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Abstract

We show how to use polynomial and strongly polynomial capacity scaling algorithms for
the transshipment, problem to design a, polynomial dual network simplex pivot rule. Our
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1 Introduction

The transshipment problem is one of the central problems in network optimization. There
exist several polynomial and strongly polynomial algorithms for solving this problem (see the
surveys [‘i, 11). Nevertheless, the method of choice in practice still seems to be the network
simplex method.

In this paper we shall consider the dual network simplex method. We show that some
excess scaling algorithms for the uncapacitated transshipment problem can be used to guide
the pivot selection of the dual network simplex algorithm for both the capacita,ted a*nd the
uncapacitated  transshipment problems. The resulting simplex algorithm can be viewed as a
special implementation of the capa,city  scaling algorithm. This implement ation maintains the
property that all arcs with non-zero flow a,re in a. tree, a, property that seems to help the pra,ctical
performance.

We give a simple pivoting stra,tegy that, lea.ds to a,n 0( 11~  log III?) bound on the number of
pivots for the uncapa.citated transshipment problem, a,ssuming  that the demands are integral,
a,nd at most B. We also show how to modify this stra,tegy to achieve a, strongly polyno-
mial 0 ( n3 log ?I,)-pivot  algorithm. We describe a, more complicated strategy that leads to an
O(nnzlog  n.) bound on the number of pivots. The first two pivoting strategies can be imple-
mented using Fibonacci Heaps to run in 0( ?z(nx  + 17, log 12)  log @) a,nd 0(n2(n2  + n log 12) log n)
time respectively. Dual network simplex algorithms for the uncapacita,ted  transshipment prob-
lem can also be used to solve the capacitated version of the problem. Bounds for the resulting
algorithms can be obtained by substituting O(n2) for 12.

Earlier versions of this paper ha,ve  a,ppea,red  as technica,  reports and in conference proceed-
ings. The technical report of Orlin [9] described the first polynomial and strongly polynomial
dual  network simplex pivoting stra#tegies. These stra,tegies were ba,sed  on capacity scaling al-
gorithms. He also ga.ve  a fast implementa,tion  of the resulting O( 7~~ log I?)-pivot dual network
simplex algorithm. The extended abstract of Plotkin a(nd  Tarclos [la] presented an improved
O(?znz log n) pivoting strategy. The strongly polynomial simplex algorithm described by Orlin
in [9] assumed a model of computaStion,  in which we a*re ahowecl  to use some other opera.tions
in a.ddition  to the usual a,rithmetic operations (a.ddition,  multiplication, a,nd comparison). The
algorithms presented in this paper use a(dclitions  a,nd comparisons only.

The dual network simplex algorithms described in this paper axe based on polynomial and
strongly polynomial excess scaling algorithms. The scaling algorithms work in iterations, where
each itera,tion executes an augmentation between a, pair of nodes. The simplex implementa,tion
maintains a tree 7 tha,t contains all arcs with non-zero flow values. The tree is changed using
simplex pivot steps, and all augmentations are done through the arcs which are in the current
tree. The pivoting strategy that results in the lowest number of pivots is based on Orlin’s [ll]
strongly polynomial transshipment algorithm. A direct translation of this algorithm into the
simplex framework is infeasible. For some pairs of nodes tha#t  the algorithm might choose for
a,ugmentation there might be no sequence of pivot steps that maSke a,n aSugmentation  between
these two nodes possible in the tree. The version of the transshipment algorithm used here
allows greater freedom in the choice of the augmentation done a,t ea,ch iteration, and we show
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that a simple pivoting stra’tegy can be viewed as implementing one of the possible choices.
effect, we let the simplex algorithm choose among the possible augmentations.

In

A related important open problem is whether there exists a primal simplex pivoting stra,tegy
for the transshipment problem that leads to a polynomial bound on the number of pivots.
Some special cases of the transshipment problem are known to be solva.ble by polynomial
versions of the primal simplex method. There aye polynomial and strongly polynomial primal
simplex algorithms known for the single source shortest path problem and the assignment
problem (see [3, lo]). Recently, Golclfarb and Hao [S] gave a pivoting strategy for the primal
network simplex method tha#t  solves the maximum flow problem in O(mn) pivots (see also [G]).
Tarjan  [13] d eveloped the first subexponential primal simplex algorithm for minimum-cost flow
problem. The pivot,ing  stra,tegy used in Tarjan’s  algorithm is guided by a, polynomial cost
scaling algorithm.

The paper consists of four sections. Section 2 reviews the terminology and the dual network
simplex fra,mework. Section 3 presents our simplest pivoting strategy and describes a, mocli-
fication of this strategy that lea,ds to a* strongly polynomial bound on the number of pivots.
Section 4 presents an improved stra,tegy tl1a.t  leads to a better strongly polynomial bound on
the number of pivots.

2 Preliminaries

In this section we define the transshipment problem, review some funclamental  fa,cts a,bout it,
a,nd review the dual  net work simples  framework. A network is a directecl  graph G = (V?  E).
We shall use n a,nd m to denote the number of nodes a,ncl the number of arcs in this gra,ph,
respectively. To simplify the bounds, we a,ssume that rn. 2 n. For notational convenience, we
a.ssume tha,t G hams no para,llel  or opposite arcs. If there is an arc from a, node v to a, node W,
this arc is unique by the assumption, a,nd we denote it by (ru,  w).

The input to the trnnssltipment  ~~~oMem  consists of a network G = (17, E), a, ccqc&ty jisnction
PL : E 2 R+ U {oo}, a, clenzcc,ncr!  funbior?. b : l/r - R such that CUCV b(*u)  = 0, a,nd a, cost jiudorz
c:E- R. We shall use the nota.tion c(v, W) = -c(w,  V) for w, w E I/ such that (w, ‘L;)  E E. In
the special ca,se  of integer dema,ncls,  \ve  shall use B to denote the maximum a,bsolut.e  value of
a. demand.

A pse~~lqflo~  is a. function f : E - R+, such that f(v,  20) 2 U(U,  SW)  for every (ZJ, UJ) E E.
Given a pseudoflow .f, we define the c~:ccss function ef : I/ +. R by

the asmount  by which the net flow into v exceeds the demand. We say tha,t a node v has excess
if ef(V)  is positive, aacl has de.ficit if it is negative. For a subset S of the nodes we shall use
ef(S)  to denote r,,Cs ef (v). For a node v, we clefine the flow corzservation  constmint  by
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ef(wj  = 0 (fl ow conservation constraint). (1)

A pseudoflow .f is a transshipment if it satisfies the flow conservation constraints a,t every
node.

The resz’dzlcr.!  gray12 with respect to a pseudoflow f is given by Gf = (I’, Ef), where El =
{(~,wj~f(~!,20)  < 21(v, ‘10) or f(,lu,~j  > O}.

The cost of a, pseudoflow .f is given by

The tratzsshipment problem is tha,t of finding a, minimum-cost (optinw~Ij  tra,usshipment in a,n
inpllt.  network (G’, u, 6, c). In the wcapacitatecl  transshi~~ment problem all capacities a,re equa.]

