May 1991 Report No. STAN-CS-91-1360

Sooner is Safer Than Later

by

Thomas A. Henzinger

Department of Computer Science

Stanford University
Stanford, California 94305

Form Approved
OMB No. 07044188

REPORT DOCUMENTATION PAGE

m—
'ublic reOOMing Durgen 1Or T ¢ " STI0A 1§ EILIMST ! DR rEIDOME, INCIVGING the time PEVIeW!IAQ INSTTUCTIONS, @arching exmting dats LOuUr
J3INerIng anG MAINTRINING the Cata NEETed. 3nd COMPIELING aNd reviewing the COIlECLION Of iInformation Send comments rog'gmg thes burden estimate anzm °m:',.‘::“ ~ g:
oliection of information, including LOMS 1Or reducing this Burden. 10 Washington Headguarters Services. Directorate

' Information Operatioms and Aeports, 1213 setferon
Suve Frghway. Surte 1204, Aringion. VA 222024302, and 10 the Office f Mansgement snd 8udget, P sperwork Aeducnon Profect (0704.0188), Wethington. O 30503,

I. AGENCY USE ONLY (Leave dlank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

5/ 28 [41

). TITLE AND SUBTITLE

SooneER. 6 SAFER THAN LATER

5. FUNDING NUMBERS

6. AUTHOR(S)

THOMAS A, HeENZNGER

1. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGAN!IA?ION
REPORT NUMBER

DEPT. OF COMPUTER Science
STANFORD NVERSTTY
STANFORD, CA 94305

). SPONSORING / MONITORING AGENCY NAME(S) AND AD_DRESS(ES) 10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

DARPA
ARLINGTEN, VA 22209 Noco3q -84 ¢ - o2\

1. SUPPLEMENTARY NOTES

|2a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

UNLMITED

[3. ABSTRACT (Maximum 200 words)

Abstract. It has been repeatedly observed that the standard safety-liveness
classification of properties of reactive systems does not fit for real-time proper-
ties. This is because the implicit “liveness” of time shifts the spectrum towards
the safety side. While, for example, response — that “ something good” will
happen, eventually — is a classical liveness property, bounded response — that
“something good” will happen soon, within a certain amount of time — has
many characteristics of safety. We account for this phenomenon formally by
defining safetv and liveness relatine to a given condition, such as the progress
of time.

14. SUBJECT TERMS 15. NUMBER OF PAGES

9

16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRAC
OF REPORT OF THIS PAGE OF ABSTRACT

—
VSN 7540-01-280-5 500 Stancarg Form 299 (Rev 2-89)

S peC Ty 4N s 790K

Sooner is Safer than Later*

Thomas A. Henzinger

Department of Computer Science
Stanford University

May 28, 1991

Abstract. It has been repeatedly observed that the standard safety-liveness
classification of properties of reactive systems does not fit for real-time proper-
ties. This is because the implicit “liveness’” of time shifts the spectrum towards
the safety side. While, for example, response — that “ something good” will
happen, eventually — is a classical liveness property, bounded response — that
“something good” will happen soon, within a certain amount of time — has
many characteristics of safety. We account for this phenomenon formally by
defining safety and liveness relative to a given condition, such as the progress
of time.

Keywords. Safety, liveness, real time, topology, concurrency, semantics.

1 Safety, Liveness, and Operationality
The behavior of a discrete reactive system can be described as an infinite string
o Og 01 O 03 04 ...

over an alphabet X, which represents the states of the system. A property II
is a subset of £“, the set of all infinite strings over ¥; a reactive system has
property II iff all of its possible behaviors are contained in II.

It is useful to classify properties of reactive systems into two categories,
because they require fundamentally different means for their specification and
verification [Lam77]:

o« A safety property stipulates that “nothing bad” will happen, ever, during
the execution of a system. If “something bad” were to happen during the

*This research was supported in part by an IBM graduate fellowship, by the National Sci-
ence Foundation grants CCR-89-11512 and CCR-89-13641, by the Defense Advanced Research
Projects Agency under contract NO0039-84-C-0211, and by the United States Air Force Office
of Scientific Research under contract AFOSR-90-0057.

execution, it would have to happen within a finite number of states. Thus
we can formalize safety as follows:

Il C £¥ is a safety property iff for al o € £“, whenever every
finite prefix of ¢ can be extended to a string in Il, then o € |l
[ADS86].

