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January 14, 1992

Abstract

This paper explores performance issues for severad prominent approaches to parallel dense Cholesky fac-
torization. The primary focus is on issues that arise when blocking techniques are integrated into parallel
factorization approaches to improve data reuse in the memory hierarchy. We first consider panel-oriented ap-
proaches, where sets of contiguous columns are manipulated as single units. These methods represent natural
extensions of the column-oriented methods that have been widely used previously. On machines with mem-
ory hierarchies, panel-oriented methods significantly increase the achieved performance over column-oriented
methods. However, we find that panel-oriented methods do not expose enough concurrency for problems that
one might reasonably expect to solve on moderately parallel machines, thus significantly limiting their perfor-
mance. We then explore block-oriented approaches, where square submatrices are manipulated instead of sets
of columns. These methods gresatly increase the amount of available concurrency, thus dleviating the problems
encountered with panel-oriented methods. However, a number of issues, including scheduling choices and
block-placement issues, complicate their implementation. We discuss these issues and consider approaches

that solve the resulting problems. The resulting block-oriented implementation yields high processor utilization
levels over a wide range of problem sizes.

1 Introduction

This paper studies dense Cholesky factorization on multiprocessors with memory hierarchies. The dense
Cholesky factorization problem arises in a number of problem domains, including linear programming, ra-
dios@ computations, and boundary element methods, and it also in many ways comprises the computational
kernel of the important sparse Cholesky factorization problem. The primary difference between this work and
the wealth of existing work on paralel dense Cholesky factorization (for example, [1, 7, 8, 11]) is that we
consider the impact of memory hierarchies on parallel performance. We study paralledl machines in which each
processor has a small high-speed cache and a portion of the global main memory. Such machines offer the
potential for extremely high performance and extremely cost-effective performance, and consequently they are
becoming increasingly more common (e.g., Intel Touchstone, Stanford DASH multiprocessor [l0]).

These machines, however, raise new issues for the efficient implementation of parallel dense Cholesky
factorization. In particular, in the presence of a memory hierarchy the computation must reuse significant
amounts of data in the faster levels of the hierarchy (i.e, the caches) to achieve high performance. This
data reuse can be accomplished by using blocking techniques [2, 4, 6], where sub-blocks of the matrix are
retained in the cache across a number of uses. However, as the block size is increased to provide greater data
reuse, the available concurrency decreases, thus limiting the number of processors that can be used effectively.
Understanding the resulting tradeoff is the primary focus of this paper. We study this tradeoff by first proposing
a performance model that takes the effect of data reuse into account and then simulating aternative parallel
approaches using this model.

This paper is organized as follows. We begin in Section 2 by describing existing work on parallel dense
Cholesky factorization. In particular, we first describe details of a method that manipulates columns of the



matrix [7], and then extend it so that it manipulates panels, or sets of contiguous columns, to increase data
reuse. Section 3 presents our performance model, which captures the benefits of data reuse for dense Cholesky
factorization in a precise way.

In Section 4, we use this performance model to study the paralel performance of panel-oriented methods
(Such methods are becoming increasingly popular; for example, the paralel version of the LAPACK dense linear
algebra library is currently being written using such an approach [5]). We simulate panel-oriented methods,
considering a wide range of problem sizes, machine sizes, and panel sizes. We find that performance varies
quite dramatically as the panel size is changed. However, even for relatively large problem sizes the maximum
speedups obtained are substantially less than linear in the number of processors. We explain the less-than-perfect
speedups by looking at two factors that bound speedups, the critical path and Joad balance of the computation.
Section 5 then looks at a modified panel-oriented approach that attempts to improve these performance bounds by
splitting panel operations into smaller pieces. We show that overall performance can only be dightly increased

Section 6 then considers factorization approaches that abandon the notion of panels entirely and instead
distribute square sub-blocks of the matrix among the processors. Such approaches have been shown to possess
a number of important advantages. For one, they reduce interprocessor communication volume significantly
{1, 11, 15). For this paper, however, our interest in these approaches is not on communication volume, but rather
on a second advantage, the enormous increase in concurrency that such approaches generate. With more available
concurrency, the tradeoff between large blocks and reduced concurrency becomes much less of a limitation. We
find, however, that block-oriented approaches bring up a number of important considerations involving the
mapping of blocks to processors and the scheduling of block tasks. We show that these considerations must be
effectively addressed before a block-oriented scheme can redlize its full potential. A brief discussion follows in
Section 7 and conclusions are presented in Section 8.

The contributions of this paper do not come from new agorithms for dense paralel factorization; the
algorithms we consider are quite well known. Instead the contributions come from the paper’s formalization
and quantification of widespread notions about the tradeoffs between data reuse and problem concurrency. We
develop a smple model for understanding the performance of dense factorization approaches, By studying this
model, it becomes clear that panel-oriented approaches have serious scalability problems. We also present a
thorough study of block-oriented methods, including an examination of the more practical scheduling and block
distributions issues that arise for these methods. Another contribution is in the area of performance prediction.
We present detailed results of extensive simulation, predicting parallel performance on problems much larger
than those that could reasonably be solved on current machines.

2 Background

2.1 Paralled Dense Cholesky Factorization

The dense Cholesky computation factors a symmetric positive definite matrix 4 into the form 4 = L L 7, where
L is lower triangular. We begin our discussion by describing an existing approach [7] for performing dense
Cholesky factorization on a multiprocessor. The method can be expressed in terms of rows or columns, but
the results of Geist and Heath [7] indicate that column-oriented methods are to be preferred. We therefore
concentrate on column-oriented methods, although we occasionally comment about how our results would apply
to a row-oriented approach.

The column-oriented computation is accomplished through the use of two simple primitives. The first
primitive, the cmod( } or column modify operation, adds a multiple of one column into another column to zero
an entry in the upper triangle of the factor. The second primitive, the cdiv( ) or column division operation,
divides a column by the sguare-root of its diagonal. The method of Geist and Heath [7] assigns each column of
the matrix A to some processor. The owner processor performs al modifications to the column. In a distributed-
memory environment, the non-zeroes of a column are placed in the local memory of the owner processor. The
columns are assigned in a wrap-mapped fashion, where column : is assigned to processor : mod P, in order to
balance the computational load among the processors.

To illustrate, consider a simple example. As a first step of the parallel computation, the processor that owns
column O of L performs a c¢div(0) operation on that column, and broadcasts the result to all other processors.
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Figure 1. The pmod() operation.

A processor receiving a column performs al cmod(j. k) operations from the received column & to al columns
J that it owns. When a column j has received all modifications, the owner performs a cdiv(j) on that column
and broadcasts it. In rough pseudo-code, each processor executes the following:

1. Set L =A

2. while I own a column that is not complete

3 if some j that I own has received all modification
4. cdiv(j)

5. broadcast J

6 else receive some k

7 for each j >k that I own

8 emod(j. k)

Experiments with this column-oriented method [7] have shown it to be an effective approach for a variety
of paralel machines. However, this method achieves little data reuse, and will therefore achieve extremely
low performance on machines that rely on such data reuse to achieve high performance. We now consider the
performance improvements that are possible when this approach is modified to manipulate larger portions of the
matrix, thus increasing the potential for data reuse.

2.2 Pand-Oriented Parallel Dense Cholesky Factorization

The above parallel dense Cholesky factorization approach can be extended in a natural way to make better use of
a memory hierarchy. Instead of distributing individua columns to processors, the approach can instead distribute
sets of adjacent columns, or panels [5, 12, 13]. For example, a panel-oriented factorization method might divide
an n x n matrix into n/4 panels, each containing 4 contiguous columns. Each operation in the column-oriented
parald factorization algorithm has a close analogue in a pand-oriented approach. The cmod( ) operation is
replaced by a more complicated operation, which we refer to as pmiod( ), for panel-modify. Similarly, the cdi ()
operation is replaced by a pdi v( ) operation. Finaly, the broadcast of a column is replaced by the broadcast of
a panel. Note that the column-oriented approach is a special case of the panel-oriented approach.

The actual implementations of panel-oriented primitives are quite straightforward. We now provide a brief
description, beginning with the implementation of the pmod( ) primitive. In Figure 1, we show a pictorial
representation of the this operation. A destination pand is modified by some source panel by performing
a matrix-matrix multiplication using submatrices from the source panel and subtracting the result from the
destination. The first matrix in the matrix-multiply operation is the source panel, below the diagonal of the
destination (the 4 and B submatrices in Figure 1). The second matrix is the transpose of the portion of the
source pane in the rows corresponding to the triangular diagonal block of the destination (the B matrix in the
figure). The result is subtracted from the destination. Since the result of multiplying the matrix B by its own
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Figure 2: The pdiv() operation.

transpose is symmetric, the primitive is actualy implemented as two steps. In the first step, B is multiplied by

its transpose, and only the lower triangle of the result is computed. In the second step, .4 is multiplied by the
transpose of B.

