
September 1991 Report No. STAN-CS-91-1381

Implementing Hypertext Database Relationships Through
Aggregations and Exceptions

bY

Y. Hara, A. Keller, P. Rathmann, G. Wiederhold

Department of Computer Science

Stanford University

Stanford, California 94305

Implementing Hypertext Database
Relationships

through Aggregations and Exceptions

Yoshinori Hara Arthur M. Keller
NEC Corporation Advanced Decision Systems

and and
Stanford University Stanford University

Peter K. Rathmann
Stanford University

Gio Wiederhold
Stanford University

September 12, 1991

Abstract

In order to combine hypertext with database facilities, we show
how to extract an effective storage structure from given instance re-
lationships. The schema of the structure recognizes clusters and ex-
ceptions. Extracting high-level structures is useful for providing a
high performance browsing environment as well as efficient physical
database design, especially when handling large amounts of data.

This paper focuses on a clustering method, ACE, which generates
aggregations and exceptions from the original graph structure in order
to capture high level relationships. The problem of minimizing the
cost function is NP-complete. We use a heuristic approach based on
an extended Kernighan-Lin algorithm.

We demonstrate our method on a hypertext application and on
a standard random graph, compared with its analytical model. The
storage reductions of input database size in main memory were 77.2%
and 12.3%, respectively. It was also useful for secondary storage or-
ganization for efficient retrieval.
Keywords: hypertext database, physical database design, database
clustering, overview diagram, aggregation, exception

1

1 Introduction
Hypertext has been widely promoted as a medium for future information
handling [YHMD88]. It s navigational interface, browsing, and its very simple
structure, nodes and Zinks, allow users to handle information easily. In some
heterogeneous and cooperative environments, the strategy of using a bottom-
up organization for combining multiple hypertext structures is quite natural.

When handling large amounts of data, however, several intrinsic prob-
lems occur in hypertext structure. Some of them are well known as the dis-
orientation problem in the utilization phase [Conk87], and the lack of design
principles for associative links in the authoring phase [MoBBSO, HaKWSl].
In addition, there exists a trade-off between the cost reduction of hypertext
authoring/maintenance and the improvement of end-user benefits [HaKaSO].
These problems lead to the decrease of information usability, in particular
for usage over long periods of time.

In order to solve the above problems, this paper proposes a technique
to combine hypertext structure with database models. The advantage of
database models when handling large amounts of data is that the models

. specify a schema for the data. By using a database schema, users can uti-
lize the facilities as a query language interface, views, and efficient storage
structures.

This paper focuses on the the problem of extracting a global structure
from given hypertext data, which may be treated as an induction method
from the hypertext model into the relational/E-R model. In order to demon-
strate the usefulness of this method, this paper also shows an optimum solu-
tion of the problem using an analytic model. Some experimental results are
presented, one for a hypertext application, and one for a randomly generated
graph.

Section 2 describes the problems and the requirements of navigational ac-
cess for large information spaces. In Section 3, we propose a clustering model
for relationships using aggregation and exceptions from a large hypertext
structure, which is called ACE (Aggregation Clustering with Exceptions).
Sections 4 and 5 present the formulation of ACE and a heuristic method
to find the optimal solution, respectively. Section 6 gives the experimental
results.

For the bulk of this paper, we will assume the hypertext structure to

2

be a directed graph. This simplifies many of the algorithms and examples.
Section 7 discusses the extension of this model into a more general hyper-
text/hvpermedia structure.

2 Navigating Large Information Spaces

The major advantage of hypertext structure is that it provides navigational
access for users. In practical systems, however, this advantage has only been
proven in relatively small or very sparse structures. Here, we describe the
problems and the requirements that arise when providing such navigation for
large amounts of possibly dense data.

2.1 Problems of a large hypertext structure
When handling a large amount of hypertext data, such as an electronic ency-
clopedia [HaKa88], technical manuals [FrCo89], or cooperative environment
documents [CoBe88], the following problems arise:

(1) Disorientation problem
Users cannot recognize where they are in the information space and they

cannot find where they should go next [Conk87]. This common problem
is caused by the difficulty in capturing spatially large amounts of complex
structures, although spatial recognition is very useful to understand relatively
small structures.

This problem can also arise when more than one user works on a shared
hypertext. This is because each user has his/her own individual views, which
may differ from the author’s. Some standardization approaches have been
proposed [MoBBSO]; however, they are still insufficient for flexible and dy-
namic changes of view.

(2) Lack of design principles for associative links
The hypertext structure has two types of relationship links, namely, or-

ganizational links and associative links. The former are represented by the
relationship between a document and its subdocuments, which form a hierar-
chy. The latter are represented by relationships among documents and may
be organized as a network or a loop structure.

3

Some aggregation techniques have been applied to the regularization of
organizational links using “is-a” and “is-part-of” link types. Their inher-
itance mechanisms enables system designers to capture more information
efficiently.

However, the regularization of associative links, which are essential to
information captured in hypertext structure, still remains a problem. A
theoretical and analytical evaluation of this problem is necessary for both
conceptual and physical designs.

(3) Trade-off between organization costs and utilization benefits
When a simple and sparse linking strategy is adopted, users are limited

to browsing within very small portions of information spaces. On the other
hand, when system designers attempt to provide a wide variety of information
retrieval, costs in organizing and updating such systems rise accordingly.
This trade-off exists in systems of any size, particularly in large systems
[HaKaSO].

2.2 Requirements for an effective and efficient navi-
gat ional model

The following are requirements for improving the effectiveness and the effi-
ciency of navigation in large information spaces.

(1) Providing overview diagrams
Graphical browsers, showing a subset of hypertext structure, are useful to

users, just as maps are useful to tourists. Overview diagrams, i.e., graphical
browsers using aggregation, are indispensable when the information space is
too large for every node and link to be shown on a single map [NielSO].

Several improvements in browsing have been reported from human inter-
face work. Guided tours [Trig881 and the fisheye view [Furn86] are typical
examples. However, there are very few studies on such aggregations from the
viewpoint of data structures. A structured hypertext mechanism [Fein88] has
been proposed that uses the concept of link inheritance and a clustering op-
eration. However, the applicable graph structure is restricted and no general
operation has been proposed. This approach assumed that such clustering
was done by hand.

