
October 1991 Report No. STAN-CS-91-1394

Application-Controlled Physical Memory Using
External Page-Cache Management

bY

Kieran Harty and David R. Cheriton

Department of Computer Science

Stanford University

Stanford, California 94305



Application-Controlled  Physical Memory using
External Page-Cache  Management

Kieran Harty and David R. Cheriton
Computer Science Department

Stanford University

Abstract ,
Next generation computer systems will have gigabytes of physical memory and processors in the
100 MIPS range or higher. Contrary to some conjectures, this trend requires more sophisticated
memory management support for memory-bound computations such as scientific simulations and
systems such as large-scale database systems, even though memory management for most programs
will be less of a concern.

We describe the design, implementation and evaluation of a virtual memory system that provides
application control of physical memory using external page-cache management. In this approach,
a sophisticated application is able to monitor and control the amount of physical memory it has
available for execution, the exact contents of this memory, and the scheduling and nature of page-in
and page-out using the abstraction of a physical page cache provided by the kernel. We claim that
this approach can significantly improve performance for many memory-bound applications while
reducing kernel comple,xity, yet does not complicate other applications or reduce their performance.

1 Introduction

Next generation computer systems will measure their physical memory in gigabytes, just as cur-
rent systems are rated in megabytes and previous generation systems in kilobytes. This trend has
prompted some to foretell the demise of operating system virtual memory systems and even sec-
ondary storage. Yet, secondary storage and networking growth places the effective external data
capacities in the terabyte range, maintaining the rough ratio of main to secondary storage that
has held for decades. Thus, the real eflect of the arrival of gigabyte memories is to clearly de-
lineate applications with modest memory requirements from those whose requirements are almost
unbounded, such as large-scale simulation, or whose requirements grow proportional to external
data capacities, such as data base systems. With the increasing speed of processors and the lack
of comparable improvement in I/O latency or throughput making the memory system the key per-
formance limiting factor for these demanding applications, the “instruction budget” exists to take
a more intelligent approach to physical page management.

There are three major problems with current virtual memory systems. First, an application
cannot know the amount of physical memory it has available, and it is not informed when significant
changes are made in the amount of available memory. A second deficiency is that a program
cannot efficiently control the contents of the physical memory allocated to it. Finally, a program



cannot easily control the read-ahead, writeback and discarding of pages within its physical memory.
Addressing these problems has significant performance benefits for applications, as argued below.

If an application has information about the availability of physical memory, it can make an
intelligent space-time tradeoff between different algorithms or modes of execution that achieve its
desired computation. (Clearly, making that tradeoff using virtual memory that is not backed by
physical memory fails to take into account the time cost of paging, which can easily dominate
in many computations.) For example, we have studied a large scale particle simulation [8] based
on the Monte-Carlo method that generates a final result based on the averaging of a number of
runs of the simulation. The number of runs required to generate a statistically accurate result
can be reduced (without a proportionate increase in computation time) by increasing the number
of particles (and the memory requirements). It is possible to combine the results of runs using
different numbers of particles, so that the number of particles per run does not have to be fixed
before beginning the first run of the simulation. If the program is informed of the amount of space
that is available, it can modify the number of particles to be used for runs of the simulation. It
is also possible to discard the state associated with a particular run during its execution, so that
aggressive use of space by the simulation does not cause other applications to wait a long time to
reclaim memory. This adaption to the amount of available memory is also important for parallel
database query processing [ 141 in which the amount of memory used is dependent on the amount
of parallelism, and in which the amount of parallelism used should be dependent on the available
physical memory. Another example is an application using garbage collection running in virtual
memory. When physical memory is plentiful, it may use a large amount of virtual memory to
minimize the frequency of garbage collections. However, garbage collection across a virtual address
space whose size significantly exceeds the available physical memory leads to heavy paging.

If an application can control the portion of its virtual address space contained in physical
memory, it may be able to operate far more efficiently, even though it is using a virtual address
space that far exceeds the size of physical memory. For example, a database management system
should be able to ensure that critical pages, such as those containing central indices and directories,
are in physical memory as well as be able to provide complete information to the query optimizer
and transaction scheduler on which pages it has in memory. The cost of a single extra page fault, as
arises from a conventional random page-out by the operating system, could significantly affect the
overall cost of a typical query and dramatically extend the lock hold time if locks are held across a
page fault. With multiprocessor machines, an unfortunate page fault can cost not just the elapsed
time of hundreds of thousand instructions, but that cost multiplied by the number of processes
blocked if they also hit the same page or a lock held by the blocked process.