Moving on to the implementation of the pdiv() operation (see Figure 2), we note that this primitive involves
two distinct steps. In the first step, the diagonal block (" at the top of the panel is factored. In the second step,

the portion D of the panel below the diagona block is multiplied on the right by the inverse of the diagona
block (i.e, D — DC—1y,

Recall that the point of moving to these higher-level primitives is to alow the computation to be blocked [2,
4, 6] to increase the amount of data reuse and consequently improve performance. This blocking is accomplished
by reading some block of data into the high-speed processor cache and reusing it a number of times. A reasonable
blocking approach is apparent from Figure 1. The B T matrix can be retained in the cache and used repetitively
to multiply rows of the source pand to produce updates to rows of the destination. We will discuss the specific
benefits of this blocking in the next section.

3 A Performance Model for Hierarchical-Memory Multiprocessors

The results presented in this paper are based on a parallel performance model coupled with a multiprocessor
simulator, In this section, we describe our performance model. The model is meant to include all essentia factors
that affect paralel performance on hierarchical-memory multiprocessors, while at the same time abstracting away
many of the inessentia details.

3.1 Parallel Machine Organization

In this study, we focus on multiprocessors with hierarchical memory systems, as shown in Figure 3. The two
most important features of these machines are per-processor caches and distributed main memory. In these
machines, cache accesses are much faster than local memory accesses, and loca memory accesses are much
faster than remote memory accesses. As a result, if an agorithm can make effective use of this memory
hierarchy, it can significantly reduce the average memory access time seen by the processor as well as reducing
the bandwidth requirements both between a processor and its local memory and aso between processors on the
global interconnect. These factors make this class of machines very attractive both from scalability and cost-
performance points of view (especialy in contrast to vector supercomputers that rely on brute-force bandwidth).
The downside, of course, is the algorithmic complexity and programming effort needed to exploit the memory
hierarchy, which is what we reflect on in this paper. Finaly, note that a distributed main memory does not
imply a message-passing memory model; shared-memory machines can also be built with distributed memory
(the Stanford DASH machine [10] is one example).
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Figure 3 : Parallel machine.

3.2 Basic Model Assumptions

We now describe the assumptions that we make in order to develop a performance model. The goadl is that the
model be simple enough to be easily analyzable while a the same time accurate enough to provide meaningful
results. This subsection presents these assumptions in a qualitative manner; the quantitative implications of
these assumptions are described in the following subsection.

In our model, al costs related to the factorization program are attributed to floating-point operations (including
the costs of fetching data from memory and the costs of integer operations). Thus, we model the runtime of a
program in terms of the number of floating-point operations performed and the cost of each operation. We will
be more precise about these costs in the next subsection.

Regarding interprocessor communication, we assume that such communication can be thought of as a series
of messages between the processors. Note that we use the same modd for both message-passing and shared-
memory programming models, even though in the shared-memory mode such messages would be exchanged
using ordinary load and store instructions, We also assume that the only cost associated with sending a message
is a latency cost. Thus, neither the sending nor receiving processors expend any processing cycles in transferring
a message; the message is simply unavailable at the destination until some amount of time after it is sent. We
believe that this assumption is reasonable, since many modem multiprocessors contain dedicated hardware to
handle message transmission. For example, the Stanford DASH machine [10] contains a prefetch instruction
to fetch data from a distant memory node while the fetching processor continues to operate on available data.
Similarly, many message-passing machines possess hardware to send, forward, and recelve messages with little
or no help from the associated processors. In both cases, the processors expend some number of cycles to
handle a message even with this dedicated hardware, but in our context these costs are small in comparison to
the amount of work that is done in response to a message.

Regarding communication latency, we assume that it has three components. a fixed latency associated with
sending the message, a transfer latency that depends on the length of the message, and a small random component.
The fixed latency accounts for message setup and buffer alocation costs, as well as latencies in the hierarchica
memory system. The transfer latency accounts for the fixed bandwidth available on the interconnect between the
sending and receiving processors. The small random component accounts for a number of unpredictable delays
within the processor and the interconnection network that are inevitable in any asynchronous multiprocessor.

Our final assumption regarding interprocessor communication is that arriving messages are placed in the
local memory of the receiving processor, as opposed to being placed in the receiving processor’s cache. To read
the contents of the message, the receiving processor must therefore pay the costs associated with accessing its
loca memory. While one could conceive of a communication scheme where messages would be placed closer



to the processor in the memory hierarchy, such a design would complicate machine design and it could easily
lead to the displacement of actively used data.

3.3 Domain-Specific Model
33.1 Uniprocessor Performance Model

One of the most important costs associated with performing parallel dense Cholesky factorization is certainly
the cost that each processor incurs in performing floating-point operations. Recall that this cost is not a constant
for a particular problem: different panel sizes lead to different processor performance levels. To modd the effect
of the panel size on overall runtime, we define a quantity, 7., ( B ), to be the average cost of performing a single
floating-point operation within a panel operation that manipulates panels of size B.

In order to assign an actual vaue to 7,, (B ), we now describe a simple model for the performance of
a hierarchical-memory processor on blocked matrix-matrix multiplication, the most prevaent operation in the
panel-oriented factorization. While the relatively infrequent pdiv( ) operation is not a matrix-matrix multiplication
and thus is not directly addressed by this analysis, we note that the results hold for this operation as well.

Our uniprocessor performance model follows the model of Gallivan et. a. [6] closely. As was mentioned
earlier, we assume that in executing a program, the processor incurs a certain cost for performing machine
instructions, and a certain cost for fetching data from memory. The total runtime is the sum of these two
components. To obtain an estimate for the magnitude of each of these two components, we consider the
execution of an entire pmod( ) operation. This operation requires the multiplication of an » x s matrix by an
s X t matrix. The number of floating-point operations is 2rst, and the number of floating-point reads is also
2rst.

We assume in this paper that the goal of parallel dense factorization is to solve very large problems. Based
on this assumption, we further assume that no panel of the dense matrix would fit in the processor cache. In
other words, we assume that even single column of the dense matrix is too large to fit in a cache. The miss
rate on the memory references for an unblocked matrix-matrix multiplication would therefore be expected to be
100%. In other words, one cache miss would be generated for every floating-point operation.

By blocking the matrix-matrix multiply, the number of misses can be reduced by a factor of B, where B is
the block size, thus reducing the miss rate to one miss every B floating-point operations [6]. The benefits of
blocking the computation do not increase without bound, however. They are limited by two factors. First, the
block must fit in the processor cache. Second, the block size can be no larger than the minimum of », ¢, and
t, the dimensions of the matrices. Rather than considering the size of the processor caches in our performance
analysis, we instead assume that memory reference costs become a trivial fraction of total runtime once some
relatively large block size is reached, and that further increases in the block size beyond this point have little
effect on performance. We also assume that this practical maximum block size is small enough to fit in any
reasonable cache. A 32 by 32 block appears to satisfy both of these criteria reasonably well.

Returning to our cost model, we define O to be the cost of performing a single floating-point operation
without memory system costs and we define 1/ to be the cost of fetching a single floating-point datum from
main memory. The units for each of these quantities are arbitrary, since it will actually be the ratio of these
quantities that is important. Recall that a block size of B results in one cache miss every B floating-point
operations. In terms of the quantities just defined, we therefore have

Top(B) = 0 + M/B.

This paper will measure paralel performance in terms of the improvement that is obtained over a single
processor solving the same problem. Parallel performance will be expressed either in terms of parallel speedups
(-T%) or parallel processor efficiencies (TT;T# ). We assume that a single processor can aways work
with a block size of 32, thus achieving its highest possible performance. This assumption leads to a frequent
need to compare the highest possible performance of a single processor with the performance obtained with a
particular panel size B. In particular, the T, (B ) term will always appear in a ratio

Top(B)/Top(32)



in our analysis. To smplify our presentation, we define T, (32) to be equa to one time unit, and express all
costs in the paralel performance moded in terms of the cost of performing one floating-point operation in a
sequential program.

If T, ( B) is expressed in this way, then the terms 0 and A/ that represented the costs of machine instructions
and cache misses in the origina expression for 7., ( B ) are never actually needed. In terms of our origina
expressions, we find that
0+M/B  1+22
O+M/32 =14 22

To(B) = Top(B)/T,p(32) =

The value of T, (B ') depends solely on the block size B and on the ratio of the cost of a cache miss to the cost
of the instructions executed to perform a floating-point operation.

We can determine a reasonable estimate for this ratio by looking at the ratio of the performance of a fully
blocked code to the performance of an unblocked code on current sequential hierarchical-memory machines,
We have looked at a number of current machines, including machines based on the MIPS R3000 and the IBM
RS/6000, and have found a surprising degree of consistency. On a variety of machines, a matrix multiply code
that uses a block size of 32 to reduce cache misses is roughly 5 times as fast as a code that uses a block size of
1 and generates a 100% cache miss rate. In other words, 7., ( 1) = 5. The resulting ratio of the cost of a miss
to the cost of executing the appropriate machine instructions is roughly 4.75. We will usethevalue T ,; (1) =5
throughout this paper.