4

(2) Translating into set-oriented representation
When handling dense hypertext structures, set-oriented modeling such

as relational algebra is indispensable. In other words, a link is connected
to relevant set of nodes, instead of only one node. Virtual Zink [RoMN81],
Set-to-Set link [HaKaSO], and Transient Hypergraph [WaShSO] are based on
this modeling. They are a type of query language interface and the target
virtual node corresponds to the view in the relational model.

However, translation from a static hypertext structure into a set-oriented
representation is not yet available. The translation of combining graph struc-
ture with E-R representation would make it possible to apply database main-
tenance techniques for large hypertext systems.

.

(3) Providing high-level semantic structure
Relationship constraint techniques are useful to support hypertext link

designs. They are similar to the constraint techniques in relational model-
ing or semantic data modeling. Once we combine hypertext structures with
these database modelings, we can apply such techniques as functional de-
pendencies among attributes and one-to-one/many-to-one constraints among
relationships to hypertext modeling.

In addition, the view concept in the relational model is also useful to
provide a flexible information handling for individual users. Web [UtYa89],
a sub-graph structure specified by the attributes in associative links, can be
treated as a view in the hypertext model. Therefore, there is good possibility
of providing a general user-customized view in hypertext modeling.

(4) Efficient indexing technique for many-to-many and dense
relationships

SingZe multiple-attribute index [ClGaSO] has been proposed as an efficient
indexing for tree-structured databases. However, an appropriate indexing
technique for network or loop structure is also necessary as an alternative to
the tree-structured case.

In addition, there is also a requirement for a compact representation of
dense graphs. Several compact representations for transitive closure have
been proposed [AgBJ89, CrNo89]. However, the compact represent ation for
non-transitively closed dense graphs is still required for large hypertexts.

5

3 Hypertext Relationship Aggregation with
Exception

We propose a model of hypertext relationship aggregation in order to satisfy
the above requirements. After showing the examples, we propose a clustering
method for relationships using aggregation and exceptions.

3.1 Example 1 : A student-enrollment relationship

Let us consider a simple example of a relationship between students and the
classes they take. This relationship is a many-to-many connection, and the
number of links is on the order of m * n, where m is the number of students
and n is the number of classes, as illustrated in Fig. l(a). The more classes
the students take, the more dense the connection becomes.

However, since many actual links in practical systems are correlated, we
can often simplify the links by appropriate clustering. Figure l(b) shows
one possible clustering of each node. Most of the classes are taken by the
students who belong to the same department as the classes. In some cases,
some basic classes are taken by the students who belong to more applied side;
e-g., Computer Science students take Mathematics classes as in Fig. l(b).

Of course, some students do not take all the same classes as the students
in the same category. When the number of such exceptions is relatively few,
we can provide a simple expression useful both for physical database design
and for overview diagrams.

3.2 Example 2 : A citation hierarchy

Consider a citation hierarchy in technical papers. As illustrated in Fig. 2(a),
papers may refer to other papers. Some refer to more basic papers and
organize as a hierarchy. Some refer mutually.

By fragmenting appropriately, the structure can be simplified, since re-
lated papers would quote similar papers. The global reference flow can also
be emphasized, as shown in Fig. 2(b). Note that there is a category in which
most papers do not quote mutually, however, citing or cited categories are
the same.

6

Enrollments

Math

CtI wi~nts Enrollments

Figure 1: A Student-Enrollment Relationship

(.
.

1
I
4

Figure 2: A Citation Hierarchy

7

Input Graph Structure

Exceptions

Figure 3: Aggregation Clustering with Exceptions

3.3 ACE : Aggregation Clustering with Exceptions

Our idea is to consider an effective clustering by allowing exceptions, in or-
der to recognize a global relationship, as illustrated in Fig. 3. Compared
with similar clustering techniques such as block diagonal methods, the main
characteristic of the proposed method, ACE (Aggregation Clustering with
Exceptions), is that it emphasizes the induction of aggregated connections
from the actual hypertext graph. The purpose of existing clustering meth-
ods is to minimize the number of cut connections, which are the sum of
the connections among clusters; therefore, the resulting connections may be
unclear.

Taking into account both aggregations and exceptions provides a more
natural and informative high-level structure. We must balance the scope of
the clusters with the number of remaining exceptions. This graph compaction
leads to the efficient representation of a physical structure. In addition, the
aggregation is easy to understand for users and satisfy the requirements for
a human interface representation, when used as the basic structure of an
effective overview diagram.

Figure 4 shows an E-R diagram of ACE. There are two types of ACES,
depending on whether the related element sets are disjoint or not. Example
1 is a disjunctive case, i.e., many-to-many relationship aggregation. Example
2 is a conjunctive case, i.e., self relationship aggregation.

8

I 1
V

Aggregation
I+-1 , 1

Exceptions Exceptions
(a) M-to-M relationship aggregation (b) Self relationship aggregation

Figure 4: E-R Diagram of ACE

4 Formulation of ACE

In this section, we define the ACE problem and present an example. We
only consider associative hypertext structures and denote them as directed
graphs. A practical algorithm for ACE is presented in Section 5.

4.1 Problem definition

The input to ACE is a directed graph G = (V, E) where vertices V are nodes
and edges E are links in a hypertext structure. The target output graphs
are an aggregation graph GA = (VA, EA) and an exception graph Gx, which
together can be used to compute the input graph.

The aggregation graph GA is a hypergraph which has hypervertices VA
and hyperedges EA. The set VA = {I&, . . . , I&} is a partition of V. The
set EA contains the edges that connects the partition sets VA, that is, EA 2
VA x VA.

The exception graph Gx represents the difference between the simplified
aggregation graph GA and the actual input graph G. There are two types of
exceptions. One, called an inclusive link, is a minor input edge that has no
corresponding hyperedge, and the graph GI = (V, EI) is called an inclusive
graph. The other, called an exclusive link, is used when there is no input

9

edge between the two nodes, but there is a corresponding hyperedge. The
graph GE = (V, EE) is called an exclusive graph.