The conventional approach of pinning pages in memory does not provide the application with
complete information on the pages it has in memory. Pinning also makes applications more com-
plex and harder to maintain. l In particular, the application must remember to pin and unpin
pages based on changing program activity, even though most of the pages are never candidates
for replacement, at least in the large memory systems of interest. The pinning approach is also
limited by the necessary limits that the virtual memory system must place on the number of pages
which can be pinned at any one time. In particular, the operating system cannot allow a significant
percentage of its physical page pool to be pinned without compromising its ability to share this
resource among applications. The amount of pinning that is feasible is dependent on the availability
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problems are similar to those associated with writing programs using overlays in a previous generation of
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of physical memory. These complications have led many systems, particularly different versions of
Unix, to restrict memory pinning to privileged systems processes or to impose severe limits on the
number of pages that can be pinned by a process.

If an application can control the read-ahead, writeback and discarding of pages within its
physical memory, it can efficiently schedule these activities to minimize the effect of I/O latencies
on its execution and minimize I/O bandwidth requirements. For example, large-scale scientific
computations using matrices can often predict their data access patterns well in advance, which
allows the disk access latency to be overlapped with current computation if efficient application-
directed read-ahead and write-behind is supported by the operating system (and the requisite I/O
bandwidth is available). For example, the large-scale parallel particle simulation cited above scans
the entire data set of 200 megabytes for each simulated time interval, and takes approximately 12
seconds to do so on a machine with 8 30 MIPS processors 2 if the entire data set is in physical
memory. The total scan time provides a significant amount of time to hide prefetching and writeback
if the data does not fit entirely in memory, if the operating system supports the appropriate
functionality.

The externa2 pagers in Mach [18] and V [6] provide the ability to implement application-specific
read-ahead and write-behind. However, they do not provide application control of physical memory
for the first two problems. Both of these systems also retain a significant amount of mechanism in
the kernel which we shall show can be migrated to the process level.

In this paper, we describe the design, implementation and evaluation of a virtual memory system
that provides the required application control of physical memory using what we call externaZ  page-
cache management. With external page-cache management, the virtual memory system provides
the application with one or more physical page-caches which the application can manage external
to the kernel. In particular, it can know the exact size of the cache in physical pages, it can
control exactly which page is selected for replacement on a page fault and it can control completely
how data is transferred into and out of the page, including selecting read-ahead, regeneration and
write-behind. In essence, a key novelty of our design is that the virtual memory system provides a
physical page cache for the application to manage, rather than a conventional transparent virtual
address space that makes the main memory versus secondary storage division transparent except
for performance.

This approach allows significant improvements in execution for memory-bound programs along
the lines described above, without compromising the simplicity or execution efficiency of conven-
tional programs. It also leads to a simpler and smaller kernel. The reduction in kernel complexity
is particularly pronounced if weighed against the expected kernel complexity of supporting virtual
memory extensions to handle the application requirements described above. The next section de-
scribes our design as implemented in the V++ kernel. The following section evaluates external
page-cache management, drawing on measurements both from the V++ implementation and a
prototype database transaction processing system. Section 4 describes related work. We close with
a discussion of our future plans and conclusions.
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2 External Page-Cache Management in V++

External page-cache management entails providing kernel operations to allow process-level manage-
ment of physical pages and process-level page-cache manager modules. This section describes an
implementation of external page-cache management in V++, a new generation of the V distributed
system.

2.1 Kernel  VM Support
A segment, the main kernel-supported VM object, is a variable-size sequence of zero or more pages,
similar to the conventional virtual memory notion of segment [5]. Pages can be added, removed,
mapped, unmapped, read and written using segment operations. V++ provides several extensions
to support external (to the kernel) management of segments.

