly kingdom for a horse
Selltence  ‘L: Merry C111ristmas  and Happy New Year

Sentence 3: The ,kt of Computer Programming

Table 1: Preliminary Results

After Eve reconsidered I-arious  \va.y-s  of deciding optimal join ordering, .JD suggested thak  “Since
humans are pretty good at, pa.ttern  matching, a human operator should order the words of the
ciphertest .” C‘erta.inly  it \voulcl be interesting to see whether a person could regula.rly  choose a
more efficient join ordering tha.n a, computer, but it was agreed that some a,utomatic  lieurist,ics
should be proviclecl  in case there were a number of ciphertexts to decode.

.JDU noted t,hat8  t,he clepth-first a.pproach tha.t  ET/I<F/.JD implemented used an unva,rying
join order throughout the sea,rch; as cliscussecl  earlier, it might be possible to reduce computa.tioll
by determining join order on the fly. ET initially argued that the optima.1 join order would not
cha.nge,  but ?JDU producecl  an esample which seemed to contradict8  this. To determine locn.ll>-
optimal join orclering  efficiently, HH suggested ma,intaining  histograms of letter occurrences for
each letter of the ciphertext; i.e. given the ciphertest “ABA” and a relation containing “bob.”
“bib,” “clid,” a.nd “dud,” the 1listogra.m  for ‘B ’ would be one for ‘0,’ one for ‘u,‘a.ncl t!wo  for -i.’
He cla.imecl that the estimates for orttput,  join rela.tion sizes tha,t his group had obta,ined we1.c’
accura.te  to about 1096.

JDU reiterated his belief tha.t  there were ciphertexts such tha,t the join of any subset of’ in
certa.in  size would be uiinia.na.gea.l)le; “SQIJDGY  FEZ BLAI\TI< JIMP CRWTH VOX” might I)(%

9C!M’ provided access to a more complet,e dictionary, e s t i m a t e d  t,o b e  a b o u t  50% l a r g e r ,  locaked  it\
Portia:-cwitty/class/204/ispell/words.



one, since there a.re no equality constra,ints. Even if inequa.lity  constraints event,ua.lly  reduced
the number of solutions clra,ma.tically,  none of t>he previously mentioned a.pproa.ches  seemed likely
to overcome the huge intermecliat,e  relations. A semantic a,pproa.ch was considered briefly; by
removing tuples  whose known semantic properties didn’t make sense, e.g. a preposition followed
by another preposition, t,he intermediate relations might< be reduced tremendously.

ESC suggested t(ha,t  if the sizes of a,11  relakions obta,ined by joining different subsets of the
ciphertext words could be determined, then it might be possible to avoid the worst intermedia,te
relak ions. For esa.mple,  a seven word cipher might behave such tha,t  any four or five words
would produce unmaaa~geably  la,rge  relakions, whereas by the sisth and seventh words enough
inequality constraints \vere creaked tha,t the joins would be tractable. In t’hat case, one could join

*two groups of t.hree words, producing two large but tractable relakions, these two relations could
then be joined, I,-passing the unmana.geable  intermedia,te  relations.

To estima.te  t,he fea,sibility  of such an approa,ch, we considered a 5-word ciphertest con-
sisting of .5-let,t,er words, a.11 of whose letters a,re distinct. Each basic word relation is then
roughly 1,000 t,uples. Iising the a.ff%ty expression. the join of two words will consist of appros-
imakely 1, OOO’( .!13)55 X L&3,000  solutions. Adding the third word would produce l&3,000 x

I) OOO( .9:3y5 = 4,32S,  000 solutions. less t,han half of one percent of wha,t  woulcl  result from
a stra,ightforwarcl  :3-wa.y C’a,rtesia,n  product. The justifica.tion  for this est,ima.te  is t,hat ea,ch let-
ter of t.he t.hircl \~orcl is restricted by- the ten letters of the first two words; we raise this re-
striction factor t.o the fifth power since t,here a.re five letters. The fourth word will generat’e
4.:3X x 10' x 1, OOO( .9:3)15” ==: 18.7 x 10’ solutions. After a,clding  the fifth word, the number of
solutions a.ctua.lly decreases sometvha.tt7 to a.bout  1:3 million soMions.

PI<\V noted t,lla,t it was very easy to find palindromes with the prograSms.  LIT mentioned
that decrypting people’s names often produced interesting results.

Day 6 - April 19

The nbz~z&z~?,ce of an integer 12, denoted CY(~?,), is the sum of the divisors of II (including 12. itself)
divided by n.. We sa,y ‘11 is k-n.bzrndnnt  if o(,,) > k, a.nd 11 is ~,upe~,-nb,ulzclnlbt if it is :3-a,bunclant  .*’
,% Phillips nam6er is an integer that is more abuncla.nt  than a,ny smaller integer. We clistinguish
a certa.in subset of the Phillips numbers, one consisting of the smallest k-ab~mdant  numbers,
where li is an int,eger. We denok each of these 1,: ckk. Our goal is to find CI’X:,  for as large a I,
as possible. .JDT! noted t,ha.t ctk is doubly esponent  ia. - a.n earlier CS:304  cla,ss  obtained t’hc-

ant.



estimate crx: % 101.7n. The largest cyk which t’hey  obt,ainecl  was CQ~? which wo111d be more than 23
million digits by the a.bove estimate.

Before reaching such lofty levels, however, consider a. few sma,ll cases. a( 6) = 1+2i3+6  = 2,
and in fact we have ~22 = 6. Similarly, we ca.n show that ~13 = 120.  KF observed that any perfect
number is 2-abundant?  More genera#lly,

a(Y) = 1 + 2 + . . . + 2” p+l - 1
1

37-h

.rtl-1. (Recall the espression for simplifying geometric series, Cl& x2 = %.)

It is eaqr to see that the abuncla,nce  of any number can be ea.sily found from its prime factorization,
i.e.

Two other important fa,cts are appa.rent from t$he  dove equakion. First, multiplying a, number
13~ a.ny other number ca,n only increase it,s abuncla.nce.d Be careful not to confuse this property
with monotonicity. Only if we order integers 11)- clivisibilit8y (Z -+ j ifl2: di\Gdes j) can we consiclel
a~buncla~nce  to be monotonic. Second, there is a.n upper bound to the abundance tha.t can be
obta,inecl  hy multiplying powers of an>’ fixed set of primes; specifica,llgi,

From another perspective, this puts a. lower bound on t’he laxgest primes needed t,o rea,ch any
level of a.bundance.

Ecluakion  1 allows us to consider tlhe effect 011 ahmda.nce  of multiplying by some number. For
example, 3 3 - 1

4 3 6 0 ) 1:3= a(120 .:3) = (~(120) - E = ~~(120) - F = 3.25
2.:3

-2 -1 s
rr(840) = cu(120 * 7)= CY(l20). + = O(120) - 7 Fz 3.43

“~1 perfect,  number  is equal to the sum of it,s divisors, excluding itself.,

69



Although multiplying by :3 did not produce as la.rge  an increa,se  in abundancel” as multiplying
1,~ 7, JDU was quick to point out that this did not necessarily mea,n  than multiplying by '7 was
better. If we were interested in finding the smallest r-abundant number, 360 would be better
than S40.

To find cyk for large x7, we briefly considered an incremental approach. St,arting  wit’h cr3 = 120,
for instance, there might be some algorithm for determining the smallest factor to multiply with
120 that would produce a 4-abundant  number. It wa.s  quickly recognized that this would only
work under the assumption that CYA: divides cyk+l, an assumption that is not true in general.

PKW suggested tha.t, if some suit#able  enumeration of integer sequences could be found, \vhere
each integer sequence specified the powers of al.  prime clecomposition, then bina,ry  search could
be used to find la,rge  CY~. Determining such a.11  enumera,tion, howe\-er,  intuitively seems at least
as hard ass the original problem.

PF commented that it was 1)a.d to ha,ve  “holes,” i.e. zeroes, in the prime clecomposi t ion;
.JDU agreed immediately. In fact, C:W recognized tha,t the sequence of powers in the prime
decomposition of a Phillips number must be monotonic (decreasing, of course), and we finished
by sketching a proof of this fact.

Day 7 - April 24

Yobocly  had formally proven tha,t the esponent sequence in the prime decomposition of a, Phillips
number must be monotonica,ll~-  decreasing (henceforth we will refer to this property a.s mono-
tonicit,y, leaving implicit t1la.t it. is the esponent8  sequence of the prime decomposition tha*t \ve
a.re consiclering). In a,ttempting  t,he proof ET founcl tha,t the ra,tio P

(3(w) a(n) seemed significa.ntl.
Given a Phillips number 71, t,he largest abundance that can be obta,mecl by multiplying 812 by a,
single prime factor is 17 .p, kvhere p is the prime which minimizes the above ratio. Ry monot,onicity,
there a,re only a finite number of primes tha,t neecl  he considered: t’his  leads immedia.tely  to a.11
algorithm for finding numbers of axbitrarily  large abundance.

