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Anticatch
Guy L. Steele Jr.

Thinking Machines Corporation
245 First Street

Cambridge, Massachusetts 02142

glsQthink.com

One evening at POPL ‘92, some jolly souls were tramp
ing down Tijeras from the hotel to the restaurant called
Stephen’s, chatting loudly about the theory of program-
ming languages and generally looking like the rowdy, un-
ruly band of marauding computer scientists that we were.

Monads were a favorite topic of discussion, thanks to
Phil Wadler’s tutorial on the subject that Monday morn-
ing [6], and some of us were speculating on silly and per-
haps not-so-silly extensions to the examples he had given.

One such example concerned the monad of reversed
state: thanks to lazy evaluation in the metalanguage, one
can write an interpreter that appears to propagate state
backwards through the interpreted computation (at least,
relative to our intuitions about how an interpreter behaves
when implemented in a. call-by-value metalanguage). The
illustration was an interpreter for a language in which the
computation has access to a primitive that returns the
number of evaluation steps yet to be performed in the com-
putation. Of course, this value must be used in such a way
that the number of steps yet to be performed does not de-
pend on the value received, lest an unresolvable mutual de-
pencleuce arise. (There is probably theoretical fruit here
for science fiction writers who address the paradoxes of
time travel.)

On our stroll towa.rds dinner, it occurred to me that
perhaps not just derived measurement quantities, but the
very values  of expressions themselves could be propogated
backwards through the computation by a similar tech-
nique. A few of us (including, I think, Phil Wadler,
Matthias Felleisen, Olivier Danvy, and myself) discussed
this more or less lightheartedly. I named the appar-
ently necessary new language constructs  anticatch and
antithrow, on the grounds that whereas throw (as de-
fined by MacLisp  [4] arid la.ter  Common Lisp [5]) accepts
a va.lue  and transmits it to be returned by catch, I wauted
antithrow to obtain and return the value that anticatch
will return:

(an t i ca tch  (+  3  (beg in  (p r in t  ( an t i th row) )  4 ) ) )

returns 7 after printiug  7.
I was trying to make a dual to catch in the seuse of

Filinski [l, 21, iii which values aud continuations excha.nge

roles and the past and future exchange roles. My intuition
was that if throw gives the current value to some saved
continuation, then ant ithrow should give a future value to
the current continuation. This is what results from doing
language design in one’s head while walking sociably down
the street. Anyway, we had a. few good laughs over it.

(Fifteen years ago, not long after catch and throw were
put into MacLisp, Jon L White and I used to laugh over
the idea of a. special form that could intervene between
a throw and its matching catch and decide whether the
catch form or the throw form should return the value.
This hypothetical special form was known as bat.)

I looked at the idea for anticatch more closely on the
airplane home. To simplify the semantics, I decided to use
Church encoding insteacl of special syntactic forms (I was
sure that Olivier would a.pprove).

So I needed to invent a new function that would
take another function f and feed it an “antithrow func-
tion” as an argument. This new function would bear the
same relationship to the anticatch special form that the
Scheme function call-with-current-continuation [3]
bears to catch. So it looked as though it should be called
ca l l -wi th - func t ion- tha t - re tu rns -even tua l -va lue .

Yuck!
But t*hen  I thought: why feed f an antithrow function?

For such an antithrow function would ta.ke no arguments.
Why not just feed f the eventual value itself?

So I decided to call it call-with-eventual-value,
or call/ev for short (by analogy with the abbreviation
call/cc used in a number of dialects of Scheme). Thus,
as with our previous example,

( c a l l / e v  ( l a m b d a  (v) (+ 3  ( b e g i n  ( p r i n t  v) 4 ) ) ) )

returns 7 after printiiig 7.
So the new specification is for a. functiou  call/ev  such

that (call/ev  f > invokes f , giviug it as an a.rgument  the
value  that the call to call/ev will eventually return. And
what value should the call to call/ev  eventually ret,uru?
Presumably whatever the call to f returns.

