
June 1991 Report No. STAN-CS-91-1369

Approximating Matchings in Parallel

bY

T. Fischer, A.V. Goldberg, S. Plotkin

Department of Computer Science

Stanford University

Stanford, California 94305

June LYY1

Approximating Matchings in Parallel

. rutn0YI)
#

Ted Fischer, Andrew Goldberg, Serge Plotkin

Computer Science Department
Stanford University
Stanford, CA 94305

I

STAN-CS-91-1369

. $,0~sOrrrn6 / MONITORIU~ AbINCV NAMW) AND AOO~~SSW) 10. WOMSOR4U6 I MO~ITO#N~
A6WCV #I?OaT NUMIIR

ONR
Arlington, VA 22217

24. DlSTRWtlON I AvAlLA8ruTY $TATlMfNT l2b. DISTRIWTION CODI

unlimited

We show that for any constant k > 0, a matching with cardinality at least
l- l/(k+l) times the maximum can be computed in NC.

14 . SWGT TMMS 1 S. NUM@II OI PACES
5 I

16. PRKt CODt

1
1 7 . SECURITY CLASWICATION 18. SICURltV CLASSlftCAtlON 1 9 . SECURITV CuSSUKATlON 20. 4I~ItAtlON Of ABSTRAC:

OP RIPORT 01 THIS PAM OF ADSTRACT

Approximating Matchings in Parallel

Ted Fischer* Andrew V. Goldberg+ Serge Plotkin

June 1991

.

*Department of Computer Science, Cornell University, Ithaca NY 14853. Research supported by ONR Graduate
Fellowship.

‘Department of Computer Science, Stanford University, Stanford CA 94305. Research partially supported by NSF
Presidential Young Investigator Grant CCR-8858097 with matching funds from AT&T and DEC, a grant from 3M
Corporation, a grant from Mitsubishi Corporation, and ONR Contract N00014-88-K-0166.

tDepartment of Computer Science, Stanford University, Stanford CA 94305. Research supported by NSF Research
Initiation, Award CCR-900-8226, by U.S. Army Research Office Grant #DAAL-03-91-G-0102, and by ONR Contract
N00014-88-K-0166.

Abstract

We show that for any constant k > 0, a matching with cardinality at least 1 - & times the
maximum can be computed in NC.

1 Introduction

Matching is a fundamental combinatorial problem. (See [lo, 151.) Furthermore, the special case
of bipartite matching seems to be a important problem of parallel computation. For example, an
NC algorithm for bipartite matching would imply NC algorithms for the problems of constructing
depth-first search trees in both directed and undirected graphs. (See Aggarwal and Anderson [l]
and Aggarwal, Anderson, and Kao [a].)

During the last decade, parallel algorithms for the bipartite matching problem received a lot of
attention. The best currently known deterministic algorithms for the problem are due to Goldberg,
Plotkin, and Vaidya [6] and Goldberg, Plotkin, Shmoys, and Tardos [5]. These algorithms run

in 0*(n2/3) and O*(m1i2) time, respectively’. (Here n denotes the numebr of nodes and n-z the
number of edges in the input graph.)

Special cases of the bipartite matching problem are known to be in NC. Lev, Pippenger, and
Valiant [ll] gave an NC algorithm to find a perfect matching in a regular bipartite graph. Miller
and Naor [l3] gave an NC algorithm to find a perfect matching in a planar bipartite graph (if one
exists).

Matching was shown to be in RNC by Karp, Upfal, and Wigderson [9] (see also [14] for a simpler
and faster algorithm). However, the general problem is not known to be in NC.

In this paper we consider the problem of approximating maximum matchings in an arbitrary
graph. We describe an NC algorithm that, for a constant k > 0, finds a matching with cardinality
of at least 1 - & times the maximum. Our algorithm runs in O(log3n) time using O(n2k+2)
processors.

2 Preliminaries

In this section we introduce the notation and the parallel computation model.

Let G = (V,E) be an undirected graph. Define n = IVI, m = IEI. A set of edges M C E is a
matching if no two edges of M share a node. The cardinality of the matching is]M 1. The mat thing
problem is to find a matching of maximum cardinality.

Given a matching M, we say that a node v is matched if (v, w) E M for some w E V and free
otherwise. An augmenting path is a simple path P = 00, ~1, . . . , vl such that the endpoints v, and vl
are free, for odd i in [0 . . . Z] we have (v;,vi+r) E M, and for even i we have (vi,v;+r) E E - M. We

‘We say that an algorithm runs in O*(f(n)) time if it runs in O(f(n)logk(n)) time for some constant k.

