
September 1990 Report No. STAN-CS-91-1383

Temporal Proof Methodologies for Real-Time Systems

bY

T. Henzinger, 2. Manna, A. Pnueli

Department of Computer Science

Stanford University

Stanford, California 94305

REPORT DOCUMENTATION PAGE form Approved
OMB No. 07OI-0188

’ 7. PERFORMING ORGANIZATION NAME(S) AND ADORESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

I
‘9. SPONSORING I) MONITORING AGENCY NAME(S) AN0 ADDRESS 10. SPONSORING /MONITORING

AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTESr--
12r. DISTRIBUTION / AVAILABILITY STATEMENT

?I lib. OlSTRl6UTlON CODE

t

I 1
13. ABSTRACT (Mwmum 200 ~0x2s)

Abstract. We extend the specification language of temporal logic, the corresponding verification
framework, and the underlying computational model to deal with real-time properties of reactive
systems. The abstract notion of timed transition systems generalizes traditional transition systems
conservatively: qualitative fairness requirements are replaced (and superseded) by quantitative
lower-bound and upper-bound timing constraints on transitions. This framework can model real-
time systems that communicate either through shared variables or by message passing and real-time
issues such as time-outs, process priorities (interrupts), and process scheduling.

We exhibit two styles for the specification of real-time systems. While the first approach uses
bounded versions of temporal operators, the second approach allows explicit references to time
through a special clock variable. Corresponding to the two styles of specification, we present and
compare two fundamentally different proof methodologies for the verification of timing requirements
that are expressed in these styles. For the bounded-operator style, we provide a set of proof rules
for establishing bounded-invariance and bounded-response properties of timed transition systems.

77
This approach generalizes the standard temporal proof rules for verifying invariance and response
properties conservatively. For the explicit-clock style, we exploit the observation that every time-
bounded property is a safety property and use the standard temporal proof rules for establishing
safety properties.

IL
17. S E C U R I T Y CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LlMlTATtON OF ABSTRACT

OF REPORT OF THIS PAGE OF AISTRACl

,
%SFb :

1
Stancarc F o r - is19 c7ev 2-63_ _ . < ,_ .:c ;

Temporal Proof Methodologies
for Real-time Systems1T2

Thomas A. Henzinger
Department of Computer Science

Stanford University

Zohar Manna
Department of Computer Science

Stanford University
and

Department of Applied Mathematics
The Weizmann Institute of Science

Amir Pnueli
Department of Applied Mathematics
The Weizmann Institute of Science

September 19, 1991

Abstract. We extend the specification language of temporal logic, the corresponding verification
framework, and the underlying computational model to deal with real-time properties of reactive
systems. The abstract notion of timed transition systems generalizes traditional transition systems
conservatively: qualitative fairness requirements are replaced (and superseded) by quantitative
lower-bound and upper-bound timing constraints on transitions. This framework can model real-
time systems that communicate either through shared variables or by message passing and real-time
issues such as time-outs, process priorities (interrupts), and process scheduling.

We exhibit two styles for the specification of real-time systems. While the first approach uses
bounded versions of temporal operators, the second approach allows explicit references to time
through a special clock variable. Corresponding to the two styles of specification, we present and
compare two fundamentally different proof methodologies for the verification of timing requirements
that are expressed in these styles. For the bounded-operator style, we provide a set of proof rules
for establishing bounded-invariance and bounded-response properties of timed transition systems.
This approach generalizes the standard temporal proof rules for verifying invariance and response
properties conservatively. For the explicit-clock style, we exploit the observation that every time-
bounded property is a safety property and use the standard temporal proof rules for establishing
safety properties.

‘This research was supported in part by an IBM graduate fellowship, by the National Science Foundation grants
CCR-89-11512 and CCR-89-13641, by the Defense Advanced Research Projects Agency under contract N00039-84-
C-0211, by the United States Air Force Office of Scientific Research under contract AFOSR-90-0057, and by the
European Community ESPRIT B asic Research Action project 3096 (SPEC).

‘An abbreviated version of this paper appeared in the proceedings of the 18th Annual ACM Symposium on
Principles of Programming Languages (1991).

1

1 Introduction

It is self-evident that the most sensitive and critical among reactive systems, and therefore the
ones for which formal methods are needed most direly, are real-time systems. The qualitative
requirement of responsiveness, that every environment stimulus p must be followed by a system
response Q, is no longer adequate for real-time systems; it has to be replaced by the stronger
quantitative requirement of timed responsiveness, which imposes a bound on the time interval that
is permissible between the stimulus p and the response Q. Temporal logic has been used successfully
for the specification and verification of qualitative properties of reactive systems [see, for example,
[Pnu86] for a survey). Over the past few years, there have been several suggestions for extending
the expressive power of temporal logic to handle timing constraints. These attempts can be roughly
classified into two approaches.

The first approach, to which we refer as the bounded-operator approach, introduces for each tem-
poral operator, such as 0 (eventually) one or more time-bounded versions. For example, while the
formula Oq asserts that the event Q will happen “eventually” but puts no time bound on when
it will happen, the formula 05s Q predicts an occurrence of Q within 3 time units from now. The
early proposal [BH81] can be viewed as a precursor of this approach to the specification of timing
properties, which is advocated in [KVdR83, KdR85, KoySO], where the bounded-operator language
is called Metric Temporal Logic, and in [SPE84]. B ounded-operator temporal logics are analyzed
for their complexity and expressiveness in [EMSS89] and in [AHgO, AFHSI].

An alternative approach to the specification of timing constraints of reactive systems introduces no
new temporal operators but interprets, at each state, one of the nonrigid state variables (we use the
variable t) as the current time. We refer to this approach as the explicit-clock approach, because the
only new element is the ability to refer explicitly to the clock. Scattered examples of this method
of expressing timing properties are presented in [PdR82], in [Ron84], and in [Har88, PH88j. A
more systematic exposition of this approach and its applications can be found in [Ost90], where
the explicit-clock language is called Real-time Temporal Logic. Explicit-clock temporal logics are
analyzed for their complexity and expressiveness in [AH901 and in [HLPSO].

To compare the two approaches, consider the requirement of a timely response Q to stimulus p
within at most 3 time units. In the bounded-operator approach, this requirement is specified by
the formula

p -+ 0<3q-

In the explicit-clock approach, it is expressed by the formula

(P A t = T) ---) 0 (q A t 5 T + 3),

where the rigid variable T is used to record the time of the p-state.

The main contribution of this paper is the elaboration of two proof systems that correspond,
respectively, to the two styles for the specification of timing requirements.

It is a well-known observation that with the introduction of an explicit-clock variable, all time-
bounded properties can be defined by safety formulas ([HenSla]). For example, the timed response
property that, in either style, is expressed above by a liveness-like formula (employing the liveness

2

operator 0) can alternatively be specified by a formula that uses the clock variable t and the safety
operator U (UnZess):

(p A t = T) + (t 5 T + 3) U q.

This formula asserts that if p happens at time T, then from this point on the time will not exceed
T + 3 either forever (which is ruled out by an axiom that requires time to progress eventually)
or until Q happens. Consequently, Q must occur within 3 time units from p. It follows from this
translation that no new proof rules are necessary for the explicit-clock style of timed specification;
all time-bounded properties can, in principle, be verified using a standard, uniform set of timeless
rules.

On the other hand, when pursuing the bounded-operator style of timed specification, one discerns a
clear dichotomy between upper-bound properties such as the bounded-response formula p -+ 0~3 Q
considered above, and lower- bound properties, such as the bounded-invariance formula

which states that q cannot happen sooner than 3 time units after any occurrence of p. While
upper-bound properties assert that “something good” will happen within a specified amount of
time, lower-bound properties assert that “nothing bad” will happen for a certain amount of time.
Clearly, while the class of upper-bound properties bears a close resemblance to Ziveness properties,
the class of lower-bound properties closely resembles safety properties. The proof system we present
cultivates this similarity by including separate proof principles for the classes of lower-bound and
upper-bound properties. These proof principles can easily be seen to be natural extensions of the
standard proof rules for the untimed safety (invariance) and liveness (response) classes, respectively.

In our model, we assume a global, discrete, and asynchronous clock, whose actions (clock ticks)
are interleaved with the other system actions ([HMPSO]). In some other work aimed at the formal
analysis of real-time systems, it has been claimed that while this interleaving model of computation
may be adequate for the qualitative analysis of reactive systems, it is inappropriate for the real-time
analysis of programs, and a more realistic model, such as mazimal parallelism or even continuous
time, is needed ([KSdR+88]). 0 ne of the points that we demonstrate in this paper is a refutation
of this claim. We show that by a careful incorporation of time into the interleaving model, we can
still model adequately most of the phenomena that occur in the timed execution of programs. Yet
we retain the important economic advantage of interleaving models, namely, that at any point only
one transition can occur and has to be analyzed.

Part I discusses the modeling of real-time systems by transition systems. In Section 2, we intro-
duce the abstract computational model of timed transition systems. The subsequent two sections
illustrate how concrete real-time systems and typical real-time phenomena can be mapped into this
model. We begin, in Section 3, with the representation of real-time processes that are executed in
parallel and communicate either through a shared memory or by message passing. Although the
timeless interleaving of concurrent activities identifies true parallelism with (sequential) nondeter-
minism, when time is of the essence, we can no longer ignore the difference between multiprocessing,
where each parallel task is executed on a separate machine, and multiprogramming, where several
tasks reside on the same machine. This is because questions of priorities, interrupts, and scheduling
of tasks may strongly influence the ability of a system to meet its timing constraints. These issues
in modeling time-sharing systems are discussed in Section 4.

3

Part II follows with techniques for the verification of timed transition systems. Section 5 intro-
duces the bounded-operator specification language, and Section 6 presents a proof system for this
language. In Section 7, we discuss the alternative, explicit-clock, approach. Section 8 concludes by
giving completeness results for both methods.

Part I

Modeling Real-time Systems
We define the formal semantics of a real-time system as a set of timed execution sequences. This
is done in two steps. First, we introduce the abstract notion of timed transition systems and
identify the possible timed execution sequences (computations) of any such system. Then, we
consider concrete real-time systems and show how to interpret the concrete constructs within
the abstract model. We demonstrate that this framework can model a wide variety of real-time
phenomena that are encountered in practice, including the timed execution of both multiprocessing
and multiprogrammi ng systems.

2 Abstract Model: Timed Transition Systems

The basic computational model we use is that of transition systems ([Ke176, Pnu77]), which we
generalize by imposing timing constraints on the transitions. A transition system S = (V,C, 0,T)
consists of four components:

1. a finite set V of variables.

2. a set C of states. Every state CT E C is an interpretation of V; that is, it assigns to every
variable z E V a value a(z) in its domain.

3. a subset 0 C_ C of initial states.

4. a finite set, T of transitions, including the idle transition 71. Every transition r E 7 is a binary
relation on C; that is, it defines for every state 0 E C a (possibly empty) set of r-successors
~(0) C C. We say that, the transition T is enabled on a state 0 iff ~(6) # 0. In particular,
the idle (stutter) transition

TI = wvl~~~)

is enabled on every state.

An infinite sequence cr = ~001 . . . of states is an initialized computation (execution sequence, run)
of the transition system S = (V, C, 0, 7) ff ti i satisfies the following two requirements:

Init iality o. E 0.

Consecution For all i 1 0 there is a transition r E 7 such that g;+r E ~(0;) (which is also denoted
by CT; -T+ ai+i). We say that the transition r is taken at position i and completed at position
i + 1.

We incorporate time into the transition system model by assuming that all transitions happen
“instantaneously,” while real-time constraints restrict the times at which transitions may occur. The
timing constraints are classified into two categories: lower-bound and upper- bound requirements.
They ensure that transitions occur neither too early nor too late, respectively. All of our time
bounds are nonnegative integers N. The absence of a lower-bound requirement is modeled by a lower
bound of 0; the absence of an upper-bound requirement by an upper bound of 00. For notational
convenience, we assume that CO 2 n for all n E N. A timed transition system S = (V, C, 0,7,1, u)
consists of an underlying transition system S- = (V, C, @,I) as well as

5. a minimal delay I, E N for every transition r E 7. We require that 1, = 0.

6. a maximal delay u, E N U { oo} for every transition 7 E 7. We require that u, 2 I, for all
r E 7, and that U, = 00 if r is enabled on any initial state in 0. In particular, u,, = 00.
Let 70 C 7 be the set of transitions with the maximal delay 0. To allow time to progress, we
put a restriction on these transitions. We require that there is no sequence

Tm--100 2% 61 3 * - - __$ on

of states and transitions such that n > 17 10 and r; E 70 for all 0 5 i < n. This condition
ensures the operationality (machine-closure) of timed transition systems ([HenSla]).