S o  (call/ev  f) G ( f  (call/ev  f)).
How a.bout that? call/ev G Y.
So much for anticatch.
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Recursion from Iteration

Andrzej Filinski*

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213
andrzej+Ocs.cmu.edu

Abstract
In a call-by-value language with first-class continuations, the usual CBV fixpoint  combinator

can be expressed in terms of a simpler iteration primitive. We give an informal derivation of
this correspondence, together with a formal correctness proof. We also present a number of
generalizations and possible applications.

1 Introduction
Recursive definitions in CBV functional languages have always been a bit troublesome. The usual
definition of the Y-combinator doesn’t work, but must be tweaked by insertion of “magical” v-
redexes. In a simply-typed setting, where a recursion operator must be explicitly included as part
of the language, its operational behavior is also significantly more complicated than in the CBN
case. Finally, we can define recursive functions but not general recursive values. These technical
problems seem to indicate that, at least in a CBV setting, recursion might more properly be viewed
its a derived, contml-specific concept, not a fundumental,  definitional one.

It is an elementary observation that iteration is a special case of recursion (so-called “tail
recursion”). What is not so obvious is that the converse can also be true. At the implementation
level, this is evident; after all, current machines only have simple loops and must keep track of
recursive calls in an auxiliary data structure (typically a stack). In the following, we will see how
first-class continuations can bring this correspondence up to the language level.

The best-known language with first-class continuations is of course Scheme [CR91]. However,
many of the finer points and distinctions are brought out only in a statically-typed language.
Fortunately, the widely available Standard ML of New Jersey compiler has an experimental first-
class continuation facility (see [DHMSl]  for details). We will therefore use SML/NJ as the main
language for examples, but give translations to Scheme where possible and appropriate.

The main difference between SML/NJ’s and Scheme’s first-class continuations is that the former
are not represented as procedures but as values of a special type: for any type cy, Q! cant is the
type of o-accepting continuations. The function callcc provides access to the current continuation
exactly like call/cc in Scheme, but applications of continuations use an explicit throw operator.

*Supported in part by NSF Grant CCR-8922109 and in part by the Avionics Lab, Wright Research and Develop
ment Center, Aeronautical Systems Division (AFSC), U.S. Air Force, Wright-Patterson AFB, OH 45433-6543 under
Contract F33615-90-C-1465,  ARPA Order No. 7597.
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Such a presentation is somewhat more convenient in SML’s polymorphic type system; it also permits
a slightly more efficient implementation.

2 Fixpoints  from unbounded iteration
Let us first note that adding call/cc to a simply-typed functional language without a recursion
operator does not by itself make it possible to write non-terminating programs [GrigO]. We therefore
need some kind of repetition construct to get started; fortunately, almost anything will do. Consider
the following “endless iteration” operator:

fun loop f = (define (loop f)
let val ret loopf = (letrec ([loopf

fn a => loopf (f a) (lambda  (a) (loopf (f a>>)I>
in loopf end loopf))

(* loop : (‘a -> ‘a) -> ‘a -> ‘b *)

(ML’s fun , like Scheme’s define , defines a recursive function. We will use these constructs for
compactness only, resorting to an explicit val ret or letrec when we actually need recursion).

How can we use such an iterator to create a “recursor”? The key is the following observation:
any function call in a CBV language is completely specified by a pair (argument value, return
continuation); we call such a pair an application context. First-class continuations allow us to
capture the application contexts, and thus to schedule aII the calls explicitly.