Unfort,unately,  there is no easy moclifica.tion  of this a.lgorithm for fincling  cyk.  For instance, rye
may be tempted to find some X:-abuncla,nt  number using the above a.lgorit,hm,  then t,ry replacing
the la.st prime factor by some smaller prime such tha,t the abundance rema,ins  2 k. We clicln’t
pursue this type of a,pproach  further hecause, intuitively, this limitecl  form of backtra.cking will
not, be sufficiently-  powerful. Howe\-er, nobody teas able to produce a, convincing count~eresample
a,t the time.

l’Sonlet,imes referred to as the “abundance  hit,” obtaiued from 3.



Assuming monotonicity, very compact number representation schemes cm he de\-isecl.  One
obvious method is to simply store the differences between subsequent exponents. JDU claimed
tha,t  this represent,a.tion  was still inefficient, since there would be ma.ny zeroes (i.e. for the numbers
tha,t we a,re interested in, the exponents of neighboring primes va.ry very slowly). Instea,d, given
the number 2;’ . . . py, we can store the index of the largest prime with I; fa,ctors, for k from 1
to il. With this representation JDU commented that the la,rgest  CY~ computable was not, limited
by the size of the numbers, but rather by the precision with lvhich the abundance could be
computed. Even using logarithms, since it is ha,rd to accurately compute the product of numbers
close to one, we encounter problems when pk becomes large. <<In class we obtained the estimate
lll(CY(T7)) = c h but I wasn’t able to reproduce this. Can anybody?>

Ilk

n

rI

- 1IX 1 + ,Pt;”
k=l p: (I’k - 1)

If Ilk is large, we will be computing ln( 1 + -$&) ==: ln(1 + %t, ==: iA3
At t,his point, JDU offered a geometric interpreta.tion of the problem, viewing ea,ch prime as

a, rectangle with area,  --& and width lnp. Our goa) is to find the sequence of recta,ngles  with
snza.llestj  total width, which ha,s reached some threshold of tota. a.rea,; the tota.l  a.rea  corresponds
to the ln of the a.buncla.nce.  <Unless somebody can prove ln(cy(?2)) Z 1 -&, I’m not sure t1ia.t

.
this interpretation is correct .>>

We decided t,o finish the monotonicity proof. Suppose we a.re given some number 7~ =
. . . /,i . . . #. where p < q a,nd i < j. Let ti = . . . /3is1 . . . ~a’-~. We claim a( fi) > (~(12)  and
I+I < 11. We need to show

l”linless 1 begins to approach the limits of double floatming point, accuracy, III ~?:y opin~oa  the sta.nda.rd mat,ll

libraxy should be sufficientSly  a.ccurat8e (using l o g l p ,  for instance). Of course, I’m not the one ivriting these
programs, nor do I have the experience of previous 304 students who claimed to encountSer  ma.th library problems.
If you really do want to implement arbitrary precision makh functions, try looking a.t bc first; it may save yore
some work.



i+2 j+1 - 1

> $+2 I;$+1  _ (I)

1 _ P-l

>
p’s’-l

l-4-1
q-l-t1  -1

Yj+1 - 1
> p

if2 _ 1

q-1 P-l
1 + q + - - * + qJ > 1 + p + * * - + pz+l

which follows from our assumptions.
Let us estimate the optimal relationship between the exponents of two primes, for instance 2

and :3, if we a.llow non-integer exponents. We require 33’ = 3’ so tha,t the number itself does not
clia.nge,  a,ncl  try to maximize t’lie  abundance. Using the estimate for the a,lsundance  hit providecl
by the (i + l)st fa,ctor  of p, i.e. 1 + --&, we want,

(1 + &Y = (1 + $J
so i E j log, q. Thus, if ljTnaa: is the la,rgest  prime factor, which we expect will have an esponentj
of 1, the la.rgest  prime with an exponent of 12. sl~oulcl  be about v=.

Day 8 - April 26

lklier  in the discussion .JDU claimed tha,t ok is cloul~ly exponentia.1  in tk, a,ncl tha,t  empirica.ll>
cyk > lo? The argument for t,his is as follows. Let pk be the la.rgest prime factor in 11,  where
/I is a, Phillips number.

1
cl(n) <  A(1 +  ~1

1=1
11; - 1

<
Pk 1

- C T (% is prime)
ix:! 1



From number theory we know tha,t the number of primes less tha,n or equal to .T is a.pproxima.tel>r
k; therefore we a.ssume  thak primes are, on a.verage,  In x apart, despite grea.t  non-uniformity
in the actual prime distribution. Given this, we can further simplify Equation 2 but “spreacling
out” the prime number singularities, i.e.

Thus we ha.ve  that Q( 11)  is 0( ln pk ).
Next, given the largest, prime fa,ctor  pk, we find a lower bound for 12; we will find that ln 12 is

n(pk), which implies pk is O(lnn). Combining this with the last result gives o(n) is O(lnln~).
Let pj z F. T_Tsing  the prime density result sta,tecl  ea.rlier,  we estima,te  the number of primes less
than pj to be

==: P3
1 n Pj

==: Pk
2111 B

< pk”rV
1.5 h pk

so the nllmber  of primes betiveen  I1.j and 1)~. is > &, each of which is greater t’han  11.~.  Tllus

?‘k Pk111 ?I > - -( >:3lnpk 2

Now we have In n is fi(pr;), a,s desired.
If we graph n vs. ~~(71)~ we see thak  a Phillips number has no poink “nort~hwest,” of it.
Let, pk be the largest prime fa,ctor  of ckk. we ca.n find a lower bound on PI; by using the uppc~

l~ouncls on the abundance tha,t can be obtained from a single prime; we can find a,n upper 11ouncl
on pr; by assuming tha,t  there is only a. single factor of each prime. Each possible pk represents
a fa.mily  of Phillips numbers, one of \vhicli \vill contain ak. For each fa.mily,  we can cleterminc
upper and lower bounds on the permissible exponent sequences, thereby defining a search space
in which to look for CY~.



To find some lower bound, fix pk. MN recognized that any q such that q2 + q 5 pk must. have
a.11  exponent of at least two; otherwise the exponent sequence wouldn’t correspond to a Phillips
nuinl~er.

1
I+& I

<-

<-

1+q+q2
Q2

l+q
4

1+q+q2
CI + q2

1
1+-

Q” + Q

This t.ype of reasoning can be estended  to find primes which must ha.ve  esponents act least three,
and so on. .JDU hintecl  that a.11  even better lower bound ca,n be fou~~cl.  .41so,  he suggested that the
search spa.ce can be reduced dynamically, since the upper and lower bounds will tend to converge
as we proceed “deeper?’ in the sea.rch.

Day 9 - May 1

.JDU present,ecl  some of t,he c~k obtained previously.

One group (.JD/ET) p rovided evidence that, t,he problem was not a,s “solvecl” a,s it might seem;
the result obtained by the last class for a.5 wa,s incorrect. Replacing a fa,ctor  of 3 by a. fa,ctor  of 2
yields a. sma.ller  number tl1a.t  is still Fj-abundant.

BL described the method that he and PS were using t,o prune the sea.rch spa,ce. To obtain
abundance k, we ca,n find upper and lower bounds for the exponent of 2. Choosing some value
in this range to be the exponent of 2, we can find upper a.ncl lower bouncls  for the exponent of 13.



Specifically, the esponent of 3 ca,n not be too large, or a, factor of 3 can be replaced by a factor
of 2 to yield a. smaller number with la,rger a.bunclance.  Similarly the exponent of 3 ca,n not be
too small, or a factor of 3 can repla,ce  two factors of 2. This reasoning can be repeated to find
bounds for larger primes, using the largest of all smaller primes to constrain the exponent range.
From the bounds on the exponents, it is possible to compute CY,,,, and amin for any prefix of an
exponent sequence; these abundance bounds can then be used to reduce the search.

ET clescribed  the method that he and JD were using. First, they find some number that is
X--abunda,nt , presumably using the ilCn.py,aCn) ratio discussed la,st week. Next, find some “lower
ba,se,” i.e. a number which must be a factor of o!k. This number serves as a base in the sense
t.hat, when viewing the histograms of the prime exponents, the lower base seems to support ak.
Rather than sea,rching between min/max esponent curves, we seazch upward from the lower base,
using t’he known k-a,bunclant number as a, guide. CJ argued that it might be more efficient to
sea.rch  left t,o right, as opposed to bottom-up. JD thought that this might ha,ve the same effect as
multiplJ+lg the lower base by increasingly la,rge  factors, an approach they had also considered.

En route to ca.lcula.ting 020 HH ancl MN 1la.d found a. lower ba.se with abundance 19.98; this
required around 7400 primes, the la.rgest  of which wa,s a.pprosimately 75,000. JDU wondered
how close the lower ba.se wa,s to cy20;  quick est,ima,tes  show t#ha,t a.t least 75 more abundance hits
n~oulcl be needed to procluce  t,he est,ra. 0.02 in abunda,nce. A conservative estimate is that t,lle
19.Sa.bundant  number is too sma,ll by a fa.ctor  of at lea,st :300 digits.