Timed state sequences

We model the ticks of a fictitious global clock by the integers 2. A timed state sequence p = (a, T)
consists of an infinite sequence 0 of states 0; E C, where i 2 0, and an infinite sequence T of
corresponding times (clock values) T; E Z that satisfy the following conditions:

Bounded monotonicity For all i 2 0,

either Ti+l = T;,
or T;+l = T; + 1 and 0;+1 = a;;

that is, time never decreases. It may increase, by at most 1, only between two consecutive
states that are identical. The case that the time stays the same between two identical states
is referred to as a stuttering step; the case that the time increases by 1 is called a clock tick.

Progress For all i 2 0 there is some j > i such that T; < Tj; that is, time never stagnates. Thus
there are infinitely many clock ticks in every timed state sequence.

By pi = (&, Ti) we denote the i-th sufix of the timed state sequence p; it consists of the infinite
sequence ai = UiUi+l s s e of states and the infinite sequence Ti = T;T;+l . . . of times. Note that pi
is, for all i 2 0, again a timed state sequence; that is, the set of timed state sequences is closed
under s&es.

Timed execution sequences

Just as the execution sequences of transition systems are infinite state sequences, we model the
execution sequences of timed transition systems by timed state sequences. The timed state sequence
p = (a, T) is an initialized computation of the timed transition system S = (V, C, 0, 7, I, u) iff the
state sequence u is an initialized computation of the underlying transition system S- and

5

Lower bound For every transition 7 E 7 and all positions i 2 0 and j 2 i with Tj < Ti + I,,

if 7 is taken at positi
then r is enabled on

.on j ,
6;.

In other words, once enabled, r is delayed for at least 1, clock ticks; it can be taken only
after being continuously enabled for I, time units. Any transition that is enabled initially, on
the first state of a timed state sequence, can be taken immediately (as if it has been enabled
forever).

Upper bound For every transition T E 7 and position i 2 0, there is some position j 2 i with
Tj 2 Ti + U, such that

either 7 is not enabled on gj,
or r is taken at position j.

In other words, once enabled, r is delayed for at most u7 clock ticks; it cannot be continu-
ously enabled for more than u, time units without being taken. Since the maximal delay of
every transition that is enabled initially must be 00, the fist state change of an initialized
computation may occur at any (integer) time.

The computations of a timed transition system are obtained by closing the set of initialized com-
putations under &Fixes: the timed state sequence p is an computation of S ifY p is a suffix of an
initialized computation of S.

Note that at both stuttering steps and clock ticks, the idle transition TI is taken. We consider all
computations of the system S to be infinite. Finite (terminating as well as deadlocking) computa-
tions can be represented by infLn.ite extensions that add only idle transitions. The computations of
any timed transition system are, furthermore, closed under stuttering and under shij?ing the origin
of time:

l The addition of finitely many stuttering steps to a timed state sequence does not alter the
property of being a computation of S.

l The addition of an integer constant to all times of a timed state sequence does not alter the
property of being a computation of S. In other words, timed transition systems cannot refer
to absolute time. Thus we will often assume, without loss of generality, that the time of the
first state change of a computation is 0.

Since the state component of any computation of S is a computation of the underlying untimed
transition system S- , ordinary timeless reasoning is sound for timed transition systems: every
untimed property of infmite state sequences that is satisfied by all computations of S-, is also
satisfied by all computations of S. The converse, however, is generally not true. The timing
constraints of S can be viewed as filters that prohibit certain possible behaviors of S-. Special
cases are a minimal delay 0 and a maximal delay 00 for a transition T. While the former does not
rule out any computations of S-, the latter adds to S- a weak-fairness (justice) assumption in
the sense of [MP89aj: r cannot be continuously enabled without being taken. By ST we denote
the weakly-fair transition system that is obtained from the transition system S- underlying S by
adding weak-fairness requirements for all transitions with infinite maximal delays.

6

3 Concrete Model: Multiprocessing Systems

The concrete real-time systems we consider first consist of a fixed number of sequential real-time
programs that are executed in parallel, on separate processors, and communicate through a shared
memory. We show how time-outs and real-time response can be programmed in this language.
Then we add message passing primitives for process synchronization and communication.

3.1 Syntax: Timed transition diagrams

A shared-variables multiprocessing system P has the form

Each process P;, for 1 5 i 5 m, is a sequential nondeterministic real-time program over the finite
set U; of private (local) data variables and the finite set U, of shared data variables. The formula 0,
called the data precondition of P, restricts the initial values of the variables in

u = us u u u;.
l<i<m- -

The real-time programs Pi can be alternatively presented in a textual programming language or
as transition diagrams. We shall use the latter, graphical, representation. For this purpose, we
extend the untimed transition diagram language by labeling transitions with minimal and maximal
time delays. A timed transition diagram for the process P; is a finite directed graph whose vertices
L; = {e;, . . .e;,> axe called locations. The entry location - usually 4$, - is indicated as follows:

l @
The intended meaning of the entry location !i is that the control of the process P; starts at the
location 16. The component processes of a system are not required to start synchronously (i.e., at
the same time). Each edge in the graph is labeled by a guarded instruction, a minimal delay I E N
and a maximal delay u E N U (00) such that u > I:

where the guard c is a boolean expression, z is a vector of variables, and Z an equally typed vector
of expressions (the guard true and the delay interval [0, 001 are usually suppressed; for the empty
vector nil, the instruction c + nil := nil is abbreviated to c?). We require that every cycle in the
graph consists of no fewer than two edges, at least one of which is labeled by a positive (nonzero)
maximal delay.

The intended operational meaning of the given edge is as follows. The minimal delay I guarantees
that whenever the control of the process P; has resided at the location -!?i for at least I time units
during which the guard c has been continuously true, then Pi may proceed to the location $. The

7

maximal delay u ensures that whenever the control of the process Pi has resided at fz for u time
units during which the guard c has been continuously true, then Pi must proceed to $. In doing
so, the control of P; moves to the location eg ‘~instantaneously,” and the current values of Z are
assigned to the variables Z. In general, a process may have to proceed via several edges all of whose
guards have been continuously true for their corresponding maximal delays. In this case, any such
edge is chosen nondeterministically. It follows that the control of a process Pi may remain at a
location f; forever only in one of two situations: if -!i has no outgoing edges, we say that Pi has
terminated; if each of the guards that are associated with the outgoing edges of the location 4!: is
false infinitely often, we say that Pi has deadlocked. The second condition is necessary (although
not sufhcient) for stagnation, because if one guard is true forever, then the corresponding maximal
delay u 5 00 guarantees the progress of P;.

3.2 Semantics: Timed transition systems

The operational view of timed transition diagrams can be captured by a simple translation into
the abstract model of timed transition systems. With the given shared-variables multiprocessing
system

we associate the following timed transition system SJJ = (V, C, 0,7,Z, u):

1.

2.

3.

4.

5.

6.

v = u u {X1)...7r,}. Each control variable for 7r;r~;, where 1 5 i 5 m, ranges over the set
L; U { 1). The value of 7r; indicates the location of the control of the process Pi; it is i
(undefined) before the process Pi starts.

C contains all interpretations of I/‘.

0 is the set of all states 0 E C such that 0 is true in 0 and a(ri) = I for all 1 5 i 5 m.

7 contains, in addition to the idle transition q, an entry transition rt for every process P;,
where 1 5 i 5 m, as well as a transition rE for every edge E in the timed transition diagrams
for PI, . . . P,. In particular, 6’ E r:(6) iff

a(ni) = I and g’(xi) = ei,
u’(y) = u(y) for all y E V - (7r;).

If E connects the source location 1; to the target location .$ and is labeled by the instruction
c + ?::=I E, then cr’ E rE(6) iff

c(ri) = !i and a’(ri) = [Z,,
c is true in 0 and a’(2) = a(e),
U’(y) = U(y) for all j/ E V - {Xi, Z}.

If rE is uniquely determined by its source and target locations, we write T;,~.

If 7 is an entry transition, then I, = 0. For every edge E labeled by the minimal delay I, let
I , = 1 .

If r is an entry transition, then u, = 00. For every edge E labeled by the maximal delay u,
let ~7~ = 21.

8

This translation defines the set of possible computations of the concrete real-time system P as a
set of timed state sequences. The condition on timed transition diagrams that every cycle contains
at least one positive (nonzero) maximal delay ensures that the timed transition system Sp is
operational.

For instance, the initialized computations of the trivial system P that consists of a single process
with the timed transition diagram

are exactly the timed state sequences that result from closing the two sequences

(Q) - (&))O) - (&,O> - (~1'~) -+ ""

(LO) - (&Jq --+ (&))l) - &,l> --+ VlA -+ **

under stuttering and shifting the origin of time.

We remark that our semantics of shared-variables multiprocessing systems is conservative over the
untimed case. Suppose that the system P contains no delay labels (recall that, in this case, all
minimal delays are 0 and all maximal delays are 00). Then the state components of the initialized
computations of Sp are precisely the legal execution sequences of P, as defined in the interleaving
model of concurrency, that are weakly fair with respect to every transition ([MP89a]): no process
can stop when one of its transitions is continuously enabled. Weak fairness for every individual
transition and, consequently, progress for every process is guaranteed by the maximal delays oo.

3 . 3 Examples: Time-out and timely response

To demonstrate the scope of the timed transition diagram language, we model two extremely
common real-time phenomena as shared-variables multiprocessing systems. In the fist example
(time-out), a process checks if an external event happens within a certain amount of time. In the
second example (traffic light), a process reacts to an external event and is required to do so within
a certain amount of time. A third example combines several processes.

Time-out

To see how a time-out situation can be programmed, consider the process P with the following
timed transition diagram:

When at the location .!e, the process P attempts, for 10 time units, to proceed to the location 4!, by
checking the value of z. If the value of x is not found to be 0, then P does not succeed and proceeds
to the alternative location 4!2 after 10 time units. The choice of the maximal delay u determines
how often P checks the value of x. For example, if u 2 10, then P may not check the value of x
at all before timing out after 10 time units. If 0 < u < 10, then P has to check the value of x at
least once every u time units. Consequently, if the value of x is 0 for more than u time units, it
will be detected. On the other hand, the value of x being 0 may go undetected if it fluctuates too
frequently, even in the case of u = 0.

Traffic light

To give another typical real-time application of embedded systems, let us design a traffic light
controller that turns a pedestrian light green within 5 time units after a button is pushed. The
environment is given by the following process E. Whenever the request button is pushed, the
shared boolean variable request is set to true:el

c3[O,O] request := true

E: e0

Recall that the edge labels true? and [0, oo] are suppressed; thus we have no knowledge about the
frequency of requests.

We want to design a traffic light controller Q that controls the status of the traffic light through
the variable light, whose value is either green or red. As unit of time we take the amount of time
it takes to switch the light; for simplicity, we also assume that, in comparison, the time needed for
local operations within Q is negligible. Now let us specify the desired process Q. The controller Q
should behave in such a way that the combined system

P : {request = false, light = red} [E IlQ]

satisfies the following two correctness conditions:

(A) Whenever request is true, then light is green within 5 time units for at least 5 time units.

(B) Whenever request has been false for 25 time units, then light is red.

The first condition, (A), ensures that no pedestrian has to wait for more than 5 time units to cross
the road and is given another 5 time units to do so. The second condition, (B), prevents the light
from being always green.

It is not hard to convince ourselves that, once it is started, the following process Q satisfies the
specification:

10

lrequest --f
light := red

P 11Y

request ---+ P 01request := false) 1 request +
request := false

I,rlY 11
light := green

for any delay 4 < 6 5 23. This implementation of the traffic light controller turns the light green
as soon as possible after a request is received and then waits for S time units before turning the
light red again. Only if the request button has been pushed in the meantime, the light stays green
for another b time units.

Multiple traffic lights

Let us generalize the traffic light example and design a system that reacts to several external events.
We wish to do so by composing, in parallel, processes that are similar to Q. At this point it is
convenient to accept some additional assumptions about the frequencies of the external events. In
our example, we suppose that the distance between any two requests is at least 15 time units; that
is, e1

CJ[15, cm] [O, O] request := true

E’: e0

Under this assumption, we can simplify the trafhc light controller to

Q': L- light := red
P 11Y

for any delay 4 5 S 5 17. The combined system

P’ : {request = false, light = red} [E’llQ’]

still satisfies both correctness requirements (A) and (B).