An explicit page cache m+nager is associated with each segment that is responsible for managing
the pages associated with the segment. In particular, when a reference is made to a missing
or protected page in a segment, the event is communicated to the page-cache manager which is
expected to handle the fault following the sequence illustrated in Figure 1. In the case of a missing
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Figure 1: Page Fault Handling with External Page-Cache Management

page, the page-cache manager allocates a physical page frame from another segment (often a free-
page segment), fills it with the appropriate data and migrates the page to the segment using the
kernel MigratePages operation. MigratePages moves a set of physical page frames starting from
a designated offset in one segment to another, optionally revising the flags, such as the dirty flag,
associated with the affected page frames. The manager may map portions of the segment into
its address space to read and write the associated page frames using the standard VM memory
mapping support. In particular, to satisfy a conventional page fault, it may read the page data
from backing storage into a page associated with a free-page segment which is mapped into its
address space. It then migrates the page to the faulting segment and allows the faulting process to
continue. In the case of a copy-on-write fault, the page-cache manager allocates a page, copies the
contents of the protected page to the new page, and migrates the page (flagged as writable) to the
referencing segment, and allows the referencing process to continue. Thus, the cost of a page fault
consists of the costs of: 1) trapping to the manager, 2) filling the page, 3) migrating the page and
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4) restarting the faulting process. Filling the page usually requires either accessing backing store
or copying from another page, so this cost tends to dominate the other costs.

The fault handler can be executed by the faulting process itself or as a separate external page-
cache manager process 3. In the case where the fault is being handled by the faulting process, the
kernel transfers control to a procedure that is executed by the faulting process. The procedure
handles the fault (this may require communication with other servers such as a file server), and
restores the previous context of the faulting process. When the page-cache manager is a separate
process, the kernel suspends the faulting process until the manager has handled the fault and
requested restart.

The MigratePages  operation is used to reclaim pages from segments as part of a page recla-
mation strategy. The kernel also provides operations to access inform?-ion about the amount of
physical memory that is available, query and modify the state of the pages, including page flags like
dirty bits, and query/modify the page-cache managers of segments. The use of these operations is
described more fully in the next section.

Segments are used to implement cached files using a kernel-provided file-like block read/write
interface, specifically the Uniform Input/Output Object (UIO) protocol [4]. In particular, applica-
tions can directly read from, and write to, segments created by a file cache manager. A file read to
a segment page which does not have an associated physical page frame causes a page fault event to
be communicated to the manager of the segment, as for a regular page fault. File write operations
requiring page allocation are handled similarly. This extension allows file access performance that
is comparable to that of a system with a kernel-resident file system because, when the file is cached,
the access is a single kernel operation in both cases, and when the file is not cached, the access
time is usually dominated by secondary storage access costs.

A virtual address space in V++ is implemented as a segment, is composed from one or more
segments. This composition is achieved by binding one or more regions of one segment into another
segment. A bound region associates a range of addresses (page-aligned and a multiple of pages)
in one segment with an equal-sized range of blocks in another segment. A reference to an address
covered by a bound region in one segment is effectively a reference to the corresponding address in
the associated bound segment. The binding facilities also support a copy-on-write binding in which
pages are effectively bound to a source segment until modified. On write to such a page, the binding
is changed to refer to that in the destination segment after the page-cache manager has handled the
necessary page allocation and copying, as described above. A MigratePages operation operates
on the pages in bound regions by operating on the associated segments. Migrating a page to a
segment is treated as a write operation for the purposes of segment protection and copy-on-write
behavior.

A virtual address space with two bound regions to two separate segments is illustrated in
Figure 2. The kernel manipulates hardware-supported VM translation tables such as page tables
and TLBs  to map pages with the protections specified in the segment and bound region data
structures.

In comparison to the external pager approach supported by the Mach kernel, the V++ kernel
does no page reclamation and no page writeback. In fact, its functionality matches that required in
a real-time embedded system with no demand paging, but wanting to use virtual address spaces.

3 We use the term page-cache manager to refer to a module outside the kernel managing segments unless otherwise
noted. The only kernel module to serve as a page cache manager, the kernel memory server, is a page-cache manager
of last resort.
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Figure 2: ‘Kernel Implementation of a Virtual Address Space

In this case, the kernel facilities would serve to manage physical memory and catch erroneous
references to incorrect virtual addresses. With the information and control exported by the kernel
and the efficient communication to page-cache managers on page fault and page protection fault
events, process-level modules can readily implement a variety of sophisticated schemes, including
replicated writeback, page compression and logging, and it can coordinate writeback with the
application, as is required for clean database transaction commit.