« A liveness property stipulates that “ something good” will happen, eventu-
ally, during the execution of a system. If “nothing good” were to happen
during the execution, an irremediable situation would have to be reached
within a finite number of states. Thus we can formalize liveness as follows:

Il C X is a liveness property iff every finite prefix of a string
in ¥ can be extended to a string in Il [AS85].

There is a natural topology on £“ in which the safety properties are exactly
the closed sets, and the liveness properties are exactly the dense sets. It follows
immediately that only £¥ itself is both a safety and a liveness property.

We say that a safety property IIg and a liveness property II; specify the
property Il = IIs N IIy congruously iff every finite prefix of a string in IIs can
be extended to a string in Il. In other words, the safety part of a congruous
specification is complete: the liveness part does not preclude any safe prefixes. A
congruous pair (Ils, II1) is caled machine closed in [AL88], feasible in [AFKS88],
and I, is caled live with respect to IIs in [DW90].

I n [AS85]its shown that every property is the intersection of a safety
property and a liveness property. It is well-known that the construction given
there actually proves the following stronger result.

Theorem 1 (Existence of congruous specifications) Every property has a
congruous specification.

Proof sketch of Theorem 1 Since safety properties are closed under inter-
section, we can define the closure I of Il C ¥ as the smallest safety property
containing Il. Given a property Il, let IIs be 0. For II; take the complement
of s — Il. Then (IIs, II1) specifies Il congruously. W

Congruous specifications are operational: a machine that incrementally gen-
erates safe execution sequences will never reach an irremedial situation from
which the liveness conditions cannot be satisfied. On the other hand, a machine
trying to execute an incongruous specification without look-ahead may “ paint
itself into a corner” from which no legal continuation is possible [AFK88]. Ex-
amples of congruous specifications are fair transition systems [Pnu86]; examples
of formalisms that admit incongruous specifications are temporal logic [Pnu77)
and finite automata {Tho90].

2 Relative Safety and Liveness

Instead of looking at all strings in ¥¢, it is often useful to have a concept of
safety and liveness under the assumption that, a priori, only a certain subset
¥ C X¥ of strings are possible behaviors of a system. We call this notion safety
and liveness relative to the property ¥:

e Il &+ W is a safety property relative to ¥ C ¢ iff for dl o € ¥, whenever
every finite prefix of ¢ can be extended to a string in Il, then ¢ € II.

o Il C ¥ is aliveness property relative to ¥ C T¥ iff every finite prefix of a
string in ¥ can be extended to a string in II.

Thus unconditional safety and liveness are safety and liveness relative to £¥.

The natural topology on £ induces a topological subspace on ¥ C X¥,
which is called the relativization of the ¢ topology to ¥ [Kel55]. We show
that the properties that are safe relative to ¥ are exactly the closed sets of the
relative topology, and the properties that are live relative to ¥ are exactly the
dense sets of the relative topology.

Propositiorl 1 (Relative safety) II C ¥ is a safety property relative to
CXWff InT CIL

Proposition 2 (Relative liveness) II C ¥ is a liveness property relative to
¥ CI¥ayf WCII.

Proof of Propositions 1 and 2 First observe that a string ¢ € ¢ is in the
closure of a property Il C £ (that is, ¢ € H) iff every finite prefix of ¢ can
be extended to a string in Il. Then apply this observation to the definitions of
relative safety and relative liveness. B

It follows that Il is safe relative to ¥ iff Il = IIs N ¥ for some unconditional
safety property IIg. In particular, if the property Il = IIg N II, is specified by
a safety property IIs and a liveness property Iz, then 11 is safe relative to IIz.
Furthermore, if the specification (Hs, HL) is congruous, then Il is live relative
to IIs.