In order to simplify the presentation we restrict our ajttention to t,he unca.pa.cita,ted  trans-
shipment problem a,nd assume that the graph G is strongly connected. The a,daptation of the
presented results to the general transshipment problem is straightforwaad.  C4iven  an instance
of the transshipment problem with capacities, we can construct a,n equivalent unq~acitated  in-
staSnce by introducing a0 new node in the middle of every a,rc. The dual simplex method a(ppliec1
to the resulting unca,pa,citatecl  problem is the same as the dual network simplex algorithm for
the original problem. This construction, however, increa,ses  the number of nodes to O(m, + ?a).
The a,ssumption  tha,t the graph G is strongly connected ca,n be satisfied by introducing a,t most.
272 additional expensive a,rcs (s, V) and (z),  S) for some node s a,nd  every V. If t,he original prob-
lem is fea,sible  then no optimal solution uses the additiona,  arcs. This a,ssumption  gua,ra,ntees
tha,t the transshipment problem is fea,sible  a,nd implies the following cha.racteriza,tion of the
existence of an optimal solution.

Theorem 2.1 There exists a minimum-cost transshipment if and only if the input network contains
no negative-cost cycles.

Linear programming duality theory provides a( criterion for the optimality  of a, transship-
ment. To sta,te  the criterion we need the notions of a8 price function and a reduced cost function.
A price function is a, node la,belling  p : V’ -+ R. The reclfccecl  cost function with respect to a, price
function 11 is defined by c~,(v, W) = C(U,  W) + p(v) - Y(U).  For the uncapa.cita.ted  transshipment
problem a, fecrsible  ~u(J/  solu~~ion is a set of prices such that each axe in E has non-negative
reduced cosb.

Theorem 2.2 [5] A flow f is an optimal solution for the uncapacitated  transshipment problem if
and only if there is a price function 21 such that, for each arc (I’. ~7) E I?,

c&l, ,wj >_ 0 (dual feasibility constraints) and
cp(‘u,  wj > 0 =% f( u, 217)  = 0 (complenienta.ritSIrity  sla,ckness  conditions). (‘2)
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procedure PIVOT(?,  (u’, 2~‘));

We assume that:
7 is a dual feasible tree;
11  is the price function that correspouds  to 7;
(u’, w’) an arc such that fl(~‘,  w’) < 0;

Let (w,  V) E E be the arc with lnininxml  reduced cost ci leaving HI,(,,,,,);
Replace the arc (‘u’, w’) in 7 by (II, w);
Decrease y 011  all nodes in HI,,.,, I) /J by 6;

end.

Figure 1: A Pivot Step of the Dual Network Simplex Method.

A ba.sis of the linear program corresponding to the uncapa(citated transshipment problem
is the set of columns corresponding to the arcs in a. spanning tree 7 of G’. A transshipment is
a basic primal solution if and only if the arcs with non-zero flow form a, forest. A set of dual
feasible prices is a basic dual solution if a,nd only if the arcs with zero reduced cost form a,
spanning subgraph.

Let 7 be a, spanning tree of the underlying undirected graph. Consider the cut obtained by
deleting an arc (v, zo) E 7 from 7. Let HI,(,,,,) denote the set of nodes that are on the same
side of this cut as ‘20, the head of the arc (v, u).

For a8 tree 7 let J’* denote the corresponding basic flow, tha,t is,

Simila,rly, we let p7 denote the prices defined by the spa8nning  tree 7, i.e., prices such that
the reduced costs of the arcs in the tree 7 with respect to prices p* acre 0.

Let 11 = p* denote the p rices defined by the tree 7. The spa,nning  tree 7 is clalal j’ecr.siZk
if c,(v,  U) > 0 for all arcs (v, 20) E E. A spa.nning  tree 7 is called prima,1 feasible if f7 2 0.
A spanning tree is optimal if it is both primal feasible a,nd dua3 fea,sible.  Theorem 2.2 implies
that in this case the defined flow fl is an optimal transshipment.

The cI~c.r!  n&work simplex algorithm (see Figure 1) maintains a8 dual  feasible tree 7. An
initial dual feasible tree ca,n be found by a shortest pa’th computation. In the case tha,t  ad1  arcs
a,re  non-negative, one can find the initial tree ‘To in O(12)  pivots [4]; in case the costs ma,y be
negative, one can find To in 0(~2~)  pivots using the c1ua.l  simplex algorithm of Balinski  [a]. A
pivot step of the dual network simplex a.lgorithm  can be applied to aIn a,rc  (II’, w’) in 7 with
f’T(~‘? ,IU’) < 0. The pivot step changes 7 by deleting the arc (zI’,  w’) a,nd replacing it by one
of the arcs (.u, W) of minimum reduced cost lea$ving  the set HT,(UI,IL,I~.  The arc (‘u’, 2~‘) is the
leaving arc, a,nd (v, w> is the entering arc.

5



Let 7’ = 7 - ( o’, 1~‘) f (vu, u))  be the tree obtained after the pivot. It is easy to show tha,t  7’
is dual feasible. Moreover, the dual objective function CVEv p(v)b(v)  has not decreased a.fter
the pivot. Let S be the reduced cost of the entering arc (ZI, 20). We ma,y obtain the price vector
13~’ from the previous price vector p” by subtra.cting 6 from the price of each node in H,~,((,,,,~~,,)
and keeping all other prices the same.

The dual simplex algorithm iterates this ba,sic  pivot step until the current tree becomes
primal feasible. Pivoting strategies give rules for choosing among the possible leaving and
entering a.rcs.

3 A simple polynomial time dual simplex algorithm

In this section we describe how to use an excess sca.ling  algorithm to guide the selection of dual
pivots. In the first subsection we present a. basic subroutine consisting of a, sequence of at most
n pivot steps that makes the nest a,ugmenta.tion  possible. Next we show how to use a, version
of the Edmonds-Karp  ca,pa,city  scaling algorithm to derive a# polynomial dual network simplex
algorithm that ma.kes  a,t most 0(?z2  log nB) pivots. Finally we give a, strongly polynomial
version with an O(n3 log 72.)  bound on the number of pivots. The algorithm is a simplification of
the polynomial time dual simplex algorithm presented in [9]. Al so, as opposed to the algorithm
presented in [9],  the strongly polynomial algorithm described in this section uses only the usual
a,rithmetic operations (in fact, only additions and comparisons).

We shall use 1’ to denote the special root node. We shall use 7 to denote a. tree rooted a,t r,
and use TV to denote the subtree  of 7 routed at node v. We use precl(v)  to denote U’S parent
in the tree. An a,rc (v, ,UJ)  E 7 is called dozonwarcr!  if ‘~7 is the parent of ‘~1 in the tree ( i.e. (‘17, ~1)
points aSway from the root node), otherwise (u, 20) is called U~UXHY~.

The algorithm will ma,inta.in  a pair (7, f) of a, tree and a, pseudoflow satisfying the following
conditions :

Pl.  7 is a, dual feasible tree.

P’z. *f(l),  lu)  2 0 for (,u, r(u)  E 7.

P3. .f(,u, w) = 0 for (2),  ,w)  $! 7.

P4. cf(,l) > 0 for ea,ch  ‘U # r.