Now consider a more complex traffic light configuration, with two lights and two request buttons.
In particular, we assume that the second light is designed for the special convenience of pedestrians

11

in a hurry: it is required to turn green within 3 time units of a request but, on the other hand,
has to stay green for only 3 time units. While pedestrians arrive at the first light with a frequency
of at most one pedestrian every 15 time units, we assume that the more urgent requests are less
frequent - only one every 30 time units:

El: -@request1 : = t r u e E2:.@ request2 : = t r u e

The controller for both lights executes the following two processes:

&I: - light, := red
11 11Y

request, -+
request1 := false [Oy ‘1

P 11
light, :L green

Q2: -

request 2 -+
request2 := false co, ‘1

P 11
light, 11 green

If the combined traffic light controller makes use of two processors and the processes Ql and 92
are executed in a truly concurrent fashion, then the correctness of the entire system

PII : {request, = request2 = fake, light, = light, = red} [ElJIE2~~Ql!~Q2]

follows from the correctness of its parts. Specifically, if 4 5 Sl 5 17 and 2 5 62 < 30, then all runs
of PII satisfy the following conditions:

(Al) Whenever request, is true, then light, is green within 5 time units for 5 time units.

(AZ) Whenever request2 is true, then light, is green within 3 time units for 3 time units.

(Bl) Whenever request1 has been false for 25 time units, then light, is red.

(B2) Whenever request2 has been false for 25 time units, then light, is red.

12

A more interesting case is obtained if only a single processor is available to control both lights and
the two processes &I and Q2 have to share it. Using the interleaving (shuffle) operator of [Roa85],
we denote the resulting system PII~ by the expression

{ request1 = request, = fa=, Wtl = hht2 = red} [E$%II(Q~I~~Qz)~I
Note that the behavior of the environment El IIE2 is still truly concurrent to the behavior of the
traffic light controller &I 1) IQ 2, which executes both processes &I and Q2 on a single processor in
an interleaved fashion.

Let us assume that bl = 10 and 62 = 2, in which case Pii is correct. However, if we have no
knowledge about the strategy by which the processes Ql and Qz are scheduled on the processor
they share, other than that it is fair (i.e., the turn of each process will come eventually), then
Pill does not satisfy the specification consisting of the requirements (Al), (As), (Bl), and (BE).
For suppose that the process &I is always given priority over the process Q2, and the traffic light
controller receives a request for the second light only one time unit after it has received a request
for the fist light. Then it will serve the first request by turning light, green and (busy) waiting
for 10 time units, thus violating (As). On the other hand, if the process Q2 that serves the more
urgent yet less frequent requests is always given priority over the process &I, then Pill is correct.
This is because of the low frequency of requests for the second light only one such request can
interrupt the service of a request for the fist light. Before we discuss the modeling of priorities
and interrupts in greater detail, let us fist introduce message-passing operations.

3 . 4 Message passing

Asynchronous message passing can be modeled by shared variables that represent message channels.
In this subsection, we extend our timed transition diagram language by a primitive for synchronous
(CSP-style) message passing, which can be used for the synchronization and communication of
parallel processes.

Syntax

A (message-passing) multiprocessing system P has the form

where 8 is a data precondition and each process Pi) for 1 5 i 5 m, is a sequential nondeterministic
real-time program over the finite set Ui U U8 of data variables (in the case of pure true message-
passing systems, Us = 0). We use again timed transition diagrams to represent processes, but
enrich the repertoire of instructions by guarded send and receive operations. The send operation
cr!e outputs the value of the expression e on the channel CY. The receive operation cu?x reads an
input value from the channel cy and assigns it to the variable x. A send instruction and a receive
instruction match i.fF they belong to different processes and address the same channel:

c --+ a!e
[I 1YU

13

For any two matching communication instructions with the
tively, we require that max(I, I') 5 min(u, u').

delay intervals [Z, u] and [I’, u’], respec-

Since we use the paradigm of synchronous message passing, a send operation can be executed only
jointly with a matching receive operation. Thus the intended operational meaning of the given two
edges is as follows. Suppose that, for max(Z, 1’) time units, the control of the process Pi has resided
at the location $ and the control of the process PiI has resided at the location $‘, and the guards c
and c’ have been continuously true. Then Pi and P;I may proceed, synchronously, to the locations
!i and $.J, respectively. On the other hand, if P; has resided at !i and PiI has resided at !i’, and
the guards c and c’ have been continuously true for min(u, u’) time units, then both processes must
proceed. In doing so, the current value of e is assigned to x.

Semant its

Synchronous message passing can be modeled formally by timed transition systems. We define
the timed transition system Sp = (V, C, @,I, Z, u) that is associated with the given message-
passing multiprocessing system P as in the shared-variables case, only that 7 contains an additional
transition for every matching pair of communication instructions. Suppose that the two edges E
(from !i to .!!i) and E’ (from $, to e;,‘,) in the timed transition diagrams for Pi and P;I are labeled
by the matching instructions c + e!cu and c’ + cy?x, respectively. Then

l 7 contains, for the matching edges E and E’, a transition ~E,E’ such that u’ E ~E,E~(U) iff

0(x;) = Pj. and a’(~;) = 1Z,,
u(ri’) = !i’ and u’(xi’) = ei’,
c and c’ are true in u and u’(x) = u(e),
U’(y) = U(y) for all ?J E V - {Ti,?Ti’, 2).

l If the matching edges E and E’ are labeled by the minimal delays Z and I’, respectively, let
Z 7E.E' = max(Z, 1 �).

l If the matching edges E and E’ are labeled by the maximal delays u and u’, respectively, let
u7E .E' = min(u, u').

This translation defines the set of possible computations of any distributed real-time system P
whose processes communicate either through shared variables or by message passing.

Process synchronization

Recall that the component processes of the multiprocessing system Pl llP2 may start at arbitrary,
even vastly different, times. An important application of synchronous message passing is the syn-
chronization of parallel processes. Let PI and P2 be two real-time processes whose timed transition
diagrams have the entry locations 4!; and 4!:, respectively, and let cy be a channel. Now consider
the two processes PI and .Px whose timed transition diagrams are obtained from the transition
diagrams for PI and P2 by adding new entry locations:

14

The added message-passing operations have the effect of synchronizing the start of the two processes
PI and P2 (whenever message passing is used for the purpose of process synchronization only, the
data that is passed between processes is immaterial and the data components of the send and receive
instructions are usually suppressed). It follows that the component processes of the multiprocessing
system PlIIP2 start synchronously, at the exact same (arbitrary) time.
From now on, we shall write PI Il,Pz for the system P whose component processes Pl and P2 start
synchronously; that is, the notation PI Il,Pz is an abbreviation for the message-passing system
Pi llP2. Equivalently, we can directly define the formal semantics Sp of the synchronous multipro-
cessing system PI I Id P2 as containing a single entry transition To“’ for both processes PI and Pz;
namely, u’ E Tol”(u) iff

U(7rl) = a(74 = I)
u’(x~) = f!i and u’(7r2) = 4!;,
u’(y) = u(y) for all y E V - {7r1,7~2}.

It is not hard to generalize our notion of synchronous message passing to synchronous broadcasting,
which allows arbitrarily many parallel processes to synchronize simultaneously on joint transitions.

4 Concrete Model: Multiprogramming Systems

While the interleaving model for concurrency identifies true parallelism (multiprocessing) with
nondeterminism (multiprogrannning), the traffic light example of the previous section suggests
that the ability of a system to meet its real-time constraints depends crucially on the number of
processors that are available and the process allocation algorithm. This is vividly demonstrated by
the following trivial system consisting of the two processes PI and P2:

PI: l P 11Y

If both processes are executed in parallel on two processors, we denote the resulting system by
PlI/Pz (or Pl/1,Pz, if the processes are started at the same time); if they share a single processor
and are executed one transition at a time according to some scheduling strategy, the composite
system is denoted by PI I I j P2.

In the untimed case, it is the very essence of the interleaving semantics to identify both systems
with the same set of possible (interleaved) execution sequences - the stuttering closure of the two
state sequences

(GY 43 -% <e;,e;> -2 (a;&) -+ *. .)

15

(a state is an interpretation of the two control variables ~1 and ~2). Real time, however, can
distinguish between true concurrency and sequential nondeterminism: if both processes start syn-
chronously, then the parallel execution of PI and P2 terminates within 1 time unit; on the other
hand, any interleaved sequential execution of PI and P2 takes 2 time units. This distinction must
be captured by our model:

1. In the two-processor case Pll/8P2, we obtain as initialized computations the timed state se-
quences that result from closing the two sequences

under stuttering and shifting the origin of time (the third component of every triple denotes
the time). Note that the system PI IjPz has more initialized computations, because the time
difference between the start of PI and the start of P2 can be arbitrarily large.

2. In the time-sharing case PI 111 Pz, the set of initialized computations will be defined to be
essentially the closure of the two sequences

under stuttering and shifting the origin of time. We write “essentially,” because we will
augment the states by information about the status of the two processes (either active or
suspended). Also, observe that we have silently assumed that the swapping of processes is
instantaneous and that neither process has priority over the other process. All of these issues
will be discussed in detail.

Thus, when time is of the essence, we can no longer ignore the difference between multiprocessing
and multiprogramming. In this section, we first show how our model extends to concrete real-time
systems that consist of a fixed number of sequential programs that are executed, by time-sharing,
on a single processor. Then we use our framework to represent general multiprograrnmin~ svstems,
in which several processes share a pool of processors statically or dynamically.

4.1 Syntax and semantics

A multiprogntmming system P has the form

Each process P;, for 1 < i 5 m, is again a sequential nondeterministic real-time program over the
finite set U of data variables, whose initial values satisfy the data precondition 6. We represent
the real-time programs P; by timed transition diagrams as before. Note, however, that in the
multiprogramming case the control of the (single) processor resides at one particular location of
one particular process. Thus the intended operational meaning of the edge

16

c -+ x : = e
[E 3,u

is as follows. The minimal delay I guarantees that whenever the control (of the single processor)
has resided at the location !: for at least 1 time units and the guard c is true, then the control may
proceed to the location .!!i. The maximal delay u ensures that whenever the control has resided
at !i for u time units and the guard c is true, then it must proceed to fi. This is because, in the
single-processor case, no other process can interfere with the active process and change the value

The operational view of the concrete model is again captured formally by a translation into timed
transition systems. With the given multiprogramrning system P, we associate the following timed
transition system Sp = (V, C, 0, 7, I, u):

1. v = UU{/.q~,. . . ?r,}. There are two kinds of control variables: the processor control variable
,Y ranges over the set { 1, . . . m, L}; each process control variable K;, for 1 5 i < m, ranges over
the set L; of locations of the process P;. The value of the processor control variable ,Y is I
(undefined) before the (single) processor starts executing processes. Thereafter the control of
the processor resides at the location rTc, of the process Pp. We say that Pp is active, while all
other processes P;, for i # p, are suspended (if the value of p is undefined, then all processes
are suspended). The process control variable 7rr; of a suspended process indicates the location
at which the execution of P; will resume when P; gains control of the processor.

2. C contains all interpretations of V.

3. 0 is the set of all states 0 E C such that 8 is true in 0, and C(P) = 1, and a(?ri) = !i for all
lLi<m.

4. ir contains, in addition to the idle transition 71, an action transition TE for every edge E
in the timed transition diagrams for PI, . . . Pm. If E connects the source location 4!; to the
target location 1: and is labeled by the instruction c + Z := E, then 0’ E 73(o) iff

4l-q = 4
cT(7r;) = ei and c’(?T;) = 4!;,
c is true in CT and a’(Z) = a(E),
d(y) = b(y) for all y E V - {7@}.

Furthermore, there are scheduling transitions T E 7 that change the status of the processes
by resuming a suspended process: 0’ E ~(0) implies that

a’(y) = a(y) for all y E U.

The scheduling policy determines the set of scheduling transitions. A scheduling transition
r is called an entry transition iff it is enabled on some initial states. We restrict ourselves
to scheduling policies with a single entry transition, 70, that is enabled on all initial states.
Moreover, we require that a’ E TO(O) implies that

a’(y) = 6(y) for all y E V - {Jo};

17

that is, the entry transition TO is enabled precisely on the initial states and activates, perhaps
nondeterministically, one of the competing processes.

5. For every edge E labeled by the minimal delay I, let I, = 2. Furthermore, 1, = 0.

6. For every edge E labeled by the maximal delay u, let uTE = u. Furthermore, u,~) = 00.

The computations of Sp clearly depend on the scheduling transitions and their delays. In the
untimed case, the scheduling issue can be reduced to fairness assumptions about the scheduling
policy: correctness of an untimed multiprogramming system is generally shown for all fair scheduling
strategies. It makes, however, little sense to to desire that a multiprogramming system satisfies
a real-time requirement under all (fair) scheduling strategies, because the scheduling algorithm
usually determines if a system meets its timing constraints. In fact, fair scheduling strategies admit
thrashing: by switching control too often between processes, only scheduling transitions may be
performed, because no action transition is enabled long enough so that it has to be taken; thus
the system may make no real progress at all and may certainly not meet any real-time deadlines.
Consequently, we study the correctness of real-time multiprogramming systems always with respect
to a particular given scheduling policy.