Whether a hyperedge is created or not depends on the majority of re-
lationships between the two corresponding hypervertices. If there are more
than some threshold level of input edges between them (e.g., threshold level
= 0.5), the hyperedge is created.

The strategy to extract such an aggregation graph and an exception graph
so as to make these graphs as simple as possible. The criteria for simplicity
in this case may be the size of a graph, such as the number of vertices and
the number of edges, or the number of edges only. Translating the source
graph to such simple graphs is useful for the grasp of original data as well as
for the compaction of the data.

The problem definition of extracting the global schema structure is de-
scribed as follows:

Input: Input graph G = (V, E)
output: Aggregation graph GA = (VA, EA),

Inclusive graph GI = (V, EI), and
Exclusive graph GE = (V, EE)

In the following, we denote VA; both as an aggregation node and as a set
of input nodes. Its meaning is understandable from the context. The input
and output satisfy these constraints:

v = U VA;; b?, j, i # j : VA; n vAj = C$ (1)
E = (‘E; - EE) U EI (2)

Eli = {(Vi,Vj) 1 V;,Vj E V, 'VAi>VAj E VA,

Vi E VA;, Vj E VAj> (VAi,VAj) E EA} (3)

As illustrated in Fig. 5, the set EJ4 is a set of edges in the complete bipartite
graph generated by the aggregation graph GA. The objective of ACE is how
effectively we can extract the set E;, i.e., complete bipartite parts.

10

VA; E VA VAi E VA

Figure 5: Ei: A Set of Edges in the Complete Bipartite Graph

For the aggregation process to be most effective we wish to minimize

Cost-fudGA,GI,GE) = 1 VA 1 + 1 EA 1 + (EI 1 + I EE I -+ Min.(4)

Figure 6(a) shows sample input data, which is written as an binary ad-
jacency matrix. The matrix size is equal to the number of vertices and the
element Zij = 1 means an edge from vertex i to j exists, and 0 means it does
not exist.

By applying appropriate clustering on the condition that cost function is
minimized, we can get the clustered matrix as in Fig. 6(b). Note that O#
and l* represent an exclusive link and an inclusive link, respectively. These
links are exceptions, which describe minor relationships among the clusters.

In order to consider the meaning of ACE, the following equations using
relational algebra are satisfied between input and output relations.

(R - RI) U RE = n (RMl WRM1aA=RAs RA WRA.B=R,2., Rn42) (5)
RMl .N, RM2 .N

such that
/ b 1 + 1 RA 1 i- 1 RI 1 + (RE 1 --+ Min. (6)

where
R ; the input relation
RI ; the inclusive exception relation
RE; the exclusive exception relation

11

Iv,l=2
1591=2
IE, I= 3
IEEl= 3

Figure 6: An Example of ACE

RM f RMI = RMZ ; the membership (clustering) relation
RA ; the aggregation relation
I VA 1 ; the number of values of the membership relation

As shown in Fig. 7, ACE is a clustering method of given relationships by
. allowing set difference and union operations. Since the membership relation

is an extracted attribute of the nodes in the input graph, such clustering as
ACE can be treated as a translation method of relationship information into
some attribute values of the nodes.

4.2 Complexity of ACE
Finding an optimum solution of ACE is NP-complete. That is, ACE is in
NP, and there is a polynomial transformation from a known NP-complete
problem to ACE. Therefore, efficient heuristic algorithms are indispensable
in solving the problem.

Statement: Given G = (V, E), integer C, are there GA, Gr and GE
representing G such that 1 EA 1 + l&l + I EE I 5 C?

First we shall show that ACE is in NP by outlining a nondeterministic
polynomial time algorithm to solve ACE. The first step is to nondetermin-
istically guess a partition of the vertices of G into aggregation nodes, which
can be accomplished in (nondeterministic) linear time. Given an aggregation

12

3
lode 3odr

-RI

URE

Figure 7: A Formulation of ACE using Relational Algebra

partition, the best possible choices for GA, GI and GE can be determined
by the rule that if more than half the possible edges between a pair of ag-
gregations actually exist in G, then an aggregation edge should be added to
GA, and the exceptions added to GE; otherwise no aggregation edge should
be added, and the edges of G between the two partitions should be included
in Gr. Once the graphs GA, GI, and GE are determined, they can be used
to compute the cost function and compare the actual cost to the maximum
allowed cost C.

To show completeness we reduce from vertex cover (see e.g., [GaJo79],
page 46).

Vertex cover may be stated: “Given a graph G = (V, E), and a positive
integer K < IVl, does there exist a vertex cover of size K or less for G, that
is, a subset V’ E V such that IV’1 5 K and for each edge (u, v} E E, at least
one of u and v belongs to V’?

13

Given an instance of the vertex cover problem, we will now construct
an instance of ACE which will have the same answer. Discussion of the
construction, and a proof that it guarantees the same answer are delayed
until later. In the construction, we will use two integer parameters m and n,
which we will instantiate later.

For every vertex of the original graph v f V we create in G’, (the graph
for the ACE instance) a set of nodes of size mn. When we need to refer to
this set collectively, we shall call it the supernode derived from v. Each such
supernode is composed of n cliques each of size m. The nm2 edges needed are
termed internal edges, since they are used to give structure to the supernode.

For each {u, v} in the original graph G, is represented in G’ by the set of
all the possible 2m2n2 arcs from nodes in the supernode derived from u to
nodes in the supernode derived from v, and also in the reverse direction. We
call this collection a superedge. Note that the original graph G is undirected,
while G’ is a directed graph, and that we model this with arcs going both
ways.

We then ask the question, is there an ACE representation for G’ which
has cost function less than or equal to nlVl + 2njEl + Kn(m2 - l)? As we
shall see, the answer to this question is yes if and only if there is a vertex
cover for G of size no greater than K.
Discussion and proof: First we calculate the cost of some possible ACE
represent ations for G’ , and use these calculations to show that if G has a
vertex cover of size K, it can be used to construct an ACE representation
for G’ with cost no greater than n(Vl + 2n(E(+ Kn(m’ - 1).