Recall that we have defined f’T as the ba,sic  flow corresponding to tree 7.

Lemma 3.1 If (‘u, w) is a downward arc of 7, then .f’T(v,  w) = ,f(v, W)  - ej(l,,). If (.u, W)  is an
upward arc of 7, then f”(v, IO) = .f(u, zu) + ef(l,).

G



procedure MAKE-GooD(I,  f);

We assume that:
7 is a dual fea.sible tree;

Let p be the price function that corresponds to I;
while 7 has bad arcs do begin

let S denote the set, of bad nodes for I w.r.t. f;
let (v, W) be the minimum reduced cost arc lea.ving  S;
let 6 - c&h *cu);
let (u’,  w’)  be t,lle  first bad arc on the path from V=  to V;
let T - 7 + (0,  ,w) - (II’, Id);
Decrease p on a.11 nodes in HI,(,,,,,,)  by 6;

end;
md.

Figure 2: Procedure MAKE-GOOD.

Proof’:  One ca,n obtain the flow f7 from the flow f by sending er(~)  units of flow from v to T
for each node o # T. The increase of the flow in a,n upwa,rd  axe (v, 10)  is ef(Z’?,,). The decrease
of the flow in a, downwxd  arc (v, w) is ef(T,). 1

Suppose that the pair (f, 7) sa(tisfies  Pl-P4. An arc (w, w) in 7 is called b&if it is downward
and its flow is 0. Otherwise, it is called good. A node ‘u E T is called goorr! if every arc on the
pa.th  from 7’ to v is good. Otherwise, node v is called bad.

Corollary 3.2 Suppose that (j,‘r) sa IS iest’ f PI-P4. Then every bad arc is an eligible exiting arc.

3.1 The procedure MA K E -G O O D

We will now describe a pivoting procedure MAKE-GOOD (see Figure 2) for trsnsforming  a, tree
T satisfying Pl-P4  tha,t has some ba#d  a(rcs,  into a tree in which all a,rcs axe good. Given a tree
7 a,nd flow .f, MAKE-GOOD  proceeds in iterakions. In each itera,tion it considers the set S of
bnd nodes and finds it minimum reduced cost a.rc  ( U, W) leaving this set and a,n a.rc  (v’, w’) tha,t
is the first ba,d  a,rc  on the path from ‘I’ to V. Then it removes (v, 20) from the tree a,nd a,dcls
(u’, ,w’) instead. MAKE-GOOD termina.tes  when there axe no more ba,cl  nodes.

Since (v’, w’) is a. ba,d arc, Corollaxy  3.2 implies tha,t it is an eligible axe for exiting. In
general,  a,dding  the a,rc (v, W) instea,d  of (v’, 20’) does not ma3intaCin  dual fea,sibility.  However,
MAKE-GOOD  is called only under certain conditions that ensure that it executes only legal
pivots.

MAKE-GOOD is called by the simplex algorithms  described in the subsequent sections after
a, flow augmenta,tion is done from some node to the root T, if this a8ugmentation  crea,tecl  a, bad
a.rc  by reducing to zero the flow on one of the downwa,rd  arcs. MAKE-GOOD tra,nsforms the



tree into a new tree where there are no ba,d axes?  a#ncl  hence we can do an augmentation from
any node with positive excess to the root.

Let 7 be a tree a.nd let f denote a flow satisfying Pl-P4. We call an path P in 7 from some
node t to the root T an inverse-good pa,th  if all upward arcs on P ha#ve positive flow. Notice
that if we were to reverse the direction of ea,ch a.rc  on an inverse-good path then the resulting
path would consist of good arcs. Observe that if a tree ha,d no bad a,rcs,  an a,ugmenta,tion  from
some node to the root can introduce ba,d  a,rcs only on the pakh used by the augmentation and
hence a11 bad arcs will lie on an inverse-good pa,th.

Theorem 3.3 Suppose that the pair (7,f) sa is iest f Pl-P4 and all of the bad arcs of the tree 7

lie on some inverse-good path P from some node t to the root 1’. Then the steps of the procedure
MAKE-GooD(~,  f) are dual simplex pivots.

Proof: Let S denote the set of bad nodes of 7. Let (‘u, zo) denote the arc that is pivoted in a,nd
let, (zJ’,  zu’) denote the arc tha,t is pivoted out. We first claim that ,S is the set of descendants
of node w’. By definition, a11  descenda,nts  of PU’ axe bad. To see the converse, suppose that s
is a bad node. By the choice of (v’, w’), all a,rcs on the path from 1’ to v’ are good. Let P’ be
the pakh  from s to 1’ and let (v”? 20”) denote a, ba,cl  arc of P’. By hypothesis (o”, UJ”)  is also on
path P, and thus s is a descendent of 10’.

We now claim that the first pivot of procedure MIAKE-GOOD  is a0 dual  simplex pivot. By
Corollary 3.2 the arc (w’, w’) is a,n eligible exiting axe. For the pivot to be a, dual simplex pivot,
the entering vaxia,ble  must be the least cost arc from the subtree ‘7;,,, to the rest of the graqh.
This is implied by the choice of (v, UJ), and the fact thak the set of bard nodes of 7 is the set of
nodes of TU,I.

Let,  7’ be the tree obtaJned  a.fter a1 pivot from tree 7. We will show that all of the ba,d axes
of 7’ lie on a,n inverse good path from t to r in 7’. The theorem then follows by induction.

Node v is a bad node of 7, and thus the pa,th  from w to T intersects the pakh  P a,t some
node, sa,y node s. Since all bad arcs lie on P, the path P’ from v to s is good. Let PI denote
the subpath  of P from s to w’, a,nd let P;! denote the subpa,th of P from t to s. Observe that
each a.rc  of 7 \ PI \ P’ - ( v’, zu’)  has the same direction (upward or clownward) in 7’ a,s it does
in 7. Each arc of PI and P’ ha.s the opposite direction in 7’ a,s it does in 7. It follows tha,t
PI is tra8nsformed  by the pivot from a,n inverse-good pa,th into a good path, a,ncl that P’ is
transformed from a good path to an inverse-good path. Subsequently, all bad arcs of 7’ lie on
pz or on P’, a,nd thus on the inverse good path P2, P’ from t to 1’ in 7’. 1

The following theorem bounds the number of pivots that can be ma,cle  by the procedure
MAKE-GOOD .

Theorem 3.4 Suppose that the pair (7, f) satisfies Pl-P4 and all of the bad arcs of the tree 7
lie on some inverse-good path P from some node t to the root 7%.  The procedure MAKE-GOOD

terminates with a good tree 7 in at most 71 - 1 pivots.
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Proof: First we show that any good node in 7 is also a good node in 7’. Suppose that t is
a good node of 7. Then the path P from t to T in 7 does not contain the ba,d arc (u’, w’) and
hence P is also a, path in 7’. It follows that t is good in 7’.

Now, we note that w is a, good node in 7, a,nd v is bad in 7, and thus v becomes good
in 7’. We conclude that the number of good nodes in 7’ is greater than the number of goocl
nodes in 7. 1

Next we prove that this sequence of piv0t.s ca,n be performed in O(n2 + IZ log n,) time using
Fibonacci hea.ps.