4.2 Scheduling strategies

Our selection of scheduling strategies is neither intended to be categorical nor comprehensive; we
simply try to examine what we think is a representative variety of different scheduling mechanisms
and, in the process, hope to convince ourselves of the utility of the timed transition system model.
Throughout this subsection, we assume a fixed multiprogramming system

Ipml
and define the scheduling transitions of the associated
scheduling algorithms.

timed transition system Sp for various

Greedy scheduling

The simplest reasonable scheduling strategy, as well as our default strategy, is greedy. According
to this policy, the process that is currently in control of the processor remains active until all its
transitions are disabled. At this point an arbitrary other process with an enabled transition takes
over. Formally, the set T of transitions of Sp contains, in addition to the entry transition ~0, a
single scheduling transition, 76, with 6’ E TG(6) iff

b’(y) = o(y) for all y E V - {p},
TE(o) = 0 for all action transitions rE,
T,q(d) # 0 for SOme action transition 73.

If there is no cost associated with swapping processes, then Z,, = u,, = 0. If switching processes
is not instantaneous, then the minimal and maximal delays of rG should be adjusted accordingly.

18

Scheduling instructions

More flexible scheduling strategies can be implemented with explicit scheduling operations. For this
purpose, we enrich our programnn‘ng language by the instruction resume(s), where s C (1, . . . m}
determines a subset of processes. The scheduling operation resume(s) suspends the currently active
process, say, P; and activates, nondeterministically, one of the processes Pj with j E s:

c + resume(s) _
[I 1,u

We write resume(j) for resume({j}) and suspend for resume({ 1 5 j < m 1 j # i}); that is,
the instruction suspend delegates the control from the currently active process to any one of the
competing processes.

Formally, the set 7 of transitions of Sp contains, in addition to the entry transition 70, a scheduling
transition TE for every resume edge E in the timed transition diagrams for PI,. . . P,. If E connects
the source location .!i to the target location ei and is labeled by the instruction c --+ resume(s),
then a’ E rE(a) iff

b(p) = i and al(p) E s,
~(a;) = 4!; and o’(7r;) = f!i,
c is true in 6,
b’(y) = a(y) for all y E V - {j.~,r;}.

Furthermore, for every scheduling edge E labeled by the minimal delay 2 and the maximal delay u,
let l,, = 1 and u,~ = u.

Delays and timers

Note that the instruction

models a busy wait; the process P; occupies the processor for 10 time units while waiting. To
implement a nonbusy wait, in which P; releases the processor to a competing process for 10 time
units before resuming execution, we use a timer 5”[Ie,le~ (alarm clock) as a parallel process:

t1
resume(i) [lO,lO] [O,O] t? -+ t := false

T[lO,lOj : 0t0

We make sure that the timer T[,o,lo~ is started (i.e., waiting for activation) when the process P;
becomes active. Then the timer is activated by the sequence

19

resume (s
Lo 017

In general, a timer process Trl,+] marks nondeterministically a time period between I and u time
units and is executed in parallel to the other processes of a system:

WlPlII - ** IlI~~)IIaq,u]l~
The activation of the timer TL~,~I is abbreviated by the delay instruction

delay(s)
[I 1,u

The delay instruction allows us to program nonbusy delays without explicitly mentioning timers;
we simply assume that there exists, implicitly, a unique timer process for every delay instruction
in a timed transition diagram.

Round-robin scheduling

A construction that is similar to the timer example allows us to implement a round-robin scheduling
strategy for two processes PI and P2 that share a single processor. In the system (PI IliPz)lldS, the
scheduler

gives each of the two processes PI and P2 in turn 10 time units of processor time. Needless to say,
the explicit scheduling instructions give us the ability to design more sophisticated schedulers as
well.

