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Abstract. A snapshot scan algorithm takes an “ instantaneous’ picture of a region of
shared memory that may be updated by concurrent processes. Many complex shared
memory algorithms can be greatly simplified by structuring them around the snapshot
scan abstraction. Unfortunately, the substantial decrease in conceptual complexity is
quite often counterbalanced by an increase in computational complexity.

In this paper, we introduce the notion of a weak snapshot scan, a slightly weaker prim-
itive that has a more efficient implementation. We propose the following methodol ogy
for using this abstraction: first, design and verify an algorithm using the more powerful
snapshot scan, and second, replace the more powerful but |ess efficient snapshot with
the weaker but more efficient snapshot, and show that the weaker abstraction neverthe-
less suffices to ensure the correctness of the enclosing algorithm.

We give two examples of algorithms whose performance can be enhanced while re-
taining a simple modular structure; bounded concurrent timestamping, and bounded
randomized consensus. The resulting timestamping protocol is the fastest known
bounded concurrent timestamping protocol. The resulting randomized consensus pro-
tocol matches the computational complexity of the best known protocol that uses only
bounded values.

1 Introduction

Synchronization algorithms for shared-memory multiprocessors are notoriously difficult to
understand and to prove correct. Recently, however, researchers have identified several pow-
erful abstractionsthat greatly simplify the conceptua complexity of many shared-memory
algorithms. One of the most powerful of these is atomic snapshot scan (in this paper we
sometimes omit the word “scan”). Informally, thisis a procedure that makes an “instanta-
neous’ copy of memory that is being updated by concurrent processes. More precisely, the
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problem isdefined as follows. A set of n asynchronous processes share an n-element array
A, where P isthe only process that writes A[P]3. An atomic snapshot is aread of all the
elements in the array that appears to occur instantaneously. Formally, scans and updates are
required to belinearizable [20], i.€. each operation appears to take effect instantaneoudly at
some point between the operation’s invocation and response.

Atomic snapshot scan algorithms have been constructed by Anderson {3} (bounded regis-
tersand exponential running time), Aspnes and Herlihy [6] (unbounded registers and O(n?)
running time), and by Afek, Attiya, Dolev, Gafni, Merritt, and Shavit [2] (bounded registers
and O(n?) running time). Chandy and Lamport [13] considered aclosely related problemin
the message-passing model.

Unfortunately, the substantial decrease in conceptual complexity provided by atomic snap-
shot scan is often counterbalanced by an increase in computational complexity. In this paper,
we introduce the notion of aweak snapshot scan, a slightly weaker abstraction than the
atomic snapshot scan. The advantage of using weak snapshot isthat it can beimplemented
in O(n) time. Thus, the cost of our weak snapshot scan is asymptotically the same as the
cost of asimple “collect” of the n values. Our primitive, however, is much more powerful.
Moreover, the best known atomic snapshot requires atomic registers of size O(nwv), where v
is the maximum number of bitsin any element in the array A. In contrast, our weak snapshot
requires registers of size O(n + v) only.

Our resultsindiite that weak snapshot scan can sometiis alleviate the trade-off between
conceptual and computational complexity. We focus on two well-studied problems. bounded
concurrent timestamping and randomized consensus. In particular, we consider algorithms for
these problems based on an atomic snapshot. In both cases, we show that one can ssimply
replace the atomic snapshot scan with a weak snapshot scan, thus retaining the algorithms
structure while improving their performance.

The weak snapshot algorithm presented here was influenced by work of Kirousis, Spirakis,
and Tsigas [23], who designed a linear-time atomic snapshot agorithm for a single scanner.
In this special case our algorithm solves the original atomic snapshot problem as well.

One important application of snapshots is to bounded concurrent timestamping, in which
processes repeatedly choose labels, or timestamps, reflectii the real-time order of events.
More specifically, in a concurrent timestamping System processes can repeatedly perform two
types of operations. The first is a Label operation in which a process assigns itself anew label;
the second is a Scan operation, in which a process obtains a set of current labels, one per
process, and determines a total order on these labels that is consistent with the real tie order
of their corresponding Labe! operations.4

Israeli and Li [21] were the first to investigate bounded sequential timestamp systems,
and Dolev and Shavit [17] were the first to explore the concurrent version of the problem.
The Dolev-Shavit construction requires O(n)-sized registers and labels, O(n) time for a label
operation, and O(n? log n) time for a scan. In their algorithm each processor is assigned
a single multi-reader single-writer register of O(n) bits. Extending the Dolev-Shavit solution
in a non-trivial way, Israeli and Pinhasov [22) obtained a bounded concurrent timestamp
system that is linear in time and |abel size, but uses registers of szeO(n?). An aternative

% One can also define multi-writer algorithmsin which any process can writeto any location.
* Observe that the scan required by the timestamping is not necessarily identical to the atomic snapshot
scan. Unfortunately, the two operations have the same name in the literature.



implementation of their algorithm uses single-reader-single-writer registers® of size O(n), but
requires O(n2) time to perform a Scan. Later, Dwork and Waarts {18] obtained a completely
different linear-time solution, not based on any of the previous solutions, with a simpler proof
of correctness. The drawback of their construction is that it requires registers and labels of size
O(n log n).

Dolev and Shavit observed that the conceptual complexity of their concurrent timestamp-
ing algorithm can be reduced by using atomic snapshot scan. We show that, in addition, the
algorithm’'s computational complexity can be reduced by simply replacing the snapshot scan
with the weak snapshot, making no other changes to the original algorithm. The resulting
bounded concurrent timestamping algorithm is linear in both time and the size of registers and
labels, and is conceptually simpler than the Dolev-Shavit and | sragli-Pinhasov solutions.