Theorem 3.5 Suppose that tree T satisfies Pl-P4 and all of the bad arcs of 7 lie on some
inverse-good path P from some node t to the root r. Then the MAKE-GOOD procedure can be
implemented in O(172 + 7% log 11) time.

Proof: The proof is ba,sed  on a. closer look at the proof of Theorems 3.4 and 3.3. The algorithm
will ma(inta.in  t,he first bad nocle UJ’ on the path from r to t, and for every bad node w it maintains
d(v) = min(, good) Q,(V,  ‘20)  aold tlle good node w, on which the minimum is attained.

Recall that the set of bad nodes is the set of nodes in ‘7$. The entering edge is (‘u, PU”) for
a ba,d  node u with d(v) minimum. The lea,ving  edge is (vren(w’),  UJ’).  Nest we have to show
how to upc1at.e  the above information. The new w’ is the head of the first bad arc along the
path from v t,o t. To find the new w’ a,fter the update ta,kes  time proportional to the number
of nodes from ‘U to the new w’. Notice that these are the nodes tha,t become good during this
pivot.

To update d(z,)  for the remaining bad nodes we have to consider all edges leaving the nodes
that became good during this pivot. We shall ma*intain  cl@) in a, Fibona8cci  hea,p. Overall,
there are at most m upda,tes  (one for every asc). The total time spent over all itera*tions  of
MAKE-GOOD on searching for nodes that become good and for the new w’ is bounded by O(?z).
The claim follows since updating a,nd finding the minimum ca,n be clone in O(m + 12 log TX>  time.
I

3 . 2 A polynomial dual simplex algorithm.

We are now prepared to describe the polynomial time dua,l  simplex algorithm. The algorithm
finds an optimal solution for the minimum cost flow problem sta8rting  with the shortest path
tree To directed from node ‘I‘. In the ca,se that all arcs are non-negative, one can find 7’ in
O(n,) pivots [4]; in ca,se the costs ma,y be nega#tive,  one can find 7-O in 0(1z2)  pivots using the
dual simplex algorithm of Balinski [a]. We a,ssume  that To is obtained using an appropriate
subroutine.

In our algorithm, we will keep track of a, scaling pa,rameter  A that is nondecreasing from
iteration to iteration. We will refer to the A-sccc.ldlzg @case as all iterations in which the pa’ram-



procedure SCALING-SIMPLEX(I);

We assume that:
7 is a dual fea.sible  tree and a.11 arcs are good subject to the flow f = 0;

A- 2 PodB+  111
Define f by sending A units of flow from 1’ t,o every node E f 1’ in 7.
while A > 1/(2n) do begin

while Sf (A) # 0 do begin
let, v be a node in S:f (A);
send A units of flow from u to I’ in 7.
if there is a. bad arc in I

then begin
call  ~IAKE-CTOOD(IJ)

end;
end;
A - 412

end;
end.

Figure 3: SCALING-SIMPLEX algorithm.

eter A ha.s a fixed value.  Throughout the algorithm, the tree 7 and the flow f will satisfy P5
in addition to Pl-P4.

P5. All flows are multiples of A.

Let ,Sj(A)  = { u : ef(v) > A}. The termina,tion of the algorithm will be guaxanteed  by the
following lemma.

Lemma 3.6 Suppose that the supplies and demands are integral and T is dual feasible. Suppose
that j is a nonnegative flow such that

0 f( v. w) = 0 for every (‘u, 10) Cj 7,

l 0 5 ef(V) 5 l/12 for every v # 1‘.

Then 7 is primal feasible.

Proof: By Lemma 3.1, fT( v, (0) > f(v, W) - 1. The flow .f’T is integral, and f is non-negative.
It follows that fl is non-nega(tive. m

Procedure SCALING-SIMPLEX is described in Figure 3. It sta,rts with an initial dual-fea,sible
tree To where all a,rcs are pointing away from the root, a,nd a8 parameter A = 2r10g(B+1)1.  The
initial flow is constructed by sending A units of flow from the root to ea(ch one of the nodes
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through the edges of the tree. The procedure proceeds in phases. Each phase considers the set
Sj(  A j of nodes whose excess is a,bove  A, a,nd itera,tively a8ugments  a flow from one of the nodes
in this set to the root by A. If such an augmentation creates a bad arc, the tree is upda,ted
by calling the procedure MAKE-GOOD  described above. A phase ends when the set S,(A)
becomes empty. Then A is halved ancl  a8 new pha,se  is started. SCALING-SIMPLEX terminates
when A falls below l/(217).

Theorem 3.7 The SCALING-SIMPLEX algorithm, if started from a shortest path tree rooted at Y,
performs dual simplex pivots, and finds the optimal spanning tree for the uncapacitated  transship-
ment problem after O(?z2  log ??,I?)  pivots, and in O( 72(172 $ ?~,log II) log nBj time.

Proof: We claim that the algorithm maintains properties PI-P5.  First note that all flows are
multiples of A throughout the algorithm, and so P5 is sa#tisfied.  We now claim tha,t all excesses
a’re strictly positive. It is true initially, since initially A > B by definition. During the algorithm
we send A units of flow only from nodes with excess more tha,n A, and so all excesses remail)
positive after a#n augment)ation. Therefore P4 is satisfied.

Since all arc flows are multiples of A? one can send A units of flow on any good path. For
this reason, P2 and P3 are satisfied throughout. Initially 7 is a dual feasible tree with all
arcs being good. After sending A units of flow on a good path P from some node v to r the
path P becomes an inverse-good pa,th. If P has a,ny ba,d arcs, then the procedure MAKE-GOOD
takes O(n)  pivots and 0( 772 + n log nj time by Theorems 3.4 a,nd 3.5. Property Pl is satisfied
throughout the execution of the procedure by Theorem 3.13.

SCALING-SIMPLEX terminates with A 2 l/(211).  At the end of the last scaling phase we
obtain a, tree 7 and a flow f. At this point, ej(z1)  5 1/n for each node u # r. Lemma, 3.6
implies that 7 is primal fea#sible,  and hence 7 is an optimal basis.

During a scaling pha,se  each node in v # r starts with an excess of less than 2A and ends
with a positive excess. Each augmenta’tion reduces the excess of a node u # T by A. Thus
the number of a.ugmenta,tions  per sca,ling phase is at most 11. The algorithm terminates when
A < 1/(2n), tllerefore the total number of a#ugmentations  is O(n log nB).

The time between successive a,ugmenta,tions  is O(n2 + nlog  72) by Theorem 3.5, and the
number of pivots is O(n)  by Theorem 3.4. We can conclude that the total number of pivok  is
O(n”lognBj  and the total running time is O(n(nx  + 12lognjlognRj. m

3 . 3 A strongly polynomial dual simplex algorithm.

We will modify the dual simplex algorithm described in the previous section to make it strongly
polynomial. We will divide scaling phases into two types, a.ccording  to whether a, pivot was
performed during the phase, and will bound the number of scaling pha.ses  tha.t  involve pivots
by 0 (n log 72). Tlle second type of scaling phase does not involve pivots and hence the spanning
tree a,t the beginning of the scaling phase is the sanle ass  the spanning tree at the end of the



scaling pha,se. The number of such scaling phases for the SCALING-SIMPLEX algorithm is at
least log nB. We will show how to modify t,he algorithm appropriately so that the number of
these scaling phases is 0( n j.