Day 10 - May 3

Several of the tea,ms  commented that they had programs which could very quickly produce
al. a!2, . . . up t,o about cylo, but which \voulcl then encounter search spaces that were orders of
ma.gnit.ucle larger tha,n previously encountered. ,JDU said tha,t this was prob&ly  to be expect,ecl,
because of t(he grea.t  non-uniformity in the abundance. He cit,ecl an exa.mple in which a.n ea.rliel
tea.m wa,s able to reduce the search for cyls tSo only t)llree  possibilities, although for smaller k they
still had to search among hundreds or thousancls  of possibilities. People were suitably impressed
t,ha.t the sea,rch  space could be so tightly restricted; JDU a.lso  noted that most of the computaStion
then involved prime generation, rather than sea,rching and testing.

PI<W a.nd BJG found CY~ = 273”5272  11 . . - 53 ra,ther  than the cy7 mentioned previously; .JDU
clarified that the previous values had been conjectures, not’ cazefully  obtained results.

ET a.skecl whether there might be an upper limit on the a.bunclance.  Using very rough esti-



mates, we argued that arbitraxily  la.rge  al.bunclances  could be obtained, since

z lim In I;
k-c-s

MPF offered to describe the conceptual framework, developed by CW, that his team wars
using. Consider a logarithmic gra.ph of abuncla,nce. Every prime factor corresponds to aI line

“’segment. The J factor of pi corresponds to a9 line segment with width lnp,i and height In $$;
the height is the natura.1 log oi’ the abuncla.nce  hit, for t,he jt” factor of pi. To find ax: we need to
find the set of line segments with the smallest t)ota,l width and height at least Ink.

First we use a greedy a.lgorithm,  choosing line segments with the largest slope. Placing these
segments end to end on the gra.ph produces a convex hull of attainable abundances. Once t)he hull
estencls beyond k, i.e. once we ha,ve found a. I;-abuncla,nt number, we begin checking candidates
for cuk.  In t’he dia.gra.m  below, we represent, the conves hull with thick lines. Consider the tria,ngle

I
I

formed by m, the vertica.1  line through D, a.ncl the line representing the abundance threshold.
\,t’e  claim that ak must1 lie in this t,ria,ngle. i.e. the line segments corresponding to the factors of

xi



CY~ must terminat,e  in the triangle when placed end to encl. No point to the outside of m can
be reached since CL> is part of the convex hull. Any point to the right of D is larger than the
a.lreacly  known k-abundant number, and any point below the abundance threshold is insufficiently
abundant.

In addition to the search constraints imposed by monot’onicity,  consider the following azgu-
ment. The prime factor represented by AB can not be replaced, otherwise the best possible
abundance must lie beneath AC’D’.  On the other hand, replacing the factor represented by BC
could possibly leacl  to a smaller k-abundant number; the estension of BD” represents an upper
bound on abundance without BC. Since this passes through the triangle, it is possible that
some sequence of line segments can be a.ppended  to D”, such tha,t  t,he new sequence represents a
smaller rl--abundant  number. This is possibility is shown in the c1ia.gra.m  as a, small dot just below
the est’ension  of 13. If such a sequence is found, we ca.n reduce the tria.ngle by “drawing” a
vertica,l line through t,he point corresponding to the new number, t,hereby ma,king  the triangle
even harcler to “hit.” In a. sense, we are compa.ring the slope and ma.gnitude  of the line segment
corresponding to ea.& factor with the “height” of the tria.ngle,  a,ncl using this comparison to limit
the sea.rch.

Day 11 - May 8

Several of t’he groups presented the la.rgest’ CY~ tha,t  they ha,d obtained. BJC: a,ncl  PIiW’ were able
to fllld

o15 = 2153s,~“~“113133~~32:~3~~2..  . g’j-‘21()1.. . @j83

(Z!\V/i\:IT/h/IPF  cla,imed

a33 = 23031s51371011s13~1~~lg62362g~~.  . . ,ypjg" . . . 1394

14g3  - * - 6S3”6912  . . . 14639’14653..  . 111346919

a.lthough  nol~ocly wa,s  able to verif,y  this in class. JDU promised to compare the ~32 obtainecl  t,his
qua.rt’er  with the CL.32 obtained previously, with the int’ent  of increa,sing  our conficlence  in t,he result
if the two va,lues  aagreed. MT noted that t,he cletermina,tion  of c~32 required about 14 minutes.
with most of the time consumed by the const’ruction  of the convex hull; the time required for t’he
sea,rch was negligible.

BL presented t’he a.pproa.ch  t,hat his group had ta.ken, wit,h the hope that someone might bt-1
a.ble to suggest \vhy it didn’t work; correct values up to cy; were found, but the value procluce(1
for c\‘s was not the smallest possible 8-abunda,nt  number. The ba,sic technique was to cleternG(l
the sma,llest nulllber with a k-abundant idea.1 curve, i.e. in the case in which we allow non-int,egf>r



esponents. Supposedly, the a.ctual exponent curve of CYX:  shoulcl  be very close to the ideal curve,
such that the actual exponent of every prime is less t,ha,n one fa.ctor  different from the ideal
exponent. Simply testing t’he a,bundances  at each “step?’ of the esponent curve should then yield
ok. JDU hypothesized that this would instead find Phillips numbers that were “distant” from
other Phillips numbers, possibly missing CL~ if c?k was in a neighborhood densely populated by
Phillips numbers.

We turned to the God problem. Starting with the Alj, on the table, the goal is to play as many
cards as possible a.ccording to some unknown God rule. The game ends when either a,11 cards
ha,ve been played, or when none of the rema8ining cazcls  ca.n be played successfully. The score of
each ga.me  is determined by subtracting the number of pla,ys  t1la.t succeeded from the number of
plays a.ttempted.  The God rule may be based on137 on the stake of the stack of successfully played
ca.rcls, with ea,ch  ca,rcl represented as its rank a,ncl its suit. Thus, it is not possible for the rule to
specify that there must be r2 failures before another success, j\:liere  31 is the rank of the top carcl;
this would require hist,ory  information t,ha,t ca,n not be obta,inecl  from the stack of successfully
pla,yed  ca.rcls. The rule must also be cletjerministic;  it is not permissible for the rule to specify
that ca.rds  sl~oulcl  be randomly accepted.

.JDU reviewed some ea,rlier  results. Seven computer pla,yers  were written by the earlier ‘CSi304
class; all seven played better than human pla.yers. M&en compared with the median score from
t, hree trials of a, player tha,t simply playecl  ra.nclom  ca.rds, a.11 seven pla,yers beat the ra.nclom with
a.t least ten of fourteen God rules; the best computer player beak t’he random pla,yer thirteen out,
of fourteen times. For the most part, the computer pla.yers  required very little computation time,
t#he esception being the best player, which required several minutes for each play. PKW asked
if a, pla,yer that simply cycled through his remaining carcls  hacl  ever been tried; .JDI_!  answered
t,hat, in mostj  ca.ses, such a stra,tegy  fa,ils miserably. In one surprising case, however, the cycling
st,ra,tegy happened to be a, good stra.tegy, and the cycling pla,yer beak all the other computer
pla.yers.

r21tj110ug11  the set of possible God rules, lvhich we refer to as the Ixllle  space, is, for a,11 practical
purposes, infinite, there is in fact a limit to t,he number of distinct, rules. We can estimate this
limit as follows. Assuming that Ah is on t,he table, there acre  2,51 possible subsets of the remaining
ca.rcls  t,ha,t could be the set of successful pla,ys.  Let us a.ssume  that, each of these subsets has a,bout
twenty-five cards, i.e. that there a.re twenty-five ca,rds  thak may be played successfuily. For each
of these twenty-five cards, there aze  y‘j5” possible subsets that could be successful third play ca,rcls,
so altogetClier  d3*51 x q50)25  possible rules ca,n govern the first t,hree ca.rcls. Then( y



MPF commented that it ~oulcl  be “impossible to do better than random witShout  assuming
some bias” in the God rules; JDU atgreed,  sa.ying that the problem was to try to find tha,t
bias. Presumably, he a.dclecl,  the God rules are “short,” in the sense thak they don’t enumerate
permissible plays in the set theoretic sense tha,t we used above. BJG pointed out tl1a.t  wildcards
in the rules would be difficult to account for, an esa.mple  of which might be ‘%he suits must
alternate, except that black 7’s ma,y always be played.”

According to JDU, the strategies used by the computer players in CS304 could be roughly
divided into two classes - brittle and malleable. Brittle stra.tegies  used some reasona,bly  large
set of “fea.tures” t,hat either a.ppliecl or clicln’tj  a,pply,  e.g. “4 always precede ca.rcls with odd
ranks.” Malleable stra.tegies  were statistical in nature, ordering features according to how well
they performecl  in the past?