Application-specific page management techniques are discussed in the next subsection. The
following subsection describes the system page-cache manager which manages page allocation to
application-specific page-cache managers.

2.2 Application-Specific Page-Cache Managers
An application-specific page-cache manager is responsible for allocation of physical pages to the
application segments it manages. To ensure that pages are available to handle page faults, it
can maintain a free-page segment to serve as a holding area for available pages, The free page
segment is similar in function to the free page list in most virtual memory systems but it is
specific to a particular page-cache manager. More complex schemes are appropriate for some
applications. For example, the page-cache manager for a database management system (DBMS)
may use temporary index segments as free-page segments, and simply steal from these scratch areas
rather than maintain explicit free areas.

Because a segment is implemented as essentially an open file, and the cost per open file is small,
the system cost of having multiple free-page segments is minimal. The application is more limited
by the complications and fragmentation resulting from the use of multiple segments. For example,
a DBMS page-cache manager might have different page-caches for indices, views and relations,
making it easier to track memory allocation to these different types of data, but may not find
having a segment per index effective.

The page-cache manager can implement standard page reclamation strategies, such as the var-
ious “clock” algorithms [ll]. In particular, it can periodically migrate pages from the segments it
manages back to a free-page segment using MigratePages, keeping track of the segment and page
number for each page it migrates, and writing back the dirty pages. If a given page is referenced
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through the original segment before the page is reused, the page-cache manager simply migrates
it back to the original segment. However, it can also use application-specific strategies, such as
deleting whole segments of temporary data that it knows are no longer needed or that it is better
to discard and regenerate in their entirety (rather than be paged out and back in, or regenerated a
page at a time). The page-cache manager is informed when a segment is closed or deleted, so that
it can reclaim the segment pages at that time.

An application-specific page-cache manager can implement application-specific read-ahead, write-
behind, page discard and regeneration policies and techniques. For example, as part of a large-scale
matrix computation, the page-cache manager may be able to prefetch pages of matrices to min-
imize the effect of disk latency on the computation while recognizing that it can simply discard
dirty pages of some intermediate matrix rather than writing them back, thereby conserving I/O
bandwidth.

On initialization, a page-cache manager requests the creation of its free-page segments with
initial page allocations from the system page-cache manager. It then creates further segments,
possibly on demand from the application, to handle application data, specifying the managing
segment for these segments to be one of the free-page segments. The manager itself is associated
with the management of these segments as owner of the managing segment. This server can reside
in the same address space as the application(s) it manages or in a different address space.

A page-cache manager needs to ensure that its own code and data pages are not subject to
random replacement by the rest of the system in order to avoid deadlock. To this end, there is an
operation to change the managing segment for a specified segment, WriteManagingSegment.  On
initialization, the page-cache manager can set itself as the manager of the segments representing
its own code and data. Recursive page faulting in the manager is avoided by “pretouching” the
critical pages immediately before and after assuming ownership, and retrying the initialization if
this fails.

A default page-cache manager implements cache management for conventional programs, mak-
ing them oblivious to external-page management. This manager executes as a process-level server
outside the kernel. The default page-cache manager is currently created as part of the “first team”
in V++. The first team is created as a memory-resident set of systems servers immediately after
kernel initialization. Thus, the default page-cache manager does not itself page-fault.

In the V++ implementation, the UIO cache directory server (UCDS) [6] has been extended to
act as default page-cache manager. This server manages the V-l-+ virtual memory system effectively
as a file page cache. All address spaces are realized as bindings to open files, as in SunOS 4. The
original role of the UCDS was to handle file opens and closes so it could add files to the cache on
demand and remove them as appropriate. In this original form, page faults were handled by the
kernel once the mappings were established. The modifications for external page-cache management
required extensions to this server to manage a free-page segment and to handle page fault requests,
page reclamation and writeback. However, because it was already maintaining
cached files on a per-file basis, the extensions to its data structures and overall

information about
functionality were

relatively modest.
To determine the memory requirements of applications using default page-cache management,

the default page-cache manager implements a clock algorithm [ll] that allocates pages to each
requestor based on the number of pages it has referenced in some interval. The implementation of
this algorithm requires passing a fault to the page-cache manager when a process first references

‘SunOS  is a trademark of Sun MicroSystems  Inc.



a page after the page protection bits are set to disallow all references. The handling of the fault
requires changing the protection of the referenced page. To reduce the overhead of handling these
faults, the default page-cache manager can change the protection on a number of contiguous pages,
rather than a single page, when a fault occurs.