We first show that the number of scaling phases in which some pivot takes place is 0( n log n j.
To prove this bound, we first observe that all flow cha,nges  in the algorithm are due to sending
flow on a path to the root. Since the root node is the only node with a negative excess
throughout the a.lgorithm,  the total flow change on any arc is bouncled  at -ef(  I’). Thus, we
have the following lemma,.

Lemma 3.8 Suppose that ef(r) < 0 throughout the algorithm, and that each flow change is
the result of sending flow from some node 2’ # 1’ to node r. If f(,U, ‘10)  > -ef(rj for some flow

f obtained in the algorithm, then .f’(~!,  ~7) > -e;(r) for all subsequent flows f’ obtained by the
algorithm, including the optimum flow.

We will refer to an arc (u, ,LL-))  a,s si!ro72f~Iy  fensible if f( ~v,wj  > -ef(rj.  The above lemma
implies that once a.n a,rc becomes strongly feasible it will stay strongly fea.sible  throughout the
rest of the algorithm, and it will have a0 strictly positive flow in the optimum solution obtained
by the algorithm.

The rea,son that we wanted a,rc  flows to be multiples of A wa.s so tha(t  we could be a,ssured
that we could send A units of flow on a#ny  good path. The above lemma8  implies tha,t  it is
sufficient to weaken property P5 and require that the flow will be multiple of A on arcs tha,t
a,re not strongly feasible. We will also need to strengthen property P4.

P’4. A/2 < ef(u)  < 3A for each ‘U # r.

P’S. For each (11. II)) for which .f(~, ~7) 5 -er(rj,  f( v, U) is a,n integral multiple of A.

For convenience, we will write P’l-P’5 to mea,n  Pl, P2, P3, P’4,  P’5.

Lemma 3.9 If (7, f, A) sa is iest f P’l-P’5, and if u is a good node then one can send A units of
flow from 11 to r, and the resulting flow J’ is non-negative.

The strengthening of property P4 is needed for the nest lemma..

Lemma 3.10 Suppose that the triple (7, .f, A) satisfies P’l-P’5. Suppose further that (v, W)  is a
bad arc for spanning tree 7. Then within an additional 3 + 2 [log  ~1 scaling phases the number of
strongly feasible arcs will increase.

Pr*ooi’:  Since arc (v, 20) is bad, it is a, downward arc and f( v, w) = 0. Therefore, .f is zero on
all arcs lea,ving TIL,. By property P’4, each node in Tw hams excess at least A/2. Now let A’ be
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the scaling factor 3 + 2[log 721 scaling phases later, and let f’ denote a flow after the A’ scaling
phase.  Then A’ 5 a/(sn”). By property P’4,  ef(Tw) > 17wln/2 > 4n217!!,,IA’. Moreover,
efl(ICw)  5 317’w14’.  Thus, a’t lea#st  31~~17~la’ units of flow have been sent from rZ’, to I/ \ Tw
while transforming flow f into flow f’. At most 12. - 1 arcs ha.ve positive flow in f’. This implies
tha,t there must be some arc lea,ving Tlu with flow greater t,han 3nJT,,)A’ >_ 3rd’ > -efl(~),
where the last inequality follows from P’4.  By definition, such an arc is strongly fea,sible.  Since
there are no arcs leaving TtU with positive flow subject to f, it follows that the number of
strongly feasible arcs has increased. i

We have shown tha,t if some a,rc becomes bad during a scaling phase, then within 3+ 2 [log n,l
additional scaling phases there is a, new strongly fea,sible  a,rc. Since there are aat most 11 arcs
tha,t can become strongly feasible, it follows that there are 0( ~2 log 12) itera.tions  in which an arc
becomes bad, causing the a.lgorithm  to execute act lea,st  one pivot.

Corollary 3.11 The number of scaling phases in which some pivot takes place is O(nlogn).

The above corollary implies a strongly polynomial bound on the number of pivots. In order
to show a strongly polynomial bound on the running time we have to limit the number of
scahng phases tha,t do not esecut,e pivots. Let 7 be the current spanning tree and let f denote
the current flow at the n scaling pha,se. Suppose that (7, .f, a) sa#tisfies  P’1 - P’5. We will
determine a new scaling factor A’ 5 n a,nd a flow f’, such that (7, f’, a’) also satisfies P’l -
P’5, and such that there is no flow f” for which (T, f”, n/S) satisfies P’l-P’5. Consequently,
if we continue the scaling algorithm sta,rting with flow f’, then within 3 sca,ling  phases the
spa,nning  tree 7 cannot be feasible, and there hams to be a pivot.

Suppose that (7, f, a) sa$tisfies  P’l - P’5. Let a’ = ma.x(-2.f’=(,u,  ~u)/~?(uI)~  : (‘u, 81) E 7).
Observe that a’ 5 0 if a,nd only if 7 is an optimal tree. We will show subsequently that t,here
is a% flow f’ such that (7, f’, A’) satisfies P’l-P’5.  First we show tha,t  there can be no flow .f”
such that (7, f”, il’/S) sa,tisfies  P’l-P’5.

Lemma 3.12 If A’ > 0 then there is no flow S” such that (I, j”, A//s) satisfies P’l-P’5.

Proof: Let f” be such a flow. Consider the flow on arc (u, UI) where Lil’ = -2f’T(v, pc)/II(W)I.
By Lemma, 3.1 and Property P’4, .f”( w, to) = f’+, w) + efu(TtL,) = 47(tu)~/2  + ef”(7J 5
-A’l7(4~/2 + /7(20)~(3A’/8) < 0. I

Nest we show how to find a, feasible flow f’ such that (7, f’, a’) sa,tisfies  P’l-P’5,  assuming
tha,t A’ 2 a/3.  The procedure MAKE-FLOW is given in Figure 4. We start by creating a,n
excess of 3n’/2  at ea,ch  node in w # r. Let g denote the resulting flow. We then examine nodes
in the reverse of a, brea~dth  first search ordering (i.e., we start at the leaves and work towards
the root), and for ea,ch node w exa,mined  we modify g to ma,lte  sure tha,t  the flow on (added,  6)
satisfies P’5.
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procedure ~~AI<E-FLOW(~);

A’ - llla,~(,,~)~~(--2f~(~,,w)/lT(zv)().
Define CJ by sending b(v) + 3A’/2 units of flow from T to every node v # T in 7.
for v E V in a the reverse BFS ordering do begin

Let w = p?aed(v).
if (w, V) is a downward arc and (w,  V) is not strongly feasible

then begin
send f(w, V) mod A’ units of flow from v to node 1’ in 7.

end;
if (u, w) is an upward a.rc  a.nd  (u, TO) is not strongly feasible

then begin
send -f(w,  v) mod A’ units of flow from 21 to node 1% in 7.

cud;
end;

end.

Figure 4: MAKE-FLOW algorithm.