Another important application of atomic snapshotsis randomized consensus: each of n
asynchronous processes starts with an input value taken from a two-element set, and runs until
it chooses a decision value and halts. The protocol must be consistent: no two processes
choose different decision values; valid: the decision valueis some process preference; and
randomized wait-free: each process decides after a finite expected number of steps. The
consensus problem lies at the heart of the more general problem of constructing highly
concurrent data structures {19]. Consensus has no deterministic solution in asynchronous
shared-memory {16]. Nevertheless, it can be solved by randomized protocolsin which each
process is guaranteed to decide after a finite expected number of steps. Randomized consensus
protocolsthat use unbounded registers have been proposed by Chor, Israeli, and Li (14] (against
a“weak” adversary), by Abrahamson[1] (exponential running time), by Aspnesand Herlihy [ 7]
(the first polynomial algorithm), by Saks, Shavit, and Woll [27] (optimized for the case where
processes run in lock step), and by Bracha and Rachman [ 1 1] (running time O( n2 log n)).

Protocols that use bounded registers have been proposed by Attiia, Dolev, and Shavit [8]
(running time O(n?)), by Aspnes [5} (running time O(n2(p? + n)), where p is the number
of active processors), and by Bracha and Rachman [10] (running time O(n(p? + n))). The
bottleneck in Aspnes' algorithm is atomic snapshot. Replacing thii atomic snapshot with
our more efficient weak snapshot improves the running time by Q(n) (from O(n?(p? +
n)) to O(n(p? + n))), and yields a protocol that matches the fastest known randomized
consensus algorithm that uses only bounded registers, due to Bracha and Rachman [10]. Both
our consensus algorithm and the one in [10] are based on Aspnes’ agorithm. The main
difference is that the solution of Bracha and Rachman is specific to consensus, whereas our
algorithm is an immediate application of the primitive developed in this paper.

The remainder of thii paper is organized as follows. Section 2 gives our model of compu-
tation and defines the weak snapshot primitive. Some properties of weak snapshots appear in
Section 3. The remaining sections describe the weak snapshot algorithm and its applications.

2 Model and Deflnitions

A concurrent system consists of a collection of n asynchronous processes that communicate
through an initialized shared memory. Each memory location, called a register, can be written
by one“owner” process and read by any process. Reads and writes to shared registers are
assumed to be atomic, that is, they can be viewed as occurring at a single instant of time.

In order to be consistent with the literature on the discussed problems, our time and space

8 All other results mentioned are in terms of multi-reader-single-writer registers.



complexity measures are expressed in terms of read and write operations on single-writer
multi-reader registers of size O(n). Polynomial-tii agorithms for implementing large single-
writer/multi-reader atomic registers from small, weaker, registers are well known [ 12, 24, 25,
26).

An algorithm is wait-free if there is an a priori upper bound on the number of stepsa
process might take when running the algorithm, regardiess of how its steps are interleaved
with those of other processes. All algorithms discussed in this paper are wait-free.

An atomic snapshot memory supports two kinds of abstract operations: Update modifies
alocation in the shared array, and Scan instantaneously reads (makes a copy of) the entire
array. Let UF (S¥) denote the kth Update (Scan) of process 4, and v} the value written by
i during U¥. The superscripts are omitted where it can not cause confusion. An operation
A precedes operation B, written as “A — B”, if B starts after A finishes. Operations
unrelated by precedence are concurrent. Processes are sequential: each process starts a
new operation only when its previous operation has finished, hence its operations are totally
ordered by precedence.

Correctness of an atomic snapshot memory is defined as follows. There exists atotal order
“==" 0n operations such that:

- fA— Bthen A = B.
- If Scan Sy returns ¥ = (vy,...,V,), thenv, isthe value written by thelatest Update U,
ordered before S, by =

The order “==" is called the lineari zation order [20]. Intuitively, the first condition says
that the linearization order respects the “real-time” precedence order, and the second says
that each correct concurrent computation is equivalent to some sequential computation where
the scan returns the last value written by each process.

We define aweak snapshot as follows: we impose the same two conditions, but we allow
“=="10 be apartial order® rather than a total order. We call this order a partial linearization
order. If A=> B we say that B observes A.

This weaker notion of correctness allows two scans Sand S' to disagree on the order
of two Updates U and U, but only if all four operations are concurrent with one another.
Scanning processes must agree about Updates that happened “in the past " but may disagree
about concurrent updates. Thus, in a system with only one scanner, atomic snapshots and
wesak snapshots are equivalent. Similarly, the two types of snapshots are equivalent if no two
updates occur concurrently.

3 Properties of Weak Snapshots

The reader can easily verify that weak snapshots satisfy the following axioms:

- Regularity: For any value v} returned by s?, U begins before S{ terminates, and there
is no U¥ such that Ui — U¥ — .

- Monotonicity of Scans: If S and §] are two scans satisfying S; — S, (aand b could
be the same process), and if S¢ observes update U* (formally, U¥ = S), then 53
observes UE.

8 |nthispaper, ai partial orders areirreflexive.



- Monotonictty of Updates: If U} and U,f are two Update operations (possibly by the
same process), such that Ui — U], and if S isa Scan operation, possibly concurrent
with both UZ and U}, such that S¥ observes U] (U] = S¥), then S* observes U;.

Roughly speaking, weak snapshots satisfy all the properties of atomic snapshots except
for the consistency property which states: If Scans S%, S return = (vq,...v,) and 6’ =
(vi...v},), respectively, then either Uxp—- Uy forevery k =1,...,n, or vice versa.

Define the span of avalue v} to be the interval from the start of U? to the end of Ui+!,
Clearly, values written by successive Updates have overlapping spans. The following lemma
formalizes the intuition that a weak snapshot scan returns a possibly existing state of the
system.