2.3 System Page-Cache Manager
The System Page-Cache Manager (SPCM) is a process-level server that implements a global policy
for allocation of memory among page-cache managers, including the default page-cache manager.
The SPCM is the only process-level component permitted to allocate and free physical memory.
If another process-level component invokes a kernel operation to allocate physical memory to a
segment, the request is forwarded to the SPCM. If the SPCM finds the request acceptable, it
allocates physical memory by migrating pages from a special kernel segment. To free physical
memory associated with a segment, the SPCM migrates the pages to the special kernel segment.

An application-specific page-cache manager can request additional physical pages from the
SPCM, the response depending on the availability of memory. A page-cache manager can also
request information from the SPCM about overall memory usage. A page-cache manager must
be prepared to respond to requests from the SPCM to release physical pages, which may arise in
response to increased demand from other page-cache managers. The application-specific page-cache
manager is responsible for freeing pages back to the SPCM in a timely fashion. It is also responsible
for performing any necessary writebacks. The SPCM has the ability to unilaterally reclaim pages
using the MigratePages operation, although this option is only intended to handle malfunctioning
page-cache managers.

The SPCM allocates memory to page-cache managers based on its policy and on information
provided by the page-cache managers. A simple allocation policy is to slice the memory equally
among memory requestors if all requests cannot be satisfied. If a page-cache manager requests less
than its slice, the excess memory is divided fairly among those requestors that have requested more
than their slice. Periodically, the SPCM requests each page-cache manager to provide information
about its memory requirements. The SPCM does not try to assess the requirements of page-cache
managers by monitoring reference patterns. To discourage wasteful usage of memory when memory
requirements exceed memory availability, the SPCM implements a cost model that encourages
memory users to relinquish memory when aggregate demand approaches supply.

The SPCM also requests information about the number of pages allocated to a particular
page-cache manager that require writeback. This information is used by the SPCM to reduce the
delay associated with reallocation of physical memory from one page-cache manager to another.
Estimating the delay is especially significant when the I/O bandwidth available for writeback is
low. The number of pages requiring writeback is not necessarily the same as the number of pages
allocated to a page cache manager that have their dirty bit set, For example, temporary objects
and the uncompressed form of a compressed object that has not been modified, do not require
writeback, even though the pages associated with these objects may be dirty. Based on the data
from page-cache managers and its policy on delay, the SPCM may tell a page-cache manager to
keep some number of its pages clean. If the SPCM expects to meet its delay targets with the
current number of pages that require writeback, it does not ask the page-cache managers to clean
any pages.

For brevity, the above description omits many details of the virtual memory system that are
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similar to conventional memory systems, or have been described previously [6],  but does cover the
essential aspects of the design.

3 Evaluation

We have taken a two-pronged approach to evaluating external page-cache management. First, we
implemented external page-cache management in the V++ kernel and systems servers to investigate
the feasibility of the design and its complexity implications. We measured the performance of the
implementation. Second, we evaluated the benefits of using external page cache management in a
prototype of a database management system that uses a large amount of memory.

3.1 Measurements of System Primitives
External page-cache management was implemented in the V++ system by modification to the
kernel virtual memory manager and extensions to the UCDS. In the kernel that uses external page-
cache management, the machine independent virtual memory module is approximately 4500 lines
of C code, as compared to approximately 6900 lines for the previous version. These totals include
comments, blank lines and headers with function prototypes. Most of the excised code is migrated
to the page-cache managers so there is no real saving in the total amount of the code required
for the same functionality. We view it as significant in reducing the size of the kernel, (as well as
providing greater external functionality).

The performance of the implementation was evaluated on a DECstation 5000 (R3000 processor
with 33 MHz clock) which has a 4 kilobyte page size. The cost of a page fault that is handled by
the faulting process without communicating with other servers is 97 microseconds.