4 .3 Processor a l locat ion

Both the multiprogramming system with a timer and the multiprogra mrning system with a central
scheduler are, in fact, combinations of multiprocessing and multiprogramming systems in which
several tasks compete for some of the processors. In these systems, the question of scheduling,
which determines the processor time that is granted to individual processes, is preceded by the
question of processor allocation, which determines the assignment of processes to processors. This
assignment can be either static, if every process is assigned to a fixed processor, or dynamic, if a
set of processes competes for a pool of processors and processes may reside, over time, at different
processors. We only hint how this very general notion of real-time system fits into our framework
and can be modeled by timed transition systems. A static (shared-variables or message-passing)
system P with k processors is of the form

~~~~~~1,1I//~~~III~~,~,~II~~~II~~~,llI

20



that is, m; processes compete for the i-th processor. The definition of the associated timed transition
system Sp is straightforward: every processor has its own process control variable pi, for 1 5 i 5 k,
which ranges over the set of competing processes (1,. . . m;, I} and designates the active process.
Furthermore, every processor operates according to a local scheduling policy with a single entry
transition ri, for 1 I: i 5 k.

To model systems in which a process competes for more than one processor, we simply write

for the dynamic system in which m processes compete for k processors according to some global
processor allocation and scheduling policy. To define dynamic systems, it is useful to have a more
general scheduling instruction, resume(s,z), which interrupts the process that is currently active
on processor x and activates, on processor x, one of the processes from the set s.

4.4 Priorities and interrupts

While the scheduling instruction resume gives us the flexibility to design a scheduler, we often wish
to adopt a simple, static scheduling strategy without having to explicitly construct a scheduler. In
this subsection, we offer this possibility by generalizing the greedy strategy. We assign a priority to
every transition, and at any point in a computation, choose only among the transitions with the
highest priority. If the transition with the highest priority belongs to a suspended process, then
the currently active process is interrupted and the execution of the suspended process is resumed.

A priority system P is a (shared-variables or message-passing, static or dynamic) system in which
a priority is associated with every instruction; that is, with every edge in the timed transition
diagrams for P. We use nonnegative integers as priorities (0 being the highest priority) and annotate
an edge with a priority p E N as follows:

p: c - x := e
[I 3,u

We formalize the priority semantics only for simple multiprogr amming systems; the generalization
to systems with several processors is straightforward. With a given priority system

p : vH~lIIl  - ** IIIM
we associate the following timed transition system Sp = (V, C, 0, I, I, u):

l V, C, and 0 are as before.

l 7 contains, in addition to 71,  an action transition 7~ for every assignment edge E in the
transition diagrams for PI, . . . P,. If E connects the source location $ to the target location
.!!t, and is labeled by the instruction p: c --+ Z := Z, then ~7 +E u’ iff

a(7ri)  = $ and ~‘(7ri) = 4!;,
c is true in u and a’(~)  = O(E),
u’(y) = o(y) for all y E V - {~,7ri,Z}.

21



Then 6’ E rE( 6) iff

u -fE O’ and b(p)  = O’(P) = i and
there is no edge E’ that is labeled by a higher priority p’ < p such that u -)EJ  u”

for some a”.

For any matching pair of communication edges E and E’ that are labeled by the priorities p
and p’, respectively, we take the higher priority min(p,p’) for the combined transition ~E,E!
(although this choice is arbitrary and may be reversed, if the need arises).
Furthermore, there is, in addition to the entry transition 70, a scheduling transition rp such
that u’ E 7p(u)  iff

u’(y) = u(y) for all y E V - {p},
TE( 6) = 0 for all action transitions rE,
TE( u’) # 0 for some action transition 7~.

l Let I, and uTE be as before, and choose 1, and u,~ to represent the cost of swapping
processes.

Note that if all transitions have equal priority, then the scheduling strategy is greedy (that is,
TG = 7p). Thus priorities generalize our previous discussion conservatively: all systems can be
viewed as priority systems whose instructions have the same default priority, unless they are anno-
tated with explicit priorities.

Dynamic priorities

Priorities can be combined with explicit scheduling operations in the obvious way. It is, however,
often more convenient to model dynamic scheduling strategies, which change over time, by dynamic
priorities, which can be modified by any process during execution. Dynamic  priorities offer exciting
possibilities, such as the ability of a process to increase or decrease its own priority. Moreover, they
are easily incorporated into our framework. We simply use data variables that range over the
nonnegative integers N as priorities. Instead of giving the formal semantics of dynamic priorities,
which is constructed straightforwardly from the semantics of constant (static) priorities, we present
an interesting real-time application of dynamic priorities.
We have not yet pointed out that our interpretation of message passing is not entirely conservative
over the untimed case: there the set of legal execution sequences usually is restricted by strong-
fairness assumptions for communication transitions ([MP89a]).  This is convenient for the study
of time-independent properties of a system, where simple  fairness assumptions about “nondeter-
ministic” branching points abstract complex implementation details. Consider, for example, the
multiprocessing system PI I/ Pz II& th a consists of the following three processes PI, P2, and Q:t

22



Q: ml,
c

Cy! P!

(Recall that we may omit the data components of message-passing operations, if they are im-
material.) The arbiter Q mediates between the two processes PI and P2 and uses synchronous
communication on the two channels cy and p to ensure mutual exclusion: PI and P2 can never be
simultaneously in their critical sections 4!: and 1:) respectively.

Strong-fairness assumptions on the conmnmication transitions are used to guarantee that, in addi-
tion to mutual exclusion, neither of the two processes PI and P2 is shut out from its critical section
forever: the arbiter cannot always prefer one process over the other. Any such infinitary fairness
assumption, however, is clearly without bearing on the satisfaction of a real-time requirement such
as the demand that a process has to wait at most 10 time units before being able to enter its
critical section. As has been the case with scheduling, we encounter again a situation in which the
infinitary  notion of “fairness” is adequate for proving untimed properties, yet entirely inadequate
for proving timing constraints. To verify compliance with real-time requirements, we can no longer
forgo an explicit description of how the arbiter Q decides between the two processes PI and P2
when both are waiting to enter their critical sections. For instance, the following refinement Q’ of
Q never makes the same “nondeterministic” choice twice in a row:

cy?;p := l;q:=  0
. P?;p := 0; q := 1

&‘I 
p: CY! q: p!

(We use semicolons to concatenate instructions; the default value  of priorities is assumed to be 0.)
The arbiter Q’ modifies the priorities p and q of its nondeterministic alternatives to ensure that
the system

{P = q = W’1 lF’2llQ’l
satisfies the requirement that each process has to wait at most 10 time units before being able to
enter its critical section. Note that none of the two nondeterministic alternatives is ever disabled,
but, at any time, one of them is “preferred.”

Finitary branching fairness

Since infinitary  fairness assumptions, such as weak fairness for scheduling and strong fairness for
synchronization, are insufficient to guarantee the satisfaction of real-time deadlines, one may choose

23



to add finitary branching conditions to timed transition systems. Such a finitary notion of fairness
would restrict the nondeterminism of a system. We may want to require, for example, that no
competitor of a transition r can be taken more than n times without 7 itself being taken (a
similar concept has been called bounded fairness in [Jay88]),  We prefer, both for scheduling and
synchronization, an explicit description of the selection process to such implicit assumptions. Since
all selection processes that we have found useful can be described within our language, we see no
need to introduce additional concepts that would only complicate any verification methodology.

Part II

Verifying Real-time Systems
We define a formal language that is interpreted over timed state sequences. This language is used
to specify timed transition systems: a timed transition system S meets the specification #, iff all
initialized computations of S satisfy 4. We present two proof methodologies - bounded-operator
reasoning and explicit-clock reasoning - for verifying that a timed transition system meets its
specification. Relative-completeness results are given for both proof techniques.

5 Specificat ion Language

As a specification language, we use an extension of linear temporal logic with time-bounded tempo-
ral operators. We distinguish between state formulas, which assert properties of individual states
of a computation, and temporal formulas, which assert properties of entire computations.

5.1  State  formulas

Let S = (V, C, @,I, 1, u) be a timed transition system. Typically S is associated with a concrete
real-time system that belongs to one of the classes we have discussed in Part I. Throughout this
part, we use the following additional assumptions about the set V of variables:

l We assume that, in addition to data and control variables, V contains sufficiently many
auxiliary variables that range over the integers Z and are not changed by any of the transitions
of S. We will on occasion need a “new, rigid” variable, and for this purpose we employ one
of the auxiliary variables that have not been used previously.

l We assuxne  that, for every variable x E V, there is a corresponding unique primed variable
x’ g V that ranges over the same domain as x.

We are given an assertion language - a first-order language with equality that contains interpreted
function and predicate symbols to express operations and relations on the domains of the variables
in V. A state formula is a fist-order formula p of the assertion language such that only variables
from V occur freely in p. Thus, every state in C provides an interpretation for the state formulas.
If the state formula p is true in state u, we say that u is a p-state.

We use the following abbreviations for state formulas:

24



l For any transition T E 7, the enabling condition enabZed(-r)  asserts that r is enabled. In
particular, enabZed(TI)  abbreviates true for the idle transition 71.

l For any transition r E 7 and state formulas p and q, the verification condition {p} r {q}
asserts that ifp is true of a state cr E C, then q is true of all r-successors of u. In particular,
{P}TI  (4) stands for the universal closure of the formula p + q. For any set T C 7 of
transitions, we write {p} T {q} for the conjunction

A {PHQI
TET

of all individual verification conditions

l For any transition 7 E 7 and state formulas p and q, the inverse verification condition
{p} r- {q} asserts that if p is true of a state u E C, then q is true of all r-predecessors
of u. Observe that all inverse verification conditions are definable by ordinary verification
conditions :

{p}r- {q} is equivalent to {lq}r{lp}.

In particular, {p} 71 {q} is equivalent to {p} r1 {q} for the idle transition 71. For any set
T & 7 of transitions, we write {p} T- {q} for the conjunction of the inverse verification
conditions for all transitions in T.

Note that while the truth value of an enabling condition depends on the state in which it is inter-
preted, the verification conditions are state-independent and, thus, equivalent to closed formulas.
In the case that the timed transition system S is associated with a shared-variables multiprocessing
system P, it is not hard to see that the enabling and verification conditions of all transitions can
indeed be expressed by state formulas. Suppose that P consists of the m processes P;, for 1 5 i 5 m,
and the data precondition 0, which is a state formula:

ielLpl  II -- - llpm3*
Let us assume that each process P;, for 1 5 i 5 m, is given by a timed transition diagram with
the locations {!$, . . . !i;} and the entry location ed. We write at& for ~;r = I, and at-$ for
7r?r; = 1:; that is, the control of the process P; is at the location !$. We abbreviate any disjunction
at4:  V at& further, to at4ik.,

1. For each entry transition T: E 7 of Sp, the enabling condition enabZed(Ti)  is equivalent to
the state formula

at&,
and the verification condition {p} ri {q} is equivalent to the universal closure of the formula

(p  A  enabZed(Tk)  A  (at&)’ A A (Y’ = Y>> --) !I’,
YEV-fTi}

where the formula q’ is obtained from q by replacing every variable with its primed version;
for example, (at&)’ stands for 7r: = lh. The inverse verification condition {p} (pi)-  {q} is
equivalent to the universal closure of

(p’ A enabled (7;) A (ut&)’ A A (Y’ = Y>) + Q-
YEV-{ri}

25



2. All other nonidle transitions of Sp correspond to edges in the timed transition diagrams for
the processes P;. Let rj,k E 7 be such a transition and assume that the corresponding edge
that connects the location ti to the location 1; is labeled by the instruction c -+ z := e.
Then, the enabling condition enabled(Tj,k)  is equivalent to

and the verification condition {p} Tj+k {q} is equivalent to the universal closure of the formula

( p  A  enabled($,k)  A  (at-$.)’ A  (Z’ =  2) A A (Y’ = Y)) + Q’s
YEV--(ri,X}

The inverse verification condition {p} (Ti+k)-  {q} is e quivalent to the universal closure of

( p ’ A  enabled($k)  A (al&)’ A (21’ =  Z) A A (Y’ = Y>> + Q-
YEV-{ri 7t)

It is also straightforward to express the enabling and verification conditions as state formulas, if the
timed transition system S is associated with any of the other concrete real-time systems that we
discussed in Part I, such as message-passing, multiprogrammin g, dynamic, and priority systems.

Synchronous multiprocessing systems

Our examples  will be drawn from timed transition systems S that are associated with multipro-
cessing systems P of the form

all of whose component processes start synchronously (i.e., at the exact same time). We call such
a system synchronous and model it by a single entry transition that sets all control variables,
simultaneously, to the entry locations of the individual processes. For multiprocessing systems P,
it is convenient to define the following two additional abbreviations for state formulas:

l The ready condition ready holds precisely in the initial states 0 of Sp; it indicates that none
of the processes of P has started yet. Consequently, ready stands for the state formula

8 A ( A at-!;).
l<i<m- -

o The synchronous starting condition start indicates that all processes of P have entered their
entry locations, but none has proceeded any further; that is, start abbreviates the state
formula

8 A ( A at&.
l<i<m- -

Note that if P is synchronous, then the two verification conditions

(ready) 7 - ~1 (start),

{start} (7 - ~1)~  {ready}

are valid (by 7 - 7 we denote the set difference 7 - (7)).

26



5.2  Temporal  formulas

Temporal formulas are constructed from state formulas by boolean connectives and time-bounded
temporal operators. They are interpreted over timed state sequences. In this paper, we are in-
terested in proving two important classes of real-time properties - bounded-invariance properties
and bounded-response properties. Thus we restrict ourselves to the following temporal formulas:

l Every state formulap is a temporal formula; it is true over the timed state sequence p = (u,T)
iff the initial state uo is a p-state.

l Every boolean combination of temporal formulas is a temporal formula, whose truth over a