Our first step is to define an application-context capturer:

fun switch 1 = fn x =>
II

(define (switch 1) (lambda (x)
callcc (fn q=>throw  1 (x,q)) (call/cc (lambda (q) (1 (cons x 9))))))

(* s w i t c h  :  ( ‘a  * ‘2b cant) cant -> ‘a -> ‘2b *)

(Type constructors like cant in ML bind very tightly, so ’ a * ‘b cant is implicitly parenthesized
as ‘a * (‘b cant) . The ‘a, usually pronounced “alpha”, is ML’s syntax for a generic type
variable; ignore for the moment the 2 in ‘b). The idea is that switch 1 looks like an ordinary
function, but when applied to an ‘a-typed argument with a ‘b-typed return continuation, it will
capture and pass these to 1:

k ((switch I) u) = l (k, v)

We can now pass in this hook to our recursively-defined function and capture the full context of a
recursive calI:

fun step f => fn (v,c> => (define (st ep f) (lambda (vc)
callcc (fn 1 =:) (call/cc (lambda (1)

throw c ((cdr vc)
(f (switch 1) v)) ((f (switch 1)) (car vc>)>>>>>

(* step : ((‘2a -> ‘2b) -> ‘c -> ‘d) -> ‘c * ‘d cant -> ‘2a * ‘2b cant *)

The type if step may be a bit confusing at first sight, but the key observation is that it
expresses f as an application-context transformer, mapping from a context for f to a context for
f ‘s argument. If f never applies it argument, step does not return to the point of call.

We can now set up an iteration over contexts, intercepting ah recursive calis and sending them
once more through the loop; when a recursive call terminates, we pass the result to whichever
continuation was waiting for it:



fun fix f = fn x => (define (fix f) (lambda (x)
cal lcc  ( fn  r =>

’
(call/cc (lambda (r)

loop (s tep  f> (x,r:)) ((loop (step  0) (cons  x r))))))
(* fix : ((‘2a -> ‘2b) -> ‘2a -> ‘2b) -> ‘2a -> ‘2b *)

.
(The type of fix is only “weakly polymorphic” because of the corresponding restrictions on

callcc [Hargl]. Informally, the 2 in the type indicates that any computational effects are “pro-
. tected” by at least two levels of functional abstraction. In practice this means that result computed

- by a recursively-defined function cannot have its type generalized (i.e., made usable at two differ-
ent type instances) by a polymorphic let. Fortunately, most actual ML code does not use this
generality, and there is evidence suggesting that polymorphic generalization of non-value terms is
semantically questionable anyway [HL92] .)

As expected from a fixpoint combinator, we get:

- fix (in fib => in n => > ((fix (lambda (fib) (lambda (n)
if n<2 then n (if (C n 2) n
else fib(n-1) + fib(n-2)) (+ (fib (- n 1)) (fib (- n 2)))))))

10; 10)
val it = 56 : int = 56

We use “naive Fibonacci” as our example instead of the traditional factorial function to em-
phasize that the recursion does not have to be linear (i.e., with at most one recursive call in the
body of the defined function).

3 Correctness  of the simulation
The above informal explanation of fix can be turned into a more rigorous proof, either by conver-
sion to CPS (see section 4) or by direct-style reasoning about control operators [FH89]; let us use
the latter approach here. First, we note that all of the above uses of callcc are in a restricted form
in which the body of a function called by callcc is always a throw (i.e., the function called with
the current continuation never returns directly to the point of call). This pattern of use for callcc
seems quite common in programs with first-class continuations. From a Curry-Howard perspective
[GriSO], it corresponds to introducing a control operator as double-negation elimination instead of
the logically equivalent but less intuitively appealing Peirce’s law. Operationally, it also coincides
with Felleisen’s rules for the C-operator on the subset of the language where the body of a C-called
function is a continuation application.