This page fault handling cost is less than in current commercial systems. For example, the cost
of page fault handling by the application is significantly lower than the kernel cost of handling a
page fault to newly allocated data in ULTRIX 4.1 on identical hardware. In ULTRIX, this cost
is 175 microseconds, which is dominated by the overhead of automatic zeroing of the page. Note
that this zeroing is required for security because the page may be reallocated between applications,
whereas this is not the case with application-controlled page cache management unless the page is
being given to a new page cache manager.

Low overhead page fault handling allows efficient implementation of user level algorithms that
use page protection hardware, like those described in [a]. Examples of these algorithms include
mechanisms for concurrent garbage collection and concurrent checkpointing. In ULTRIX 4.1 on a
DECstation 5000, the cost of a user level fault handler 5 for a protected page which simply changes
the protection of the page is 152 microseconds. This is over 50% higher than the cost of handling
a full fault (which requires more real work) using external page-cache management. It is worth
noting that ULTRIX is quite efficient at user level fault handling, relative to systems like Mach or
SunOS.  For example, in Appel and Li’s measurements for the DECstation 3100 [2] the overhead of
Mach fault handling operations was over twice the overhead of ULTRIX for similar operations.

51n  ULTRIX a user-level fault handler can be implemented using a signal handler and the mprotect  system call,
which changes the protections of an application Droeram’s  memory.



3.2 Application-Specific Page-cache Performance
To explore the performance benefits of application-specific page-cache management we developed
a prototype of a database transaction processing system that exploits a space-time tradeoff in its
use of indices for efficient join processing. In essence, if memory is plentiful, it is more efficient to
perform large joins by generating indices for the relations in advance. If however, the creation and
references to the indices would result in additional paging, it is better to discard indices for which
there is not enough space, and regenerate them in memory when they are needed.

The prototype was run using 6 processors of a Silicon Graphics 4/380 on a 120 megabyte
database. The transaction arrival rate was 40 transactions per second, The transaction mix was
95% small DebitCredit  type transactions with the remaining 5% being joins of two relations to
update a third. A hierarchical locking scheme is used for concurrency control. The prototype is a
mixture of implementation and simulation. The locks were implemented and the parallelism is real.
However, the execution of a, transaction is simulated by looping for some number of instructions
and a page fault is simulated by a delay that is equivalent to the time required to handle a page
fault on the SGI 4/380.

The measurements in Table 1 show the performance differences between four configurations of
the database prototype.

Configuration Average Response Worst-case Response
No index 866 3770

Index in memory 43 410
Index with paging 575 3930
Index regeneration 55 680

Table 1: Effect of Memory Usage on Transaction Response Times (ms)

The first configuration shows the response time when no index is used for joins. The second
configuration shows the reduction in response time achieved by using an index for accessing relations
for performing a join, in the case where the indices are always in memory. In the case of the
configuration labeled “index with paging”, a megabyte index is paged in every 500 transactions (on
average every 12.5 seconds) because the size of the virtual memory used by the program exceeds
the memory allocated to the program by 1 megabyte.

These measurements show that indices are of significant benefit to response time if the (physical)
memory is available, but are of limited benefit if the size of the database system’s virtual memory
exceeds the available physical memory by less than 1% and there is a modest amount of paging.

If the database system is informed that its virtual memory size exceeds the physical memory
allocated to it, it can discard some indices and regenerate them when necessary. The “index
regeneration” entry shows the performance benefits of this approach after the physical memory
allocated to the database system is reduced by 1 megabyte. In this case, the average response
time is an order of magnitude less than the paging case and is only 27% worse than the “index in
memory” case.

This example demonstrates a case of application-controlled page cache management having
significant benefits even though the application’s virtual memory only slightly exceeded available
physical memory. We expect similar benefits with other memory-intensive applications.
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4 Related Work

The inadequacy of the conventional “transparent” virtual memory model is apparent in recent
developments and papers in several areas. Hagmann [lo] proposed that the operating system
has become the wrong place for making decisions about memory management. He discussed the
problems with current VM systems, but did not present a design that addresses these problems.