timed state sequence is determined from the truth of its components in the standard way.

l If p is a state formula, 4 a temporal formula, and 1 E N, then p lJ>l C$ is a temporal formula;
it is true over the timed state sequence p = (u,T) iff either all u;,for i 2 0, are p-states, or
there is some position i > 0 such that T; 2 To + 1, and # is true over the i-th sufhx  pi of p,
and all uj, for 0 5 j < i, are p-states. We use the abbreviations p U 4, 0,~ p, and p Ull # for
the formulas p Uzo 4, p U,l true, and p A (p U >I$), respectively.

l If 4 is a temporal formula and u E N, then 0 <‘(L 4 is a temporal formula; it is true over the
timed state sequence p = (u,T) ifI there is some position i 2 0 such that T; 5 To $ u and 4
is true over the i-th su.fIix pi of p.

Temporal-logic aficionados will readily recognize the operators U>l , 0,~  , and 05, as time-bounded-
versions of the standard (untirned)  unless, always, and eventually operators. In particular, the
formula p U>e q is true over a timed state sequence p = (u, T) iff the untimed unless formula p U q
is true over the state component u of p:

either all a;, for i 2 0, are p-states,
or there is some position i 2 0 such that q is true over the i-th sufIi.x ui of u and all uj,

for 0 < j < i, are p-states.

For a general addition of time-bounded operators to linear temporal logic, see [AHgO].  From now
on, we use the convention that the letters p, q, r as well as cp (and primed versions) denote state
formulas, while the letters 4, $, and x stand for arbitrary temporal formulas.

S-validity and S-soundness

We say that a temporal formula # is S-valid iff it is true over all computations of the timed
transition system S. While (general) validity - truth over all timed state sequences - implies
S-validity for every system S, the converse does not necessarily hold. In fact, even a state formula
p that is S-valid may not be true in some states of S that do not occur along any run of S and,
hence, p may not be generally valid. If a formula 4 is S-valid, then it is, by definition, satisfied by
all initialized computations of S. Thus, to show that the given system S meets the specification 4,
it sufl’ices  to show that 4 is S-valid.

A proof rule is called S-sound iff the S-validity of all premises implies the S-validity of the conclu-
sion. Any S-sound rule can be used for verifying properties of the given system S.

27



Bounded invariance and bounded response

Two important classes of timing requirements for real-time systems can be defined by temporal
formulas :

l A bounded-invariance property asserts that a condition holds continuously for a certain
amount of time; it is often used to specify that something does not happen for a certain
amount of time. Formally, we express bounded-invariance properties by temporal formulas
of the form

P * kz cl’
for state formulas p and q and 1 E N. The formula p --+ q  <E q is S-valid, for a timed transition
system S, iff for all (initialized) computations p = (a, T) of S and all i 2 0 and j 2 i,

if CT; is a p-state and Tj < T; + 1,
then oj is a q-state;

that is, no p-state is followed by a lq-state  within time less than 1. A typical application of
bounded invariance states a lower bound I on the termination of a multiprocessing system P
with the termination condition r: the temporal formula

ready + q  I,~ lr

asserts that, if not started before time t, then P will not reach a final state before time t $1.

l A bounded-response property asserts that something happens within a certain amount of time.
Formally, we express bounded-response properties by temporal formulas of the form

for state formulas p and q and u E N. The formula p + O<, q is S-valid, for a timed
transition system S, iff for all (initialized) computations p = (a,?) of S and all i 2 0,

if 6; is a p-state,
then there is some q-state uj, with j > i, such that Tj 5 T; -I- U;

that is, every p-state is followed by a q-state within time u. A typical application of bounded
response states an upper bound u on the termination of a multiprocessing system P with the
termination condition r: the temporal formula

start + O<, T

asserts that if all component processes of P are started synchronously at time t, then P is
guaranteed to reach a final state no later than at time t $ u. As the runs of timed transition
systems are closed under shifting the origin of time, we shall, without loss of generality,
henceforth assume that t = 0.

28



Monotonicity rules

We now introduce two important proof rules that are S-sound for every timed transition system S.
The monotonicity rule U-MON allows us to weaken any of the three arguments of the bounded-
unless operator:

U-MON p + p’ 4 + 4’ 1’ 5 1
(P bz 4) + (P’ UkZf  4’)-

A second monotonicity rule, 0-MON, weakens either argument of the bounded-eventually operator:

0-MON #, + #+ u’ > u
(O<u 4) -+ (O<d  4’)-

It is not hard to see that both monotonicity rules are S-sound for every timed transition system S.
Since propositional reasoning, too, is S-sound for every system S, we will refer to applications of
the two weakening rules and propositional reasoning in derivations through the simple annotation
“by monotonicity.” For example, from the bounded-unless formula

P -+ QU>zT,-
we can establish, by monotonicity, both the bounded-invariance formula

and the unbounded unless formula
p + (IUT.

Every unless formula can be read as an untimed formula of standard temporal logic and interpreted
over state sequences; that is, it defines  an untimed safety property.

6 Bounded-operator Reasoning

We show how to prove that a given timed transition system S = (V, C, O,T, 1, u) meets its specifica-
tion. In particular, we present a deductive system to establish the S-validity of bounded-invariance
and bounded-response properties. The proof rules fall into four categories:

1. The single-step rules derive real-time properties that follow from the lower-bound or upper-
bound requirement for a single transition.

2. The transitivity rules combine two local real-time properties of the same type - that is, either
two bounded-invariance properties or two bounded-response properties - into a composite
timing property.

3. The induction rules combine arbitrarily many local real-time properties of the same type into
a global timing property.

4. The crossover rules combine local real-time properties of opposite types into a composite
timing property.

29



6.1 Deterministic rules

We begin by presenting the bounded-operator methodology for verifying deterministic systems
without crossover reasoning: a timed transition system S is called deterministic if any two guards
that are associated with outgoing edges of the same vertex in the timed transition diagram represen-
tation of S are disjoint. Nondeterministic systems require more complex (conditional) single-step
reasoning and will be treated at the end of this section. Crossover reasoning is deferred to Section 8.

Single-step rules

The single-step lower-bound rule uses the minimal delay 1, E N of a transition T E 7 to infer a
bounded-unless formula:

U - S S  p  -+ lenabled
P-,cp

(cp A enabled(T)) + T

P ---)  Q u>z7  T

The rule U-SS derives a temporal (bounded-unless) formula from premises all of which are state
formulas, whose S-validity typically is shown by proving them generally valid. The state formula cp
is called the invariant of the rule. Choosing T to be true, the rule infers a bounded-invariance
ProPertYJ

P-+ Ql, Q

(note that the last premise holds trivially in this case). To see why the rule U-SS is S-sound,
observe that whenever the transition 7 is not enabled, it cannot be taken for at least 1, time units.

The single-step upper-bound rule uses the maximal delay u7 E N of a transition r E 7 to infer a
bounded-response formula:

This rule derives a temporal bounded-response formula from premises all of which are state formulas.
The state formula cp is again called the invuriant of the rule. To see why the rule 0-SS is S-sound,
recall that the transition r has to be taken before it would be continuously enabled for more than
u, time units.

To demonstrate a typical application of the single-step rules, we consider the single-process system
P with the data precondition x = 0 and the following timed transition diagram:

30



The process P confirms that x = 0 and proceeds to the location [I. Because of the delay interval
[2,3] of the transition q+,l, the final location 11 cannot be reached before time 2 and must be
reached by time 3 (recall that P is taken to start at time 0). Using single-step reasoning, we
can carry out a formal proof of this analysis. The bounded-invariance property that P does not
terminate before time 2,

ready -+ 0.~2  -t-b,

is established by an application of the single-step lower-bound rule U-SS with respect to the tran-
sition r0+1 (let the invariant cp be atl i,e). The bounded-response property that P terminates by
time 3,

start  + 0~3  atJ!l,-
follows from the single-step upper-bound rule 0-SS with respect to the transition ro-.,l (use the
invariant at&  A x = 0).

Transitivity rules

To join a finite number of successive timing constraints into a more complicated real-time property,
we introduce transitivity rules. The transitive lower-bound rule combines two bounded-unless
formulas :

We refer to the formula x as the link of the rule. The transitive upper- bound rule combines two
bounded-response formulas:

The formula x is again called the link of the rule. Both transitivity rules are easily seen to be
S-sound for every timed transition system S.

We demonstrate the application of the transitivity rules by extining the single-process system P
with the following timed transition diagram:

We want to show that P terminates not before time 4 and not after time 6. First, we prove the
lower bound on the termination of P:

ready --+ q  calatA2.

By the transitive lower-bound rule U-TRANS, it suffices to show the two premises

ready --+ (latJ2)  b2 atJo,-

31

(1)



at& -+ (lat&)  U>2 true. (2)
Both premises can be established by single-step lower-bound reasoning. To show the premise (l),
we apply the rule U-SS with respect to the transition ro+r, using the invariant atA!~,o;  the premise
(2) follows from the rule U-SS with respect to the transition 71-2  and the invariant atlo,l.

The upper bound on the termination of P,

s t a r t  -+ 0~6 atJ2,-

is concluded by the transitive upper-bound rule 0-TRANS. It suffices  to show the premises

start -+ 0~3  (at21  A x = 0),-

(at21  A  2 =  0 )  -+ 0~3  atl2,

both of which can be established by single-step upper-bound reasoning (we use the two invariants
at& A x = 0 and at-i!1 A x = 0, respectively). Note that for lower-bound reasoning the link at&
identifies the last state before the transition ~0~1 is taken, while for upper-bound reasoning the
link at-l1 A z = 0 refers to the first state after re-,l is taken.
For an example with a (deterministic) branching structure, consider the process P’ with the fol-
lowing timed transition diagram:

We show that P’ terminates either at time 3 or at time 4. The proof requires a case analysis on
the initial value of x, which determines which path of the transition diagram is taken. The lower
bound

ready --+ q  C3 Tat&

is implied by the two bounded-invariance formulas

(ready A x = 0) -+ q  <3 Tat&,

(ready A x # 0) + •,~ lat&,

both of which can be derived by transitive lower-bound reasoning (as links use the two state formulas
atJL,o  A x = 0 and at-.! I,0 A x # 0, respectively). The upper bound

start  -+ 0~4 a t &-

follows  by a similar case analysis and transitive upper-bound reasoning.
So far we have examined only single-process examples. In general, several processes that commu-
nicate through shared variables interfere with each other. Consider the synchronous two-process
shared-variables multiprocessing system with the data precondition x = 1 and the following timed
transition diagrams:

32



The first process, P1, is identical to a previous example; with a minimal delay of 2 time units and
a maximal delay of 3 time units, it confirms that x = 0 and proceeds to the location !!i. However,
this time the value of x is not 0 from the very beginning, but set to 0 by the second process, P2,
only at time 1. Thus, PI can reach its final location L: no earlier than at time 3 and no later than
at time 4.

For a formal proof we need the transitivity rules. The bounded-invariance property

ready --+ q  C3 latJ!i

is established by an application of the transitive lower-bound rule U-TRANS. It sufikes  to show
the premises

ready --) (latli)  u>l (at&,  A  x  =  1))-

(atl!:,,  A  x  =  1) -+ (Tat& b2 true,-

both of which follow from single-step lower-bound reasoning. Similarly, the transitive upper-bound
rule 0-TRANS is used to show the bounded-response property

s t a r t  + 0~4 at-.!:

from the link at-l!; A x = 0.

Induct ion rules

To prove lower and upper bounds on the execution time of program loops, we need to combine a
state-dependent number of bounded-invariance or bounded-response properties. For this purpose
it is economical to have induction schemes.

The inductive lower-bound rule U-IND generalizes the transitive lower-bound rule U-TRANS;
it combines a potentially large number of similar bounded-unless formulas in a single proof step.
Assume that the new, rigid variable i E V ranges over the integers 2; for any n E N:

U-IND (cp(i)  A i > 0) + pU>rcp(i  - 1)
cp(n) --$ PU>n-z 40)

BY cp(i - 1) we denote the state formula that results from the inductive invariant cp(i)  by replacing
all occurrences of the variable i with the expression i - 1; the formulas cp(n) and ~(0)  are obtained
analogously. Note that every instance of the rule WIND, for any constant n E N, is derivable from
the transitive lower-bound rule U-TRANS.

For a demonstration of inductive lower-bound reasoning, we consider the following single-process
system P:

33



x := x - 1 [2,3]

(x=5). ~1,;; @

The process P decrements the value of x until it is 0, at which point P proceeds to the location es.
Since x starts out with the value 5 and each decrement operation takes at least 2 time units, while
the tests are instantaneous, the final location 12 cannot be reached before time 10. This lower
bound,

ready -+ ~,I0 --Jt-ez,

follows by transitivity and monotonicity from the two bounded-unless properties

ready + (Tat-e,)  U>2 (at&  A 2 = 5), (1)-

(atR1 A 2 =  5 )  -+ (latlz)  U>g (at21  A 2 = 1). (2)-
The first property, (l), is enforced by two single-step lower bounds; the second property, (2),  can
be derived by the inductive lower-bound rule U-IND from the premise

(at41  A 2 =i+lAi>o)  --) (lat&)  U>2 (at21  A 2 = i),-

which is concluded by transitive reasoning.

The inductive lower-bound rule has a twin that combines several similar bounded-response formulas
by adding up there upper bounds u. In fact, both induction rules can be generalized, by letting
the bounds I and u vary as functions of i. In its more general form, we state only the inductive
upper-bound rule. It uses again a new, rigid variable i E V that ranges over the integers Z; for any
nE N:

O-IND (p(i) A i > 0) + O<,; cp(i - 1)
P(n)  + O<&<i<n  Ui p(o)

Every instance of this rule is derivable from the transitive upper-bound rule 0-TRANS.

The general form of the inductive upper-bound rule is useful to prove upper bounds for programs
with loops whose execution time is not uniform. An example for such a system is the following
odd-even variant of the process P:

o d d ( x )  + x  :=x - 1 jiz, 21 P, 01 j x # O? P, 311 eve44 + x : = x - l

34



The upper bound
start  + 0~12 at-!2-

follows by transitivity from the bounded-response property

start -+ 0~1-2 (at& A 2 = 0),-

which can be concluded by the inductive upper-bound rule 0-IND from the premise

(at& A  x  =  i A  i >  0 )  -+ 0<2+even(q  (at-& A  2 = i - 1)-

(the expression even(i) evaluates to either 1 or 0 depending on whether the value of i is even). This
bounded-response formula follows from transitive reasoning.

6.2 Conditional rules

Unfortunately, the proof rules we have designed are not strong enough to show tight bounds on
nondeterministic systems. To see this, consider the following nondeterministic variant P of a
process encountered previously:

As before, P terminates either at time 3 or at time 4. However, during an execution of P, one of
the two transitions ~0-1 and 70.+2  is chosen nondeterministically. Thus we cannot carry out a case