The uniprocessor performance model that we have just described makes a number of simplifying assumptions,
For one, it ignores the impact of floating-point registers and cache-to-register traffic. It also ignores the fact
that some of the latency of cache misses can be hidden, since the processor can often perform other operations
while misses are being serviced. We note that the model is quite reasonable for todays microprocessors, which
have high cache miss costs and few provisions for hiding cache miss latency. Future microprocessors may be
built with more latency hiding mechanisms, but they will most likely have higher miss latencies as well, so
their ability to hide latency may be limited. In ether case, a different model than the one we use here may be
appropriate for some processors. We note that most of the analysis in this section is independent of the specifics
of the operation cost model. The main change with a different uniprocessor performance model would be in the
specific performance and panel size numbers that we derive, not in the conclusions that we draw.

3.3.2 Interprocessor Communication Model

The other parallel performance component that requires quantification is the latency cost of sending a message.
We model this cost as
Teomm(L) = a+ JL,

where a is the fixed cost of sending a message, 3 is the additional cost of each word of data, and L is the
length of the message.

To arrive a reasonable estimates for o« and 3, we consider the values for these parameters that have been
achieved in recent multiprocessors. Recall that these values will be expressed relative to Ty (32), sO we must
compare the communication parameters of these machines with their floating-point performance. To estimate
the value of T,, (32 ) in absolute terms, we use uniprocessor LINPACK 1000 benchmark results [3], which
typically come from a fully blocked version of the LINPACK code. The two example machines we consider are
the Stanford DASH machine and the Intel Touchstone machine. The Stanford DASH machine is made up of a
network of 33 MHz MIPS R3000 processors. The LINPACK 1000 number for a single processor of the DASH
machine is 8.8 MFLOPS. The Touchstone machine is made up of a network of 33 MHz Intel i860 processors.
The LINPACK number for a single processor of the Touchstone is 25 MFLOPS. To obtain an approximate value
for 3, we also need an estimate of interprocessor communication bandwidths of these machines. The DASH
machine provides a redlistic communication bandwidth of 16 MBytes/s, while the Touchstone provides roughly
25 MBytes/s. We therefore find that the ratios of computation to communication bandwidth on the DASH and
Touchstone machines are 4 and 8, respectively. We use a ratio of .3 = 4 in this paper. For the parameter o,
we believe that o« = 100 is a reasonable, athough possibly optimistic estimate for the latency of a message.
In other words, we assume that 100 floating-point operations can be performed in the fixed time required to
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Figure 4: Simulated speedups for parallel dense Cholesky factorization, n = 1000. T, ( 1) = 5. 3 = 4.

transmit a message. We also add a small random number into o (between 0 and 1) to reflect the small random
component of message latency. While this small random component may appear insignificant, a later section
will show that this component can have a substantial performance impact.

3.3.3 Simulation

The final component of our performance model is a means to estimate overal parale performance given
the above defined costs for individual factorization tasks. We use a simple event-driven simulator to predict
performance. Simulated processors act on messages placed in their input queues. The time at which a message
arrives at a processor is determined by the time that the message is sent and the latency incurred in transmitting
the message, as described in our performance model. In acting on a message, a processor performs some set
of pane operations. The time taken for each of these panel operations is again determined by our performance
model.

4 Parallel Performance and Performance Bounds for
Panel-Oriented Methods

We now use the performance model of the previous section to estimate parallel speedups for the previously
described panel-oriented parallel dense Cholesky factorization agorithm. Our goa is to understand the genera
considerations that underly the tradeoff between the increased processor efficiencies that result when the panel
size is increased and the reduction in concurrency that goes along with it.

4.1 Parallel Cholesky Factorization Simulation Results

We begin our discussion by presenting paralel speedups for the Cholesky factorization of 1000 by 1000 dense
matrices on parallel machines with 16 and 32 processors. Using the previoudy derived machine parameters, we
obtain the results shown in Figure 4. A 1000 by 1000 problem would most likely be considered large enough
to yield high processor utilizations on 16 or 32 processors. The graphs in Figure 4 indicate that this is not the
case. On 16 processors, the maximum speedup over all panel sizes is roughly 11-fold, yielding roughly 70%
processor efficiencies, On 32 processors, the maximum speedup is roughly 16-fold, yielding 50% processor
efficiencies. In both cases, the processor efficiencies are surprisingly low.



In order to better explain the results in this figure, we now look more closdly at the factors that limit
speedups. We can intuitively identify two competing concerns. On the one hand, we wish to use large panels
in order to achieve high computation rates on each processor. Recal that we have assumed that performance
when using a pandl size of 1 is onefifth of that achieved when using a panel size of 32. On the other hand,
we wish to have as many panels as possible, so as to maximize the amount of available concurrency in the
problem. Another reason to keep the number of panels high is to better balance the computational load among
the processors. We now attempt to explain the observed speedups in terms of these two limiting factors.

4.2 Critical Path

We begin by considering the amount of concurrency available in the problem, given a particular choice of
panel size. We measure the concurrency by looking at the critical path of the computation. Clearly the parallel
computation can not be completed in less time than the time required to complete the critical path.

The critical path for paralel panel-oriented dense Cholesky factorization is computed by determining the
earliest time at which each panel can be completed, assuming al dependencies between panels are observed.
The most important dependency in this case is that a pandl be modified by al previous panels before a pdiv()
can be performed on the panel and the panel used to modify other panels. For the fixed panel size case that we
are studying, a smple analysis shows that this condition is equivalent to the condition that a panel cannot be
completed until it has been modified by the previous panel. Thus, the critical path includes a pdi v (0) operation
on the first panel, a psend( 0) to send the panel to the processor that owns the next panel, a pmod( 1.0) to
modify panel 1 by pand 0, a pdir( 1) on panel 1, a psend( 1) to send panel 1 to the processor that owns panel
2, and so on. Simple caculations revea that these operations have the following costs:

o pdiv(k): (N — k = 2/3)B%) T,y (B)
e pmod(k + 1. K): (2(N =k +1/2)B*)T,.(B)
. psend( k): Teomm (N = k)B?) = a 4+ (N = k)BJ

In the above expressions, the problem size is n = N B, where B is the panel size and N is the number of
panels.

To determine the critical path of the entire computation, we sum the costs of each task on the critica path
over al k. Dropping low-order terms, the result is:

3. .
(5;\ B*T,,(B)+ Na+ N?/2B%3.

We have assumed that the computation can be blocked on a single processor, so the sequential computation
requires 25227, . (32) time. Dividing the sequential time by the best-case parallel time gives an upper bound

3
on the possible speedup from the problem.

N3B3/3T,,(32) _ NBT,;(32)
3(N2B)T,,(B) + Na+ N2/2B23  ($B)Tp(B) + xagro + 33

At this point, we observe that the term involving a, the fixed latency of sending a message, is a trivia
component of the overal denominator. We drop this term, giving (after simplification):

n
(3B)T,,(B) + 34

speedup <

This expression shows the maximum parallel speedup that can be obtained for the panel-oriented parallel dense
Cholesky computation with a panel size of B.

An obvious question at this point is what pand size yields the maximum potential speedup overall. A small
panel size places many small tasks that execute relatively inefficiently on the critica path. On the other hand,
a larger panel size places more floatin ¢-point operations on the critical path, but these operations are performed



more quickly. A simple calculation reveals that the choice of B that maximizes potentia speedup overal is
B = 1. The maximum obtainable speedup in a dense Cholesky factorization problem is therefore

n

speedup < ———
3Top(1) + 33

As a simple example, consider a 1000 by 1000 problem. Using the same machine parameters from before,
we find that the maximum obtainable speedup on such a machine is 1000/28.5 = 35, no matter how many
processors are used. Furthermore, this speedup would require more than 35 processors, since this bound is
obtained for the rather inefficient choice of a one column pandl size. More detailed results from our critical
path analysis will be presented later in this section.

One thing that is clear about the critical path bound is that it is quite limiting. One possible reason for the
severity of this bound is that it assumes that the panels are of a fixed size. It may be more efficient to use small
panels at the beginning and end of the matrix, where few processors are active and concurrency is limited, and
use larger panels in the middle to increase the efficiency of the bulk of the computation. Unfortunately, such
added flexibility does not significantly increase the amount of available concurrency. We implemented a simple
dynamic program to determine a bound on the optimal critical path, given the freedom to choose the size of
each individual panel, and found the resulting bounds to be less than 2% better.

Our andysis has so far only considered a column-oriented approach to the computation. We briefly note
without presenting the derivation that the critical path bound on speedup would be identical for a row-oriented
approach.

4.3 Load Balance

A second important factor that bounds parallel performance is the balance of computational load. The load
balance bound simply states that the paralel computation cannot be completed in less time than the maximum
time required by any processor to complete the work assigned to it. Load balance has a somewhat non-traditional
meaning in this problem. Typically, one would think of the total load to be distributed among the processors as
fixed; the load balance is then a measure of how evenly this work is distributed. In the context of hierarchical-
memory machines, the total amount of work to be done varies with the panel size. The load balance therefore
presents two different constraints on speedup. For small panel sizes, speedups are limited because each processor
is performing its tasks at low efficiency. For large panel sizes, speedups are limited because the number of
panels is reduced, thus making it more difficult to distribute the work evenly among a number of processors.