Lemma 3.13 Suppose that A’ 5 A/3. Then the flow g computed by MAKE-FLO\IV satisfies

es(v) 5 ef(v) for every 17 # 1’.

Proof.: By property P’4, we halve tha,t er(v)  2 A/2, A’ 5 A/3 and es(v) _< 3A’/2.  This implies
t h e  l e m m a .  1

Lemma 3.14 Suppose that (7, .f, A) sa IS lest’ f’ P’l - P’5, and A’ 5 A/3. Then (7, g,A’) com-
puted by MAKE-FLOP satisfies P’l-P’5 and all arcs of ‘I- are good.

Proof: Pl and P3 are satisfied by definition. By construction, g satisfies P’4 a.nd P’5. It
remains to show thak the resulting flow ~(II, W) is non-negative on ad1  upward arcs in I and
positive on all downrvard a,rcs.  This will imply imply P2, and the fact that a11 arcs are good.

Since .f is nonnegajtive  and, by Lemma 3.13, we have es(u)  5 ef(v) for v # r, the flow g
on upward arcs is nonnegative. Suppose now tha’t (v, lo) is a downward a,rc. Then g(v, W) =
.f’(~ 4 t es(L) 2 -1’+4~‘/2 t eg('Z,,) > 0, since ea,ch node in TW hams at lea,st  A’/2 excess.
I

Notice that Lemma 3.13 implies tha,t the procedure MAKE-FLOW can be also thought of as
modifying .f by sending flow to the root 1’ from some other nodes.

Lemma 3.15  Suppose that (7,f, A) sa IS lest’ f’ P’l - P’5, and A’ 5 A/3. Then every arc that is
strongly feasible subject to f is also strongly feasible subject to g.

Proof: The lemmaj  is implied by Lemmas 3.13 a,nd 3.8. 1
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procedure STRONG-SCALING-SIMPLES(~);

We assume that:
7 is a dual feasible tree and all arcs are good subject to the flow f = 0;

A + ccl.
while ‘T is not,  optimum do begin

let A' = mas(  -2f7( 'qzu)/l7(2u)I  : (w) E 7)
if Ai = 0

t hell begill
quit,  and return the optima.1 tree 7;

end;
if  A'> A/G

then A - A/2
else begill

call MAKE-FLOW(T), f - 9 and A +- A’.
end;

while Sf (:3A/2) # 0 do begin
let v be a uode  in S;(3A/2), * send A units of flow from v to 1’.
if there is a bad arc in 7

t hell begill
call R/IAI<E-GOOD(7,f)

end;
cad;

cud;
end.

Figure 5: STRONG-SCALING-SIMPLEX algorithm.

Theorem 3.16 The STRONG-SCALING-SIMPLEX algorithm, if started from a shortest path tree
rooted at I’, performs dual simplex pivots, and finds the optimal spanning tree for the uncapacitated
transshipment problem after O(n310g n) pivots, and O(U,‘(UZ  + Tzlog 71,)  log 71,)  time.

Proof: The tree 7 is good before each a,ugmentation,  a,ncl  all ba,cl  arcs a,re  on a,n inverse goocl
path before each call to MAKE-GOOD. The fact that the algorithm maintains P’l-P’5  can be
proved aOnalogously  to the proof of Theorem 3.7. The procedure MAKE-FLOW takes 0(7x) steps.
Subsequently, within 0( 1) sca,ling  phases there will be aI ba,d arc, a,nd by Lemma, 3.10 in O(log  72)
scaling pha,ses  a0 new asc will become strongly fea,sible.  There can be at most n strongly fea,sible
arcs ak a. time. Therefore, Lemma 3.15 implies that there will be a,t most O(IZ  log ~2)  scaling
phases. Now Theorems 3.4 and 3.5 imply the bounds on the number of pivots and the running
time. 1

Using the reduction from the minimum-cost flow problem to the uncapacitated transship-
ment problem we obtain the following corollary.

Corollary 3.17 The (capacitated) transshipment problem can be solved by the dual network
simplex method in O(ns” log 12)  pivots, and the algorithm can be implemented to run in O(n?C2(n,  +



n log 12)  log 12) time.

4 An Efficient Pivoting Strategy

In this section we show how to use a. variation on Orlin’s [ll] fast minimum-cost transshipment
algorithm to design a8 pivoting strategy that decreases the 1111 mber of pivots for the dual network
simplex algorithm to 0(17b12  log 72).

The simplex algorithm in the previous section can be viewed as an illlplelnenta,tion  of the
corresponding scaling algorithm. During the scaling algorithm all nodes, except the root ‘I’,
have positive excess. The simplex implementa~tion  maintains a dual feasible tree ?- such that
an a,ugmentation from every node w to the root T is possible in the tree. Whenever the scaling
algorithm a,ugments  the flow from some node ‘U to Y, this a,ugmenta(tion  can be done in the tree.

Such a, direct simplex implementation of the faster scaling algorithm is not possible. For
some pairs of nodes that the scaling algorithm might choose for an a)ugmentation  there might be
no sequence of pivot steps that makes an augmentation between these two nodes possible in the
tree. The version of the transshipment algorithm used here allows greater freedom in choosing
the alugnien  t at ion. We show that a, simple pivoting strategy can be viewed as implementing
one of the possible choices. In effect, we let the simplex algorithm choose among the possible
a,ugnien  t ations.

In Section 4.1 we give the modified version of Orlin’s scaling algorithm, and review the
proof of its running time. In Section 4.2 we use this algorithm to design a dua,l  network simplex
algorithm tlia#t  ta,kes  at most O(m?z  log 12) pivots.

4.1 Modified version of Orlin’s excess scaling algorithm

The maJn  idea,  of all excess scaling algorithms is to maintain a3 fea,sible  pseudoflow a,nd a0 price
function, such tha,t the reduced cost of every arc is non-negative, and the reducecl  cost of a,rcs
with positive flow is zero. The initial flow is zero, initial prices ca(n  be comput,ed  by a( shortest
path computa.tion. We repea,tedly  a,ugment  the flow along shortest pa,ths  from a, node with
positive excess to a node with negative excess, gradually reducing all the excesses to zero. Two
observations justify this method: (1) moving the flow along a’ minimum-cost pa8tli preserves the
inva,ria.nt  that the current pseudoflow has the minimum-cost among all the pseudoflows with
the samme excess; (2) a, shortest path computation suffices both to find a8 path along which to
augment the flow and to find appropriate price changes that preserve the nonnega,tivity of the
reduced costs. Let AUGMENT($  T, LI) 1c enote the subroutine that a8ugments  the flow by A
a.long  a shortest path from some node in S to some node in 2’.

The scaling algorithm that was the basis of the simplex algorithm in the previous section
mainta,ins that all nodes except the root r has positive excess. In Orlin’s scaling algorithm we
need to a,ugment  the flow by more then the excess art the end on the pa,th, thereby cha.nging



the sign of the excess during the algorit hnl. Let US define the set of nodes with large cleficit
Tj(A) =  {v E V  :  ej(v)  <  - A }  a.na.logously  t o  Sj(A).