analysis with respect to a state formula that selects a unique guard. Instead, we proceed in two
steps. First we establish an untimed safety formula that enumerates all possible nondeterministic
choices. Then we decorate the unbounded temporal formula with time bounds.

Step 1 To establish the S-validity of a temporal formula 4 that contains only unbounded unless
operators (i.e., U>O ), it suffices  to show that 4 is true over all run fragments of the untimed
transition systemS- that underlies S. This can be achieved with the help of any conventional
timeless proof system (for instance, the proof system given in [MP83]).

For example, to derive the lower bound 3 on the termination of our example P, we show the untimed
formula

ready + ((at-!,  U+ at& U+ atJl) V (at41 Us at& Us at-!!,))

(nested unless operators associate to the right).
ct>

Step 2 To add time bounds to this disjunction of nested unless formulas, we need conditionaz
single- step rules. They establish single-step real-time bounds under the assumption that
a particular disjunct has been chosen. The time bounds can, then, be combined by the
transitivity rules.

35



Nondeterministic lower bounds

The conditional single-step lower-bound rule uses the minimal delay I, E N of a transition r E I:

1 u-css

The rule U-CSS is S-sound for any temporal formula 4.

In our example, we use the conditional single-step lower-bound rule U-CSS with respect to the
transitions ~0~~  and TO-+-J  to derive the conditional single-step bounds

(at41  U+ at&  Us atll)  -+ (atli  U+ at& Uj, at-l&-

(atll  Us at&  Us at$2)  + (at21  Us at& Ul;, at&).-
They allow us to conclude, from (t),

ready + ((at41 Us at&  Uz, atll) V (atAL U+ at& Uz, at&))- -

To collapse nested bounded-unless operators, we use the temporal formula U-COLL:

Note that this temporal formula, which is generally valid, can be derived by from transitive lower-
bound rule U-TRANS by using the two tautologies

wJ>l, 4) + w,Ez #+
From ($) we obtain by collapsing and monotonicity

ready + ((atll,o  Uz, atll) V (atA&  Uz, at&));-

that is, using the (untimed) validity p U true and monotonicity,

ready --+ ((at A,0 UZ2 atAl  Us true) V (atll,o  Uj, at&  U+ true)).- -

Adding conditional single-step lower bounds for the transitions 71+3 and ~2+3 gives

ready + ((at-b,0  u;, at& Uz, true) V (atA!l,o U?j, at&  Uz2 true)),- - - -

and by collapsing and monotonicity we finally arrive at the desired bounded-invariance property

ready --+ q  <3 Tat&.

36



Nondeterministic upper bounds

Conditional upper-bound reasoning does not require the nesting of unless operators. The condi-
tional single-step upper-bound rule uses the maximal delay u7 E N of a transition r E 7:

O - C S S  p  --+ enabled(T)
-iPI r -bPl
( P  lJ 44 + O<U, 4-

Clearly, the rule O-CSS is S-sound for any temporal formula 4. Note that the second premise of
this rule is trivially valid if r becomes disabled by being taken, as is the case for all transitions of a
timed transition system that is given by timed transition diagrams (recall that we have ruled out
self-loops in transition diagrams). It is also worth pointing out that both conditional lower-bound
and conditional upper-bound reasoning rely only on assumptions that are built only from state
formulas by positive boolean connectives and unbounded unless operators and, therefore, define
untimed safety properties. Accordingly, the first step of conditional reasoning can be carried out
by any untimed method for deriving safety properties.

To derive the upper bound 4 on the termination of our example P, we show first the untimed
formula

start + ((at&  U atAl) V (at40  U at&)).

By the conditional single-step upper-bound rule O-CSS with respect to the transitions ~0~1  and
TO-,~,  we derive the conditional single-step bounds

(at&  U at&) + 0~2 at&,-

(at&  U atl2)  + 0~2 atJ2.-
They allow us to conclude

s t a r t  + (052 at-l!1 V  052 atJ2).

Now we can proceed by unconditional upper-bound reasoning to arrive at the desired bounded-
response property

start  + 0~4 at-la.

7 Explicit-clock Reasoning

None of our state formulas is able to refer to the value of the time, because the only real-time
references that are admitted in temporal formulas are time bounds on temporal operators. In this
section, we investigate the consequences of extending the notion of state, by adding a variable t
that represents, in every state, the current time. This extension is interesting, because once we are
given explicit access to the global clock through the clock variable t, both bounded-invariance and
bounded-response properties can alternatively be formulated as unbounded unless formulas and,
consequently, be verified by conventional timeless techniques for establishing safety properties of
transition systems.

37



7.1 Explicit-clock transition systems

Let S = (V,C,O,~,Z,U)  b e a timed transition system. We introduce the following new variables:

l A clock variable t that ranges over the integers Z; it records, in every state 0; of a computation
p = (0, T), the corresponding time T;.

l For every transition T E 7, a delay counter 6, that ranges over the set {O,l, . . . u,} of
nonnegative integers; it records, in every state of a computation, for how many clock ticks
the transition T has been continuously enabled without being taken. We write 6jdk  short for

The explicit-clock transition system 5’” = (VX, C”, OX,  ‘T’) associated with S is defined to be the
following untimed transition system:

1. v* = vu {t} u (6, / 7 E 7}.

2. C* contains all interpretations of V”. Thus, every state 0 E C” of S” is a tuple that contains
a state u- E C of S, a value a(t) E N for the clock variable t, and a value g(S,)  E N for each
delay counter 6,.

3. A state of S” is initial iff it extends an initial state of S:

u E 0” i f f  a-E@.

4. Every transition of S is extended: 7X contains, for every T E 7, a transition 7% such that
(q,o;)  E TX iff for all 7' E 7,

if T' # T and T' is enabled on 62,
otherwise.

The second clause, CT;(&)  2 I,, enforces all lower-bound requirements.
In addition, 7X contains the idle transition ~11 and the tick transition T$, which advances
time: (0,X,  cr;) E 7;i: iff for all 7’ E 7,

01 = 62,
a;(t) = g;(t) + 1,

if T' # T and T' is enabled on 02,
otherwise,

The last clause enforces all finite upper-bound requirements.

From S” we obtain a fair transition system ([MP89a])  by adding the following fairness requirements:

38



5. A weak-fairness (justice) assumption stipulates that a transition cannot be continuously en-
abled without, being taken. Let the weakly-fair extension SJ of S” be the fair transition
system that is obtained from S” by adding a weak-fairness assumption for every transition T~
if T has a maximal delay 03.

6. A strong-fairness assumption stipulates that a transition cannot be enabled infinitely often
without, being taken. Let the strongly-fair extension Sf of S” be the fair transition system
that is obtained from Sj by adding a strong-fairness assumption for the tick transition 7~.

It is not hard to see that the timed transition system S and the fair explicit-clock transition system
Sf are related in the following way:

l For every initialized computation (a,T) of S, there is an infinite state sequence 8 with
( >g* - = u and a ⌧(t) = T such that crx is an initialized computation of SJ (in the fist state
of 6, choose the delay counters of all enabled transitions larger than all minimal delays of
S; otherwise, let all delay counters record the times that the corresponding transitions have
been enabled).

a For every initialized computation u of Sf , the timed state sequence (a-, o (t)) is an initialized
computation of S.

7.2 Explicit-clock formulas

We now translate every bounded-invariance and bounded-response formula #J over V into an un-
timed unless formula 4” that contains the clock variable t. The explicit-clock formula #J” is con-
structed such that it it S*-valid iff # is S-valid:

l The explicit-clock translation of the bounded-invariance formula p -+ q  <E q is

(P A t = T) + q U (t 2 T+ I),

for a new, rigid variable 2’ E V that ranges over Z (recall that V supplies suitable variables
that occur neither in the description of S nor in p or q).

l The explicit-clock translation of the bounded-response formula p --+ O<,  q is

(P A t = T) + (t 5 T+ u) U q.

for a new, rigid variable 2’ E V that ranges over Z

Both unless formulas use the rigid variable 2’ to record the time of the p-state. In the case of
bounded-response properties, the explicit-clock translation exploits the fact that the time is guar-
anteed to reach and surpass 2’ + u, for any value of T. We emphasize that neither of the state
formulas p and q may contain free occurrences of the clock variable or any of the delay counters.

From the correspondence between the computations of the timed transition system S and the fair
explicit-clock transition system Sf it follows that the explicit-clock formula 4” is Sf-valid iff 4 is
S-valid. Indeed, since the explicit-clock translations of bounded-invariance and bounded-response
properties are safety formulas, there is no need to add fairness assumptions to the explicit-clock
transition system:

4” is S*-valid iff $ is S-valid.

39



7.3 Untimed temporal reasoning about real time

This result leads to an alternative and quite different approach to the verification of real-time
properties: to prove the S-validity of a real-time property 4 ( over V), we establish instead the
S-validity of the untimed safety formula 4” ( over V*).  To show the unbounded unless formulas
that result from translating bounded-invariance and bounded-response properties, a single timeless
unless rule suffices ( [MP 831) :

We point out that all three premises of the unless rule are state formulas over the augmented set
17” of variables; their S-validity typically is shown by proving them generally valid. The state
formula p is called the invariant of the rule, because the main (i.e., second) premise asserts that cp
is preserved by all transitions of the system S” (unless the desired state condition T is established).

To demonstrate this kind of “explicit-clock” real-time reasoning, consider again the single-process
system P with the data precondition x = 0 and the following timed transition diagram:

The lower bound on the termination of P,

ready  -+ cl<2 TatJ1,

is translated into the explicit-clock formula

(ready A t =  7’) + (-t-h) U (t L T + 2),

which can be derived by the unless rule from the invariant

(atA A  t > 7’) V  ( a t &  A  t > T  +  bo,l)- -

(recall that the delay counter 6 e--rl of the transition TO-,~ ranges over the set {O,l, 2,3} only). The
upper bound on the termination of P,

s t a r t  + 0~3 at&,-

is translated into the untimed unless formula

(start A t = T) -+ (t 5 T + 3) U atll,

which can be concluded by the unless rule from the invariant

40



8 Completeness

The unless rule is known to be complete, relative to state reasoning, for establishing unless formulas,
provided the underlying data types and the assertion language are sufficiently powerful to encode
runs of transition systems ([MP83]). From the results of the previous section it follows immediately
that explicit-clock reasoning is relative complete for showing bounded-invariance as well as bounded-
response properties. As for bounded-operator reasoning, we first show relative completeness in the
case that all real-time constraints are either lower bounds or upper bounds. This case does not
require crossover reasoning. Then we present crossover rules to combine lower-bound and upper-
bound constraints.

8.1 Crossover-free reasoning

Given a timed transition system S, we assume that all untimed safety properties of S can be derived;
that is, we assume an untirned proof system that is complete for timeless safety reasoning. Although
such a proof system cannot exist for most data domains, there are temporal proof systems that are
complete relative to state reasoning ([MP89b]).  In addition, we suppose that the nontrivial timing
constraints of S are either all minimal delays or all maximal delays. The following theorem shows
that under these assumptions, our bounded-operator rules can derive every bounded-invariance and
bounded-response property of S.

Theorem. Let S = (V,C, O,ir,Z,u) b e a timed transition system such that either I, = 0 for all
7 E 7 or u, = 00 for alZ T E 7. Let 4 be a bounded-invariance or a bounded-response formula.
If 4 is S-valid, then it can be derived by the monotonicity, transitivity, and conditional single-step
rules relative to untimed safety reasoning.

Proof. (1) Suppose that all maximal delays of S are 00. First we observe that, under the given
restrictions, untimed reasoning is complete for untimed properties of S. This is because, in the
absence of finite maximal delays, there is a time sequence T for every computation u of the untimed
weakly-fair transition system SJ’ that underlies S such that (a, T) is a computation of S (choose
all time steps large enough). It follows that any untimed temporal formula that is S-valid is also
SJ-valid and, thus, can be established by untimed reasoning.

Any bounded-response property is either trivially not S-valid or can be established by untimed
safety reasoning. Now suppose that the bounded-invariance property

is S-valid; we show that it can be derived within our proof system. The main idea is to see that
in order for (1) to be valid, for any p-state in an initialized computation of S there has to be a
sequence of nonoverlapping single-step lower bounds that add up to at least Z before a q-state can
be reached. We show that there are only finitely many such ways in which a q-state can be delayed
for Z time units; hence they can be enumerated by a single untimed formula.

Consider an arbitrary computation p = (a, T) of S such that ai, for i > 0, is a p-state. Let aj be
the fist q-state with j > i; if no such state exists, let j = 00. We write Tk for the transition that is
completed at position k 2 0 of p. A lower-bound Z-constraint pattern for ai..j  is a finite sequence
of nonoverlapping single-step lower bounds between i and j that add up to at least 1. Formally,

41



a constraint pattern c is a sequence of transitions Til , . . . Ti,. The pattern c is a lower-bound
Z-constraint pattern iff

c zqh L I;
l<k_<n

it is a lower-bound constraint pattern for g;..j iff

(a) i = ie < ir < + . . < i, 5 j and
(b) for all 1 5 k 5 n, the transition Tik is not enabled on some state ojk such that

i&l 5 jk < ik.

A lower-bound constraint pattern for ai..j can be visualized by annotating the computation p with
backward arrows that represent single-step lower bounds:

jt if j2 i2
\-, . . . e :< I

u: 1 I
i j

Two constraint patterns are equivalent iff one is a subpattern of the other (i.e., can be obtained by
omitting transitions). It is not hard to show the following two properties of lower-bound constraint
patterns:

Property A There is a lower-bound Z-constraint pattern for a;..j (use the truth of (1) over the
i-th s&ix of p).

Property B There are only finitely many different equivalence classes of lower-bound Z-constraint
patterns.

We add, for every transition T E 7, the boolean variable completed, to our language; it is intended
to be true in a state a;, for i 2 0, of a computation p = (6, T) iff the transition T is completed
at position i of p. For our purpose, it turns out to be sufficient that completed, satisfies the two
axioms

{ true} T { completed, > ,

(true> 7 - T {lcompZeted,). tt>
By Property A, there is an untimed formula of the form

(14)  U (lq A lenabZed(-r;,  )) Us (lq)  Us (lq A compZetedTil  ) Us . . .
Us (lq A completedTin  )

that is true over the i-th suti of p. Since there are, by Property B, only finitely many formulas
of this form, p -+ + for some finite disjunction + of nested unless formulas is S-valid and, thus,
given by untimed safety reasoning. From (t) we infer by the conditional single-step lower-bound
rule U-CSS with respect, to any transition T E 7 that

(lenabled(  Uz, cp Us (completed, A (6) +
(lenabled(  Uz, cp UfEI (completed, A 4)-

42



for any state formula cp and temporal formula 4. Hence we can decorate the untimed nested
unless formula with time bounds. By repeated collapsing and monotonicity similar to the sample
lower-bound derivation of Subsection 6.2, we arrive at the desired bounded-invariance property (1).