At the recent fa.culty retrea*t JDU listened t’o a. talk by John Koza, who does work with genet,ic
algorithms. Since three people in this class a.re also taking Koza’s  class, .JDIJ challenged them
to implement a, genetic algorithm. Iclea.lly,  such an algorithm would “splice” t,ogether  features
that worked in certain cases with features that worked  in other cases. As a simple esa.mple, one
feature might be reliable in preclict,ing  which ca,rcls  could follow red suits, wherea,s  a.nother fea t’ure
might regukly predict ca.rcls  thak could follow blxl; suits. By splicing these t\vo features, Lye
w~ulcl  hopefully obta,in  guidelines for plays on any suit.

Day 12 - May 10

ER described a God player that he had written over the weekend. It wa(s quite successful aga.inst
the ra.nclom  player, winning seven out of eight t,ria,ls  on different God rules. The player uses
a brittle strategy that only looks a.t the top card on the stack; the six features that t’he pla,?;er
considers are rank, suit, ocld/even,  fa.ce/number,  color, and major/minor.15  Once a, ca,rcl  is pla)-ed
successfully, the player generates a set of generalized rules that might explain why the play \\‘a~
successful; each rule is a. pair of descript’ors,  one for the top card and one for the nest ca,rd. The
set of rules is pruned a.fter  every failed play, so t,lia,t all current rules axe consistent with t#hc
hist.ory  of pla.ys.

l4 JDU. characterized t,llis as being somew1~a.t  similar to the way in which baseball pla.yers were sometimes sent.
clown to tile minors, but could eveutually work their way ha.cl; up to tile ma.jors.

15h4ajor/minor is from bridge; 4 and 0 are ma.jor, 0 and 4 are minor.



Player (2 random seeds) RaIncloln Trials
God Pr0gra.m Seed = 34567 Seed = 545:35 Median Range

My God 1 71 ( 2 5) 70 ( 2 5) 154 140-N)
Mv God 2 87 (51) 104 (51) 196 126-204
LJllma,n’s God 1 SO (51) 69 (51) 92 S:3-106
LJllmau’s God 2 74 (35) 99 (51) 113 88-126
Ullman’s God 13 170 (49) 205 (46) * 167 1 6 1 - M
1IJllman’s God 4 92 (32) 98 (W ‘ ’ 118 lOl-131
LJllma.n’s God 5 111 (48) 91 (48) 131 118-154
IJllman’s God 6 74 (51) 65 (49) 87 N-107

Ta,lAe 2: Performance of ER’s God Pla.yer

Consider a. successful play of the 130 on the Ah. One genera,liza.tion  of this \voulcl be “odd V’s
may follow ma,jor suits.” For this rule, the rank, odd/even, fa,ce/number,  color? and ma.jor/minor
features of the t,op ca.rcl  \voulcl be “don’t cares,” moclulo the intSerdepenclence  a.niong some of the
features. The only fea.ture of the next ca.rd tha,t would not, he a “don’t ca.re” is major/minor.

To cl~oosc the nest, caxcl, randomly select among the rules which a.ppl~* to t,he current t’op
ca,rcl. The rule discussed a.bove a.pplies to t(he 30, since V’s a,re ma,jor. Suppose this is the rule
ra,nclomly  chosen. NOW lanclomly  select among t,he remaining cards which sa.tisfy  t.he rule, in this
case, AV, 50. . . . , 90. When t.here are no rules which a.pply,  the player tries ca,rcls  randomly.

ER noted t,ha.t ever!. successful play generated between 20-SO rules? while every failed p1a.y
eliminated O-40 rules. l‘wo less ra,ndom nest card selection techniques were also tested; choosing
the nest ca,rcl 13~ let,ting the rules “vote” sometimes worked better, but only iuconsist(ently.  ET
suggestecl  the inI*erse  of t,his, i.e. choosing the card which satisfied the fewest of the rules. ER
argued thak playing the most popular card was better-, since that would allow for the greakest
a.mount  of pruning. Even so, there were often more than a, thousand rules left by t{he end of the
ganle. The second technique wa,s  to choose the next ca.rcl  by using the rule wit,11  t,he la.rgest  set,
of permissible plays; this worked very poorly, presuma.bly l~eca.use such rules a,re too general. ER,
noted that, a.lthough he did not intentionally bias in favor of either more general or more specific
rules, more genera.1 rules tended to be used more often since the>r a.ppliecl  t$o the t,op caxcl more
frequently.

.JDU observed t,hat “the interpretation of the rules is that they a,re permissive but not re-
quired ,” since t,he player doesn’t prune the rule set, on successful plays. In some sense. this

so



interpreta.tion provides disjunction “for free.” JDU digressed slightly, mentioning that very naive
Agorithms  ca,n usually solve Mastermind puzzles by the fourth or fifth try, because the fea,ture
set describing a, Mastermind puzzle is fixed and relatively sma.11.  For the God problem, “the
minute you start adding new features, you end up out of virtual memory, and that happens very
quickly.” In particular, this may happen if we indiscriminately estend the top card descriptor to
consider the entire stack.

CJ suggested that players which considered only the top card might still do well on complex
God rules, since the top card might unexpectedly ma,nifest  influences from all cards in the stack.
In certain ca,ses, there may be “top caxcl only” God rules that are a,lgebraica.lly  equivalent to God
rules which consider the entire stack, but .JDU argued that this wa,sn’t  true in general. For a God
rule which only considered the card below the top ca.rd, for instance? there would be essentially
t,wo sepa,rate God games being played.

The fea,ture set certainly doesn’t have t,o be esha,ustive;  as HH noted, “You can’t alwa,ys
hope t,o hit on the exact rule that the God is using, but you ca,n try to a.pprosimate the God’s
behavior.” JDU provided an example of this. Consider a God rule in which the parity of the sum
of ranks and suits of cards on the stack must alternate. Even progra.ms  which entirely lacked the
notions of suit numbering and parity were a.ble to do rea.sona,bly well. They were able to not,ice
that “odd” ca.rds,  i.e. those for which the sum of the rank and suit is odd, were twice as likely
as “even” caxcls to be successful.

This notion of behavioral approsimat,ion seems to argue in favor of mallea.ble  a.lgorithms,  but
JDU was quick to point out that brittle a.lgorithms were also quite successful. Consider a, God
rule in which cards are divided into seven equiva.lence classes? by taking t,he square of the ra,nk
moclulo  13. The rule requires that each card pla.yecl must be eit’her in the sa,me  equivalence class
a,s the top ca.rcl  or in the nest equivalence cla,ss. Thus, cards of the sa,me  rank could alwa,ys  be
played in sequence. Brittle strategies, although never a.ctually “lea,rning” this fact, would p1a.y  all
ca,rcls of a given rank after only a few false starts. Also, .JDU wa.rnecl against relying too heavil>-
on sta,tistica,l  a.pproa,ches. If you start with a large set of possible rules, it is sta,tistically  like11
that some of them will do very well for the first few plays; however, there is little rea,son to espect,
tha.t  t-hey will have the ability to preclict subsequent plays.

Although there is the informal notion that, the God rule should a.lways  allow ak lea,st  ten
carcls  to be playable, assuming that there is an infinite cleck of cards, .JDT_T declined to forma,lly
specify this requirement; he thought it would be too hard to do. We will a,11  presuma,bly  follo\\7
this guideline in good faith. Every t.eam sl~oulcl  construct one or two God rules for the final
competition; remember that the God rules should tory to distinguish between players, so that
some God players will perform well and others will perform poorly. ET proposed tlelling  one of’
the other teams wha.t  God rules he would be using, but he reconsidered a.fter being threatened
with a. Funcla.menta.1  Standards violation.



Day 13 - May 15

ET introduced am approach that .JDU chara,cterized  as being “something of a neural nets a,p-
proach, but instead of starting with chaos, having some built-in structure.” For each feature of
some moderately large feature set we ca,n associa,te  a histogram representing how strongly the
feature recommends each remaining ca.rcl. There is also a weighting function on the feakure set,
corresponding to the past performa.nce  of each feature; using this weighting function we combine
a,11  of the histograms to determine the nest card play.

.4t tIllis  sta,ge only successful pla,ys  a,re used to a.djust  the weights; AW pointed out tl1a.t we
should be able to improve the technique, since ‘bmisses  are as va,luable  as hits.” ET also mentioned
tha,t  he hoped negative weights might be able to represent negative correlation between feakures
a.ncl successful caxd pla.ys, although at, this stage the idea wa,s purely speculative.