First, let us consider some possible ACE representations of a supernode
in G’.

Let us consider three possible representations of a supernode, which dif-
fer in their degree of aggregation. In the first represent at ion, (hereinafter
termed “expanded”), there is no aggregation. GA and GE are empty, so the
cost consists entirely of the nm2 edges in Gr . A more compact represen-
tation aggregates the cliques within the supernode, yielding n nodes in GA.
This representation costs n, since each node in GA has a self loop to indi-
cate that it represents a clique. We shall call this the “normal” state for a
supernode, since it results in the lowest possible cost for the node. Although
the normal state results in the lowest possible local cost, further aggregation
may sometimes be advantageous. In the “collapsed” state, all the vertices in
the supernode are aggregated into a single node. The cost of this collapsed

14

State I Local Cost
expanded nm2

normal n
collapsed nm2

Figure 8: Internal Cost of Different Configurations of a Supernode.

State
EE
EN
EC
NN
NC
c c

External Cost
2(nm)2
2n2m
2nm
2n2
2n
2

Figure 9: External cost of an edge

represent ation is nm2, again for the edges of GI since we can not represent
any of the edges in the supernode with edges in GA. (Adding a self-loop
would increase the cost for n > 1, since it would add many exceptions.) We
summarize these costs in Figure 8.

In general, the graph G’ does not consist entirely of isolated supernodes.
There will also be superedges. The cost contributed to the ACE representa-
tion of G’ by an edge depends on the representation of the two supernodes
the superedge connects. Figure 9 gives the cost to represent a superedge,
depending on whether the endpoints are expanded, collapsed, or normal. As
we see in Figure 9, the cost of a superedge is reduced with greater aggregation
of the endpoints.

Thus, we see from figures 8 and 9, that the collapsed is more costly than
the normal state for a supernode viewed in isolation, but the cost of a su-
peredge is lessened if at least one of the supernodes it connects is collapsed.
The expanded state is always more costly for both superedges and supern-
odes. The total cost to represent a superedge and its two endpoints is given
in Figure 10. Since the expanded state is always disadvantageous, that state

15

State Internal Cost External Cost Total Cost
NN 2n 2n2 2(n + n2)
NC n+nm2 2n 2n + nm2
c c 2nm2 2 2nm2 + n

Figure 10: Total cost of a graph with two supernodes and an edge

is not included in Figure 10. Note that as long as 1 < m < 6, the mini-
mum overall cost is found when exactly one of the supernodes is collapsed.
In general, we will find that the lowest overall cost for the graph will be found
when each superedge between supernodes has at least one of its endpoints in
a collapsed state.

So, if G has a vertex cover of size K, we use it to construct an ACE
representation in which the nodes of the cover are collapsed, and those not
in the cover are in the normal state. The total cost of such a configuration
is n(lVI - K) for the internal cost of the normal nodes, plus nm2K for
the internal cost of the collapsed nodes, plus between 2E and 2nlEI for the
edges. Taking the larger of the two possible costs for the edges, we arrive
at a bound for the total cost for the ACE representation of the graph of
nlVl + 2njEl + Kn(m2 - 1). Thus, if such a vertex cover exists there is a
solution to the ACE problem with the required cost function.

Now we must prove the other direction, that if no vertex cover exists
of size K, then there will be no sufficiently low-cost solution to the ACE
problem. As a first step towards seeing this, suppose that we attempt to
construct an ACE solution based on a vertex cover of size K + 1. This means
that G’ will have a vertex cost of (K + l)nm2 for the collapsed nodes plus
(IVI-K-l)nfor the normal nodes. The edges must cost at least 2E, taking
the lower bound in which every edge connects collapsed nodes. Thus, the
total cost of the ACE representation must be at least (K + l)nm2 + (IV1 -
K - 1) + 21EI. This is greater than the allowed cost if

(K + l)nm2 + (IV1 - K - 1) + 2(EI > njVl + 2nlEI + Kn(m2 - 1))

which simplifies to

PIP n - 2) < (n - l)m2.

16

Setting m = IEI, for example, satisfies this requirement. We then choose n,
mindful of the requirement that J2n > m. A choice of n = lEi3 suffices.
Smaller values for n and m would work, but these are simple to work with.

With these choices for n and m G’ has (Vlnm = IVllE14 vertices and
Iv(nm)2 = 21ElQ edges. This means that G’ is substantially expanded
from G, but that expansion factor is polynomial and the reformulation can
be effected in polynomial time.

We still need to show that no possible ACE representation of G’ will
meet the cost requirements if G has no vertex cover of size K. We do this by
showing that the ACE representation generated by the minimal vertex cover
is close to optimal, and that if the minimal vertex cover has size K + 1, no
ACE representation will have cost less than the cost of the construction for
a cover of size K.

We now show some simple conditions which govern any optimal ACE rep-
resentation. Recall that G’ has a three level structure. Cliques are grouped
together to form supernodes which together with the superedges form the
larger graph G’.

The first condition is that the nodes within any one clique will always
appear in the same aggregate node of GA. To see this, let us assume we have
an ACE representation in which nodes a and b belong to the same clique,
but belong to (different) nodes A and B in GA. Let i be the number of
edges of GI and GE which have a as an endpoint, and let j be the number
of such edges of which have b as an endpoint. Now if i < j, in some sense a
((fits better” in its aggregate than b does. Therefore let us move b into the
node containing a. Note that by the way G’ was defined, whenever a is the
endpoint of an edge {a, z}, b is the endpoint of an edge {b, Z} to the same
node. Thus, if we don’t change anything else, we will save the j inclusion and
exclusion edges needed for b in its original location, at the cost of duplicating
the i edges needed for a. Since i < j, this move results in a net savings.
If i > j, we do the reverse move, also for a net cost savings. Finally, if i
and j are equal, we move either way, for no net change in cost. Thus, if we
are looking for lowest cost ACE representations, it is sufficient to look only
at those representations in which all the nodes of a clique are always in the
same aggregate node.