Lemma 1. If a weak snapshot scan returns a set of values 6, then their spans have a
non-empty intersection.

Proof:  Let vy and v bein 4 such that the span of v}, is the latest to start and the span of v
isthefirst to end. Then, it is enough to show that the spans of v;, and vg intersect. Suppose
not. Then U7 — Uy, By the definition of span, Uj*! — U, and hence Ui +! = U%,
which violates the requirement that each Scan return the latest value written by the latest
Update ordered beforeit by ==. ]

Let aScan S of aweak snapshot start at time ¢,, end at time ¢, , and return a set of values
@. Lemma 1 impliesthat there is a point ¢ in which the spans of al these values intersect.
There may be more than one such point; however, the Regularity property of weak snapshots
and Lemma 1 imply that there is at |east one such point ¢ such that t, <t <t.. Thisis
because the first clause in the definition of regularity implies that the span of v} begins before
t. , while the second clause implies that the span of v¢ ends after t,. We will refer to the latest
such point t by tsean of S.

4 Weak Snapshot

Intuitively, in order to be able to impose partial order on the scans and updates, we need to
ensure that a scan that did not return valuew] of processor a because vJ istoo new, will not
return a value v} that was written by processor b after b saw v3. By the properties of weak
snapshot, if the scan returns v} , then it must be ordered after b's update in the partial order.
Since this update has to be ordered after a's update, we have that a's update has to be ordered
before the scan. This contradicts the assumption that the scan saw neither »J nor any later
update by a.

If each value returned by the Scan is the value written by the latest update that terminated
before a specific point in the Scan, the above situation does not occur. Thii observation,
due to Kirousis, Spirakis, and Tsigas {23], motivates our solution. Roughly speaking, in our
solution, at the start of a scan, the scanner produces a new number, called color, for each
other process. When a process wants to perform an update, it reads the colors produced for it
(one color by each scanner) and tags its new value with these colors. Thii enables the scanner
to distinguish older values from newer ones.

The next subsection describes a solution that uses an unbounded number of colors. Later
we will show how to simulate this solution using only a bounded number of colors. The



simulation uses asimplification of the Traceable Use abstraction defined by Dwork and Waarts
in[18].

4.1 Unbounded Weak Snapshot

We follow the convention that shared registers appear in upper-case and private variables
in lower-case. In order to simplify the presentation, we assume that ail the private variables
are persistent. If a variable is subscripted, the first subscript indicates the unique process that
writesit, and the second, if present, indicates the process that usesit. Each process has
variables VALUE,, which stores b's current value, PCOLORp, QCOLOR,, €ach of which stores an
n-element array of colors, and VASIDEs., for each ¢ # b. We frequently refer to PCOLOR|c]
aSPCOLORy, (analogously for QCOLOR,[c]). In this section, we assume that all these variables
are stored in asingle register. Section 4.4 describes how to eliminate this assumption. The
code for the Update and Scan operations appears in Figures 1 and 2, respectively; the code
for the Produce operation, called by Scan, appearsin Figure 3. At the start of a scan, the
scanner b produces a new color for each updater ¢ and stores it in PCOLORy,. It then reads
VALUE,, VASIDE,3, and QCOLOR,; atomically. |f QCOLOR iS equal to the color produced by b
for ¢ (and stored in PCOLORy,), b takes VASIDE, as the value for ¢, Otherwise b takes VALUE,..

The updater b first reads PCOLOR¢, and then writes its new VALUE, atomically with
QCOLORp, .= PCOLOR for all c. At the same time it updates vasiDE,. for all ¢ that the
updater detects have started to execute a concurrent Scan.

Theintuition behind the use of the VASIDE variable can be best described if we will consider
an example where we have a “fast” updater b and a“slow” scanner ¢, where ¢ executes a
single Scan while b executes many Updates. In thii case, the updater will update VALUE, each
time, but will update vasipe,,. only once, when it will detect that ¢ isscanning concurrently.
Intuitively, VASIDE,, allows the scanner ¢ to return a value for process b that was written by b
during an update started no later than the end of the color producing step of the current scan.
Therefore, such value can depend only on values that are not more recent than the values
returned by the Scan.

1. Forall c# b, read gcolor,[c] := PCOLORey
2. For all c# b, if gcoloryc] # QCOLORy,
then vasides [c] := VALUE,
3. Atomically write:
VALUE; := new value
For all C # b, VASIDE, := vasides[c]
For al ¢ # b, QCOLORy, := gcolor, [C]

Fig. 1. Update Operation for Process b.

We superscript the values of variables to indicate the execution of Update or Scan in
which they are written. For example PCOLOR{,C is the value of PCOLORs, Written during Scan
S}. Next, we construct an explicit partial linearization order = as follows. Define Ui= S;',
to hold if S}, takes the value originally written by UJ. (Note that S;, may read thii value from



1. Call Produce
2. For all c # b atomically read:
valuep[c] := VALUE.
gcolory, [c] := QCOLORg
vasidey [c] = VASIDEp
3.Forallc#b
if qcoloryc] # peolor,(c]
then data[c] : = valuep|c]
else datay[c] := vasides|c]
4 Return(datas[1],...,VALUEs, . . . , datay[n])

Fig. 2. Scan Operation for Process b.

1. For all c # b peolory[c] := PCOLORy, + 1
2. Atomically writeforallc7#bPCOLORs : = pcolor, [c]

Fig. 3. Produce Operation for Process b.

VASIDEZ,,, where k > j). Define = to be the transitive closure of — U =. It follows
from the following two lemmas that the Scan and Update procedures yield a weak snapshot
memory.