Expanding the definitions above, and adopting a more compact X-syntax, we have:

fix E Xf.Xx.C(Xr.loop(A(v,c).C(Xc(f  (~x.C(~4.1(x,Q)))v)))  (XT))

We can now prove that from (loop g) b = (loop g) (g b), it follows that (fix f) a = f (fix f) a:

F

(Pxf)a = Ix2.c  (hh~~ ‘(xcv,  +c (xh (f (xxx  (xq.l  tx, q))) v)) i<x, T))] a
= C (Xr.loop  F (a, T))
= C (Adoop F (F (a, r)))
= C(Xr.loopF([A(v,c).C(~~.c(f  (~x.C(~d(x,q)))v))](a,T)))
= C(h.bopF(C(h-(f  (Ax*C(Aq.l(x,q)))a))))
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= C(Xr.C(Xk.r(f  (Xx.C(Xq.d(k:(l~pF(x,q)))))a)))
= C(h.C(Xk.r(f  (~x.C(Xq.k(~~pF(x,q))))a)))
= C(Ar.r(f (~x.C(~q.d(loopF(x,q))))a))
= ~(XT.T(~ (XX.C(Xq.loopF(X,q)))a))
=  f  (Xx.C(Aq.loopF(x,q)))a
= f (Xx*C(Xq.loop(X(v,c).C(~~.c(f  (Xx*C(Xq*~(x,q)))v)))(x,q)))a
=  f  (fixf)a

In the above, we have used twice the identity C (Xk.d E) = C (Ak.E). This is vacuously true in
a typed setting (where the d can never actually be executed), but also holds in general.

4 The essence of iteration
In this section, we will see in more detail why loop is a natural iteration/recursion primitive for
call-by;value languages. Since the details tend to get somewhat obscured by Scheme’s identification
of continuations and general procedures, we will only use SML for the concrete syntax.

The characteristic equations for fixpoints and loops in a CBV language look very similar:

(fix f> a = f (fix f) a
(loop f 1 a = (loop f) (f a)

However, their principal types perhaps give a better picture of their relative complexity:

f i x :  ( ( ‘a -> ‘b) -> (‘a -> ‘b)) -> (‘a -> ‘b)
loop : (‘a -> ‘a) -> (‘a -> ‘b)

Moreover, the unconstrained type variable ‘b in loop shows (because of type soundness) that
(loop f > a can never return a value. We can make this explicit by instantiating ‘b to a type
with no values. Let us therefore define the type void’, as follows:

datatype  void = VOID of void
fun ignore (VOID v) = ignore v (* ignore : void -> ‘a *)

This declaration of void as an inductive type with no “base case” ensures that it has no values;
ignore is the “empty function” from void to any other type, defined by a degenerate form of
primitive recursion. Since ignore can never be applied to an actual value, its body does not really
matter; we could equally well make it an infinite loop or raise an exception, either of which would
also give it the correct type.

Now, an alternative representation of first-class continuations is as void-returning functions
(see also [DHMSl]). Since SML/NJ has no direct mechanism for turning such functions into
continuations, we need the following idiom:

fun mkcont f = cal lcc  ( fn k=>ignore  (f (cal lcc  (fn c=>throw k cl>>>
(* mkcont : (‘la  -> vo id )  -> ‘la  cant *)

(Informally, the continuation c captures the context “pass the argument to f and do not return”;
we need the other callcc to actually return c). We can now go all the way and express the fact
that loop actually returns a new continuation:

‘Not to be confused with the void found in C or some versions of ML; these correspond to SML’s unit.



fun loop’ f =
let val ret loopf = fn  a=>loopf  ( f  a )
in mkcont loopf end

(* loop’ : ( ‘ l a  -> ‘la) -> ‘la cant *)

In particular, for all f and v of appropriate types, we have:

throw (loop’ f) v - throw (loop’ f) (f v)

We can directly use this iterator in fix by replacing the initial call of the loop with a throw :

fun fix f = fn x =>
callcc ( f n  r =>

throw (loop’ (step  f>> (x,r))

From a logical point of view [GriSO], the type of 200~’ : (a + cu) 3 lo appears just as paradoxical
as the usual fix : (cu --+Q)+cY. However, to actually use the looping construct, we need some form of
double-negation elimination - in the form of a call/cc operator - thereby linking non-termination
to general “non-returning” behavior, i.e., escapes; the type of the fixpoint operator gives no such
hint. In other words, loop’ gives us not a recursively-defined value, but a recursively-defined
continuation. And for this to be useful, the iterated function must be non-total (i.e., escaping),
just like the usual fixpoint construction only makes practical sense for non-strict functions.