Given an assignment of panels to processors, the load balance is easily computed. Each processor has a set
of tasks assigned to it, and the runtimes of these tasks are easily computed using our performance model. While
it is possible to derive an andytic estimate of the load balance bound, a computed bound is adequate for our
purposes.

We briefly note that it is shown in [7] that a row-oriented approach to parallel dense Cholesky factorization
has worse load balancing properties than the column-oriented approach.

4.4 Simulated Speedups Versus Speedup Bounds

We now consider how simulated speedups are affected by the critical path and load balance bounds that have
been described. We return to the example of the previous section. In Figure 5 we show the bounds that result,
both from the critica path and from the load balance, using the parameters from the previous example. It is
clear from these figures that the simulated speedups are almost entirely determined by the upper bounds. The
speedups are below these bounds only near the point where the two upper bounds are equal. This fact can be
easily understood as follows. The critical path bound (the dotted curve) gives the performance that would be
obtained if every task on the critical path were executed as soon as the tasks it depends on were completed. The
load balance bound gives the performance that would be obtained if the processor with the most work assigned
to it started executing tasks as soon as the computation began, and never had to wait for dependencies to be
satisfied to execute another task. If this processor is aways executing some task, then it is clearly unlikely that
a task along the critica path would be executed as soon as it is ready. While we have only demonstrated that
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simulated speedups are determined by the upper bounds for two examples, we note that we have found this to
be the case for a wide range of other examples as well.

4.5 Implications of Speedup Bounds

While it would be interesting at this point to derive an expression for the panel size that yields the largest
speedups for a given problem size, number of processors, and machine parameter set, our goa in this section
is instead to examine the genera implications of the performance bounds derived in the previous section. We
now study these bounds in more detail, and derive a number of conclusions.

We begin by noting that simulated speedups for the panel-oriented methods are almost aways nearly equal
the upper bounds. The performance limitations that we have observed come from the upper bounds, not from
the paralel agorithm.

Another item to note is that the upper bound and thus the maximum parallel speedup in a panel-oriented
dense factorization code is proportiona to the number of columns in the matrix. While this fact in and of
itself is quite obvious, a less obvious fact is that the constant of proportionality for machines with hierarchical
memories is quite small. For example, a parallel machine similar to the Stanford DASH machine can factor an
n X 71 dense matrix at most n/28.5 times faster than a single processor of the machine. We expect comparable
results for other parallel hierarchical-memory machines.

Another conclusions that can be drawn from the results presented so far is that maximizing concurrency is
not the only goal in achieving high performance. Recall that the panel size that maximizes available concurrency,
a panel size of 1, yields such low per-task performance that the resulting parallel speedups would necessarily
be extremely low. It appears to be the true, both from previous figures and from intuition, that performance
is maximized when concurrency is only as large as it needs to be. In other words, the objective appears to
be to increase the panel size until the point a which the critical path would limit the achievable performance.
Unfortunately, the critical path is quite constraining, as was recently mentioned. With a panel size of one,
concurrency is limited, and concurrency decreases rapidly as the pandl size is increased. It is therefore the case
that unless the matrix is extremely large, the panel size that optimizes performance is quite small.

In order to better illustrate these results, we show in Figure 6 the problem sizes required in order to achieve
given levels of processor utilization. The machine parameters are the same as those used so far. In generd,
the problem sizes necessary to yield high processor utilization levels are quite large. For example, to achieve
90% utilization on a 256 processor machine requires a roughly 86000 x 86000 problem. This problem requires
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roughly 30 GBytes of storage space, and roughly 200 trillion floating-point operations. To put this number
in perspective, note that each processor would require at least 117 MBytes of memory, and if each processor
achieved 25 MFLOPS on blocked code then the problem would require more than 9 hours to complete. A 256
processor machine would therefore be expected to achieve much less than 90% utilization for the vast majority
of dense factorization problems.

An interesting trend can be seen in these processor utilization curves. The slopes of the individual utilization
curves are quite constant, and while it is not clear from the figure, the slopes are roughly equal to one. Thus,
in order to maintain a constant level of processor efficiency, the problem size must grow at roughly the same
rate that the number of processors grows.

We have also noticed another interesting trend, related to the panel sizes that achieve the highest performance
for a given problem size and number of processors. The panel size that yields the highest processor utilization
depends only on the utilization level that is achieved. In other words, if a problem is only large enough to
achieve at most, for example, 40% utilization on some number of processors, then the panel size that achieves
that maximum utilization level does not depend on the number of processors. The panel sizes that achieve
these maximum utilization levels are plotted in Figure 7. This figure alows one to obtain a better feel for
the tradeoff between individual processor efficiency and concurrency. We see that when the problem is too
small to alow for both large panels and a large amount of concurrency, then the better choice in genera is to
favor concurrency. For example, whenever the problem size is sufficiently small that less than 70% processor
efficiencies are possible, the best choice is a panel size of 10 or less. The reason is simply that performance
gains from increasing the panel size experience a diminishing return. The amount of concurrency available in
the problem, on the other hand, decreases quite quickly as the panel size is increased.

Our next conclusions relate to the critical path expression of the previous section, which we now repeat.
n

($B)T,,(B) +33

speedup <

Consider the impact of communication costs. The fixed latency of sending a message has little or no effect
on performance. The corresponding term was dropped since it was insignificant in comparison to the other
terms. Also note that the term involving 3, the communication bandwidth, is independent of the panel size.
Communication therefore reduces concurrency by some constant amount that depends only on the characteristics
of the communication system.

Another thing to note about the above expression is the relationship between communication costs and optimal
panel sizes. If the cost of communication is increased, then the amount of available concurrency decreases and
the optimal panel size for a given problem decreases as well. This is a somewhat counter-intuitive result. Simple
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intuition would indicate that higher communication latencies would favor larger panels.

Further note that communication bandwidth seriously reduces concurrency only when it is significantly less
than computational bandwidth. On a machine where cache misses are expensive, the computation term in the
denominator of the critical path expression is much more important than the communication term.

Taking a high-level view of concurrency considerations, it is clear that even if available concurrency were a
significantly larger fraction of », a panel-oriented approach would still have serious scalability limitations. The
number of operations in the problem grows as the cube of the number of columns, and the amount of space
required to store the matrix grows as the square of the number of columns. If the concurrency grows as n,
then the time and space demands of the problem obviously grow faster than the processor resources that can be
employed to solve it. The interesting thing to note about the results of this section is that scalability limitations
come into play with much smaller machines than one might have expected.

We therefore conclude from this section that a panel-oriented parallel dense Cholesky factorization code
requires very large problems before it can achieve high processor efficiencies on moderately parallel hierarchical-
memory multiprocessors. The required problem sizes are so large that they would almost certainly exceed either
the available memory or the acceptable runtime. In other words, we would expect these machines to achieve
low utilization levels for the problems that would be encountered in practice.

5 Modified Panel-Oriented Approach

In this section, we consider a simple modification to the panel-oriented factorization approach of the previous
section to increase the amount of available concurrency. The modified method till works with panels, but
it now treats a panel as a logical column of rectangular sub-blocks. The most important consequence of this
logical division isthat a processor no longer needs to wait for an entire panel to complete before it can send it to
another processor. The processor can instead send an individual sub-block immediately after it has completed.

Recall that the performance of the panel-oriented method of the previous section was mostly determined
by the load balance and critical path upper bounds. We now consider how these bounds are affected by the
modification that we have described. If we first consider the load baance upper bound, we find that this bound is
unaffected by the modification. The matrix is still distributed in a panel-wise fashion among the processors, and
athough the panel modification work now happens in smaller pieces, the total work performed by a processor
remains unchanged.

Moving to the critical path upper bound, we note that this bound is quite dramatically changed. The most
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important change relates to the time at which a panel modification can begin. In the unmodified method, a
destination panel is modified by some source panel only once the entire source panel is complete and is sent
to the owner of the destination pandl. In the modified approach, the modification can begin as soon as the first
sub-block of the source panel is completed and sent.

Providing a precise estimate of the critical path upper bound for the modified approach is somewhat difficult.
If we look at the task dependence graph alone, we ignore the fact that a large number of these tasks must be
performed on the same processor. For example, the modification of one pand by another is accomplished with
a series of sub-block tasks. From the point of view of the critical path, these tasks can be performed in parallel,
but in fact al of these tasks must be performed on the same processor. The critical path has become intertwined
with the scheduling of the computation.

In order to obtain some idea of the amount of concurrency available with this approach, we take a dightly
different approach. We compute an effective critical path by simulating the computation assuming that an infinite
number of processors are available. In this context, one processor per panel of the matrix suffices. The length
of the effective critical path has proved difficult to estimate analytically, so we simply describe our observations
about the amount of available concurrency in the modified method in comparison to the concurrency for the
unmodified method.