Second, let us look at the cost of representing a given superedge in G’
which connects supernodes A and B. One reasonable way of allocating the

17

cost of such an edge is

~mt(A) + fcost(B) + cost(superedge)

where k and 2 are the degrees of supernodes A and B respectively, cost(A)
refers to how many edges of GA, GI and GE are required to represent the
internal structure of A, and cost(superedge) is how much of the cost of the
ACE representation is caused by representing the superedge from A to B.

Each supernode will have some number of “free” cliques, i.e., those cliques
not further aggregated. The cost of adding a clique of A into an existing
aggregate is 2m2, for the edges which will now have to be represented as
exceptions. This cost is more than compensated for if the number of free
cliques in B is greater than m2, since fewer edges will be needed to represent
the superedge between A and B. This is certainly the case if there are
few cliques aggregated, since each supernode can have as many as n > m2
free cliques. Let us assume that the total number of free cliques in the
supernodes A and B is to be held fixed, and we wish to allocate between
them how much aggregation is to take place. A look at the function in which
such a balancing is to take place shows that there are no local minima, only
local maxima, and that any minimal state must occur at an extreme, i.e,
with all of the aggregating done in one or the other node. This is not to
say that by combining independently arrived at local minima, we generate
a global maximum. However, the other direction is true. Since the vertex-
cover based construction simultaneously each edge pair at a local minimum,
it must therefore produce a global minimum.

Finally, one more detail must be established. With the above construc-
tion, we are assuming that no aggregation takes place at a scale larger than
a single supernode. Such aggregation may actually be advantageous, but can
not make enough of a difference to make a make a sufficiently inexpensive
ACE representation in the absence of a vertex cover of size K. To see this,
note that any such higher aggregation benefit would have to come from a
reduced cost of representing superedges. The total cost of all superedges in a
Vertex-Cover derived representation is 21 E I4 . Even if this cost is eliminated
entirely, it cannot make up for the (IE13 - l)lE12 cost of fully collapsing even
one additional supernode.

Thus, a sufficiently inexpensive ACE representation exists only if the
original graph had a vertex cover of size K, and this proves that ACE is

18

NP-complete. Cl

Although the above proof is for a specific formulation of ACE, with a
specific cost function, the basic reasoning extends to other formulations of
ACE with similar cost functions. For example, the aggregate nodes of GA
impose a certain storage cost. If we wish to use a cost function which charges
for aggregate nodes, we can add a term of K +n(IV1 -K) to the total allowed
cost for the ACE representation of G’, and then the above proof applies
essentially unchanged.

4.3 An analytic model
In this subsection, we will show an analytic model of ACE, in order to esti-
mate the several parameters and the effective solution of this clustering.

4.3.1 Optimum storage cost for main memory DB

When we consider the physical database design in the main memory, storage
demands are important. Here, we will estimate for the optimum solution the
database size, i.e., the total number of tuples of the output relation.

For the purpose of this discussion, we will set out the following simplify-
ing

(1)

(2)

assumptions:

The number of nodes in each cluster is the same. That is, the input
nodes are equally partitioned into clusters of the same size.
The probability of exclusive links in the corresponding exclusive parti-
tioned area is the same probability of inclusive links in the corresponding
inclusive partitioned area.

rThe following parameters are used to characterize this model.

n . . . tne numDer of noaes in tne input graph
P . . . the fraction of the input links compared with the number of possible

links
(i.e., pn2 is the number of links in the input graph)

Q . . . the average fraction of the exception links in the corresponding
partitioned area

19

(From assumption (2)) we derive that the average fractions of the
exclusive partitioned area and of the inclusive partitioned area are
the same.)

S . . . the number of nodes (clusters) in the aggregation graph GA, that is,
/ vA 1

(By assumption (l), we assume that each cluster size is the same)
r . . . the number of links in the aggregation graph
CY . . . the ratio of s to n, that is, QI = s/n, one over the average number of

input nodes per output cluster

Since the objective of this clustering is to reduce the rate of the exceptions
in each partitioned area, we propose the following condition:

O<q<pSl (V
Since the total number of input links is equal to the total number of links

which are composed of aggregated links plus the total number of inclusive
links, the following condition is satisfied:

P2
n 2

=+-q) ; + (s2-r)q s0 n 2
0

Therefore,

r = 2zL.g
1 - 2q (9)

The database size, S, is calculated by n, the number of tuples in the
clustering relation plus (r + qn2), total number of tuples (i.e., links) in the
output relations. Therefore,

S = 1 RM 1 + 1 RA I+ (I RI 1 + I& 1)

= n + r + qn2 (10)

In order to estimate the optimum database size, we have to consider the
relationship between q, the average fraction of the exception links, and s, the
number of nodes in the aggregation graph. When s equals to 1, q is equal
to p. And, when s equals to n, there are no exceptions in the output graph,
i.e., q = 0. Therefore, there is a negative correlation between q and s.

20

Since q is on the order of s2, or a2, we can set out the following condition
if the distribution of the links is a uniform distribution and n is relatively
large:

q = p(1 - Q2) (11)
By applying equations (9), (ll), and the storage function, cy, equation

(10) can be written as foI.Iows:

S = n+
1 - 2p(l - cy)2

l n2a2 + pn2 (1 - (r2)

i
(1 - 2p)a4 - (1 - 4p)a2 + 1 -

n + pn2.
2p

= 2pcG 2p + 1 . (12)- 1

By the condition of M/da: = 0, the optimum solution of cx is calculated
as foI.Iows:

2
QIopt =

dFTji - (1 - 2p)
2P

(13)
That is, aopt is the function of p, the fraction of input links, and is inde-

pendent of n, the number of nodes in the input graph. If the value of p is
much less than 1, (p < l), then ,/‘w z (1 -p), and a& is approximately
0.5. Also, a& approaches zero as p approaches 0.5.

When the input graph is treated as a relatively large graph, i.e., n < pn2,
and Jm KZ (1 - p), the following optimum condition is ensured:

I RI Iopt = f . p2 (14)

1 RA Iopt + 1 RE lwt = ; q”n2 (15)

Since the input database size is pn 2, the database size will be reduced by
about 25% using ACE. Figure 11 shows the comparison of the database size
of the output graph with that of the input graph according to cy2.