Lemma 2. The relation == is a partial order

Proof: It sufficesto check that = is acyclic. Suppose there existsacycle Ay, . . ., Ak,

where adjacent operations are related by — or =, and the cycle length is minimal. Because

— isacyclic and transitiie, some of these operations must be related only by =>. Since the
cycleis minimal, and — is transitive, there are no adjacent — edges and therefore each

consecutive pair A; and A,y , if A; = Ay then A; /— A4y Moreover, since = goes
only from Update to Scan operations, there are no adjacent = edges, and therefore the
edges of the cycle must alternate between => and —. It follows that k is odd. Without loss
of generality, assume Ag = A;.

We argue by induction that, for £ > 0, we have that Ag starts before Aggye Starts.
Throughout the proof all subscripts are taken modulo k + 1. For the base case (£ = 0),
observethat Ag and A, are concurrent by construction (otherwise we would have had both
Ag = Ay and A9 — A;), and hence A, starts before A, finishes. Since by construction
A; — A, (aternating edges property), we have that A, finishes before A, starts, and the
base case follows.

Assume the result for £. We have Agpy2 = A2¢+3 (alternating edges), and hence
Aggya #— Aggys, i€ Aggyo and Aggys are concurrent. This implies that Ageqe Starts
before A2¢4 3 finishes. By the inductive hypothesis, Aq starts before Aa¢4» Starts and hence
Ay starts before Az¢3 finishes. To finish the argument, note that Agg43 — Az¢+4 (Alter-
nating edges), which implies that A starts before Agy44 Starts, completing the induction.



Recall that the cycle has even length, and that this length is at least 2. Thus, Ag Starts
before Ax41 Starts, but since all subscripts are modulo k + 1 this says that Ag starts before
itself, which is acontradiction. n

Lemma 3. For each process, our weak scan returns the value written by the latest update
ordered before that scan by ==.

Proof: Recal that v{; denotes the value originally written by U; . Let Ug' be the last update
by process ¢ to be ordered before S;', by ==. The proof of the lemma relies on the following
claim.

Claim 4. Ug terminates bef or e S;, reads VALUE, . Moreover, Ug does not read PCOLOR;,G.

Proof: By definition of = there must be asequence Ao, ..., Ak where adjacent operations
arerelated by — or = and where Ao = U] and A, = Sj. The proof proceeds by induction
on the length k of aminimal such sequence.

For the base case, k = 1, observethat either U7 — S} or U} => S&. In the first case
the claim trivially follows from the regularity of aread. In the second case, since S} returns )
we have that Ug must terminate before S;', reads vaLug, . To complete the proof of this case,
we will show by contradiction that Ug does not read PCOLOR;',q. Suppose otherwise. It follows
from Step 3 of the Scan operation that S;; could not have taken vg' from vaLuE, because
qeolor) [p] = peolor}[g] . S0 % must have taken vJ from VASIDE,,. Thii implies that there
issome Ug" ,j’ > ] that wrote ] into VASIDEg,, and that terminated before S; performs
Step 2. We show that there isno such U7 . Since Uj reads PCOLORy,, the monotonicity
of aread implies that so does any later Ug" that terminates before S;’s READ in Step 2,
and hence it follows from the code of the Update operation that any such later Ug" sees
qeolor, [p] = QCOLORgyp, and hence does not writev) into VASIDEgy.

Assume the claim for k and suppose the minimal sequence from Ug to S:, is of length
k + 1. Then one of the following must hold:

1. Ug—bU:=>S;.
2Ul=>Sr —Ul=S5;
3. U,;':»S;"——»S;j,

(We don't consider the case: U] — S => S}, because then either U] — S7* —
Ul= S; which leads to Case(1), or U] — S — S% which leads to the base case of
U, 7 — S;.)

For Case(1), by the inductive hypothesis U} does not read PCOLOR}, and it terminates
beforeS;;’s READ in Step 2. Clearly, the regularity of aread impliesthat U? does not start after
the P roduce operation of S, completed. Consequently, U] completed before thii P roduceis
completed, and the claim follows. In Case (2) we have that U] must have completed before
Sg* has completed and hence before U! has started, and the claim follows as in Case (1). For
case (3) we have that UJ completed before S, started and the claim trivially follows. L]

Now observe that since Ug’ is the last update of ¢ ordered before S:, by =, S; could not
have returned vg' for somej’ > j. Therefore, to complete the proof it is enough to show that



S;', does not return vg' forj <j. However, from Claim 4 it follows that U] has completed
before S;', performsitsread in Step 2. So before the time S;',‘ performs Step 2, vg iswritten
into vaLug, . The only way that S7 could still take some vg' for j' <jisif it takesit from
VASIDE,. This can happen only if the color that that S} reads, QCOLOR{I'; = PCOLOR},. By
Claim 4, Ug doesnot read pcox_OR;',q and hencewe havethat QCOLOR{I'ID # PCOLOR},q. This
impliesthat there existsj < j” <j” such that QCOLORJ, # QCOLOR, ~1. Butthisimplies
that VASIDE,, is updated with v =1 by update U™, contradicting the assumption that S%
takes vJ from vasiDEgp, for somej’ < j. [

4.2 Review of the Traceable Use Abstraction

We use asimplified version of the Traceable Use Abstraction of Dwork and Waarts[18] in
order to convert the unbounded weak snapshot described in the previous section into a
bounded one. We start by reviewing the abstraction. Recall that in the unbounded solution,
when process b produces a new color for process ¢, this new color was never produced by
b for ¢ beforehand. This feature impliesthat whenb sees VALUE, tagged by this new color it
knows that this vALUE, istoo recent (waswritten after the scan began), and will not return
it as the result of its scan. However, the same property will follow also if when b produces a
new color for c, it will simply choose a color that is guaranteed not to tag c's value unlessb
produces it for ¢ again. To do thisb must be able to detect which of the colors it produced for
¢ may still tag ¢’s values. This requirement can be easily satisfied by incorporating asimplified
version of the Traceable Use abstraction.