1

define the length of a path to be the number of edges on the path. Note that since the endpoints
are free, the above definition implies that the length of an augmenting path must be odd. Given
an augmenting path, we can uugment the matching M by deleting from M the edges on the path
that are in M, and adding all of the other edges on the path to M. This results in a matching with
one more edge. It is a well known fact that the absence of an augmenting path implies optima&y
of the current matching.

Our model of parallel computation is the exclusive-read, exclusive-write parallel random-access
machine (ERE W PRAM) [4]. We assume that the reader is familiar with the algorithm for parallel
list compression [3] in the context of this model.

3 Algorithm Description

The main idea of the algorithm is to augment along “short” augmenting paths until all augmenting
paths are “long”. Lemma 4.2 of the next section shows that if a matching does not admit a short
augmenting path, then its cardinality is close to the optimum.

The input to our algorithm is a graph G = (V, E) and a positive integer k, and its output is
a matching M of G which admits no augmenting paths of length 2k - 1 or less. The algorithm
makes k iterations; at iteration i, it finds a maximal set of node-disjoint augmenting paths of length
2i - 1 and augments along these paths. We denote the matching maintained by the algorithm by
M. Initially M = 0.

The i-th iteration works as follows. First, the algorithm constructs a graph A = (VA, EA) with
nodes in VA corresponding to augmenting paths of length 2i - 1. A pair of nodes is connected by
an edge if the corresponding paths share a node. Next, the algorithm finds a maximal independent
set in A, and augments the current matching in G along the paths corresponding to the chosen
nodes.

Observe that a maximal independent set of nodes in A corresponds to a maximal set of aug-
menting paths of length 2i - 1 in G; since the nodes are independent, the augmenting paths are
disjoint, and no conflict will arise when the augmentations are performed in parallel.

It remains to describe how to construct the graph A. Now, a path is uniquely defined by the
ordered sequence of nodes it connects. To generate all paths of length 2i - 1, we could consider all
sequences of 2i nodes, testing the existence of the necessary connecting edges. This would generate

O(n2;-l) paths. However, we are only interested in those sequences, X, which form augmenting
paths. On an augmenting path, every node is matched except for the endpoints of the path.

Rather than considering all sequences of 2i nodes, we need only choose a sequence of i - 1
edges from the matching, then choose two unmatched nodes for the endpoints. Let the sequence of
edges be 7~ = (~2, Q), (~4, us), . -. 7 (v2i-2, v2i-l), with the two endpoints vr and v2;. The sequence

corresponds to the path with the edges (vr,v;z), (vs,v4), . . .(2r2i-rYv2i) added to the ones from the
sequence. 0 bserve that this generates all sequences corresponding to augmenting paths of length

2

2i, yet it only generates O(n’+‘) different sequences.

We construct all sequences 7r of i - 1 edges from M and two endpoints as described above,
and assign i processors to each sequence. We then test the existence of edges (v2j-r, v2j) in E for
j = l...i. Since the sequence of edges was selected from M, and the edges being tested all share
at least one node with an edge from the sequence, the tested edges cannot be in M. Therefore, if
the edges are all in E, the sequence corresponds to an augmenting path. Using i processors per
path, the construction takes O(logn) time. Using list compression [3] to eliminate the sequences
which do not form augmenting paths, we then construct VA in O(logn) time.

To determine for X, Y E VA if the edge (X,Y) should be in EA, we need to check if their
corresponding paths share any nodes. Using i processors for each pair of paths, we can test this in
O(log n) time.

4 Correctness and Analysis

First we prove that the algorithm is correct. The following lemma of Hopcroft and Karp implies
that there are no augmenting paths of length 2i - 1 or less after iteration i.

Lemma 4.1 [8] If a matching is augmented along a maximal set of shortest augmenting paths, then

the shortest augmenting path length increases.

The next lemma is the heart of the correctness proof of our algorithm. Intuitively, the lemma
states that if a matching does not admit short augmenting paths, then its cardinality is close to
optimal.

Lemma 4.2 Suppose a matching M does not admit augmenting paths of length 2k - 1 or less. Then

IW 2 &W*l*

Proof: Let M and M* denote the current and optimum matchings, respectively. Consider the
symmetric difference between M and M*. It contains]M*] -]M] node-disjoint augmenting paths
with respect to M. Since each of these paths contains at least k edges of M, we have]M*] - IL441 <

IWk, or

IMI 2 lM’I = Lpf’I1 + l/k k+l

The above two lemmas imply that the algorithm is correct:

Theorem 4.3 The matching M found by the algorithm satisfies IA41 2 &IM*l.