Of course, the result of optimum solutions depends on the condition (11),
the relationship between q and Q. If the input graph is heavily correlated,
we can obtain a much more compact output graph. On the contrary, if the
input graph is more random, the reduction gain is small. We wiI.I iIIustrate
them with the practical data in Section 6.

21

S

Figure 11: Comparison of the Database Size S with the Storage Function a

4.3.2 A secondary storage organization for efficient retrieval

When we consider physical database design using secondary storage, retrieval
cost often dominates, with most of that cost due to page fetching. We show
an efficient organization of secondary storage that reduces the input-output

- cost.
As illustrated in Fig. 12, we can store the aggregation adjacency matrix

as a two dimensional array. Each array element contains an aggregation edge
bit, a count of the number of blocks used to store the aggregation exceptions
for this aggregation edge, and the block ID of the first such block. The
exception blocks for one aggregation edge are stored sequentially and can all
be fetched in one input-output operation. Each aggregation edge entry c@
be stored in 4 bytes. .q

If the aggregation index array and the clustering relation can be stored in
the main memory, the average input-output cost wilI be reduced. Otherwise
one input-output operation is required for the aggregation edge entry. Only if
there are exceptions to this edge is another input-output operation required
to obtain all the exceptions. In Sections 6.1 and 6.2, we will discuss how
often this additional operation is required.-.&,

5 A Heuristic Algorithm for ACE
In order to find an optimal solution for ACE, we developed a heuristic algo-
rithm based on the Kernighan-Lin algorithm [KeLi70]. Kernighan-Lin algo-

22

,Aggregation edge bit /

bw
ondary storage

Figure 12: A Secondary Storage Organization for ACE

rithm is a well-known graph partition algorithm. An input data of a weighted,
undirected graph with an even number of nodes can be partitioned into two
equal-sized node sets with the condition that the cut, that is, the sum of the
weights of all edges that connect nodes in both sets, is minimal.

We modified the Kernighan-Lin algorithm to apply it to the problem of
ACE. The differences in our adaptation are: the number of clustered nodes
may be more than two and the size of the clusters do not have to all be
equal. Our modification uses an extra dummy cluster in each step of the
original algorithm. Then, we rearrange clusters. The resulting algorithm is
as follows:

An Extended Kernighan-Lin Algorithm for ACE

(Stepl) Initial clustering step
Make all nodes belong to one cluster C1 (the number of clusters:

k = 1)

(Step2) Repeating step
While no updating occurs do

Make &+I as a dummy cluster
for i := 1 to n do (the number of nodes: n)

Choose some unselected node and call it v;
Let jc be the cluster of vi (i.e., vi E Cjc)

23

for j := 1 to k + 1 and j # j, do
Calculate the cost when vi moves into Cj
Select the pair of (vi, Cj) if the movement makes the best ben-

efit (i.e., largest decrease in cost)
end
Add (vi, C,!“) to the list of movement with the best benefit for

this group of n * k alternative cases
end
Find I (0 5 I 5 n), s.t. C costi + max
Perform the translations (VI, C,“‘), (212, C,!“,, . . . , (vl, C,!“) ;

that is, move v; into cluster Cj’i’
Rearrange clusters (k may change to (k - 1) or (k + 1))

end

6 Experimental Results
We applied our method to two types of data. One is a practical hypertext
structure having some degree of correlation among its nodes. The other is a
randomly generated graph, a published test bed for graph algorithms.

6.1 Hypertext on Hypertext
“Hypertext on Hypertext” [Hype891 is one of the typical examples of hy-
pertext structures, and is available on HyperCard [Good87]. Eight articles
[CACM88] devoted to hypertext/hypermedia are transformed into a hyper-
text. The basic structure consists of 313 cards of articles and the links among
those cards with their indexing information. We applied our method to “Hy-
pertext on Hypertext” using the following rules:

(1) The cards which have the same keyword are to be connected with each
other.

(2) The keywords “hypertext” and “hypermedia” are ignored since they ap-
pear in more than one third of the total cards.

Since the original system does not have set-oriented operations, index
cards were added to avoid the excess links within the relevant cards. There-

24

fore, some relevant cards could not be directly navigated. We used rule (1)
to avoid this limitation.

We have adopted rule (2) in order to improve recall and precision rate
because all articles refer to the topics of hypertext and hypermedia and little
information can be extracted from such connections.

Table 1 shows the input data we used for the simulation and the results
using our method. The results were remarkable for both storage reduction
of database size and page fetching. Due to the tight connections among the
cards, the storage reduction of input database size (i.e., total number of input
links) was 77.2%.

The secondary storage organization also resulted in compression. When
we consider a 4K block size (512 bytes), the aggregation index array takes
up only 6 blocks (26 x 26 x 4/512). In add’t1 ion, two-thirds of the elements
were non-exception areas. Consequently, if the aggregation array is stored
in memory, only one input-output operation is required for one-third of the
time that exceptions exist.

On the other hand, the source graph occupies 24 blocks (313 x 313/(512 x
8)) and there were two possible alteratives: all blocks should be in main
memory, or otherwise one input-output operation is always required.

Random GraDd

8461- - - -
of input links : p
nodes - IVAI

t
,-Aaare4tibntihsd~---

Exclusive links : 1 Ea
---Jg----

t
--XZ.L,,

- - - - - - - - - - - -----mm--- 114,--
I Inclusive links : I E/l I 1440 I 174-2
iAverag_e fraction of excegions : ~1- - - - - - - - - 1.5%- - - - - - - - - - I1 2 . 0 %- - - -

IThe reduction gain : 1 - (S/e) 1 77.2%

Table 1: Experiment al Results

25

---- : Inclusive links

elevance cards-I - : Aggregation links

Figure 13: A Global Structure of “Hypertext on Hypertext” (Cluster size is
more than five.)

Figure 13 shows an extracted global structure of “Hypertext on Hyper-
text .” There are 8 major aggregated nodes, each of which has more than
five cards. We assigned concrete meanings to each cluster. Therefore, ACE
has much possibility to provide an effective overview diagram, as well as an
efficient physical database design.