In general, the goal of the Traceable Use abstractionist o enable the colors to be traceable,
in that at any time it should be possible for a processor to determine which of its colors might
tag any current or future values, where by “future value” we mean a value that has been
prepared but not yet written. Although we alow a color that is marked as “in use’ not to be
used at al, we require that the number of such colors will be bounded.

The simplified version of the Traceable Use abstraction has three types of wait-free oper-
ations: Consume, Reveal and Garbage Collection.

- Consume: Allows the calling processor to obtain the current color produced for it by
another processor. It takes two parameters: the name ¢ of the processor from which the
color is being consumed, and the name of the color (that is, the shared variable holding
the color). It returns the value of the consumed color.

- Reveal: Allows a processor to update a vector containing its colors. It takes two parame-
ters: the name of the vector and a new value for the vector.

- Garbage Collection: Allows a processor to detect all of its colors that are currently “in
use”. It takes a list of shared variables in which the garbage collector’s colors reside. It
returns alist of colors that may currently be in use.

It isimportant to distinguish between shared variables of an agorithm that uses the Trace-
able Use abstraction and auxiliary shared variables needed for the implementation of the
abstraction. We call the first type of variables principal shared variables, and the second type
auxiliary. Only principal shared variables are passed to the Garbage Collection procedure.
For example, in the weak snapshot system the only principal shared variables are PCOLCR, ,
and QCOLOR,, foranypand g.



For 1< i< n, let R¥(C¥) denote the kth Reveal (Consume) operation performed by
processor i. X ¥ denotes the vector written by 4 during R¥ . Let b consume a color X, from
c. Then X, is said to be in use from the end of the Consume operation until the beginning
of b next Consume from c. In addition, all colors revealed by ¢ appearing in any principal
shared variables are also said to be in use. We require the following properties:

- Regularity: For any color X2 consumed by C¥, RS begins before C¥ terminates, and
thereisno R} such that R — Rt — C¥.

- Monotonicity: Let C¥ , C¥' (whered and j may be equal) be a pair of Consume operations
returning the colors X2, X8. 1f C¥ — C¥ thena <b.

- Detectability: If acolor v revealed by processor b was not seen by b during Garbage
Collection, then v will not be in use unless b reveals it again.

- Boundedness: The ratio between the maximum number of colors detected by b during
Garbage Collection as possibly being in use and the maximum number of colors that can
actually bein use concurrently is bounded by a constant factor.

The regularity and monotonicity properties of the Traceable Use guarantee the regularity
and monotonicity properties of the bounded weak snapshot system. Detectability guarantees
that a processor will be able to safely recycle its colors. Boundedness guarantees that by taking
the local pools to be sufficiently large, the producer will always find colors to recycle.

The implementation of the Traceable Use abstraction described in [ 18] assumes following
restrictions.

- Conservation: |f a color v, consumed by C¥ from c is till used by i when it performs
anew Consume from ¢, C¥', k' > k, then at the start of C¥' this color isin one of i’s
principal sharedvariables.

- Limited Mobility: A color consumed by b and stored in a principal shared variable X
cannot be moved to adifferent principal shared variableYs; (i.e., removed from X, and
placed inY}).

We show that the simplified Traceable Use under these restrictions suffices for our weak
snapshot algorithm.

4 .3 Bounded Weak Snapshots

For simplicity of exposition, we first present an agorithm that uses registers of size 0( nv),

where v is the maximum number of bitsin any process vaue. In Subsection 4.4 we show how
to modify thii algorithm so that registers of size O(n +v) will suffice. In order to convert the
unbounded solution to abounded one, we replace the Produce operation shown in Figure 3
by the Produce operation shown in Figure 4. The meaning of the notation in Step 1.3 of the
new Produce operation is that all n colors peolory[i], 1 < ¢ < n, are written atomically to
PCOLORp; .

Also, Line 1 of the Update operation shown in Figure 1 is replaced by the following:

1. For all c# b, gcolory [c] := Consume(c, PCOLOR.b).

10



la. Fordl 1<i<n X[i] : = Garbage Collection(PCOLOR; , QCOLOR;5)
1.b. For all ¢ # b, choose peolor,fc] ¢ X|c|
1.c. Reveal (PCOLORs, pcolor,)

Fig. 4. Produce Operation for Process .

Next we show that the bounded construction isindeed aweak snapshot algorithm. Observe
that the proof of Lemma 2 applies directly for the bounded weak snapshot. The proof of
Claim 4 holds because of the Regularity and Monontonicity properties of Traceable Use. In the
proof of Lemma 3 all statements are true up to the statement “ By Claim 4, Ug' does not read
PCOLOR:,q, we havethatQCOLORgp # PCOLoR;',q”. Thisis not necessarily correct because we
recycle the colors. Clearly, if QCOLOR?, # PCOLOR},, the same argument holds. Consider
the case where QCOLOR], = PCOLORE,. By Claim 4, U7 did not read PCOLOR;,,. By the
Detectability property of Traceable Use, thisimplies that in the end of the Garbage Collection
step executed by S5, QCOLOR, , contains acolor QCOLORZL, # PCOLOR}, , Wherej; >j. The
rest of the proof followsanalogously, with jy replacingj.

The complexity of Traceable Use given in [18] is O(n) per each Consume or Reveal, and
O(n?) per each Garbage Collection. However, in our particular case a trivial modification of
the implementation in [18] reduces the cost of Garbage Collection to O(k), where k is the
number of variables passed as parameters to the Garbage Collection procedure. Also, it is
easy to see that we can get by with a constant number of colors for each pair of processes.