3

Next we analyse time and processor requirements of iteration i of the algorithm.

Lemma 4.4 On an EREW PRAM, iteration i of the algorithm runs in O(lo8 n) time using O(in2’+2)
processors.

Proof: First we consider the construction of VA. The number of sequences ?r generated in the
construction of A is O(n’+’). Since we assign i processors to each sequence, R, we use O(i&r)
processors in the construction.

To construct EA, we assign i processors to each pair of nodes in VA. Since the number of
nodes in VA is O(ni+l), we can implement this task with O(in2’+2) processors. Note also that
IEAI = O(n2i+2).

As shown in the previous section, A can easily be constructed in O(log n) time.

The next step of the algorithm finds a maximal independent set in A. Using O(n2’+2) processors
(linear in the size of A), this can be done in O(log3 n) time using the algorithm of Goldberg and
Spencer [7]. (Luby’s algorithm [12] can also be used, but its deterministic version runs in O(log4 n)
time.)

The final step of every iteration is the augmentation. It is easy to see that this step can be
completed in constant time using no additional processors. 1

Remark: The processor bound of the above lemma can be improved slightly by balancing the
first step of the algorithm (construction of A) with the second step (maximal independent set
computation). We can decrease the number of processors used to construct A by a factor of log2 n.
The resulting implementation still runs in O(log3 n) time, but the processor requirement is reduced
by a factor of log2 n.

Theorem 4.5 On an EREW PRAM, the algorithm runs in O(klog3n) time using O(kn2k+2) proces-
sors.

Proof: Immediate from Lemma 4.4. u

Corollary 4.6 If k is a constant, the algorithm runs in O(10g3 n) time using a polynomial number of
processors.

References

[l] A. Aggarwal and R. J. Anderson. A Random NC Algorithm for Depth First Search. In Proc.
19th Annual ACM Symposium on Theory of Computing, pages 32%334,1987.

[2] A. Aggarwal, R. J. Anderson, and M.-Y. Kao. Parallel Depth-First Search in General Directed
Graphs. In Proc. 21st Annual ACM Symposium on Theory of Computing, pages 297-308,1989.

4

--.-+
l

[3] R. Cole. Parallel merge sort. In Proc. 27th IEEE Annual Symposium on Foundations of
Computer S&race, pages 511-516,1986.

[4] S. Fortune and J. Wyllie. Parallelism in Random Access Machines. In Proc. 1Uth Annual ACM
Symposium on Theory of Computing, pages 114-118,1978.

[5] A. V. Goldberg, S. A. Plotkin, D. Shmoys, and I%. Tardos. Interior-Point Methods m Parallel
Computation. Technical Report STAN-CS-89-1259, Stanford University, 1989.

[6] A. V. Goldberg, S. A. Plotkin, and P. M. Vaidya. Sublinear-Time Parallel Algorithms for
Matching and Related Problems. In Proc. 29th IEEE Annual Symposium on Foundations of
Computer Science, pages 174-185,1988.

[7] M. Goldberg and T. Spencer. A New Parallel Algorithm for the Maximal Independent Set
Problem. In Proc. 26th IEEE Annual Symposium on Foundations of Computer Science, pages
161-165,1987.

[8] J. E. Hopcroft and R. M. Karp. An n5j2 Algorithm for Maximum Matching in Bipartite
Graphs. SIAM J. Comput., 2:225-231,1973.

[9] R. M. Karp, E. Upfal, and A. Wigderson. Constructing a Maximum Matching is in Random
NC. Combinatorics, 6:35-48,1986.

[lo] E. L. Lawler. Combinatorial Optimization: Networks and Mat&is. Holt, Reinhart, and
Winston, New York, NY., 1976.

[ll] G. F. Lev, N. Pippenger, and L. G. Valiant. A Fast Parallel Algor3Am for Routing in Permu-
tation Networks. IEEE Tvuns. on Comput., C-30:93-100,1981.

[12] M. Luby. Removing Randomness in Parallel Computation without a Processor Pexdty. In
Proc. 29th IEEE Annual Symposium on Foundations of Computer Science, pages 162-173,
1988.

[13] G. L. Miller and J. Naor. Flow in Planar Graphs with Multiple Sources and Sinks. In Proc.
30th IEEE Annual Symposium on Foundations of Computer Science, 1989.

[14] K. Mulmuley, U. V. Vazirti, and V. V. Vazirani. Matching is as Easy as Matrix Inversion.
Combinatorics, pages 105-131,1987.

[15] R. E. Tarjan. Data Structures and Network Algorithms. Society for Industrial and Applied
Mathematics, Philadelphia, PA, 1983.