An interesting heuristic t1la.t  his team is developing acttempts  to recognize when the technique
is failing, i.e. t’lie  “flail factor.” Presumably, the number of failed plays between each successful
pla,y should decrease a.s the fea.ture weightings  more closely approsimate the God rule. If, in the
middle of a* game, this number suddenly increases for several successive card pla.ys, there is reason
to believe tlia,t the feature \veiglitings  are either no longer correct or, for some reason, locally
ina(pplica,ble. There are several  \vays to a.ttempt  “recovery.” First, reconstruct the weighting
from the point just before the flailing, since it might ha.ve  been corrupted; there is no way t’o
know  whether the rule a.pprosima.tecl  by this weighting is now entirely useless, i.e. the God rule
cha.ngecl entirely, or whether the weighting might again be of use, indicating that we ha,ve simply
encountered some temporary specia.1  case of t*he God rule. Nest, start from the init,ia,l  weights
a,ucl construct a weighting which considers only plays since the flailing began. This weighting
is proba.bly more a.ccura,te  t,lla.n the combined weighting over the entire sequence of pla,ys. ET
also recommended identifying t,he ca,rcl  \vhich immediately preceded the flailing and avoiding
“simila,r” ca,rds in the future; this is proba.bly inadequate, since there is no way to know  that’ t’he
ca,rcl  which triggered the change in the God rule didn’t a.ppea.r  much earlier. JDU suggest*ecl  that,
t(he weighting could be modified more drast,ica,lly  to achieve greater adaptability. Rather than
subtra,cting some constant from the weight of every fea,ture  that wasn’t a0 successful predictor, we
might divide the feature weight by a. small consta.nt,. After only a few failures the feature would
contribute very little to the combinecl  1iistogra.m.

‘There are some high-scoring God rules which \ve agree a,re unfair. For instance, a God ma!.
specify that any card may be played prior to the appeara,nce  of the suicide king (I<Q), a.fter
which some estremely complica.tecl  rule is a.ppliecl. Then some pla.yers will, mostly by luck, not.
play the suicide king until late in t,he game, thereby scoring very well, whereas other pla,yers  ivill
trigger the complicated rule quite eaxly and do very poorly. Since the score of a, God rule is
cletSermined l,y how well it differentiates bet,\veen pla,yers,  this God rule would score well, ent,irel>l



due to chance. We also recognized that certain God rules would be simply too difficult for any
player, and should therefore be disallowed. Among these include those rules which involve an
arbitrary permutation of the cards, e.g. red-black where Ah is really 30, 24 is really 44, 34 is
90, and so on. BJG thought that we might be able to prove that no player could do better than
random against a God rule using arbitrary permutations, where JDU characterized “better than
random” as being better by at least one standard deviation, about ,/ii’ for n cards played. KF
suggested that we might avoid many of these unfair rules by requiring that God rules be written
without the use of lookup tables. JDU asked whether we expected our computer players to play
well against simple rules; he suspected that they would tend not, at least in comparison to human
players. ESC suggested that it might be interesting to see how well a computer assisted human
could play. Writing a computer assist for playing God would primarily involve determining how
to extract and present the data as usefully as possible.

BL pointed out that none of the approaches discussed so far seemed likely to handle esclusive-
or based God rules.

Finally, there are rumors that MT is working on a genetic algorithm, breeding four generations
between each successful play, but he wasn’t present to confirm this.

Day 14 - May 17

Before discussing God game problem, we previewed the upcoming traffic lights controller problem.
Given an n by n street grid with traffic lights at each intersection, we would like to optimize the
traffic flow according to varying rates of traffic on each street. JDU said, “my intuition is that the
algorithms for high rates and low rates are very different.” When traffic is light, we can get good
performance by just letting them “breeze through” the map. When traffic is heavy, however, we
will probably want them to pass through “in waves.”

ESC described the interface between the traffic simulator and the traffic lights controller.
Although for this problem we are assuming a square street grid consisting of only two-way streets,
the traffic simulator was designed to allow for more complex scenarios. Keeping this in mind
may help explain some of the more confusing indirections used by the simulator. The main
simulation loop consists of three steps. First the simulator randomly “grows” cars, either by
adding new cars along the edges of the map or by “desorbing” parked cars in the interior of
the map. Next the simulator models the motion of the cars, accounting for (hopefully) realistic
acceleration, deceleration, and driver behavior. There is the possibility that the car will be
“absorbed” somewhere in the interior of the map; this would correspond to the driver reaching
her destination and parking. At each intersection the driver may choose to turn left or right or
to continue forward. The simulator keeps track of the number of cars which “hit” each traffic

83



bumper entering an intersection. In the final step of the simulation the traffic light controller is
called to update the traffic lights.

The map (MAPmap *) consists of streets (MAPsid) and crossroads (XROADid). Henceforth, we
assume that streets run east/west and avenues run north/south. Each direction of a two-way
street16  is considered separately, i.e. has a distinct MAPsid.  Given a map, we can iterate through
the list of intersections on the map. The first intersection will be at the northwest corner of
the map, the second intersection will be just to the east, and so on. Thus, the intersections list
is ordered row-major. At each intersection, we can iterate through the streets meeting at the
intersection, starting with the northbound avenue MAPsid,  then the southbound avenue, then the
eastbound street, and so on. Given an XROADid and a MAPsid  entering the intersection, we can
reference the number of cars that have hit the bumper at the intersection, along the given street,
in the past second. Other physical features of the map, such as distance between intersections
and speed limits, can also be accessed. See the man pages for details.

JDU suggested that the problem would still be interesting even if we disallowed turns. “Part of
the problem is dealing with uncertainty, which we can still get from absorption and desorption.”
Turns complicate the simulator because safety checking of turning cars in the intersection is
difficult. Also, left turns are somewhat unrealistic since we assume that there is an infinitely long
left-turn lane; to do otherwise would require simulating multi-lane traffic, which we can avoid in
general.

ET described an interesting player behavior that his team had encountered? Against an
odd-even God rule, the first card played was the 20. ET explained that it seemed reasonable to
play the card that was “most different” from the bottom A& although he also argued that it
wouldn’t matter much since the first card played would essentially be random. Given that the 20
succeeded, the computer player reasoned that God was accepting all minor suits. Thus it played
the 30,. . . ,A&24,. . . ,A4 in succession, inadvertently satisfying the odd-even rule at every play.
Similarly, the computer played 20,. . . ,AV,. . . ,2&. . ,Kb to empty the deck. This serendipitous
behavior is due to the tendency of computer players to induce unintentional regularity in their
sequence of card plays, a phenomenon that AW/DS had also encountered. ET also mentioned
that his team had decided not to pursue the “flail factor” heuristic, and that they had settled
on a means for updating the histogram weights. Rather than incrementing or multiplying the
weights by some constant, they adjust the weights according to the strength of the histograms’
recommendations. Thus, if some rule very strongly recommended playing the 64, then the rule’s

“Here we are using “street” to refer to both streets and avenues; hopefully, the context will make it clear when
“street” refers to north/west roadways as opposed to roadways generically.

17He prefaced his description, saying that “the program was really trying, and it was completely our fault (that
it wasn’t really working).”

84



weight would be greatly decreased if the card was not accepted. Thus we would expect that the
program could adjust quickly to sudden changes in the God rule.

JDU suggested that one might approach God playing from a sort of automata theoretic
perspective, using states to represent “cards looked for,” e.g. red face cards. Then the program
would try to deduce the transitions resulting from each successful play. He also discussed another
approach to feature sets. Rather than considering, for instance, rank sum modulo 2, rank sum
modulo 4, rank sum modulo 13, and so on, to be primitives, we could start by saying that card
rank is an “interesting” feature. Then, let the sum of any “interesting” feature over the entire
stack be “interesting.” Let the modulus of any “interesting” feature be “interesting.” We can
generate a very large feature set with this approach, one which wouldn’t be dangerously biased
by human intuition. Presumably, some way of assigning priorities to the feature set would have
to be constructed.

Day 15 - May 22
JDU asked people to give examples of God rules for which their computer players would play
perfectly. There was some uncertainty as to what was meant by playing perfectly; were we
interested in God rules for which the programs would use the entire deck in exactly fifty-two
plays, or were we interested in God rules which the programs would eventually obtain complete
understanding of the God rule ? An obvious example which will work for the first case is the
God rule which allows any card to be played. JDU amended the question, motivating it from his
curiosity “to see whether people understand why their programs do well or not.” I<F mentioned
that the program she was working on would play the red-black rule perfectly, but would make
a few mistakes before solving the odd-even rule. She indicated that she usually understood the
program’s behavior.

There was some discussion as to whether unintentional regularity was advantageous or not.
Most of the teams seemed to be working towards programs which would simultaneously build as
many patterns as possible, thereby inducing many unexpected regularities. On the other hand,
at least one team was explicitly choosing at random. from the most likely set of unplayed cards.
They hoped that the advantages gained by recognizing false patterns would outweigh losing the
occasional “lucky” games. This discussion led to the question of how people were generating
rules and representing them. It turns out that most of the player strategies tried thus far are
brittle and require (modest) re-programming to introduce new features. JDU suggested using
S-expressions to represent rules, building trees in which the nodes would stand for operators and
the leaves would stand for very basic operands, i.e. features. He also noted that some of the
strategies lacked the tangible notion of a “rule,” relying entirely on approximating the God rule

85



by “fitting pieces of things together .” This would seem to indicate that the God game problem
ought to be well-suited to genetic algorithms, as was suggested several days earlier. For instance,
there is an immediate intuitive interpretation of “survival.” On the other hand, it was pointed
out that genetic algorithms do not seem to hold much promise for adjusting to sudden changes
in the God rule, which JDU agreed was definitely a shortcoming.