4.4 Reducing the Register Size

The weak snapshot described above uses registers of size O(nv) where v is the maximum
number of bitsin any val ue VALUE,. Thisisdueto thefact that an updater b may set aside a
different value for each scanner ¢ in avariable VASIDE., and all these values are kept in asingle
register. To reduce the size of the registers, each updater b, will store VAsIDE;. i n a separate
register for each c. Only after this has been accomplished, b atomically updates VALUE; and,
forallc # b, VCOLORsc. _

The modifications to the code are straightforward. Lines 2 and 3 of the code for the
Scan (Figure 2) are replaced by Lines2' and 3' below.

2”. Foral c# b atomicaly read:
values[c] := VALUE,
gcolor, [c] := QCOLOR.;
3” Foralc#b
If gcolor, [c] # pcolor,|c]
then datas[c] := valuey|c]
else read data[c] := VASIDE.»

Lines 2 and 3 of the code for the Update operation (Figure 1) are replaced by the following
Lines2 and 3'.
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2'. For aii c# b, if qeolor,[c] # QCOLORy, then vasides [c] : = VALUE,
VASIDEp. = vasides|c]

3'. Atomically write:
VALUEs := new value
For all c#b,QCOLORy. : = gcolor,|c]

Observe that the only difference between the modified and the original agorithm is that
the shared variables vasIDE,, and VALUE, are not read atomically together by Scan and not
written atomicaly together by the Update.

The only way we can get an execution of the modified agorithm that does not correspond
to an execution of the original algorithm is when the Scan reads VALUF_{; and VASIDE’;;, and
returns the | atter, where vAsIDEf, # VASIDE,’;;,. We now show that this can not happen.

Since VASIDE,,, is Written before VALUE,, we have that k”> k. Since the scan S, returns
the value it read from VASIDEp , We have PCOLOR:,q = QcoLor. By the Detectability property,
U§ consumes color PCOLOR%,. By Monotonicity, for all k < ki < k', Ut consumes same

k . . k _ kl
color. Hence none of U;;* changed the value in VASIDEgy, i.€. VASIDEg, = VASIDE,.

5 Applications

In this section, we explore two applications of the weak snapshot: bounded concurrent times-
tamping and randomized consensus. First we take the bounded concurrent timestamping
protocol of Doiev and Shavit[17], and show that thelabels can be stored in an abstract weak
snapshot object, where each access to the labels is through either the weak snapshot Update
or the weak snapshot Scan operation. The resulting protocol has running time, label size, and
register sizeall O(n).

We then take the elegant randomized consensus protocol of Aspnes|(5], and show that
replacing atomic snapshot with weak snapshot leads to an algorithm with O(n(p? + n))
expected number of operations. This is an improvement of £2(n) over the original algorithm.

5.1 Efficient Bounded Concurrent Timestamping

In a concurrent timestamping system, processes repeatedly choose labels, or timestamps,
reflecting the real-time order of events. More precisely, there are two kinds of operations:
Label generates a new timestamp for thecalling process, and Scan returns an indexed set of
labels € = (¢, . .., £,) and an irreflexive total order < on the labels.

For 1<i<n, let L¥ (S¥) denote the kth Label (Scan) operation performed by processor
¢ (processor 1 need not keep track of k, thii is simply anotational device allowing us to describe
long-lived runs of the timestamping system). Analogously, £¥ denotes the label obtained by i
during L¥. Correctnessis defined by the following axioms;

- Ordering: There exists an irreflexive total order == on the set of all Label operations,
such that:

« Precedence: For any pair of Label operations L and Lg (where p and ¢ may be
equal), if L§ — L}, then L3 => L}.
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« Consistency: For any Scan operation S¥ returning (, <), €2 < £ if and only if
L3 = L.
= Regularity: For any label £3 in € returned by S¥, L3 begins before S¥ terminates, and
thereisno L} such that L§ — L) — S¥.

- Monotonicity: ane SF, S} (where ¢ and | may be equal) be a pair of Scan operations
returning the vectors Z, £ respectively which contain labels €2, £5 respectively. If §%¥ —

S¥ then a< b.

Dolev and Shavit describe a bounded concurrent timestamping system that uses atomic
multi-reader registers of size O(n) and whose Scan” and Label operations take time O(n? log n)
and O(n) respectively. They also mention that the labels can be stored in an abstract atomic
snapshot object, where each access to the labels is through either atomic snapshot Update
or Scan operation. More specifically, they would replace the Collect performed during the
Label operation by an atomic snapshot Scan, would replace the simple writing of the new
label with an atomic snapshot Update, and would replace their entire original Scan with an
atomic snapshot Scan.

However, as they note, this transformation has drawbacks. The size of the atomic registers
in al known implementations of atomic snapshot memory is O( nv), where v isthe size of
thelocal value of each processor, and hence the size of the atomic registersin theresulting
timestamping system is O(n?) (because here v is alabel, and their label is of size n). Second,
since both Update and Scan operations of the snapshot take O(n2) steps, then while the
running time of the Scan operation in the resulting timestamping system improves, the running
time of the Label operation increasesto O(n?).

We show that one can replace the atomic snapshot abstract object in the Dolev-Shavit
timestamping system by the weak snapshot object. Note that this leads to a solution without
the above-mentioned drawbacks. More precisely, we get a timestamping system with linear
running time, register size and label size.

Next we prove that the resulting system is indeed a bounded concurrent timestamping
system.

Theorem 5. Our modification of the Dolev-Shavit algorithm yieldsa bounded concurrent
timestamping system.