It is convenient to extend the notions of safety and liveness relative to a
property ¥ to properties that are not necessarily subsets of ¥: we say that
Il C ¥ is a safety (liveness) property relative to ¥ C ¢ iff Il N ¥ is safe (live)
relative to ¥. Clearly, unconditional safety properties are, in this sense, safe
relative to any property ¥. More generally:

Proposition 3 (Downward preservation of safety) Suppose that ¥; C ¥,.
If 1l is a safety property relative to ¥,, then it is also a safety property relative
to ‘1/1‘

Proof of Proposition 3 Let ¥; C ¥,. First observe that the closure operator
is monotonic; that is, Il C ¥ implies II C ¥ for al II, ¥ € ¥*. In particular, we
have Il N ¥; CII n ¥,.

By Proposition 1, we may assume that

(IINT)NT, C Il N,
and need to show that, then,
(INn¥)Nn¥; C INY,y.

The derivation is simple.
The converse of Proposition 3 holds only in a very restricted case:

Proposition 4 (Upward preservation of safety) Suppose that II C ¥, C
¥,. If I is a safety property relative to ¥; and ¥, is a safety property relative
to ¥y, then II is a safety property relative to ¥,.

Proof of Proposition 4 Again, use Proposition 1 and the monotonicity of
the closure operator. B

In general, properties become “safer” if they are viewed relative to stronger
(i.e., more restrictive) properties: a property that is not an unconditional safety
property may be safe relative to another property. In the next section, we will
give interesting examples of such properties that are shifted “towards safety.”

We say that a pair (IIg, HL) specifies the property Il C ¥ congruously rela-
tive to ¢ CZ¢iff I =IIg N Iy N ¥, and II5 is safe relative to ¥ and Il is live
relative to ¥, and every finite prefix of a string in IIs N ¥ can be extended to a
string in Il. Thus a specification is unconditionally congruous iff it is congruous
relative to £“. The following theorem generalizes the main result about the
unconditional safety-liveness classification (Theorem 1).

Theorem 2 (Existence of relatively congruous specifications) For all
¥ C T, every property Il C ¥ has a specification that is congruous relative to
v,

Proof of Theorem 2 Let I = 1 and I = —~((IIs N ¥) — 11); then Is is
unconditionally safe. Alternatively, let IIg = In ¥adIly= =(IIg — 11); then
s C ¥. We show that (IIs, II1) specifies Il congruously relative to ¥ in either
case.

It is not hard to see that Il = Ig N Tz N ¥ and that Ig N ¥ C II — that
is, every finite prefix of a string in IIs N ¥ can be extended to a string in II.
Proposition 3 implies that TIg = II, and thus also IIg = II N ¥, is safe relative
to 0.

It remains to be shown that II; is live relative to ¥ or, by Proposition 2,

that

3

¥ C~((IINn¥) - O)NT.

Since Il C ¥, this condition is equivalent to

¥ C Tu(¥-T).

We can derive both

TN C TTu(¥-1)

iN

and _ R
-INn® C Tu(¥-1),

using the monotonicity of the closure operator. ®

Note that our definition of relative congruity ensures again operationality:
a machine that incrementally generates prefixes in Il N ¥ will never reach an
irremedial situation from which the liveness conditions of II; N ¥ cannot be
satisfied.

3 Real-time Safety and Liveness

The behavior of a discrete real-time system can be described by an infinite
sequence of pairs

p: (001 TO) hand (01) 7-1) - (U2y7-2) - (USa TS) e

of states o; € £, 1 > 0, and corresponding times 7; € 7. While we do not
commit to any particular time domain 7, we assume that there is a real-valued
metric d on 7. The sequence p = (a, 7) is called a timed state sequence.

A real-time property Il is a subset of ¥4y, the set of al timed state sequences.
It is straightforward to extend the definitions of unconditional and relative safety
and liveness to real-time properties. All results of the previous sections carry
over. In particular, any trivial one-element time domain yields a model that is
isomorphic to the original untimed setup.