Both Mach and V extend the virtual memory system to allow the use of application-specific
backing servers or external pagers. However, these extensions do not address application control
of the page cache and are primarily focused on the handling of backing storage. The PREMO
extensions to Mach [12] add ress some of the shortcomings of Mach noted in Young’s thesis [ 191.
PREMO supports user-level page replacement policies. The PREMO implementation involves
adding more mechanism to the Mach kernel, to deal with one aspect of the page-cache management
problem - page replacement, thus complicating rat her than simplifying the kernel, as we have done.
PREMO also does not export information to the application level about how much memory is
allocated to a particular program.

In a recent paper [15] S ubramanian describes a Mach external pager that takes account of
dirty pages that do not need to be written back. She shows significant performance improvements
for a number of ML programs by exploiting the fact that garbage pages can be discarded without
writeback. She proposes adding support to the kernel for discardable pages to remedy two problems
associated with supporting discardable pages outside the Mach kernel. First, an external pager does
not have knowledge of physical memory availability. Second, there are unnecessary zero-fills (for
security) when a page is reallocated to the same application. Both of these problems are addressed
by external page-cache management without adding special mechanism to the kernel.

Database management systems have demanded, and operating systems have provided, facilities
for pinning pages (such as the Unix mpin and mlock calls) and limited advisory capability, such
as the Berkeley Unix madvise call. However, these approaches provide simple ways to prevent
page out or to influence paging behavior, not a real measure of control of the page cache by a
program, as we have proposed. Specifically, the current madvise system call only provides hints for
sequential readahead and page reclamation for mapped files. Support for application-designated
page replacement on a per-page basis and notification of changes in available physical memory are
well beyond the scope of the design, as well as the implementation, of these current facilities.

Discontent with current virtual memory system functionality is evident in the database liter-
ature, both in complaints about the virtual memory system compromising database performance,
and in the calls for extended virtual memory facilities 113,  161  or the elimination of the virtual
memory system altogether. We see our approach as providing the database management systems
with the information and control of page management demanded in this literature. We achieve
this without compromising the integrity of the operating system, as some of the proposals would,
and without compromising the general-purpose functionality of the system, as would result from
“throwing out” the virtual memory system altogether, as others have advocated.

This work has some analogy to proposed operating system support for parallel application
management of processors. For example, Tucker and Gupta [17] show significant improvements
in simultaneous parallel application execution if the applications are informed of changes in the
numbers of available processors and thereby allowed to adapt, as compared to the conventional
transparent, oblivious approach. Anderson et al. [l] and Black [3] have proposed kernel mecha-
nisms for exporting more control of processor management to applications. Just as in our work, this



processor-focused work is targeted to the demanding applications whose requirements exceed what
are, by historical standards, plentiful hardware resources yet is largely irrelevant to many conven-
tional applications, such as software development tools and utilities. Our work complements this
other work by focusing on application-control of physical memory, rather than control of processor
allocation.

5 Future Extensions

A generic page-cache manager library is needed to minimize the cost and complexity of devel-
oping new application-specific page-cache managers, We are using object-oriented programming
techniques to provide a basic framework for page-cache management while allowing extensibility to
meet the requirements of specific applications.

It seems feasible to add the functionality of external page-cache management to the Unix kernel
without major restructuring. Kernel extensions would be required to designate a mapped file as
a page-cache file, meaning that page frames for the file would not be reclaimed (without sufficient
notice), just as with the page-cache segments in V++. Second, a kernel operation, such as an
extension to the ioctl system call, would be required to set the managing page-cache open file
associated with a given file and to allocate pages. (The kernel would be the default page-cache
manager, as it effectively is now.) Finally, the ptrace and signal/wait mechanism can be used
to communicate page faults to the process-level page-cache manager. The simplest solution to
protecting the page-cache manager against page faults on its code and private data is to simply
lock its pages in memory, a facility already available in Unix (although this may require the page-
cache manager to run as a privileged process). With these simple modifications, it seems feasible to
make many of the benefits of external page management available in Unix (the exception being the
reduction in kernel size in V-t-+).  The programming of page-cache management would be a small
percentage of the cost and complexity of application systems such as database management systems
and large-scale computations which motivate these extensions, and the performance benefits would
be significant.