Proof: Regularity and Monotonicity follow directly from the analogous properties of the weak
snapshot (more specifically, they follow from the Regularity and the Monotonicity of Scans
properties of weak snapshot). To complete the proof we need to show the Ordering property.

Consider an execution of our algorithm and focus on the sequence of labelling operations.
In our agorithm, when a process performs a Label operation it collects the labels of the
other processes using aweak snapshot Scan, while in the original algorithm of Dolev and
Shavit these labels are obtained using a simple Collect. However, for every execution of our
algorithm, there exists an execution of the Dolev-Shavit agorithm that produces the same
sequence of the labelling operations. Thisis due to the fact that the set of labels read by a
weak snapshot scan can be also read by a collect executed in the same time interval, and
because the result of a labelling operation in the Dolev-Shavit algorithm depends only on the
set of labels collected during this operation. Thii implies that there exists an irreflexive total

7 Note that this Scan is different from our weak snapshot Scan.
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order on the labelling operations in the execution of our algorithm that is consistent with the
precedence relation on the labelling operations. (The ordering isthe one guaranteed by the
proof of the Dolev-Shavit agorithm on the corresponding execution of their algorithm.)

Given an execution, the total order on the labelling operations defined by Dolev and Shavit
isasfollows: if one labelling operation reads the Iabel produced by another Iabelling operation,
then the first operation is ordered after the second. To get the total order, take the transitive
closure of this partial order and extend it to atotal order by considering the values of the
labels.

The next step is to show that the order produced by a Scan operation of our algorithm
is consistent with this total order. A Scan operation of our algorithm is just a weak snapshot
Scan. Consider aweak snapshot Scan that returns a set of labels . To compute the order
between these labels, our algorithm makes direct use of the appropriate procedure in the
Dolev-Shavit algorithm. Therefore, it remains to show that the order on these |abels produced
by this procedure is consistent with the total order defined above.

Define amodified execution of our algorithm where we stop each process after it completes
the labelling operation that generates its label in £. Observe that the Monotonicii of Scans
property of weak snapshots implies that none of the labelling operations in the original
execution that generated labels in £ can observe |abels that were not written in the modified
execution. Consider a Scan of the original Dolev-Shavit algorithm that is executed a the end of
this modified execution. The Scan of Dolev-Shavit reads the same labels asin-l. The ordering
of the labels computed by this Scan is consistent with the ordering on the labelling operations
in the modified execution, and hence the ordering of the labels produced by our agorithm is
also consistent with the total order on the labels defined by the modified execution.

We claim that the total order on Label operations obtained for the original execution (from
which we obtained the modified one) is consistent with the total order obtained by the modified
execution. In other words, we have the original (infinite) execution and a modified (truncated)
execution. Consider labelling operations that appear only in both executions and the two total
orders defined on these operations. Note that the only way these two total orders could be
inconsistent isif there exists alabelling operation in the original execution that generated a
label in € and that read alabel (during its weak snapshot Scan) that was not written in the
modified execution. However, since the labelsin £ are read by aweak snapshot Scan, the
“Monotonicity of Scans’ property of weak snapshots implies that thii isimpossible. a

5.2 EfficientRandomized Consensus

In arandomized consensus protocol, each of n asynchronous processes starts with a pref-
erence taken from a two-element set (typicaly {0,1}), and runs until it chooses a decision
value and halts. The protocol is correct if it isconsistent: no two processes choose differ-
ent decision values; valid: the decision value is some process' s preference; and randomized
wait-free: each process decides after afinite expected number of steps. When computing a
protocol’ s expected number of steps, we assume that scheduling decisions are made by an
adversary with unlimited resources and complete knowledge of the processes protocols, their
interna states, and the state of the shared memory. The adversary cannot, however, predict

future coin flips.

Our technical arguments require some familiarity with the randomized consensus protocol

of Aspnes[5]. This protocol makes two uses of atomic snapshot, both of which can be
replaced by our weak snapshot. The protocol is centered around a robust weak shared coin
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protocol, whichisakind of collective coinflip: all participating processes agree on the outcome
of the coin flip, and an adversary scheduler has only a slight influence on the outcome. The

n processes collectively undertake a one-dimensional random walk centered at the origin with

absorbing barriers at + (K + n), for some K > 0. The shared coin isimplemented by a

shared counter. Each process alternates between reading the counter’s position and updating

it. Eventually the counter reaches one of the absorbing barriers, determining the decision value.

While the counter is near the middle of the region, each process flips an unbiased local coin to

determine the direction in which to move the counter. If a process observes that the counter

iswithinn of one of the barriers, however, the process moves the counter deterministically
toward that barrier. The code for the robust shared coin appears in Figure 5.

FuncTion SharedCoin

repeat

1. ¢ := read{counter)

2. if ¢ € (K + n) then decide 0

3. elseif ¢ > (K + n) then decide 1

4. elseif C < — K then decrementicounter)
5. elseif C > K then increment{counter)

6. else
7. if LocalCoin=0 then decrement{counter)
8. else increment{counter)

Fig. 5.Robust Weak Shared Coin Protocol {Aspnesi5))

Aspnes implements the shared counter as an n-element array of atomic single-writer multi-
reader registers, one per process. To increment or decrement the counter, a process updates
itsown field. To read the counter, it atomically scans all thefields. Careful use of modular
arithmetic ensures that all values remain bounded. The expected running time of thii protocal,
expressed in primitive reads and writes, is 0( n2(p? + n)), where p is the number of processes
that actually participate in the protocol.

The shared counter at the heart of this protocol is linearizable {20}: There exists atotal
order “==" on operations such that:

- if A— Bthen A = B.
- Each Read operation returns the sum of al increments and decrements ordered before it
by =.