The algorithm maintains a scnliq parameter  A, and it consists of a number of scaling
phases. Each phase consists of a sequence of a,ugment ations. The main difference between this
algorithm and the one used in the previous section is that at the A-scaling phase we either
a,ugment  the flow by A from some node in S = Sf(eA)  to a node in 2’ = Tf(iA),  or,
reversing the roles of S and T, from some node in S = Sj( ;A) to a node in T = TJ( %A)
until both Sj(  +A) and Tf(yA) b ecome empty. At this point we divide A by two and a,
new scaling phase starts.

The idea,  of making this algorithm strongly polynomial is simila,r  to the previous one. Notice
that the sets S/(+A)  and Tf(eA) are monotone decrea.sing  during the A scaling phase.
Therefore, there can be at most ~1 augmentations per scaling phase. The ammount  of flow moved
during the A sca.ling phase is no more tha8n  ??,A,  and if an arc has more tha,n 212A flow then it
will have positive flow in all subsequent phases. Such arcs will be declared strongly fea,sible.

More precisely, the algorithm FAST-EXCESS-SCALING  maintains a set of strofzgly fensiblc
uxs E, and a* pseudoflow f that satisfies the following properties.

Sl. ~(v,PD) > 0 on every (v,w)  4 E,.

S2. f(w, w) > 0 on every (z,, W)  E E,.

S3. ~,(zI, 20)  > 0 for all a,rcs in the residual graph.

S4. At most one node has non-zero excess in every connected component of G, = (V, E,).

S5. f(v, W) is a, multiple of A on every a,rc (u, VU)  6 E,.

An arc becomes strongly feasible if it carries at lea,st  512A flow. The algorithm FAST-
EXCESS-SCALING is shown in Figure 6. Initially, A = rnasUEv  16(~)I.  Each time we declare
an a,rc  strongly feasible we do a. special augmentation to collect the excess of each connected
component of E, to a, single node. After a, scaling phase A is divided by 2 a,s long as the current
pseudoflow is non-zero on some a,rc  not in E,. When every arc with non-zero flow is in E, the
scaling is restarted by setting A to be the maximum a,bsolute  value of a. current excess.

Lenllna  4.1 Algorithm FMT-EXCESS-SCALING  maintains properties Sl-S5.

Proof: Notice that if S,(yA)  is not empty then ‘r;(iA) must not be empty since excesses
sum to zero. Similarly if Tj(+A) is not empty then Sf(iA) must not be empty. This proves
that the augmentations are possible.

Throughout the algorithm we shall maintajn  a) pseudoflow f and a, price function 11. It is
easy to see that Sl, a,nd S3-S5  is satisfied throughout. Strongly feasible arcs have reducecl  cost 0
by properties S2 a,nd S3, therefore a.ugmentation through a connected component of G, ca,n be



procedure FAST-ESCESS-SCALING;
A t llla&,~\~ p(,u)l;

while A # 0 do begin
while S.f (*A) U Tf (?A) # fl do begin

if S.,(eA) # Q)
then begin

S +-- $(+A);
T - q(;A);
Call AUGMENT(S,T, A);
Add (w,w) to E, for every (v,w)  such that f(v,~) > 5nA;
Use E, arcs t(o collect t,he  excess of the new connected component of G, to one node

end;
else begill

^) - Sj( I-A);
; + ‘r,(hA)-
Call AUG;ENT& A);
Add (21,  W) to E, for every (v, zu) such tha.t  f(v,  W) > 5nA;
Use E, arcs to collect t!he  excess of the new connectSed  component of G, to one node;

end;
end;

end;
if f is zero on all axes  ilot8 in E,

then A + n1ax2,ElT  lb(11)1;
else A = A/2;

end.

Figure 6: Algorithm FAST-EXCESS-SCALING.

done through the strongly feasible a,rcs. Note, that this version of the algorithm ca,n move more
tha,n 7~4 flow during the 4-sca,ling  phase. Each time a,n arc is decla,recl  strongly feasible, we do
a special augmentation to collect the excess of a connected component of G’,. This might yield
another 124  amount of flow to be moved through strongly feasible arcs. Collecting the excess in
a connected component of G, ca,n  yield a,n increased excess a,t some nodes, a,nd therefore extra,
a,ugmentations.  The number of augmentations during a phase is at most 7% plus the number of
contractions. Therefore the overall amount of flow moved during and a,fter  the 4 scaling-phase,
is at most, 51x4  and a,rcs tha,t ca.rry  more thaa 5124 flow will never become empty, a,nd hence
S2 is satisfied. 1

It will help the a,nalysis  to consider the arcs in E, as cotztmcted, and hence the connected
components of (V, E,) axe Ixezrdo-rzones  of the contracted gra.ph.  We will use P to denote node
set of the contra.cted gra,ph.

The main idea in the analysis is to show after a node 2) (either in V or a pseudo-node)
participated as a.n encl-point of a. shortest pa,th  computa,tion,  after at most O(log 12) a,dclitionaJ
scaling pha,ses,  an a,rc adja,cent to w will become strongly fea,sible.  For a nocle  ‘u in 11 this follows
from the fa(ct  t1ia.t  v @ Sf(4)  U Tj(4) unless lb(~)1  > 4, and therefore 0 (log 72,)  scaling pha#ses
after the node first served as a, sta,rting node, an arc incident to v will ca,rry  enough flow to be



contracted. However, lb(v)I > (ef(w)I  might not hold for pseudo-nodes.

We say that a node 2, is active during a scaling phase if v E S,(*n> u Tf(%4) at some
time during the phase.

Lemma 4.2 The number of shortest path computations during a phase is bounded by the number
of active nodes during the phase.

Theorem 4.3 A node v can be active in at most O(logn)  phases before it is contracted.

Proof: A pseudo-node ca#n  become active once due to contraction. However, when a node v is
active for the second time, it must alrea,dy  exist at the end of the previous scaling phase. Let
4 denote the scaling parammeter  in the phase when v is active for the second time. If 4 for this
pha,se  wa,s defined by rnaxtUEp ef(‘u)  then ef(v)  = b(w). Otlierwise, the scaling parameter in
the previous phase is 24. At the end of the 24-scaling pha.se  both Sf(  %24)  a,ncl TJ( e24)
are empty. Therefore, at the beginning of this phase, we ha,ve  %4 < I~f(v)j  _< zI.94,

But w - A >e w is an integer multiple of 24. This implies that lb(,v)I  > i4 > &ef(a>.  In
either case, after at most O(log  n) more scaling phases the scaling pa,rameter 4 will be less than
p(v))/(5d). At tlle end of that scaling phase the flow f will sa,tisfy the following inequality.

1 x f( u, ,tu)l = lb(u) - ef(v)I  2 Ih( - 4 > (511,~ - 1)4.
t”EP

Consequently, a,t lea,st  one arc incident to v ca,rries more than tin4 flow, and hence v will be
cont,ra$cted.  g

Lemma,  ~1.2  and Theorem 4.3 bound the number of shortest path computa8tions  during the
algorithm. All other work takes linear time per scaling pha,se. At lea,st  one arc is contractecl
in ea,ch group of O(log  n) scaling phases, and therefore, there are at most O(12log  n) scaling
pha,ses.