PKW introduced “parameterized rules,” an example of which might be “ranksum of the top x
cards modulo y.” He and BJG were writing a God player that could interpret an off-line database
of around 50,000 of these types of rules, comparing the results by means of histograms. They
make use of “meta-rules ,” or rules which are used to generate other rules.

The last aspect of the God game problem that we considered was the tradeoff between “dis-
covering” concepts or including concepts as part of the God player’s vocabulary. Demonstrations
of the God players will be Tuesday, May 31. JDU asked that people try to set aside an additional
hour before class for the demos, so we will begin testing them at 10 a.m. Also, each team should
remember to construct one or two Gods prior to the testing for the other teams to play against.

We opened discussion on the traffic lights controller by making two assumptions. First, assume
that the cars do not make turns. Second, assume that the cars are never absorbed or desorbed.
JDU explained that, although we will eventually want to relax the second assumption, we will
probably keep the first assumption throughout the problem. “It’s not so much whether you can
make left turns or not, but whether unexpected events can happen [that’s interesting].”

Suppose traffic is light and moving in such a way that we know there will be no conflict;
is it always acceptable to simply turn all the lights green ? Consider two cars approaching an
intersection at right angles to each other. Even if they are staggered so that they could both
pass through without affecting the other, the simulator will complain if the lights are green in
both directions (since that is generally an unsafe configuration). If the light in front of one of
the approaching cars is red, however, that car will have to slow down, because it has no way of
knowing that the traffic lights controller will change the light to green just in time for it to pass
through. Thus it is not generally true that cars which don’t necessarily conflict can be passed
through without delay.

Several incidental concerns arose; first, if a car cannot stop in time to avoid passing through a
red light, it will simply go through the light and try to leave the intersection as quickly as possible.
Should another car already be in the intersection in a manner that a collision is possible, the
simulator will warn that there may have been a collision? Second, you can be certain that no
cars will suddenly appear in the middle of an intersection, at least not without triggering some

“We don’t stop the simulation, however, so presumably the simulator drivers all have incredible reflexes and
manage to avoid each other.

86



bumper in the usual fashion. In particular, cars which desorb begin with zero velocity, and so
are able to come to a stop quite quickly. Finally, the speed limit is associated with the street,
not a pair of intersections, so the only way to change speed limits on a straightaway is to join
two streets end-to-end. It seems unlikely that we’ll bother to do this.

One scheme for handling heavy traffic tries to move the cars through in waves, possibly with
a diagonal rather than orthogonal wave front. JDU suggested dividing the map into quadrants,
where, for instance, the upper left and lower right quadrants would favor east-west traffic, and
the lower left and upper right quadrants would favor north-south traffic. Then, of course, the
preferences would reverse. PKW suggested that elaborate wave schemes might not improve the
throughput, as compared to simply letting all the east-west traffic flow for some relatively long
time, then switching to all the north-south traffic. MK suggested that, rather than creating
waves, we might let each car represent a sort of “mini-wave.” Then we could set the traffic lights
according to the strength of the superposition of all these waves. One consideration that arose
several times was deadlock avoidance, but no definitive solution was proposed.

Day 16 - May 24

One abstraction for the traffic lights controller is to consider partitions of the map into (possibly
disconnected) regions favoring either horizontal or vertical motion. The regions may alternate
periodically, or sweep dynamically around the map. In this abstraction we are interested in
determining the best shape and dynamic  for the regions.

Consider a band favoring horizontal motion sweeping horizontally across the map.

87



In the diagram, the band is drawn as a diagonal. However, if we focus on a single street, it does
not matter whether the band is diagonal or vertical; what matters is the size of the cross section
intersecting the street in question and the speed with which the band is moving. In fact, we
believe the optimum speed for the band is exactly the speed limit of the street; if it is any slower,
cars will be held below the speed limit, but if it is too fast, cars will drop out from “behind”
the band. Let v be the speed limit on the street, and let d be the size of the cross section. The
time for a car, moving in the band, to travel across the map is 5, where w is the width of the
map. What happens to a car trying to move against the band? JDU claimed that the car should
require $, so that the average time to cross the map would be F. He justified his intuition by
arguing that “you can’t get something for nothing?’ We can provide a more rigorous argument
for this. Suppose the car starts at the rightmost edge of a band favoring horizontal motion. Both
the band and the car are moving at velocity v, but in opposite directions. The width of the band
is d, and it will require $ for the car to reach the leftmost edge of the band. Presumably, this
will be the rightmost edge of a band favoring vertical motion, so the car will be forced to stop.
Since the car is no longer moving, the vertical motion band requires ! to pass over the car. Thus,
the car travels $ in time g, so the overall rate is :; to travel across the entire map requires %.

ET and AW argued that this analysis was suspect, since “you never have to stop in the middle

lgThe 2ans2aufE  principle.

88



of the street. If the streets are very long . . . you can synchronize so that you’re driving while the
vertical band passes over you.” JDU agreed that edge effects might in fact prove to be important.
ET suggested that we let d be equal to the length of the block; when the car reaches the vertical
motion band, it will be exactly in the n-riddle of the block, so it can continue moving. Just as it
reaches the end of the block, it also reaches the end of the vertical motion band, so the traffic
light will turn green. AW pointed out that the throughput of traffic moving against the wave
was still only half the throughput moving with the wave, since the “virtual band” in which traffic
could move freely against the wave was only of length 3.

In fact, the throughput will be even lower than this, since the lead car moving against the
wave will be driving towards a red light. Since the driver has no way to know that the light
will turn green just as he reaches the intersection, he will be forced to slow down. This provides
a sort of “governor” mechanism, keeping the lead car just far enough behind the front edge of
the virtual wave that the car won’t have to slow down. With sufficiently dense traffic moving
against the wave, we can expect that nothing will cross the intersection when the light turns
green, but then suddenly “a bunch of cars will come flying through.” To prevent this problem,
AW proposed an “early warning” traffic light, so that drivers would know that the red light that
they were approaching was about to turn green2’ When we analyze the effect of these bands on
traffic moving along the avenues, i.e. vertically, we find that it is possible to provide for smooth
traffic flow in at least one direction. The other direction of vertical traffic, however, is forced to
synchronize at every intersection, and tends to move rather slowly.

At the end, JDU noted that this was a very fragile approach. He estimated that the maximum
rate of flow “is only half of what a dumber scheme can tolerate,” and at high rates of traffic the
map would saturate. In summary we have a fragile technique for providing reasonable traffic flow
in three of four directions; we would like to provide for greater robustness and to allow for the
fourth direction to move more efficiently.

Day 17 - May 29

And on the Seventeenth Day, The God Programs were Tested.

20JDU  noted that in some European countries, yellow follows red, although probably not for the reasons that
we are considering!

89



Day 18 - May 31
ET suggested using queuing theory to determine the number of cars waiting after a given light
remained red for some period of time. If traffic in one direction is sparse, we can keep the lights
red in that direction until a backlog of cars has built up, then let them all through at once. Doing
this would help obtain “full utilization of the streets.” JDU observed that the appearance of new
cars at the edges of the map is a Poisson process, i.e. the probability of a new car is independent
of past history.

Another proposed approach is to give priority to the direction of traffic that has the largest
number of cars waiting. One way of giving priority, other than simply switching the lights to
green, is to let the duration of the green light be longer than the red light; up to now we have
been implicitly assuming that the lights stay green for the same length of time that they stay red.
MPF suggested that, to avoid edge effects, the simulator should have the map “wrap-around,”
so that a car driving off the edge of the map would appear on the opposite edge.

The notion of the “phase angle” between adjacent traffic lights on a given street was considered
again. If the traffic light controller behaves cyclically, we can represent the state of the light at
2nd St. and 3rd Ave. as sort of a pie chart with red and green time slices. For optimum traffic
flow, the corresponding pie chart at 3rd St. and 3rd Ave. should be the same, mod& a phase
angle rotation to account for the delay in driving one block along 3rd Ave. MT observed that,
in case the phase angle was exactly 180”) traffic flow would be optimum in both directions.
The same is true of a phase angle of exactly 360”,  but it is not true of any other phase angle,
assuming that there are only two “slices” (one red, one green) in the pie. MT suggested finding
a differentiable expression for throughput, using phase angles for variables. JDU cautioned that
this would probably be very hard to do, but encouraged anybody to try.