The first thing we note about the concurrency of the modified method is that it is much less dependent on
communication latencies than is the concurrency of the unmodified method. In fact, for al but the smallest panel
sizes and the highest communication costs, the concurrency in the modified method is essentialy independent of
the cost of communication. The reason is the pipelining of communication that can be achieved. One sub-block
can be communicated from one processor to another while the modification from the previous sub-block is going
on.

Even if the communication cost differences between the methods are ignored, the modified method till
contains significantly more concurrency. We have observed a factor of nearly two difference. The source of
this difference is again the pipdining that is made possible by the sub-block modification. In the unmodified
approach, a panel modification cannot begin until the entire source panel is complete. In the modified approach,
the modification can begin as soon as the first sub-block in the source is complete. The source processor can
continue to complete sub-blocks and broadcast them while the destination processor performs modifications with
earlier blocks.

Unfortunately, we have found that while the factor of roughly two increase in concurrency does increase
processor utilization levels, the increase is relatively small. The main reason is that the scheduling of the
modified method is somewhat less effective than that of the unmodified method. Whereas in the unmodified
method the simulated speedups are always nearly equal the upper bound, the simulated speedups for the modified
method are usually somewhat below the upper bounds. We therefore find that while the simulated speedups for
the modified method are larger than those of the unmodified method, overall the difference is not large enough
to overcome the deficiencies of panel-oriented methods.

6 Block-Oriented Parallel Dense Factorization

It is clear from the previous discussion that panel-oriented dense factorization has a number of important
limitations, In this section, an alternate means of performing dense Cholesky factorization on a paralel machine
is considered. This approach divides the matrix into square submatrices and distributes these submatrices among
the processors. Such an approach, which we refer to as a block-oriented approach, is a natural aternative to
an approach that manipulates rows or columns of the matrix, and it has been explored in a number of papers
[1, 11, 12, 15, 16]. A block-oriented approach has two main appeas. First, a dense matrix clearly contains
as many as O( n?) blocks, while it only contains O(n) rows or columns. Thus, a block-oriented approach
can potentially increase concurrency. Second, the communication volume in a block-oriented approach can be
shown to grow as O( /P in the number of processors when the block size is chosen appropriately, versus O( P)
communication growth for a pand-oriented approach. This section investigates the benefits and complications
of a block-oriented approach.
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Table 1: Primitives for block factorization.

Primitive Description Step|Uses Modifies |FP Ops
bfactor(k.k) Factor diagonal block 2 - Lk B(B+1)2B +1)/6
bsolve(i. k) Solve an off-diagonal block 4 Lk Lx B3

bmoddiag(j.j. k) | Modify a diagonal block 6 Lij L, BB+ 1)

bmod(i. j. k) Modify an off-diagonal block | 8 Liv, Ljx| L 2133

addin( i j) Add an update into a block 8 - L, B2

6.1 Block-Oriented Method Background

We begin this section by describing the implementation of a block-oriented method. In such a method, the
matrix is divided into a set of square blocks. The factorization computation in terms of blocks is quite similar
to the computation in terms of individual elements. If each element of the matrix L ;; is thought of as a square
block instead of a single element, then the following code would factor the resulting matrix of blocks:

for k=0 to \ do
Lir = Factor ( Lii)
for i= k+ 1to N do
Ly = L;kL;l}

for j=%k+ 1lto N do
Ljj = Ljj - LiL],
for 1= j+11to N do
Ly =Lyj=La L]}

0~ o O WN -

For conciseness, we define a number of primitives to express the block-oriented computation. We describe
these primitives in Table 1. The descriptions include a list of the blocks that must be accessed to perform the
primitive, a count of the number of floating-point operations that are necessary to perform the primitive when
using a block size of B, and the line number in the above pseudo-code where the corresponding primitive is
performed.

The pardlel implementation will aso use two other primitives, bsend( ) and bse nddiag( ), to communicate
blocks and block updates between processors. The communication cost model of the previous section is used to
mode! the costs of these primitives. We note that the 7', (B ) expression of this mode! is somewhat |ess accurate
for the block-oriented primitives than it was for the panel-oriented ones, but the inaccuracies are small and not
easily corrected

If the complexity of implementing a block-oriented code is compared with that of a panel-oriented code,
one major difference is apparent. In the panel-oriented method, all primitives have two or fewer operands. In
the most complicated of panel-oriented primitives, a pand is modified by another panel. To perform such a
panel modification, a message from the processor that owns one panel to the processor that owns the other is
sufficient. In a block-oriented parallel code, the bmod( ) primitive involves three different blocks, and thus it
potentially involves three different processors. The organization of a paralel code that performs these operations
is therefore significantly more complicated.

We begin our discussion of the implementation of a parallel block-oriented factorization code by considering
the implementation of a hmod() primitive, the most frequently executed and most complicated of the primitives.
There are three processors on which this computation can reasonably be performed, these being the processors
that own the three blocks involved. Let us briefly consider the block communication that would be necessary
for each of these three possibilities, assuming that the owner processor is responsible for al bmod( ) operations
involving the block. In Figure 8, we show the blocks that are needed to perform all of the bmod( ) operations
related to a particular block. The arrows indicate the block communication necessary for a single bmod( )
operation. In the case where the L;;. block computes the updates, a hmod( ) operation would require a block
from above L, ; in the same column, and it would produce an update to a block to the right in the same row.
If the L; ; block were to compute the update, it would need to receive a block from below it in the same block
column, and it would produce an update to a block in a later column. If the L ;; block were to compute the
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Figure 8: Blocks used for bmod( ) operations.

update, then it would need to receive two blocks, one from row : and one from row j, and it would produce an
update for itself.

Of these three approaches, the L;; approach appears to be the cleanest. It has the advantage that a block
receives other blocks from above it in the same column, and produces updates to blocks to the right in the
same row. The L; ;. approach is similar, the primary difference being that the updates are sent in a less regular
pattern. The L;; approach has the dight disadvantage that two incoming blocks must be matched before a
bmod( ) primitive can be performed. We now describe an implementation of the L , » approach. Note that the
differences that we have pointed out between the three approaches are not extremely important, and that the
other approaches are not obvioudly inferior. We have simply chosen one to investigate.

Before beginning a description of the functioning of a parallel block-oriented method, we make a brief note
about terminology. When we say that something is “sent to a block” of the matrix, we mean that a message is
sent to the processor that owns the block.

6.1.1 Parallel Block-Oriented Program Flow

We now describe the operation of a parallel block-oriented code. The method is best understood by describing
the sequence of tasks executed during the computation. The overall paralel factorization begins with the
factorization of Lge. Once this diagonal block has been factored, it is immediately broadcast to the processors
that own blocks in the same block column. These processors perform bsolve (. 0) operations on the appropriate
blocks once the diagona block arrives. Once a block has been solved, it is immediately broadcast to all blocks
below it in the same column.

When a processor receives ablock L; 1, it performsabm od(:.|. k) operation using the received L ; ;. and any
Lir with 7 > j that it owns. In order to perform a bm od( ) operation, the appropriate L 3 block must aready
have been solved. If it has not, then the received block is queued with the L ;5. block to indicate that a block
modification should be performed as soon as the block is solved When the bmod( ) operation is performed, an
update to block L;; is computed. This update must somehow be added into its destination. One option is to
send the update directly to the processor that owns L ,;. That processor would then add the update directly into
the destination block. Another option is to send the update to the block immediately to the right of L ; ;. Recall
that this block produces an update to L ;; as well, so the two updates can be combined before they are sent
off to the next block to the right. The first of these two approaches has the advantage that it does not need to
combine updates. The second has the advantage that messages are only sent to immediate neighbor blocks. If
the mapping of blocks to processors matches the topology of the multiprocessor interconnect, then the second
approach improves the locality of communication. We will consider methods that use both approaches.

All blocks keep track of how many updates must be added into them. Once the diagona block has received
al updates, then it is factored and broadcast to al blocks below it. Similarly, once an off-diagona block has
received al updates, and once it receives the appropriate diagonal block, then that block is solved and broadcast
to al blocks below it. It is clear that this process will continue until the entire matrix is factored. While the
above description omits a number of important details, we believe that it provides a thorough enough explanation
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to alow us to proceed with an analysis of the method. Details will be added in the next few subsections.

6.2 Parallel Performance Bounds

The parallel performance of the pane-oriented methods studied in the last section was limited by two upper
bounds, a critical path bound and a load balance bound. We now look at these bounds in the context of the
block-oriented paralel factorization computation.

The critical path is computed by determining the earliest possible time that each block of the matrix can
complete. This computation is simplified by noting that al blocks in a column, with the exception of the
diagonal block, complete at the same time in the best case. This is easily seen for the first column. These
blocks depend only on the diagona block. It can be seen for the rest of the blocks by noting that the earliest
time a block can complete depends on the time that a pair of blocks in the previous column completed (as well
as the time the diagonal block of that column completes). Since al blocks in the previous column are assumed
to complete at the same time, then al blocks in the current column must complete at the same time as well.
The result that al blocks in the same column complete at the time follows by a simple induction.