(2) Now suppose that all minimal delays of S are 0; the proof proceeds similarly to the previous
case. Untimed reasoning is complete for untirned properties of S, because S is operational. Any
bounded-invariance property is either trivially not S-valid or can be established by untimed safety
reasoning. So let us assume that the bounded-response property

p -u+ o< q (2)
is S-valid. Consequently, every p-state in an initialized computation of S has to be followed by a
q-state that can be reached by a sequence of overlapping single-step upper bounds that add up to
at most u. We visualize single-step upper bounds by forward arrows:

il i2
k I . . . I t

i j

Formally, let p = (0, T) be a computation of S such that ai, for i 2 0, is a p-state, and let aj be
the f&t q-state with j 2 i. For the sake of simplicity, we assume that the transition Tk, which is
completed at the position k 2 0 of p, is not enabled on frk (otherwise split Tk into two identical
transitions with different names). A constraint pattern 7il, . . . Ti, is an upper-bound u-constraint
pattern ifY

c uTik  5 u;
l<kln

it is an upper-bound constraint pattern for ai..j iff

(a) i = io < ir < 1 . e < in-l  < j 5 i, and
(b) for all 1 5 k < n, the transition Tik is enabled but not completed at all states ajk

such that i&l 5 jk < ik.

It is not hard to see that upper-bound constraint patterns, too, satisfy two crucial properties:

Property A There is an upper-bound u-constraint pattern for g;..j (use the truth of (2) over the
i-th sufEx  of p).

Property B There are only finitely many different equivalence classes of upper-bound u-constraint
patterns (use the operationality of S).

By Property A, there is an untimed formula of the form

(enabZed(T;,  ) A ~compZeted,~ ) U (enabZed(-r;,  ) A ~cornpleted~~~  ) U . . .
U (enabZed(Tin)  A lcompZetedTin) U q

that is true over the i-th sufFix of p. By Property B, there is again a finite disjunction $ of
nested unless formulas such that the implication p -+ $ is S-valid and, therefore, given by untimed
safety reasoning. By repeated application of the conditional single-step upper-bound rule O-CSS,
transitivity, and monotonicity, we arrive at the desired bounded-response property (2). More
specifically, to collapse nested bounded-eventually operators, we can use the valid temporal formula
O-COLL, which is derivable from the transitive upper-bound rule 0-TRANS:

43



o-COLL (O<Ul  o<u, 4) + o<ul+uz  4

8.2 Crossover reasoning

So far, we have used lower-bound rules to derive bounded-invariance properties and we have used
upper-bound to derive bounded-response properties. In general, the situation is more complicated:
both the lower-bound and the upper-bound rules may be necessary to derive a bounded-invariance
(or bounded-response) property. Indeed, we may need additional crossover rules, which combine
lower-bound and upper-bound requirements.

Example: Race condition

The need for crossover rules can be illustrated by a multiprocessing system that looks innocent
at first glance but turns out to be rather intricate, because its execution time depends on an
interesting interplay of the minimal delays and the maximal delays for transitions that belong to
different processes. This increment-decrement system is defined  by the following timed transition
diagram:

{ x = 1,y = 0)

P2: l

x := 0
ill 1 01

We wish to analyze the worst-case (maximal) running time of the synchronous two-process shared-
variables multiprocessing system

{a: = l,Y = q[pll;sp2].

Note that the first process, PI, consumes the maximal  amount of time if its first loop, in which
the value of y is incremented, is executed as often (fast) as possible - 11 times: the control of PI
may enter the first loop 11 times before and at time 10, the latest time at which the second process
closes the loop, and it may spend another 10 time units in the first loop after the guard has been
reversed. In this worst (slowest) case, the first loop is left at time 20 with y = 11 and, thus, the
second loop may use up no more than 110 time units. It follows that PI terminates by time 130.

Assuming that assignments cost at least 2 time units (instead of l), tests still being free, the
maximal value of y would be only 6, implying termination by time 80: the increase of individ-
ual lower bounds decreases the composite upper bound! This phenomenon vividly demonstrates
that real-time reasoning amounts to more than simply adding up minimal delays or maximal de-
lays of individual transitions; it shows that lower-bound and upper-bound requirements are not
independent, but may jointly affect the global time bounds for the execution time of a system.

44



Let us now formally prove the upper bound 130 on the termination of PI by explicit-clock reasoning.
To simplify the derivation, we may assume that both processes start simultaneously at time 0. Then
we can infer the explicit-clock formula

(start A t = Si,, = 6i,l = 0) -+ (t 5 130) U at-!!:

by the unless rule from the following global invariant :

(atJ!A A  at-l!; A  ( y  =  t =  6:,, =  0  V  12 y  5 t =  6g,l))  V
(atR:  A  at-.!!;  A  y  + bi,, 5 t =  6:,,) V
(at-l;  A at4: A 1 < y < 11 A t < 20) V
(atl:  A  atA!f  A  y  7 10-A t < lo-+ 6i,o)  V
(at-$  A  at4f  A  y  < 1 1  A  t+lOy <130) V
(atA!; A  at4: A  l< y  < 1 1  A  ttlOy < 130t6i+2).- - -

This proof of timely termination resembles a mechanical, exhaustive case analysis of all possible
state-time combinations that can occur during an execution of the two processes of the increment-
decrement system. The bounded-operator proof of the desired bound on termination, on the other
hand, closely follows the intuitive argument we outlined above.

Crossover rules

To mimic the informal argument for the timely termination of the increment-decrement system by
a bounded-operator proof, we use the crossover upper-bound rule:

O-MIX u <  Z
p --$ O<u#
q + q  llQ
{P)  (7 - 71)-  {d
P + lready
P + o<u  (@ A 4)

This rule is a modification of the temporal formula

(o<,@ A 13,l cj) --+ 05, (li A 4))-

which is valid if u < 1. The more complicated form of the rule is needed, because reasoning
about lower bounds and reasoning about upper bounds are asymmetric: while bounded-invariance
formulas refer, intuitively, to the last state before a transition is taken, bounded-response formulas
refer to the first state after a transition is taken. This dichotomy is captured by the inverse
verification condition

{P)  (7 - 71)-  {41,

which requires that in any computation p = (0, T) of S, if ai+1 is a p-state and ci+l # 0;) then 0;
is a q-state. Also observe that every computation of S whose fist state falsifies the ready condition
is the suffix  of another computation of S whose first state satisfies ready. The S-soundness of the
rule O-MIX follows.

45



We give here only a brief sketch of the bounded-operator proof for the bounded-response property

s t a r t  --+ 0~130  at-t!:-

of the increment-decrement system. The derivation relies, as expected, on an interplay of lower-
bound and upper-bound rules. First we show that within 10 time units PI can increase the value
of y at most to 10:

ready --+ q  <ll (Y L 1 0);
this is done by inductive lower-bound reasoning. Then we apply the crossover upper-bound rule
O-MIX to the single-step upper bound

start + 0~10  (at-l!; A x  =  0) ,-

thus obtaining the bounded-response property

start -+ 0~10  (y _< 10 A at-!;  A x = 0).

From here we proceed by pure upper-bound reasoning, performing a case analysis on the locations
of PI.

While the crossover upper-bound rule combines a bounded-invariance property and a bounded-
response property into a bounded-response property, its counterpart, the crossover lower-bound
rule, yields a bounded-unless property:

U - M I X  u< Z

This rule is S-sound, because it originates with the valid temporal formula (for u < Z)

(QIj  A o<u (4 u (@ A +)))  --f  (9 u>l @)a- -

Note that the last premise, which contains only an unbounded unless operator, can be established
by untimed reasoning.

The crossover lower-bound rule U-MIX can be used to derive the lower bound

ready --+ q  C2 latl!;

of the increment-decrement system.

46



9 Conclusions

The increment-decrement example illustrates the trade-off between bounded-operator reasoning
and explicit-clock reasoning beautifully. Compare the two proofs of the upper bound on termi-
nation: while the bounded-operator (or “hidden-clock”) style of real-time verification refers to
time only through the relative offsets of time-bounded temporal operators, the explicit-clock style
uses ordinary untimed temporal operators and refers to the absolute time in state formulas. Both
styles trade off the complexity of the temporal proof structure against the complexity of the state
invariant s :

l The hidden-clock approach relies on complex proof structures similar to the proof lattices
for establishing ordinary (untimed) Ziveness properties ([OL82] ,[MP84])  and uses relatively
simple local  invariant s.

l The explicit-clock method employs only the plain unless rule - an (untimed) safety rule -
but requires a powerful global invariant.

Open problems

There are several obvious problems that have been left open in this paper. Firstly, we pre-
sented bounded-operator proof rules and explicit-clock translations for the verification of bounded-
invariance and bounded-response properties only. In a next step we wish to classify more complex
real-time properties to obtain a hierarchy of real-time properties similar to the untimed hierarchy
of temporal properties ([MP90]). Then we may look for proof methods for all classes of properties
in the real-time hierarchy.

Secondly, we showed relative completeness of bounded-operator reasoning only in the case that
the lower bounds and the upper bounds do not interfere with each other. The power of bounded-
operator reasoning in the general case remains to be studied. We suspect that history information,
say, in form of bounded past temporal operators is necessary to achieve relative completeness in the
general case. Note that some information about the past of a state in a computation is available
in explicit-clock reasoning, namely, in form of the delay counters.

Thirdly, and perhaps most importantly, we used the discrete time domain of the integers. This
does not necessarily mean that all events happen at integer points in time, only that the time of
events is recorded by a fictitious digital clock with finite  precision ([HenSlb]).  While verification
may be more difficult, even impossible, in a continuous model of time ([AHgO]),  preliminary results
indicate that in the case of timed transition systems, on one hand, and bounded-invariance and
bounded-response properties, on the other hand, many of the techniques that we developed can be
carried over to dense and continuous time domains.

Acknowledgment. We thank Rajeev Alur for many helpful discussions.

References

[AFHSl] R. Alur, T. Feder, and T.A. Henzinger. The benefits of relaxing punctuality. In
Proceedings of the Tenth Annual Symposium on Principles of Distributed Computing,
pages 139-152. ACM Press, 1991.

47



[AH901

[BH81]

[EMS%91

[Har88]

[HenSla]

[HenSlb]

[HLPSO]

[HMPSO]

[Hoa85]

[Jay881

[KdR85]

[Ke176]

[KOYW

R. Alur and T.A. Henzinger. Real-time logics: complexity and expressiveness. In
Proceedings of the Fifth Annual Symposium on Logic in Computer Science, pages 390-
401. IEEE Computer Society Press, 1990.

A. Bernstein and P.K. Harter, Jr. Proving real-time properties of programs with tem-
poral logic. In Proceedings of the Eighth Annual Symposium on Operating System
Principles, pages l-11. ACM Press, 1981.

E.A. Emerson, A.K. Mok, A.P. Sistla, and J. Srinivasan. Quantitative temporal rea-
soning . Presented at the First AMU~  Workshop on Computer-aided Verification,
Grenoble, France, 1989.

E. Harel. Temporal analysis of real-time systems. Master’s thesis, The Weizmann
Institute of Science, Rehovot, Israel, 1988.

T.A. Henzinger. Sooner is safer than later. Technical report, Stanford University, 1991.

T.A. Henzinger. The Temporal Specification and Verification of Real-time Systems.
PhD thesis, Stanford University, 1991.

E. Harel, 0. Lichtenstein,  and A. Pnueli. Explicit-clock temporal logic. In Proceedings
of the Fifth Annual Symposium on Logic in Computer Science, pages 402-413. IEEE
Computer Society Press, 1990.

T.A. Henzinger, Z. Manna, and A. Pnueli. An interleaving model for real time. In
Proceedings of the Fifth Jerusalem Conference on Information Technology, pages 717-
730. IEEE Computer Society Press, 1990.

C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

D.N. Jayasimha. Communication and Synchronization in Parallel Computation. PhD
thesis, University of Illinois at Urbana-Champaign, 1988.

R. Koymans and W.-P. de Roever. Examples of a real-time temporal specification. In
B.D. Denvir, W.T. Harwood, M.I. Jackson, and M.J. Wray, editors, The Analysis of
Concurrent Systems, Lecture Notes in Computer Science 207, pages 231-252. Springer-
Verlag, 1985.

R.M. Keller. Formal verification of parallel programs. Communications of the ACM,
19( 7):371-384,  1976.

R. Koymans. Specifying real-time properties with metric temporal logic. Real-time
Systems, 2(4):255-299,  1990.

[KSdR+88]  R .  K  yo mans, R.K. Shyamasundar, W.-P. de Roever, R. Gerth, and S. Arun-Kumar.
Compositional semantics for real-time distributed computing. Information and Com-
putation, 79( 3):210-256,  1988.

[KVdR83]  R .  K  yo mans, J. Vytopil, and W.-P. de Roever. Real-time programming and asyn-
chronous message passing. In Proceedings of the Second Annual Symposium on Prin-
ciples of Distributed Computing, pages 187-197. ACM Press, 1983.

48



[MP83]

[MP84]

‘MP89a]

/MP89b]

MP90

OL82]

[Ost90]

[PdR82]

[PH88]

[Pnu77]

[Pnu86]

[Ron841

[ SPE84]

Z. Manna and A. Pnueli. Proving precedence properties: the temporal way. In J. Diaz,
editor, ICALP 83: Automata, Languages, and Programming, Lecture Notes in Com-
puter Science 154, pages 491-512. Springer-Verlag, 1983.

Z. Manna and A. Pnueli. Adequate proof principles for invariance and liveness proper-
ties of concurrent programs. Science of Computer Programming, 4(3):257-289,  1984.

Z. Manna and A. Pnueli. The anchored version of the temporal framework. In J.W.
de Bakker, W.-P. de Roever, and G. Rozenberg, editors, Linear Time, Branching Time,
and Partial Order in Logics  and Models for Concurrency, Lecture Notes in Computer
Science 354, pages 201-284. Springer-Verlag, 1989.

Z. Manna and A. Pnueli. Completing the temporal picture. In G. Ausiello, M. Dezani-
Ciancaglini, and S. Ronchi Della Rocca, editors, ICALP 89: Automata, Languages, and
Programming, Lecture Notes in Computer Science 372, pages 534-558. Springer-Verlag,
1989.

Z. Manna and A. Pnueh. A hierarchy of temporal properties. In Proceedings of
the Ninth Annual Symposium on Principles of Distributed Computing, pages 377-408.
ACM Press, 1990.

S. Owicki and L. Lamport.  Proving liveness properties of concurrent programs. ACM
Transactions on Programming Languages and Systems, 4( 3):455-495,  1982.

J.S. Ostroff. Temporal Logic of Real-time Systems. Research Studies Press, 1990.

A. Pnueli and W.-P. de Roever. Rendez-vous with Ada: a proof-theoretical view. In
Proceedings of the SIGPLAN AdaTEC  Conference on Ada, pages 129-137. ACM Press,
1982.

A. Pnueli and E. Harel. Applications of temporal logic to the specification of real-
time systems. In M. Joseph! editor, Formal Techniques in Real-time and Fault-tolerant
Systems, Lecture Notes in Computer Science 331, pages 84-98. Springer-Verlag, 1988.

A. Pnueli. The temporal logic of programs. In Proceedings of the 18th Annual Sym-
posium on Foundations of Computer Science, pages 46-57. IEEE Computer Society
Press, 1977.

A. Pnueli. Applications of temporal logic to the specification and verification of reac-
tive systems: a survey of current trends. In J.W. de Bakker, W.-P. de Roever, and
G. Rozenberg, editors, Current Trends in Concurrency, Lecture Notes in Computer
Science 224, pages 510-584. Springer-Verlag, 1986.

D. Ron. Temporal verification of communication  protocols. Master’s thesis, The Weiz-
mann Institute of Science, Rehovot, Israel, 1984.

D.E. Shasha, A. Pnueh, and W. Ewald. Temporal verification of carrier-sense local
area network protocols. In Proceedings of the 11 th Annual Symposium on Principles
of Programming Languages, pages 54-65. ACM Press, 1984.

49