Finally, additional work is needed and planned for implementing cooperative memory manage-
ment between the system page-cache manager and application-specific page-cache managers under
system conditions that normally cause swapping 6. In a conventional system, the memory manager
must discover that an application’s effective working set is larger than the amount of memory it can
be allocated under the current load conditions. With application-specific page-cache managers, the
application can adapt to less memory in some cases and otherwise indicate the amount of memory
it requires to run efficiently. With the system page-cache manager implementing a cost-model for
memory and processing, the application-specific page-cache managers can optimize for throughput
and response, as appropriate for their application, while the system page-cache manager optimizes
system performance overall. While this work has yet to be done, we expect that many established
virtual memory techniques will apply and that radically new techniques are unlikely to be required
in this domain.

from
p=fFs
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6 Concluding Remarks

The large memory systems of the next generation of computer systems pose a new set of challenges
to operating systems memory management. While the traditional emphasis of virtual memory
systems on statistically fair and efficient page replacement is becoming less important, the need
has grown for direct control of physical memory by memory-bound applications as a result of the
increasing speed of processors, the increasing size of physical memory and the increasing  size of
these applications and their data sets (and the lack of dramatic improvement in I/O throughput
and response times). This paper has described external page-cache management as a way to address
these issues.

External page-cache management provides an application view of physical memory as one or
more physical page caches, allowing each application to create and explicitly manage the physical
memory it has been allocated in an application-specific way. This abstraction contrasts with the
conventional approach which’ provides an abstraction of virtual address spaces, making the physical
page cache transparent to the applications, except for its performance impact. Hiding actions and
information from applications that make a difference in cost of hundreds of thousands of instruction
times for a single memory reference is not reasonable and, by our design, not necessary.

External page-cache management has been implemented in the V++ system with relatively
modest additions to the kernel. The changes lead to a significantly simplified kernel, because
page reclamation, most copy-on-write support and distributed consistency can all be removed to
the system page-cache manager. Our approach also subsumes the external pager mechanism of
Mach and V. External page-cache management obviates the need to provide kernel support for the
various application-specific advisory and monitoring modules that would otherwise be required in
the future, causing a significant increase in kernel code and complexity. That is, we argue that
the complexity and code size benefits are best appreciated by considering the size and complexity
of version of the Unix madvise module which could deal with the memory management problems
raised in this paper.

External page-cache management 110~s programs to successfully adapt to changes in the
amount of physical memory available to them, leading to more efficient application and system
execution. It is strange that, while the space-time tradeoff is well-recognized by the algorithms
community and a choice of algorithms exists for many problems that offer precisely this tradeoff,
virtual memory systems have not previously exported the information and control to the applica-
tions to allow them to make the choice of algorithm intelligently. With the cost of a page fault in
the hundreds of thousands of instructions for the foreseeable future, an application can only expect
to trade space for time if the space is real, not virtual.

Our approach develops further a principle of operating system design we call eficient  complete-
ness, described previously in the context of supporting emulation [7]. The operating system kernel,
in providing an abstraction of hardware resources, must provide efficient and complete access to
the functionality and performance of the hardware. In the context of emulation, this approach is
clearly necessary to be able to efficiently emulate whatever service interfaces are defined by the
emulated system. In the context of memory-demanding applications, this approach is necessary so
that the operating system never “stands between” the application and the performance that the
hardware resources can potentially deliver.

Physical RAM memory is effectively used as a cache for secondary storage in modern virtual
memory systems, mapped as pages by hardware memory mapping facilities. Thus, the complete
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and efficient abstraction of this hardware resource is that of a page-cache. Fair multiplexing of
memory among the multiple competing applications is achieved by managing the physical page
allocation among these page caches. The simple but restrictive transparent virtual address space of
conventional system design can be provided by a standard page-cache manager, for conventionally
structured applications. This principle of efficient completeness generally leads to a relatively low-
level service interface, thereby being in concert with the goals of minimalist kernel design for kernel
management of resources such as memory.

In summary, external page-cache management is a promising candidate for structuring the next
generation of kernel virtual memory systems, addressing both the growing comple,xity of current
conventional virtual memory systems and the growing demands of applications. In the short term,
it seems feasible to extend the mapped file facility of Unix to provide application control and
potentially stem the growing complexity of the Unix kernel. We expect the most exciting page-cache
management results will come from the developers of database management systems, large-scale
computations and other demanding applications whose performance is currently badly hindered by
the haphazard behavior of conventional virtual memory management.
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