The critical path for the entire computation, can therefore be determined by finding the critical path aong any
block row of the matrix. Since the matrix is factored when the bottom right block is complete, the critical path
along the last row is most appropriate. As was mentioned before, a block cannot be solved until it has received
an update from the previous column. Thus, the critica path from one column to the next involves a bmod( )
operation to compute the update from the previous column, a bse nd( ) operation to communicate that update,
and absolve( ) operation to solve the block in the current column. A second set of dependencies between one
column and the next also limits concurrency. This second path, which involves the diagonal block, includes a
bmoddiag() operation to update the diagonal block by a block of the previous column, a hse nddiag() operation
to communicate the update to the diagonal block, abfacior() operation to factor the diagona, abse nddiag( )
operation to send the diagona block to the block in question, and then absol ve () operation to solve the block.
The critica path is clearly determined by the longer of these two dependency chains.

The critical path computation naturally requires cost estimates for the tasks aong the critica path. These
costs are determined by augmenting the floating-point operation counts for these tasks given earlier with estimates
of the costs of these operations, given the block size.

. bfactor(k): (B*/3)T,,(B)
o bsolve(i. k): (B®)T,p(B)
cbmod (i k. k +1): 2B*)T,( B)
e bmoddiag( i k): ( B2( B +1))T,,( B)
o bsend(i. K): Teomm(B?) = a + B*3
o bsenddiag(i. k): Toomm (B%*/2) = a + B?/2.3
The above-described critical path task dependencies, combined with the costs of these tasks, give the time costs

of moving from one block column to the next. Since the matrix has " block columns, then the cost of overall
critical path is therefore roughly:

Z bmod(N — 1.k.k — 1)+ bsend(N —1,k) + bsolve(N — 1. k)
k=0

by the first set of dependencies, and

N
Z bmoddiag(k. k. k — 1) + bsenddiag(k — 1. k) + bfactor(k, k) + bsenddiag(k, k) + bsolve(N — 1.k}
k=0

by the second. The true critical path is the larger of these two expressions. The first of the two is larger if
communication costs are low, so we use it to determine a bound on parale speedup.
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If an » x n matrix is factored using a block size of B, where n = N B, then the speedup is bounded from
above by the sequentia time divided by the critical path time. Recall that the sequentia time is %71,,,(32). The
bound is therefore: \

FT,(32) n?
3NBop(B)+ Na+ VB3 = 9BT,,(B) + 0 + 3B3
We can again determine the choice of block size that maximizes potential speedup, and the answer is a very
smal B. However, in this case the maximum is less meaningful. In the panel-oriented code, a pand size of
1 led to an inefficient but reasonable approach, where columns were passed among processors. In the block-
oriented approach, a very small block size leads to a method that manipulates small sets of matrix entries. Our
assumptions about the costs that could be ignored would certainly not hold, and the resulting approach would
certainly achieve extremely poor performance due to overheads. We therefore assume that the block size must
be reasonably large (at least 8) to obtain reasonable performance.

Note that the critical path bound for the block-oriented approach is much larger than the same quantity for
the panel-oriented approach. Here, available concurrency is proportiona to the square of the problem size, while
in the panel-oriented method it was proportiona to the problem size. To get some idea of how constraining the
above bound is, we consider the example we looked at for a panel-oriented approach. Recall that the example
bounded the speedup of a panel-oriented approach for the factorization of a 1000 x 1000 matrix on a machine
with T, (1) =5 and 7 = 4. The upper bound on speedup was 28.5, and many more than 28.5 processors would
be required to achieve this speedup. For the block-oriented bound above, if a block size of 32 were used, thus
achieving full floating-point performance, the critical path bound would limit speedup to 104.

Another important factor that bounds performance is the balance of computational load among the processors.
Note that once the assignment of blocks to processors has been performed, it is a simple matter to compute the
amount of work that must be done by each processor, Examples of the actua bound that results will be shown
in the next subsection.

A final factor that bounds parallel performance is the cost of performing interprocessor communication. A
simple calculation reveds that the total volume of interprocessor communication for a block-oriented method is
%} + O(n?),\h ere n is the matrix size and B is the block size. Thus, a larger block size leads to a reduction
in total communication volume. The performance impact of communication depends on more than the total
message volume, however. Message locality is also important. Recall that the block-oriented method broadcasts
blocks down a column of the matrix and sends updates to the right. If the logically loca blocks that participate
in these message exchanges are not mapped to physically local processors, then the messages are significantly
more likely to experience contention on the processor interconnect. The costs of message contention are note
modeled in the results we now present. Instead, we will make qualitative statements about the communication
behavior of the various approaches.

6.3 Scheduling the Computation

Having described a block-oriented paralel factorization approach and the factors that bound its performance, we
now look at the performance obtained with such an approach. Before presenting simulation results, a few more
implementation details must be discussed. The first relates to the order in which parallel tasks are performed. At
any one time, a processor may have a number of tasks to choose from. The order in which a processor executes
these tasks can have a significant impact on the performance of the parallel computation. This subsection looks
a the effectiveness of two different approaches to the scheduling. The second implementation detail relates
to the strategy that is used for mapping blocks to processors. We consider a number of alternative mapping
strategies in the next subsection. Similar mapping and scheduling issues were investigated by O'Leary and
Stewart [12]. The primary way in which our work differs from this earlier work is that O'Leary and Stewart
address asymptotic parallel performance on highly-parallel machines, whereas this paper is more concerned with
practical performance issues on moderately-parallel machines.

6.3.1 First-Come, First-Served

The first approach to task scheduling we consider is probably the most obvious and the most analogous to the
simple approach used for the panel-oriented method. This approach acts on messages on a first-come, first-served
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basis. Simulation results for this approach are presented in Figure 9. The curves shown in this figure give the
performance of this method on the example of the previous section (a 1000 x 1000 matrix factored on 16 and
32 processors), adong with critical path and load balance upper bounds. A number of important things can be
noted from these results. First, note that the simulated speedups are somewhat better than those of the panel-
oriented method. Maximum speedups are roughly 13-fold on 16 processors and 21-fold on 32 processors. This
is compared with 1 I-fold and 16-fold for the panel-oriented approach. Note also that the simulated speedups
behave quite erraticaly. It would therefore be extremely difficult to choose a block size that yields consistently
high performance. Another thing to note is that the simulated speedups are well below the critical path and load
balance upper bounds. Recall that the speedups for the panel-oriented method were easily explained in terms
of the two upper bounds. We now briefly consider the reasons for the behavior of this block-oriented approach.

The observed behavior can best be understood by considering a simple example. Consider the first few
steps of the block-oriented paralel factorization of the matrix of Figure 10. The overal factorization begins
with the factorization of the Ly block. Once factored, this block is then broadcast to the processors owning
blocks in the first column. When the diagonal block arrives at the receiving processor, that processor performs
absolve (k.0 ) operation on the appropriate block. Each sub-diagonal block in the first column is completed at
roughly the same time. Each of these blocks L is then broadcast to the processors owning blocks L o, 1 > &
(i.e., the blocks below it in the same column).
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Now consider the actions taken in response to these messages. In particular, consider the messages arriving at
the processor that owns block L 4. This processor receives messages for each of the blocks above it in column 0.
Since these blocks complete simultaneously, the corresponding messages will also arrive smultaneously. More
accurately, since we have assumed that message latencies have some small random component, the messages
will arrive in some random order. Since the messages are acted on in the order in which they are received, the
random arrival order implies that the updates to blocks to the right of L 4 are computed in a random order as
well.

Now consider the consequences of this random order for the processor that owns block L ,4;. Recal that a
processor cannot compute the updates from a block until that block is complete. Recall aso that a block cannot
be completed until it has received updates from all blocks to its left. The processor that owns block L 4; must
therefore sit idle until it receives an update from block L 4. Idedly this update would be the first one computed
from L4. However, as we noted in the previous paragraph, the updates are computed in random order, so this
particular update is just as likely to be the last one computed from L 40 as it is to be the first one. Thus, the
processor that owns block Ls; will incur a significant amount of idle time waiting for this update. Similarly,
al of the processors that own blocks in column 1 would incur idle time waiting for the appropriate updates
from blocks in column 0. Indeed, if one were to continue to step through the parallel execution, one would find
that significant processor time is spent waiting for updates that are ready to be computed, but are waiting in
gueues behind updates that are much less important. The random nature of the update computation substantially
disrupts the efficient scheduling of the parallel computation.

If the schedule of the parallel computation is so disrupted by this random component, an interesting question
is why the performance obtained with this approach is not worse than what is observed in Figure 9. We have
observed two factors that mitigate the problems associated with the inefficient task scheduling resulting from
a first-come, tit-served task execution order. The first relates to the amount of concurrency in the problem.
If the amount of concurrency is much larger than the number of processors, then the problem contains some
dlack. In the presence of dack, the scheduling of the computation is less crucia. Thus, the simulated speedups
in Figure 9 are close to the upper bound for small block sizes, where the concurrency is greatest, and they fall
away from the upper bound as the amount of concurrency approaches the number of processors.