Different models of time and computation put vastly different requirements
on the time component 7 of legal behaviors p = (o,7) of a real-time system.
For instance:

« Interval models of time associate with every state its duration over time,
while clock models stamp observations of the system state with time in-
stants. Intervals of the real line are a suitable time domain for the former
model, points for the latter.

« Analog-clock models of time record the exact time of every state, while
digital-clock models measure the time of a state only with finite precision.
The reals are a suitable time domain for the former model, the integers
for the latter.

« In synchronous models of computation, all concurrent activity happens in
loc k-step, while asynchronous (interleaving) models sequentialize simulta-
neous actions nondeterministically. Strictly monotonic time is appropriate
for the former model, while instantaneous actions are required by the lat-
ter [HMP90].

Given a particular choice of model, we consider, by definition, only a subset
¥ C ¥,y of timed state sequences as possible behaviors of a real-time system;
that is, the specification of a property Il really defines Il N ¥, Thus we can
specify Il by describing any property 11’ with II' N ¥ = |l n ¥, possibly even
using a safety property II’ to specify a liveness property Il N ¥. Precisely this
phenomenon has been captured formally by the concept of safety and liveness
relative to the timing assumption ¥.

There are two particularly important model-independent timing assump-
tions:

1. All “reasonable” models of time require that time must not decrease. A
timed state sequence (a, 7-) is called monotonic iff time increases (weakly)
monotonically:

d(70, 1) < d(rg, Tiqq) for dl 7 > 0.

The set 6 mon C ¥qun of all monotonic timed state sequences is a safety
property.

2. The behavior of a continuous system that may change its state infinitely
often between any two points in time cannot be modeled adequately by
an w-sequence of states. Thus, given our choice of a timed state sequence
semantics, we may “reasonably” demand that time diverges. A timed state
sequence (a, T) is called divergent iff time eventually progresses beyond any
point:

for every 6 in the range of d, there is some ¢ > 0 such that d(7g, 7;) > 6.

The set ¥4, C ¥y of all divergent timed state sequences is a liveness
property.

It follows that most timing assumptions are subsets of ¥iime = Yonon N Vs

Therefore we are especially interested in safety, liveness, and operationality
relative to monotonic divergence (i.e, relative to ‘I’u‘me)' The class of properties
that are safe relative to monotonic divergence includes many important real-time
properties that are unconditional liveness properties; that is, all the liveness they
stipulate is subsumed by the divergence of time.

Bounded response is the standard example of a real-time property that is
unconditionally live and becomes safe under strong enough timing assumptions

[HMP90, Lam91, LA90, Sch91]. The bounded-response property H"p,_,q contains
a timed state sequence (a, 7) iff for al ¢ > 0, whenever o; = p, then o; = q and
d(T,-, Tj) < 6 for some j > 1; that is, every p state is followed by a q state within
time 6. Clearly, Hﬁ,Hq is an unconditional liveness property.

Now let us consider Hf,,_,q relative to monotonicity, and then relative to
monotonic divergence. Provided that p and q are different states, Hf,,_,q is not
safe relative to ¥,,.n, because it contains all monotonic timed state sequences

of the form
(pam)"’—’(pyz)—ﬂ)(93z)_))
without containing the monotonic sequence
(p,z) = (P 2) = (PyT) — -~

Provided that there are times x and y with d(z, y) > 6, the property II
not live relative to ¥,,,, €ither, because the finite prefix

6 .
pog IS

(p,z) — (P, ¥)

cannot be extended to a monotonic sequence in Hqu. The bounded-response
property Hf}_)q is, however, a safety property relative to monotonic divergence;
the “bad thing” that is not supposed to happen is that, after a p state, 6 time
units pass without a g state occurring.

Real-time transition systems [HMP91] and extended state machines [Ost90]
are examples of specifications that are congruous relative to monotonic diver-
gence, and thus operational descriptions of real-time systems. So are the timed
automata of [LAQO}, which specify only properties that are safe relative to
monotonic divergence. On the other hand, real-time temporal logics such as
[AH89, Koy90, Ost90] and the timed automata of [AD90] permit, relative to
monotonic divergence, incongruous specifications of real-time systems. A ma-
chine trying to execute such a specification without look-ahead may find itself in
a situation from which time cannot advance without violating the specification.