6.2 A standard random graph
The other simulation example is a standard random graph given by Johnson
[JASM89]. The standard random graph is defined in terms of two parameters,
n and j. The parameter n specifies the number of nodes in the graph; the
parameter & 0 < j < 1, specifies the probability that any given pair of
vertices constitutes an edge.

Table 1 also shows the input information and the simulation results. Even
for a random graph, about 12.3% of the input database size was reduced.
The inputs and outputs of the random graph are graphically represented in
Figs. 14, 15, and 16. Thus, we see how effectively structures are compacted
by ACE even for a random graph.

6.3 The comparison with the analytic model
In Section 4.3.1, we described that the reduction of database size is about
25% in the optimum solution when we assume the uniform distribution of

26

Figure 14: The Input Graph G

27

Figure 15: The Output Graph GA and GI

28

Figure 16: The Ouput Graph GA

29

input links and evaluate equation (11). There are two main causes for the
difference between the analytic model and the experimental results. The first
cause is that the distribution of each simulated graph was somewhat different
from the assumption made for equation (11). When we consider Q = F(&),
the graph of “Hypertext on Hypertext” has a k < 2, and the random graph
has a k > 2. The second cause is the difference between the sub-optimal
solution of the heuristic algorithm and the optimum solution of the analytic
model.

One of the interesting aspects from the comparison is the ratio of the
number of links which are composed of aggregated links, to the total number
of inclusive links. In the analytic model, the ratio is 1, i.e., balanced. In
the experimental results, on the other hand, the ratio in a correlated case
is greater than 1 and that in a random case is smaller than 1. This shows
that the degree of reduction in ACE depends highly on the extraction of the
exclusive areas.

7 Discussion and Future work

In this section, we discuss the tuning issues for ACE and the extension into
a more general hypertext/hypermedia structure.

7.1 Overlapping and recursive clusterings for ACE
The clustering relation between input nodes and output cluster nodes is
restricted to a many-to-one relationship in ACE. This limitation allows the
size of the membership relation to be equal to the number of input nodes n,
resulting in a simple output structure. This simple structure leads to efficient
searching in secondary memories as well as to a compact representation in
main memory.

In some special cases, however, a few extended methods provide more an
elegant representation of hypertext relationship aggregations than the aggre-
gation with exceptions only. One extension is to a.llow overlapping clusters,
that is, to apply a many-to-many membership relationship between clustered
nodes and their elements, instead of the many-to-one relationship. This ap-
proach provides a more compact aggregation when some input nodes correlate
to nodes in both clusters.

30

Another extension is to provide for recursion. That is, we let our method
apply to the data recursively. As a result, a sequence of aggregation graphs
and of exception graphs is extracted. Recursive clustering is similar to Prin-
cipal Components Analysis in multivariate analysis. Since the information
of the aggregation graph is orthogonal to its corresponding exception graph,
recursive clustering is treated as a decomposition technique of graph data.
In particular, it is useful for physical data representation when the same
aggregated structure can be applied to multiple levels of aggregation in the
recursive hierarchy.

Other extended issues such as combining stochastic approaches [TsNaSl],
considering weighted links, and the quantitative evaluation for the cost func-
tion of ACE, are left for future study.

7.2 Other implementation algorithms

As presented in Section 4, the problem of ACE is similar to the graph par-
titioning problem. The heuristic methods of the graph partitioning problem
have been proposed. Johnson, et al. have compared some of them and
have evaluated them very precisely [JAMSSS]. Simulated annealing may be
an alternative implement ation algorithm and produce results closer to the
optimum, although it would take more time than other heuristic algorithms.

Another implementation algorithm is based on a greedy algorithm. The
characteristic of this algorithm is that it is very fast, but it can also fail to find
a good result. Therefore, the latter would be more applicable for creating
overview diagrams in hypertext structure.

7.3 General hypertext structures
For application to arbitrary hypertext structures, we have to consider orga-
nizational links as well as associative links since ACE is focused on the latter.
There are two alternative approaches to handle both link types uniformly.
One approach emphasizes associative links by compressing organizational
links. That is, by packing each of the organizational parts as a grouping
node, ACE can apply to general hypertext structures. If the number of
organizational links is relatively small, this approach may be useful.

The other approach handles all of the relationships hierarchically, by elim-
inating associative links. Namely, by rearranging the information of asso-

31

ciative links into a hierarchy, several efficient methods for tree-structured
database can apply to general hypertext structures. Since ACE can be
treated as a translation method of associative links into attribute values of
nodes, i.e., cluster names, ACE will contribute highly to the rearrangement.

We prefer the hierarchy approach for two reasons. One is that placing
the data into a hierarchy not only permits many efficient algorithms, but
also provides meaning for an effective view facilitating human recognition.
The other is that we can provide a set-oriented modeling for the data and
combine hypertext with database facilities in a relatively high level. Our
approach will contribute to improving the usability of information.

8 Conclusion

We have presented the method of Aggregation Clustering with Exceptions
in order to capture high level relationships from a given hypertext structure.

. We have evaluated the physical database issues of this method by using a
heuristic algorithm based on the Kernighan-Lin algorithm and applied it to
some practical data. In order to specify the effective solution of our method,
we also discussed the estimation of boundary conditions and an optimum
solution to the problem using an analytic model.

Our results demonstrate the usefulness of our clustering methodology
for both storage reduction of database size and page fetching. The potential
exists for creating overview diagrams based on our method. ACE can provide
an efficient navigating environment for large information spaces for both
physical database design and human interface design.

Acknowledgements

We would like to thank David Johnson for allowing us to use his standard
graph examples, and also thank Jeff Ullman, Hector Garcia-Molina, Shaibal
Roy, Pierangela Samarati, Mark Frisse and Marianne Siroker for their helpful
comments.

32

References

[AgBJ89]

[Borg851

[Bush451

[CACM88]

[ClGaSO]

[CoBe88]

[Conk871

[CrNo89]

[Fein88]

[FrCo89]

Agrawal, R., Borgida, A., and Jagadish, H. V. “Efficient Manage-
ment of Transitive Relationships in Large Data and Knowledge
Bases ,” Proc. of the ACM SIGMOD’89, 1989, pp. 253-262.