The second factor that alows a first-come, first-served schedule to achieve reasonable performance is the
inaccuracy of our conclusion that the blocks above ablock L ,, in the same column arrive at Z;; in arandom order.
Recall that this assumption was based on the assumption that the blocks in a column complete simultaneously.
While this assumption is true of the first column, it becomes less and less true as the computation proceeds. In
fact, the completion times of blocks in a later column tend to attain a nearly sorted order, with the blocks near
the top of column being completed before those near the bottom. This order of block arrival yields a much
better task execution order than a random arrival order would.

The reason for this roughly sorted order of block completion timesis clear if we consider the simple example
of Figure 10. Recall that a block cannot complete until it has received updates from all blocks to its left. Consider
the completion times of blocks L2; and L. Block Ly requires an update from block Lag. Since block s
produces updates to al blocks to its right in a random order, the update to block L 4; would be one of four
updates, and would on average be produced second or third. In contrast, block L 0 must produce updates to only
two blocks. The update to block L2; would therefore be expected to arrive before the update to L4, implying
that L,; would be expected to complete before L4;. The later completion time of block L, also delays the
computation of updates to blocks in the same row, thus delaying their completion times as well. This delay,
combined with the same effect of higher blocks producing fewer updates, leads to the near-sorted order that we
have observed. Note, however, that the order is only nearly-sorted, and significant scheduling problems can still
arise.

In summary, a block-oriented method with a first-come, first-served task schedule yields higher performance
than a panel-oriented method. This method, however, appears to contain significant room for improvement.
The obtained speedups vary quite erratically with the block size, and they are well below the load balance and
critical path upper bounds. We next consider the possibility of improving the performance of the block-oriented
method by choosing a different scheduling strategy.
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6.3.2 Prioritized Block-Oriented Method

The scheduling problem that was encountered in the first-come, first-served approach to task ordering is not
unique to Cholesky factorization. It is quite a common problem that arises whenever a processor in a paralel
computation must choose from among a set of tasks with varying degrees of urgency. Some tasks are on the
critical path and will prolong the execution of the entire program if they are not performed as soon as they are
ready. Others are far off the critica path and can be performed at a later time without affecting the overall
runtime.

In the dense block-oriented Cholesky factorization computation, each task has some destination block that
is affected by it. To some rough approximation, the urgency of a task in this computation is determined by the
column number of the block that is affected by that task. The more urgent of two tasks is the one that modifies
the leftmost block. Note that a program that aways chooses the highest priority task will not necessarily perform
the computation in the minimum amount of time. The optima schedule is determined by more than the relative
urgencies of the various tasks. However, an approach that takes the priority of tasks into account will certainly
lead to a better schedule than one that ignores these priorities entirely.

One possible approach to task scheduling would be to aways choose the available task with the highest
priority. One disadvantage of such an approach is that it may miss high priority tasks that arrive soon after
a lower priority task is started. We investigate an approach that goes one step further in explicitly managing
the order in which tasks are executed. Recall that the tasks that are performed on behalf of a block are known
before the computation begins. Each block will produce updates to al of the blocks to its right. It is a simple
matter for a processor to smply perform the tasks assigned to it in a strictly decreasing priority order. With
such an approach, each processor would wait for the outstanding task with highest priority. If a task other than
the one of highest priority arrives, it is smply delayed until higher priority tasks have been executed.

Unfortunately, our earlier notion of task priority does not mesh well with this prioritization approach. The
problem is that the task priority scheme discussed earlier does not consider the source block: a task’s priority
depend only on its destination. Consider the case where a processor owns two blocks, one towards the left of
the matrix and the other towards the right. The block towards the left would be expected to produce tasks before
the one to the right, even though some of these tasks may have lower priority than those of the right block.
Waiting for the highest priority task could therefore result in significant inefficiencies. To avoid this possibility,
we modify our notion of task priority by prioritizing based first on the source block, and then on the destination
block. Thus, update tasks from source blocks to the left have higher priority. Among the tasks from a particular
source block, the task that modifies the leftmost block has the highest priority.

This approach to task scheduling also alows the method to communicate block updates in a different manner.
Recall that an update can either be sent directly to its destination or it can be sent to the block immediately to
the right, to be combined with the corresponding update from that block and further sent to the right. The first-
come, first-served method sent updates directly to their destinations to avoid a potential explosion in the storage
requirements of the algorithm. If this method were to send the somewhat random stream of updates produced by
a block to the right, the block to the right would have to store received updates until its corresponding updates
were computed. Since this block produces updates in a somewhat random order as well, a received update
would be expected to have to wait quite a while.

The extremely orderly stream of updates produced by a block in the prioritized method avoids the possibility
of a storage explosion, since the updates can be combined quickly thus reducing the number that must be stored.
Sending blocks to the right also produces two important advantages. First, the locality of communication
is potentially increased (depending on how blocks are mapped to processors), since messages travel between
immediate neighbor blocks. Also, for reasons having to do with the costs of adding updates into the destination,
the amount of work each processor must perform is decreased. We therefore study a prioritized method that
sends updates to the immediate right.

In Figure 11 we present simulation results for this prioritized block-oriented parallel method. One interesting
thing to note from these figures is that the erratic behavior that was seen in the previous method has disappeared.
This is to be expected, since the computation is not nearly as sensitive to small perturbations. In the first-come,
first-served method, a small delay in the arrival time of an urgent task could result in that task being placed at
the end of a task queue. In the prioritized approach, the same delay would simply cause the receiving processor
to wait a little longer for the task to arrive. Also note that the simulated speedups are much closer to the load
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6.4 Block Mapping Strategies

One implementation detail that has not yet been described is the strategy used for mapping blocks to processors.
In fact, the previous subsection used an undescribed block mapping strategy. A range of possible strategies are
now considered, including the one that was used in the previous subsection.

A strategy for mapping tasks to processors will in general have two goals. As a first goal, it will assign
the blocks to the processors so as to minimize processor idle time. The blocks need to be distributed so as
to balance the computational load evenly among the processors, while at the same time avoiding the situation
where a some point in the computation some processors have many available tasks while others have none.
Another goa of a block mapping strategy is to achieve locdity of communication. To avoid contention in the
processor interconnect, it is best if messages travel between processors that are near each other. The mapping
strategies that are considered will address these two goals to varying degrees.

6.4.1 Embedded Mapping

Recall that the blocks in a dense factorization computation communicate with blocks below them and blocks to
their right in the matrix. One obvious mapping strategy for the block-oriented computation that addresses the
goa of communication locality is one that places adjacent blocks in the matrix onto adjacent processors in the
interconnect. We consider an embedded mapping strategy in which we assume that a 2-dimensional torus can be
embedded in the processor network. This embedded torus is then used in a cookie-cutter fashion to determine
the processor mapping (see Figure 12). Note that this mapping strategy does not dea with the load balancing
guestion particularly well. The two primary problems with the resulting load balance are the dimensions of the
matrix of blocks, which usualy do not adign with the dimensions of the embedded torus, and the fact that the
matrix of blocks is triangular while the torus is rectangular. Performance results for this mapping strategy will
be presented shortly.

The embedded mapping strategy that is investigated here is one of potentially many ways of mapping a
triangular array of blocks onto a network of processors while maintaining locality of communication. While
other approaches might improve load balance, we do not further investigate this area, and instead we now turn
to mapping strategies that abandon some or al of the communication locality obtained with an embedding. One
consequence of the decision to investigate approaches with less message locdlity is that messages may now
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experience contention on the interconnect. Recall that our performance model does not consider the impact of
such contention. While this is indeed a limitation of our model, we hope that its impact will be minimized
by the fact that block-oriented methods are able to use large blocks and thus reguire very little inter-processor
communication.

6.4.2 Column Round-robin Mapping

The second block mapping strategy that we consider is a column round-robin strategy. Simply stated, this strategy
traverses the grid of blocks one column at a time, moving down a column and then on to the next column,
assigning blocks to processors in a round-robin fashion (see Figure 12). The intuition behind this mapping
strategy is as follows. Since much of the communication in a block-oriented method involves blocks being
broadcast to blocks below them in the same column, a column round-robin mapping keeps this communication
locdized. Also, since the blocks in a single column are al a the same point in the critica path, they are
expected to complete a roughly the same time. Since the blocks begin producing updates as soon as they
complete, it is potentialy desirable to assign them to different processors so that these updates can be computed
simultaneously. Such a mapping is therefore expected to produce a reasonable parallel schedule. The load
balance of the computation will hopefully be reasonable since each processor receives a mix of blocks, some
requiring a large amount of work and others requiring less work.

6.4.3 Row Round-robin Mapping

Another block mapping strategy that we consider is a row round-robin strategy. This strategy is aimost identical
to the column round-robin strategy, with the difference being that the row round-robin strategy traverses the
blocks row-by-row, The communication locality is similar to that obtained with the column round-robin strategy.
The scheduling argument used for the column round-robin strategy does not hold, however. Our hope is that
the somewhat arbitrary mapping of blocks to processors will avoid pathologica scheduling problems.