The discussion turned to handling very sparse traffic flow, where we assume that every car
should be able to move across the map virtually unimpeded. In this case, the controller can try
to turn the lights green predictively, so that the cars never need to stop. As traffic flow increases,
it may be necessary to “reserve” green lights for each car. Then the problem reduces to resolving
scheduling conflicts, i.e. when a car needs to travel north-south through an intersection that
has already been reserved for east-west travel. This is exactly the problem of managing shared
resources, and opens the possibility of optimization by pre-empting reservations. As an example,
consider a car driving along 4th St. which has reservations at 4th and 5th Ave. If there should
appear cars on 4th and 5th Ave. which need to cross the 4th St. intersections, it may be better
to pre-emp t the original reservations. By doing so, only the car on 4th St. will be delayed.

MI< suggested that traffic flow should be “pulled” by the traffic density at each intersection
rather than “pushed” by the cars that appear on the map. Each traffic light would broadcast
openings in its schedule to neighboring traffic lights, in effect requesting that cars be sent to fill

90



these openings. JDU seemed intrigued by this idea, commenting, “I think this would work, but I
find it very unintuitive.” He also noted that, in this scheme, “there would have to be somebody
at the edges requesting cars.” MK claimed that this would be an example of “Just In Time
(JIT)” scheduling. PKW suggested looking for sequences of available time slots.

MT described a geometric representation that can be used for planning. Consider a graph,
with time on both axes. Let the horizontal axis represent the starting time of some event, and
let the vertical axis represent the ending time. Each event can then be represented as a point;
presumably, all the points must lie above the x = y line. For the traffic lights problem, there
would be a graph of this sort at every intersection. Each car that needs to pass through the
intersection will be represented by a point. There will be two types of points, one for cars
traveling vertically and one for cars traveling horizontally. The problem is to adjust the points
so that no two points of different types conflict, where we consider two points to be in conflict if
the triangles obtained by projecting each point to the x = y line overlap.

Day 19 - June 5
BJG complained that the traffic lights simulator ran too slowly, making it difficult to test different
light controller algorithms. The simulator runs in approximately real-time on a 5 by 5 street grid
with heavy traffic; since it seems necessary to simulate at least an hour of traffic flow to minimize
the effects of initialization and termination transients, it takes about an hour to test even minor
adjustments to a controller algorithm.

We considered two techniques for dealing with this problem. First, it may be possible to
project long-term traffic flow performance from a few early observations of the traffic flow. JDU
suggested that the graph of one of our principal criteria, the average delay experienced by a
car crossing the grid, versus the duration of the simulation, might be hyperbolic. He predicted
that the average delay would be linear for short simulations, and then would approach some
“steady-state” delay as the length of simulation increased. Theoretically, it should be possible to
determine the hyperbola, and hence the steady-state delay, by sampling the average delay in the
early stages of the simulation. Several people objected, arguing that there would be too much
noise in the samples to hope for an accurate projection of the steady-state delay. In particular’
the data will vary greatly if the samples are taken during different phases of the controller cycle.

A second technique is to discard data that is obviously biased as a result of the finite length
simulation. For instance, any car that passes through the grid i,n the first minute will probably
have a lower delay on average, since the grid will not have reached its steady-state traffic density.
Also, at the end of the simulation, any cars that have been on the map for only a few seconds

91



will probably skew the output results, so it seems reasonable to discard their statistics.
Suppose we are interested in the average length of time that it takes a car to cross the grid. For

simplicity, we disregard the initialization transient and consider only the effects of the termination
transient. Let n be the number of cars that have crossed the entire grid, and let t be the average
length of time required for the crossing. Let nf and tf be the corresponding statistics for the
cars still on the grid at the end of the simulation. JDU suggested that tf = 5 seems intuitively
reasonable. Then the average time to cross the grid is nt+nj $ =n+nj t - nft

2(n+nd
we can stop the simulation when n = nf, i.e.

= t(l - 2(n”,:n)  )’ If
the number of cars that have left the grid equals

the number of cars still on the grid, then tactual  = :t.

MT presented an analysis of vertical traffic flow when the light controller is optimizing for
horizontal traffic. Let s be the duration of the green light phase, k be the number of seconds
required to traverse a single block, and d be the phase delay between adjacent traffic lights. Then
f;:.,: ; !(2s-(k-d))%2s]-4, and j&, = I[(2s-(k+d))%2s]-sl. Thegoal  is then to maximize

21p. In the example considered previously, k = $s. The proposed delay d = $s yields
fdown optimal and fup = 0, i.e. stopping at every light, as we predicted. As another example, if
k = is, then f2Lp  = 5, i.e. stopping at every third light.

JDU ended class with a quote from R.W. Floyd: “Research is looking for your dime under
the lamppost because that’s where the light is.”

Day 20 - June 7

The last day of class opened with a somewhat hectic discussion of whether constant deceleration
was an accurate assumption. If so, then stopping distance should be proportional to the square
of the velocity. PKW argued that deceleration should not be constant, and JDU provided a
supporting rationale; specifically, that the limiting factor in braking is the rate of energy dissi-
pation. Since there is presumably some maximum rate of energy dissipation and kinetic energy
is proportional to the square of the velocity, the maximum possible deceleration should decrease
as velocity increases. Consequently, stopping distance increases faster than the square of the
velocity. HH pointed out that, in light of this result, there is a threshold at which increasing the
speed limit will result in reduced throughput, since the lead car will be forced to travel so far
behind the theoretical crest of the wave.

JDU showed a histogram, obtained by PKW and BJG, displaying the traffic flow as a function
of the length of the green light cycle. “Here is an example of lying with statistics,” he joked,

92



I
I

since the histogram accentuated the variation in traffic flow by cutting off the graph well above
the zero point. A surprising result that PKW and BJG obtained was that using random phase
angles, even with otherwise identical green-yellow-red cycles at every light, would lead invariably
to deadlock. This result held independent of the duration of the green-yellow-red cycle.

The class toyed with the idea of randomly “blessing” certain cars. A blessed car would be
given priority at every intersection, and presumably the cars near to it would benefit as well.

ET wondered whether, assuming optimization of horizontal traffic flow, it was correct to use
a greedy technique to optimize vertical traffic flow. In other words, let the phase angle at the
intersection of the first street be zero, and optimize the phase angle at the intersection of the
second street with respect to the first. Then optimize the phase angle at the third intersection
with respect to the second, and so on. Nobody was quite sure, but JDU suspected that, “As
usual with greedy algorithms, the default answer is ‘no.“’

BJG commented that the bumpers were not of much use, since most of the bumpers were being
triggered at each cycle. Also, since the bumpers were only five yards back from the intersection, it
was not possible to turn the crossing light from green to red before the car reached the intersection.
AW briefly described the approach that he and DS had taken, which involved forwarding messages
from one light to another warning that a car was approaching. He noted that they were able to
reduce average delays, but that the throughput was roughly halved. Thus, cars would presumably
back-up all around the edges of the map. 21 ET suggested that by keeping all the incoming lights
red on three sides of the grid, we could really reduce the average delay. This, however, is not
necessarily true, since the cars kept waiting at the three blocked sides of the grid would increase
the average delay. PKW suggested measuring the average delay only of cars that successfully
crossed the grid, leading JDU to remark, “So what you guys want to change isn’t the controller
mechanism, but the way of measuring performance. Don’t tell me you haven’t learned anything
in this class!”

21  “That’s Mountain View’s problem,” JDU commented graciously. On an entirely unrelated note, JDU also
provided the New York definition of a ,!H as “the time between the light turning green and the first person
honking.”

93



Chapter 9

Conclusions - JDU

RETROSPECTIVE ON SOLUTIONS OFFERED BY THE 304 CLASS

Problem 1: Abundant Numbers

I started out with little idea how far people could go on this problem; one of my first
comments was that students should think about a~~,~~~,~~~.  We quickly realized that cy,
grows doubly exponentially in 72, and that, empirically, cy, has about (1.7)n  digits.

It turned out that one of the teams did far better than the others, because they
discovered a way of narrowing the search that was radically different from the others, who
were concerned with upper and lower limits on the number of factors for the various primes.
The key idea is to think of prime factors, distinguishing different factors of the same prime.
Thus, 120 is composed of “the first 2,” “the second 2,” “the third 2,” “the first 3,” and
“the first 5.” Each factor, say “the ith p,” can be represented by a rectangle, whose width
is logp. The height of the rectangle is chosen so the area of the rectangle is the logarithm
of the “abundance hit,” which is the factor by which the abundance increases when we
multiply by p a number that already has exactly i - 1 factors of p. The abundance hit, we
easily calculated, is 1 + l/(p + p* + l l l + p’), so its logarithm is approzimately  p-‘.

We can now order factors by height of their rectangles, and pick the highest ones to
form a line, as suggested by .

t 1

We stop as soon as the area of the rectangles reaches the logarithm of our target abundance.
The width of the line is the logarithm of the number represented. Typically, we overshoot
the target abundance somewhat. However, we can get a better number by replacing the
last rectangle by extra powers of 2 and/or other small primes. Since these tend to be very
narrow rectangles, they add less to the total area, often giving us a smaller number that

94



still has the target abundance. A certain amount of backtracking is necessary, in which we
consider replacing several rectangles by lower rectangles that happen to get us closer to the
target abundance than our “greedy” guess. However, there are usually very few changes
than can be made, since all replacing rectangles will be lower than the rectangles they
replace, and if we do too much replacement, we can’t reach the target area (abundance)
without widening the line beyond the point of our current best guess.