Theorem 4.4 Algorithm FAST-EXCESS-SCALING solves the transshipment problem in 0(nlogmin{n,  13))
computations of single-source shortest paths in networks with non-negative lengths.

4.2 Decreasing the number of pivot steps

The sequence of pivot steps in the dua,l  network simplex algorithm in the previous section is
guided by a capacity scaling algorithm. The main needed change in the scaling algorithm to
guide the pivot selection is that all augmentations are carried out in the tree. In this section
we give a similar simplex implementation of algorithm FAST-EXCESS-SCALING. If the set T is
not reacha,ble  from S over residuad  arcs in the tree, then the algorithm initiates a sequence of
dual simplex pivot steps, changing the tree ‘T into one in which a8n  aJugmentation  in the tree
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procedure TREE-AUGMENT+(S,  T, A, 7, f);

W e assume that:
I is a dual feasible tree;
p is the price function which corresponds to T;
f is a pseudoflow that is zero outside of the tree 1.

Choose node s E S;
R t Nodes reacha.ble  from s over residual a.rcs in I subject to the flow f;
while R(7) II T = 0 and there is a.11  arc (ZI,  ,w) entering: R(7) such that fT(v,  10) < 0 do begin

(,u,  ,w) + an arc enteriiig;  R(7) such t1ia.t  fT(21, W) < 0;
Call PIVOT(I, (u, ~1));
Update X(7);

end;f - A uode  in R(7) n 5”;
P +- A p&h  from s to t in through residual a.rcs in I;
Move A units of flow from .s to t along P;

end.

Figure 7: Pivot Steps that Make an Augmentation from s Possible.

is possible. The first call to AUGMENT is replxed by TREE-AUGMENTS,  and the second call
by TREE-AUGMENT-. The TREE-ALJGMENT+ procedure first chooses a node s E S, and then
executes a8 sequence of pivot steps until there is SCHW  t E T reacha*ble  from s in the tree. The
TREE-AUGMENT- procedure first chooses a3 node t E T, and then execute pivot steps until there
is so~le s E S such tha*t t is reajcha3ble  from it through t,he  residua,l  a,rcs of the tree. Below
we show that the properties of the FAST-EXCESS-SCALING algorithm allow us to prove tha,t the
number of pivots needed to be done between a,ny two a,ugmenta,tions  is small.

The procedure TREE-ALJGMENT+  (see Figure 7) sta,rts  by choosing a node s E S. Let R(7)
denote the set of nodes reachable from s over resiclual  a.rcs in the tree 7. If t,he set R(7) n T
is not empty, then we augment the flow along the path in the tree from s to some node t in
the intersection. If R(7) 0 T ‘:ih empty, then we iterakively choose a,n arc (.u, W) entering R(7)
such that f’( w, W) < 0, and pivot on this a,rc, until the intersection R(7) II T is not empty.
Then we augment the flow from s to some node t in the intersection. Since TREE-AUGMENT-
is analogous, we omit its description.

Nest we need to show tha,t each call to TREE-AUGMENT+ (a,ncl, analogously, to TREE-
AUGMENT-), results in a small number of pivots. More precisely, we have to prove two claims.
First, we have to prove that the intersection B(7) n T is empty, then there exists an axe (‘u, 2~)
entering R(7) such that f7( U, W) < 0. Then we ha,ve  to show tha,t there will be only a, sma,ll
number of pivots (a,ctually,  at most n2> neeclecl  to procluce  a, tree such that R(7) n T is not
empty.

Note, tha,t repla8cing  the calls to AUGMENT in the description of the FAST-ESCESS-SCALING
algorithm (see Figure 6) by calls to TR.EE-AUGMENT+ and TREE-AUGMENT-, ca,uses  TREE-
AUGMENT+ to be called with pa.ra(meters  S = Sf( %A’), T = Tf( ;A).
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Lemma 4.5 Let 7 be a dual feasible tree, f be a pseudoflow that is zero on all arcs not in the
tree, s be a node in Sf(+a) and let R(7) denote the set of nodes reachable from P over residual

arcs in the tree 7. If R(7) n Tf($A) = 0 then at least one of the tree arcs (u, UI) entering R(7)
has f’(z~? IO) < 0. An analogous statement holds for t E Tf(?A) instead of s.

Proof: We shall only prove the first statement. By the definition of R(7) the tree arcs leaSving
R(7) are not in the residual gra*ph.  This implies that no arc in 7 leaves R(7) a#nd also no flow
leaves or enters R(7). Consequently,

c w = - c qw.VER(‘T) 7&?(‘2-)

R(7) n Tj($) = 0 and ef(S) > +A imply t1ia.t  CVER(.T) ef(v)  > 0. In particular, it follows
that R(7) # I’. N ow consider the arcs (~11, wr j, . . . , (vk, wk) of the tree 7 entering R(7). The
sets V \ H~,(,t,,,,tj for I: = 1,. . . , k together with R(7) partition V. Therefore

The a,bove  two equaStions  and inequality CVER(jT)  ef(v)  > 0 imply that EL,EV\HT,cU,,W  ) b( I>) > 0z
for a,t least one index i. Hence fT(  v;, 20;)  < 0. 1

Lemma 4.6 During the execution of the procedure TREE-AUGMENT+, no arc deleted from T will

reenter the tree. An analogous statement holds for p rocedure  TREE-AUGMENT-.

Proof: We shall only prove the first statement. The procedure TREE-AUGMENT- can be treated
similarly. Consider an execution of the procedure TREE-AUGMENT+. Let R(7) denote the set
of nodes reachable from s over residual a,rcs in the tree 7. The pivot step deletes a,n arc (v, w)
for some w E R(7) and adds to the tree an arc (v’, w’) for some PU’ 6 R(7). This implies that
the set R(7) is non-decreasing during the execution of the procedure, a.ncl also implies tha,t an
a,rc  which was deleted from the tree ca,n  not be added ba,ck. h

Lemmas 4.5 a.ncl  4.6, and Theorem 4.4 imply the following Theorem.

Theorem 4.7 The uncapacitated  transshipment problem can be solved by the dual network sim-
plex algorithm in a sequence of 0(~?xlog(min{?L,  B})) simplex pivot steps.

Proof: Lemma. 4.5 implies that the simplex algorithm presented a,bove  will continue until it
finds an optimal traSnsshipment. Lemma. 4.6 implies that an augmentation is done (in the
accompanying FAST-ESCESS-SCALING algorithm) a,fter a sequence of a,t most 112 pivot steps.
This and Theorem 4.4 imply that the number of pivot steps throughout the algorithm is
0(~~z~zlog(n~in{B,  12))).  I
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A straightforward implementation of the algorithm takes O(m)  time per pivot step (this is
how long it ta,kes  to choose the minimum reduced cost a,rc  leaving the set W,,,,,,)).  We get an
O(n.m2 log(min(B,  n})) overall running time. Notice, that this running time is worse then the
one proved in Theorem 3.16 unless m is close to 12.

Using the equivalence of the minimum-cost flow and the uncapacitated  transshipment prob-
lems mentioned in Section 2 we get the following corollary.

Corollary 4.8 The (capacitated) transshipment problem can be solved by the dual network simplex
algorithm in O(m2 logmin{B, n}) pivot steps.
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