6.4.4 Diagonal Round-robin Mapping

Upon further investigation, we have found that the three mapping strategies described so far al yield relatively
poor processor load balances. Our hope that the assignment of multiple blocks to each processor would avoid
the possibility of one processor receiving much more work than any other is simply not realized. We therefore
add a fourth strategy, the diagonal round-robin strategy. This strategy functions as follows. The vast mgority of
the work related to a block involves the computation of updates for blocks to the right. Therefore, the amount
of work associated with a block is determined by its distance from the rightmost block in its row. Equivaently,
all of the blocks along a 45 degree diagona line in the matrix require the same amount of work. A much better
load balance can therefore be achieved if these sets of blocks are assigned in a round-robin manner. In other
words, this strategy traverses diagonals in the matrix, one at a time, and performs a round-robin assignment of
the blocks as they are reached (see Figure 12). This strategy has abandoned message locality entirely, as well
as ignoring the possibility of scheduling glitches, but it is expected to produce a greetly improved load balance.

6.4.5 Pre-Simulated Mapping

The fifth block mapping strategy that we consider we term the pre-simulated strategy. This strategy performs a
rough symbolic simulation of the parallel computation. When it comes time to assign a block to a processor, the
state of the smulated computation is consulted to determine the processor that is first available to perform the
tasks associated with a block. The block is assigned to that processor. While this strategy might appear to be
extremely complicated, the description that follows will show that it is in fact quite simple, due primarily to the
very regular manner in which the tasks are handled in a block-oriented method that uses a prioritized schedule.

Consider the tasks associated with a single block of the matrix. This block will receive messages containing
the blocks above it in the same column, and each of these messages will result in the computation of an update
to a block to the right of the receiving block. The block will aso receive updates from blocks to its left.
Our symbolic simulation will traverse the blocks of the matrix in an order such that all blocks that affect a
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particular block will have been visited by the time that block is visited. The specific order that we choose is
column-by-column, top-to-bottom.

Now consider what should be done when a block is reached in this traversal Our goa upon reaching a block
is to complete that block and perform all updates emanating from that block as soon as possible. The block
of course depends on updates from blocks to the left, but we can assume that these blocks were treated with
the same goal in mind, to produce their updates as soon as possible. The block also depends on blocks above
it to produce its own updates, and again we can assume that these blocks were completed as soon as possible.
The current block is therefore assigned to the processor that is done with its current set of tasks the soonest.
Once a block is assigned to a processor, the simulated time of the processor is updated to reflect the fact that
this processor must perform the tasks associated with this block before it can handle the tasks of another block
The updating of the simulated time requires a means of estimating the time required to perform the various
tasks. We use the same estimates that we have been using for our simulations. This pre-simulated strategy has
the advantage that it manages the load balance of the computation while at the same time avoiding scheduling
glitches by assigning tasks to the processor that is idle the soonest.

One possible disadvantage of a pre-simulated approach is its cost. The block-oriented factorization performs
O( n3/B*) block operations, and a simulation would be expected to perform some amount of work for each
of these block operations. While the resulting ssimulation cost may be prohibitive, we have found that a full
simulation is not necessary. By maintaining summary information about the completion times of the blocks
in a column as the simulation proceeds, an O ( n 2/B?) approximate simulation gives results that are almost
indistinguishable from the results of a true simulation.

6.4.6 Results

In Figure 13 simulated speedups are shown for the five block mapping strategies we have described. The first
thing to note in this figure is that the pre-simulated strategy achieves significantly better results than the other
four. The careful placement of each block onto a processor that is free to handle it when it is ready allows this
strategy to baance the load well and avoid scheduling glitches.

Looking at the other strategies, the embedded and column round-robin strategies achieve significantly lower
performance than the pre-simulated strategy, primarily because of the relatively poor load balance that they
provide. The diagona round-robin and row round-robin strategies achieve the worst performance of al the
mapping strategies. This result is especialy interesting since the row round-robin strategy produces a load
balance that is comparable to the column round-robin strategy, and the diagonal round-robin strategy produces a
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load balance that is significantly better than either the column or row round-robin strategies. Further investigation
has revealed that the diagona and row round-robin methods achieve poor performance because these two
strategies ignore scheduling issues entirely. The result is a substantiadd number of scheduling glitches, where
some processors are idle while others have numerous tasks to perform.

6.5 Summary

For a more global picture of the performance of block-oriented methods (specificaly the simple column round-
robin, first-come first-served approach and the more sophisticated pre-simulated prioritized approach), Figure 14
shows the problem sizes that are necessary to achieve various levels of processor utilization. Unfortunately,
simulation costs proved prohibitive for many of the larger problems in the graph on the left. The trends are
clear, however. By comparing these graphs with each other and with the earlier graph that presented equivalent
information for panel-oriented methods (Figure 6), two things become clear. First, the simple block-oriented
method gives only dightly better results than the panel-oriented method. Second, the more sophisticated block-
oriented method gives much better performance than either the panel-oriented method or the simpler block-
oriented method. We therefore conclude that block-oriented methods are capable of achieving high processor
utilization levels for moderate problem sizes, but to achieve these levels the related task scheduling and block
placement issues must be handled effectively.

7 Discussion

While the data in Section 6 appears to indicate that block-oriented methods are aways preferable to panel-
oriented methods, we note that there are several exceptions. For example, panel-oriented methods are quite
appropriate for small-scale multiprocessors, say with 16 or fewer processors (e.g. SGI 4D/380). They are aso
appropriate for paralel machines that do not rely on data reuse to achieve high performance (e.g. CRAY Y-MP).
In both cases, panel-oriented methods would achieve very high performance for a wide range of problem sizes,
leaving little room for improvement. In addition, they are much simpler to implement, and they work with what
we consider to be a more natural representation of the matrix. The results of this paper, however, indicate that
block-oriented methods are essential for larger parallel machines that rely on significant data reuse.

We now briefly comment on some of the limitations of the study performed in this paper. One potentia
source of inaccuracy in our results is contention in the processor interconnection network. Our bdlief is that
the communication volumes are sufficiently low and the multiprocessors we have considered are sufficiently
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small-scale that network contention would not pose a problem for any of the schemes we have considered.
Another obvious limitation of our study is that the results have not been validated using a real parallel machine.
We are in the process of performing such vaidation studies; initial experiments on the Stanford DASH machine
indicate that the qualitative predictions are quite accurate.

We aso note that the results presented for the pane-oriented method could be improved somewhat by
incorporating an optimization. When a processor is ready to perform the modifications from a particular panel,
some number of subsequent panels may also be available on that same processor. The processor could perform
the modifications from all available source panels, rather than just those from a single one. This optimization
could reduce cache misses by as much as a factor of two for small panel sizes. The benefit would depend on the
number of source panels available a once, which would depend on the amount of excess concurrency available
in the problem.

One practica implementation issue that has not been touched on in this study concerns our assumption that
the processor caches act like ideal caches. Specifically, we have assumed that a block of data that is smaller
than the processor cache remains in the cache across many uses. Unfortunately, real caches do not necessarily
have this property, due primarily to cache conflicts between items in the reused block (see [9]). It is possible
to achieve near-ideal cache performance, however, using techniques such as block copying or aternative matrix
representations, and these techniques may be necessary for efficient practical implementations.

A natura extension of the work in this paper would be to use the proposed performance models to evauate
the performance of sparse Cholesky factorization. Sparse factorization is much more common in practice, and
there is greater interest in solving sparse problems quickly on paralel machines. We consider sparse problems
in arelated paper [ 14].

8 Conclusions

In this paper we have examined severad methods for performing dense Cholesky factorization on paralel ma-
chines. In particular, we have considered the tradeoff between the amount of data reuse exploited by individua
processors and the amount of available concurrency. Through the use of performance models and multiprocessor
simulation, we have found that this rather complicated tradeoff can be better understood in terms of two upper
bounds, a concurrency upper bound and a load baance upper bound.

We first considered panel-oriented factorization methods. We found that the bounds on paralel performance
for these methods were quite restrictive. When large panels were used, data reuse levels were high enough to
achieve high performance on individua tasks, but concurrency was a bottleneck. When smaler panels were
used, overdl performance was limited by the lack of data reuse. However, we did find that paned-oriented were
able to achieve performance levels that were nearly equal to the performance bounds. Thus, in cases where the
bounds are not constraining, panel-oriented methods are quite appropriate.

We then considered block-oriented approaches to the factorization. While offering significantly higher con-
currency, these approaches aso introduced several complications. A straightforward block-oriented approach,
where processors acted on messages in the order in which they arrived, led to erratic and relatively poor perfor-
mance, This behavior was improved by prioritizing the tasks of the computation. Performance also depended
heavily on the mapping of blocks to processors. We symbolicaly simulated the paralel factorization compu-
tation in order to determine an effective mapping. After the above modifications, the block-oriented method
achieved extremely high performance, achieving full processor utilizations for reasonable problem sizes. We
conclude that a block-oriented approach has significant performance advantages over a panel-oriented approach,
but that careful scheduling and data placement are required to achieve these benefits.
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