In practice, the team that developed this algorithm found that from a few to a few
hundred improvements to the guess could be made before it was possible to prove that
no further changes could get us a smaller number with a sufficiently high abundance.
The limiting speed factor was how fast /usr/games/primes  generated the primes. They
were able to compute ~31 in about 14 minutes. Beyond ~31, the errors inherent in the
double-precision computation of logarithms and their sums was sufficiently great that it
was unclear whether numbers had abundances slightly below or slightly above the target.

Problem 2: Tiling Halls

My initial idea about how to solve this problem proved wrong. In fact, neither “closed
semirings” nor anything like it lead to the best result. Rather, one team’s careful analysis
and development of the necessary theory led to the most effective solution. First, it turns
out that the number of states in the automaton built from a set of tiles has a great deal to
do with how quickly the instance can be solved (but we suspected that). The maximum
number of states can be reduced from almost 216 to 212, by filling in an entire row at a
time, perhaps using a combination of tiles. Thus, all states correspond to halls with at
most three rows that are partially filled or not filled at all. Note that when making a
transition between states, we may “consume” from the input more than one row, but that
could happen even if transitions were all based on placing a single tile.

The key theorem proved by the “winning” team is as follows. Let N be the number of
states in the automaton produced; note N 5 4096. Let G be the greatest common divisor
of all the numbers 72 such that n is the length of a tilable hall, and n 5 2N + 1. Then
there is a constant T, which is no greater than 4N2 + 6N + 2, such that for all n 2 T, n
is tilable if and only if n is a multiple of G.

That result says we only have to simulate the automaton for halls up to T. However, if
N is large, T could be as large as 16 million, in principle. The actual algorithm calculates
T “on the fly,” so if the actual value of T is much less than N2, we do not have to simulate
out beyond T. Moreover, unless the target hall length turns out to be between 2N + 1 and
T, we never have to simulate beyond 2N + 1.

The idea is to simulate the automaton on halls of length 1,2,. . ., and keep an estimate
g of G and an estimate t of T. That is, g is the gcd of all the tilable hall lengths found
so far, and t is the smallest multiple of g such that it and all higher multiples of g can be
expressed as a sum of tilable hall lengths found so far. As we simulate the automaton, we
call a hall length n “tilable” if 72 inputs can take the automaton from the initial state back
to the initial state (which corresponds to three empty rows).

As soon as we find a tilable hall length, we initialize both g and t to that length.
Now suppose t.hat m is the next tilable hall length found. Let g’ = gcd(g,  m) and let
t’=t+gmJg’- m. Then it can be shown that g’ and t’ are appropriate new values of .

95



I

g and t. We repeat this process for each hall length up to 2N + 1, and the final values
of t and g become T and G, respectively. If the target hall length 1 is greater than T, we
have only to ask whether G divides 1. If I < 2iV + 1, we already know the answer, and if
2N + 1 < 2 < T, we need to simulate further, up to 2.

Problem 3: Constructing Star Views

There were two interesting ideas developed here. The first dealt with the basic problem
of matching stars whose two views were jittered. From the Trantor point of view, we can
pass a plane through Trantor, Earth (whose location we know), and any given star as seen
from Trantor. The picture below suggests this plane for one star. We may then order stars
by the angle that their plane makes with the zy-plane. Similarly, we may order stars the
same way from the Earth point of view. We then match star images in the two orders,
assuming the stars with the smallest angles from each viewpoint match, the next smallest
match, and so on. While we do not generally get the right answer (there were about 900
wrong out of 10,000, when an error of one part in 10e5 was used) we miss only those where
“best” matches turn out to be deceptive. It can be shown that we never match stars that
are too far away to be explained by the limited jitter allowed. And of course, the algorithm
takes only 0( n log n) time on n stars, primarily to sort the lists of angles.

Star

Earth

Trantor
The second interesting idea involved a problem I hadn’t exactly posed. It assumed

views that had no jitter, but the second vantage point was unknown. The unexpected
assumption was that the views were not perspective views, but orthographic projections.
That is, the two vantage points were at infinity. The idea, suggested in the figure below,
is to divide the image into bands (about 20 was suggested as sufficient for 100 stars). The
number of stars in each band was computed, and the bands were rotated around the centers
of the circles. Each time a star moves between
stars in each band. The number of times that
stars and bands, so the calculation is fast.

two bands, we recalculate the numbers of
happens is the product of the numbers of

It can be sho are angles for the two views such that the bands “line up,”
and the numbers of stars in each band will be the same for each view. From the angles



of rotation for the two views, the relative angle of the views can be computed. The only
glitch is that there may, by chance, be a second pair of rotational angles such that the
populations of the bands agree, yet these angles falsely indicate a solution. By taking the
number of bands high enough, we reduce the probability of a “false drop” essentially to
zero.

Problem 4: HiQ

We learned a great deal about the theory, but no one produced a program that made
significant inroads into the problem. Sigh.

Problem 5: God
There were two solutions that performed better than the others. The best program took
very much time to run; we got its results the day after the competition. It operated by
a “generate and test” strategy. It had a built-in vocabulary of primitives, e.g. “top card
is red.” Rules were represented by Lisp s-expressions involving the primitives and logical
connectives, and at each card, it would generate several thousand new expressions and
check them for validity with past experience.

The second approach was statistical; it did not perform quite as well as the first, but
was very fast. It had a large vocabulary of features, which it represented by characteristic
vectors, e.g., the set of positions in the stack where there is a red card. The program
searched for correlations between these characteristic vectors, perhaps shifted. For exam-
ple, it might find that 2/3 of the time, when position i has a red card, position i + 2 has
a black card. That might be the best predictor it could find of what to do when the card
below the top of stack was red.

It is interesting that these programs, and the others as well, beat a random player
about 75Y0  of the time, even though the test suite consisted almost exclusively of gods
that involved concepts not present in the programs. For example, one god was based on
the purity of the rank, that is, the number of l’s in the binary representation. The rule
was that the parity had to alternate even/odd. However, there is a 2/3 probability that if
you change the rank by 1, e.g., play a Jack after a 10, you switch the parity of the rank.
Thus, several players did surprisingly well on this rule, using the notion of odd-even, but
without a notion of “parity-of-rank.”

ON THE SOLUTIONS OFFERED BY THE 204 CLASS

Problem 1: Cryptograms

It turns out that my theory of how to solve cryptograms, using joins and semijoins, was
not bad. However, the team with the best results used a depth-first search approach, in
which they would bind the cyphertext letters for a single word to each possible plaintext
word in turn, and recursively solve the partially restricted problem.

Problem 2: Abundant Numbers

Although I had seen the 304 students solve this one before, I tried very hard not to give
away the best idea I knew. I was therefore quite pleased when one of the 204 teams

97



developed a technique, involving line slopes, that is probably identical - deep down - to
the “rectangles” approach that one of the 304 teams invented.

Problem 3: God
Again, I tried not to tell what I knew, which was easier because I didn’t know that much
about the right approach. I was interested to discover how badly the “genetic algorithm”
did on this problem, since I would have expected God to fall within the class of problems
for which that approach is suitable.

The winner in the 204 group was a program with a rather simple idea. The team
implemented a little programming language in which they could describe families of sim-
ilar patterns very succinctly. They implemented an interpreter that considered each of
the patterns described by one of the statements of their language, and then selected the
next play by following the rule that best matched previous plays. By writing a program
describing about 50,000 patterns, they found they got their best performance. Fewer made
it too likely that the program would have nothing like the true pattern, while more caused
the true pattern sometimes to be obscured by other patterns that matched the history but
did not predict well. It is hard to tell whether this number of patterns would do well if we
changed our assumptions about what a reasonable pattern was, and either used only very
simple patterns or weirder patterns. However, the concept seems to give a lot of power for
very little mechanism.

When played against the best of the 304 programs, the best 204 program was the
winner, although not by the margin it achieved over the other 204 programs.

Problem 4: Traffic Lights

Unfortunately, much of the class did not get to the point of coding their solutions, I suspect
because undergrads worry about finals more than grad students do. However, the class
did do some interesting “theory” of traffic lights. The most interesting result is that, on
Manhattan-size streets, a pattern in which traffic lights oscillate at a lo-20 second interval
can provide much more throughput than obvious schemes. One day, if I have nothing
to do, I’m going to devote myself to getting some rationality into the way we deal with
traffic. I’m convinced that certain inventions: traffic barriers, four-way stop signs, “smart”
(bumper-controlled) lights, and others will be regarded by our descendants the way we now
regard blood-letting as a form of medicine.

98