We replace the linearizable counter with a different data abstraction: by analogy with the
definition of weak snapshot, aweak counter imposes the same two restrictions, but allows
== to be a partial order instead of atotal order. Informally, concurrent Read operations
may disagree about concurrent increment and decrement operations, but no others. We can
construct a weak counter implementation from Aspnes's linearizable counter implementation
simply by replacing the atomic snapshot scan with a weak snapshot scan. We now argue that
the consensus protocol remains correct if we replace the linearizable counter with amore
efficient weak counter.
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The proof of the modified consensus protocol depends on the following lemma which
is analogous to asimilar lemmain [5]. Recall from Section 3 that for each Scan operation
returning a vector @ of values, thereis an associated timetsecan, the latest time between the
start and end times of the Scan at which the spans of the valuesin & intersect.

Let Ry, (I7, D) denotep’s (q'5) it (j**) read (increment, decrement) operation.

Lemma 6. If R; returns value v > K + n, then all reads whose tscan is not smaller
than the tscan of R}, will return values > K + 1. (The symmetric claim holds when
v < (K +mn))

Proof: Suppose not. Pick an earliest (with respect to tscan) Rg that violates the hypothesis.
Denote the tgeqn of R:, by t,. Since tscan of R{I' iStq > tp, it follows from the definition of
tscan that R? must observe all updates that were completed beforet,, i.e. all these updates
are ordered g)efore itby =.

Observe that for each processor z, any update U¥ that completes not before t,, except
the first such update, must follow aread RX that started not before tp and hence the tscan of
thisread (¢) is not smaller than ¢,. Note that by definition of “observed” relation, any RE
observed by R} completes beforet, and hencet, < t, < t,. Since R} isthefirst to violate
the claim, we have that any such R¥ returns a value > K + 1.

Any counter modiition that follows such aread (R¥) must be an increment (see Step 5).
Since processes aternate between reads and updates, any update seen by R:, and not seen by
R} finishes after t,, and hence any subseguent update of the same processor that is observed
by R} must be an increment. Any update observed by R} but not by Rj, must finish after ¢,,.
Similar to the argument above, any subsequent update of the same processor that is observed
by R} must be anincrement.

The claim follows since any update by processor p that is not observed by R}, but is
observed by R} must follow a read that started after t,, and hence must beanincrement. ®

The protocol also uses an atomic snapshot to make the protocol’ s running time depend
on p, the number of active processes. For thii purpose, in addition to the shared counter used
for the random walk, the protocol also keeps two additional counters, called active counters
(implemented in the same way asthe “random walk” counter), to keep track of the number
of active processes that start with initial values 0 and 1. Each process increments one active
counter before it modifiesthe random walk counter for the first time. (More specificaly, if
the processor starts with initial value 0, it increments the first active counter, and otherwise it
increments the second.) All three counters (that is, the shared coin counter and the two active
counters) are read in a single atomic snapshot scan.

The proof of the expected running time of the protocol hinges on the following lemma,
which holds even if we replace the atomic snapshot scan by aweak snapshot scan. Define
the true position of the random walk at any instant to be the value the random walk counter
would assume if al operations in progress were run to completion without starting any new
operations.

Lemma 7. Let T be the true position of the random walk at tscan Of R,. If Ry returns

values ¢, ag, and a, for the random walk counter and the two active counters, then
c—(ap+a;-1)<7<c+(ao+a;-1).

16



Proof: A process g affects the random walk’s true position only if it has started to increment
or decrement the random walk counter by time tscan. Any ¢ that has started to modify the
random walk counter by the tscan of R, has already finished incrementing the appropriate
active counter before that time, so R, observes that increment. It follows that R,, fails to
observe at most (ag + a3 — 1) increments or decrements active at itStscan, and the result
follows. ]

6 Conclusions

We have defined the weak snapshot scan primitive and constructed an efficient implementation
of it. We have given two examples of algorithms designed using the strong primitive of atomic
snapshot scan for whiih it was possible to simply replace the expensive atomic snapshot with
the much less expensive weak snapshot scan. Indeed, it seems that in many cases atomic
snapshot scan can be simply replaced by weak snapshot scan. Our construction relied on the
Traceable Use abstraction of Dwork and Waarts [18]. Alternatively, we could have used the
weaker primitives of Tromp [28] or of Kirousis, Spirakis, and Tsigas [23].

In asimilar spirit to the weak snapshot, one can define a weak concurrent timestamping
system, which, roughly speaking, satisfies the properties of the standard timestamping system
except that the ordering == on Label operations and the < orders on labels are partial rather
than total. Such atimestamping system is interesting for two reasons. it is conceptually simple
and it can replace standard timestamping in at least one situation: Abrahamson’s randomized
consensus agorithm [1].

In conclusion, we can generalize our approach asfollows. Consider aconcurrent object
with the following sequential specification. 8

- Mutator operations modify the object’s state, but do not return any values. Mutator oper-
ations executed by different processes commute: applying them in either order leaves the
object in the same state.

- Observer operations return some function of the object’s state, but do not modify the
object.

A concurrent implementation of such an object is linearizable if the precedence order on
operations can be extended to a total order = such that the value returned by each observer
isthe result of applying all the mutator operations ordered before it by ==. Thiskind of object
has a straightforward wait-free linearizable implementation using atomic snapshot scan ([6]).
A weakly linearizable implementation is one that permits=> to be apartial order instead of
atotal order. This paper’s contribution is to observe (1) that weakly linearizable objects can be
implemented more efficiently than any algorithm known for their fully linearizable counterparts,
and (2) there are certain important applications where one can replace linearizable objects with
weakly linearizable objects, preserving the application’s modular structure while enhancing
performance.
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