Borgida, A. “Language Features for Flexible Handling of Excep-
tions in Information Systems,” ACM Trans. on Database Sys-
tems, Vol. 10, No. 4, 1985, pp. 565-603.

Bush, V. “As We May Think,” Atlantic Monthly 176, 1945, pp.
101-110.

“Special Issue on Hypertext”, Communications of the ACM, Vol.
31, No. 7, 1988.

Clifton, C., and Garcia-Molina, H. “Indexing in a Hypertext
Database,” Proc. of the 16th VLDB Conference, 1990, pp. 36;
49.

Conklin, J., and Begeman, M. L. “gIBIS: A Hypertext Tool for
Exploratory Policy Discussion,” ACM Trans on. Ofice Informa-
tion Systems, Vol. 6, No. 4, 1988, pp. 303-331.

Conklin, J. “Hypertext: An Introduction and Survey,” IEEE
Computer, Vol. 20, No. 9, 1987, pp. 17-41.

Cruz, I. F., and Norvell, T. S. “Aggregative Closure: An Exten-
sion of Transitive Closure,” Proc. of the 5th Int. Conference on
Data Engineering, 1989, pp. 189-204.

Feiner, S. “Seeing the Forest for the Trees: Hierarchical Display
of Hypertext Structure,” Proc. of ACM Conference of Ofice In-
formation Systems, ” 1986, pp. 205-212.

Frisse, M. E., and Cousins, S. B. “Information Retrieval from
Hypertext: Update on the Dynamic Medical Handbook Project,”
Proc. of the Hypertezt’89, 1989, pp. 199-212.

33

[Furn86] F u r n a s , G. W. “Generalized Fisheye views,” Proc. of ACM
CHI’86, 1986, pp. 16-23.

[GaJS76] Garey, M. R., Johnson, D. S., and Stockmeyer, I,. “Some Sim-
plified NP-Complete Graph Problems,” Theory of Computer Sci-
ence, Vol. 1, 1976, pp. 237-267.

[GaJo79] Garey, M. R., and Johnson, D. S. “Computers and Intractability:
A Guide to the Theory of NP-Completeness,” W. H. Freeman and
Company, 1979.

[Good871 Goodman, D. “The Complete HyperCard Handbook,” Bantam,
1987.

[HaKa88] Hara, Y., and Kaneko, A. “A New Multimedia Electronic Book
and Its Functional Capabilities,” User-oriented, Content-based,
Text and Image Handling (RIAO), 1988, pp. 114-123.

[HaKaSO] Hara, Y., and Kasahara Y. “A Set-to-Set Linking Strategy for
Hypertext Systems,” ACM Conference on Ofice Information
Systems, 1990, pp. 131-135.

[HaKWSl] Hara, Y., Keller, A. M., and Wiederhold, G. “Relationship Ab-
stractions for an Effective Hypertext Design: Augmentation and
Globalization,” DEXA ‘91, 1991, pp. 270-274.

[HYPew “Hypertext on Hypertext ,” ACM Press Database and Electronic
Products Series, 1989.

[JAMS891 J ho nson, D. S., Aragon, C. R., et al. “Optimization By Simulated
Annealing: An Experimental Evaluation; Part I, Graph Parti-
tioning,” Operations Research, Vol. 37, No. 6, 1989, pp. 865-892.

[KeLi’lO] Kernigh an, B. W., and Lin, S. “An efficient heuristic procedure
for partitioning graphs,” Bell Systems J., Vol. 49, No. 2, 1970,
pp. 291-307. /

[MoBBSO] MoIine, J., Benigni, D., et al. (eds.) “Proceedings of the Hyper-
text Standardization Workshop,” National Institute of Standards
and Technology, 1990.

34

[NielSO]

[Past821

[RoMN81

[SmSm77]

[Tomp89 I

[TsNaSl]

[Trig881

[UIlm84]

[UtYa89]

[WaShSO]

[Wied87]

Nielsen, J. “Hypertext and Hypermedia,” Academic Press, 1990.

Papadimitriou, C. H., and Steiglite, K. “Combinational Opti-
mization: Algorithms and Complexity,” Prentice-Ha& 1982.

Robertson, C. K., McCracken, D., et al. “The ZOG Approach to
Man-Machine Communication,” Int. J. of Man-Machine Studies,
Vol.14, 1981, pp. 461-488.

Smith, J. M., and Smith, D. C. P. “Database abstractions: ag-
gregation and generalization,” ACM Trans. on Database Systems,
Vol. 2, No. 2, 1977, pp. 105-133.

Tompa, F.W. “A Data Model for Flexible Hypertext Database
Systems,” ACM Trans. on Information Systems, Vol. 7, No. 1,
1989, pp. 85-100.

Tsangaris, M. M., and Naughton, J. F. “A Stochastic Approach
for Clustering in Object Bases,” Proc. of the ACM SIGMOD’91,
1991) pp.12-21.

Trigg, R. H. “Guided Tours and Tabletops: Tools for Commu-
nicating in a Hypertext Environment,” ACM Trans. on Ofice
Information Systems, Vol. 6, No. 4, 1988, pp. 398-414.

Ullman, J. D. “Computational Aspects of VLSI,” Computer Sci-
ence Press, 1984.

Utting, K., and Yankelovich, N. “Context and Orientation in
Hypermedia Networks,” ACM Trans. on Information Systems,
Vol. 7, No. 1, 1989, pp. 58-84.

Watters, C., and Shepherd M. A. “A Transient Hypergraph-
Based Model for Data Access,” ACM Trans. on Information Sys-
tems, .Vol. 8, No. 2, 1990, pp.77-102.

Wiederhold, G. “File Organization for Database Design,”
McGraw-Hill, 1987.

35

[WoKi87] Woelk , D. , and Kim, W. “Multimedia Information Manage-
ment in an Object-Oriented Database System,” Proc. of the 13th
VLDB Conference, 1987, pp. 319-329.

[YHMD88] Yan e ovich,k 1 N., Haan, B. J., et al. “Intermedia: The concept
and the construction of a seamless information environment,”
IEEE Computer, Vol. 20, No. 1, 1988, pp. 81-96.

36