Acknowledgements. The author thanks Martin Abadi, Rajeev Alur, David
Dill, Leslie Lamport, Zohar Manna, Amir Pnueli, and Fred Schneider for many
valuable suggestions and improvements.

References

[AD90] Rajeev Alur and David L. Dill. Automata for modeling real-time
systems. In 17th International Colloquium on Automata, Languages,
and Programming, pages 322-335. Springer-Verlag Lecture Notes in
Computer Science 443, 1990.

[ADS86] Bowen Alpern, Alan J. Demers, and Fred B. Schneider. Safety without
stuttering. Information Processing Letters, 23(4):177-180, 1986.

[AFK88] Krzysztof R. Apt, Nissim Francez, and Shmuel Katz. Appraising

[AH8Y]

[AL8S)

[AS85)]

fairness in languages for distributed programming. Distributed Com-
puting, 2(4):226-241, 1988.

Rajeev Alur and Thomas A. Henzinger. A really temporal logic. In
Proceedings of the 30th Annual IEEE Symposium on Foundations of
Computer Science, pages 164-169, 1989.

Martin Abadi and Leslie Lamport. The existence of refinement map-
pings. In Proceedings of the Third Annual Symposium on Logic in
Computer Science. pages 165-175. IEEE Computer Society Press,
July 1988.

Bowen Alpern and Fred B. Schneider. Defining liveness. Information
Processing Letters, 21(4):181-185, 1985.

[DW90] Frank Dederichs and Rainer Weber. Safety and liveness from

a methodological point of view. Information Processing Letters,
36(1):25-30, 1990.

[HMP90] T homas A. Henzinger, Zohar Manna, and Amir Pnueli. An inter-

leaving model for real time. In Proceedings of the Fifth Jerusalem
Conference on Information Technology, pages 717-730. IEEE Com-
puter Society Press, October 1990.

[HMP91] T homas A. Henzinger, Zohar Manna, and Amir Pnueli. Temporal

[Kel55]
[Koy90]

[LA90]

proof methodologies for real-time systems. In Proceedings of the 18th
Annual ACM Symposium on Principles of Programming Languages,
pages 353-366. ACM Press, January 1991.

John L. Kelley. General Topology. Springer-Verlag, 1955

Ron Koymans. Specifying real-time properties with metric temporal
logic. Journal of Real-time Systems, 2:255-299, 1990.

Nancy A. Lynch and Hagit Attiya. Using mappings to prove tim-
ing properties. In Proceedings of the Ninth Annual ACM Symposium
on Principles of Distributed Computing, pages 265-280. ACM Press,
August 1990.

[Lam?ﬂ Leslie Lamport. Proving the correctness of multiprocess programs.

[Lam91]

[Ost90]

IEEE Transactions on Software Engineering, SE-3(2):125-143, 1977.

Leslie Lamport. The temporal logic of actions. Technical report, DEC
Systems Research Center, February 1991.

Jonathan S. Ostroff. Temporal Logic of Real-time Systems. Research
Studies Press, 1990.

[Pnu77] Amir Pnueli. The temporal logic of programs. In Proceedings of the
18th Annual Symposium on Foundations of Computer Science, pages
46-57. |[EEE Computer Society Press, October 1977.

[Pnu86] Amir Pnueli. Applications of temporal logic to the specification and
verification of reactive systems: a survey of current trends. In Current
Trends in Concurrency, pages 510-584. Springer-Verlag Lecture Notes
in Computer Science 224, 1986.

[Sch91] Fred B. Schneider, February 1991. Private communication.

[Tho90] Wolfgang Thomas. Automata on infinite objects. In Jan van Leeuwen,
editor, Handbook of Theoretical Computer Science, volume B, pages
133-191. Elsevier, 1990.