Let us finally look at the CPS conversions of loop and fix, taking o (= int for the example)
as the type of final answers:

val ret loopc = fn f =:) fn a => f a (fn a’=>loopc f a)) : 0
(* loopc  :  (‘a -> (‘a -> 0) -> 0) -> ‘a -> 0 *I>

val fixc = fn f =:) fn x => fn r =>
l o o p c  (fn (v,cWfn l=>f ( fn  x=>fn q=>l (x,q)) v  c )  (x,r)

(* fixc :  ( ( ‘a -> ‘b -> o) -> ‘a -> ‘b -> 0) -> ‘a -> ‘b -> o a)

fixc (fn f=>fn n+>fn c=>
if n=O then c 1 else f (n-l) (fn a=>c (n*a)))

5 (fn r=>r);
(* val it = 120 : 0 *)

(Since loop f is a non-returning function, it doesn’t need a continuation parameter). We see that
loopc is in fact a fixpoint combinator at the CPS level (only the order of arguments is switched)!
Shifting viewpoints a bit, it is the continuation semantics of CBV iteration that corresponds to
a domain-theoretical &point,  while an explicit CBV fixpoint combinator f ixc just adds some
administrative argument-shuffling with little inherent significance.

5 Variations
The above development was based on an infinite iteration primitive, relying on an escape to ter-
minate the iteration. In a procedural language, this would correspond to a loop/exit construct.
It is also possible to use a looping primitive with an explicit termination check (corresponding to
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while or repeat-until). Here, the function to be iterated returns an explicit indication of whether
another iteration should be performed, and no explicit jumps out of the loop are allowed.2

datatype (*a,'b) itres =
AGAIN of ‘a I DONE of 'b

; (#f a> or (Xt b)

fun repeat f - (define (repeat f)
let val ret 1 = (letrec ([l (lambda (x)

fn (DONE b) -> b (if (car x) (cadr x)
1 (AGAIN a') = 1 (f a') (1 (f (cadr x)>>>)l>

in fn a=>1 (AGAIN a) end (lambda (a) (1 (list Xf a)))))
(* repeat : (‘a -> ('a,'b) itres) -> 'a -> 'b *)

We still iterate over application contexts, but an additional complication is that we need an
initial continuation for the first time round the loop. We make this a special case:

'datatype 'a opt = SOME of 'a I HOIE ; <procedure> or ()

fun app (SOXE k) r = throw k r (define (app k r)
I app HOlE r = DOME r (if (procedure? k) (k r)

(lirrt #t r)))

fun suitcha 1 = in x=>
callcc (in q=>
throw i (AGAIM (x, som q)))

(define. (ruitcha 1) (lambda (x)
(call/cc (lambda (q)

(1 (lirt tf ( COIM X Q)))))))

fun fix f = in x =>
repeat

(define (fix f) (lambda (x)
((repeat

(in (v,c)=>callcc  (in 1 =>
aPP c

(lambda (vc) (call/cc (lambda (1)
(app  Cc& 4

(f (switcha 1) v))) ((f (switcha 1)) (car vc)>)))))
(x,lOlE) (cons x 'O)>>)

(In Scheme, we could have used a non-continuation procedure instead of the (1 and app . But
this would require a recursive type for the “continuation” part of the context. A similar typing
problem occurs if we try to actually get an explicit representation of the stack as a list of pending
contexts using the “generalized CPS” operators shift and reset [DF90].)

In procedural languages there is another kind of iteration construct, the bounded loop (usually
known as for). The iteration/recursion correspondence mentioned above can be extended to this
case as well, leading naturally to a notion of bounded recursion. In the most primitive form, we can
simply define a “bounded iterator”:

fun bloop n f = (define (bloop n) (lambda (f)
let val ret 1 = (letrec (Cl (lambda (n a>

fn (0,a) => raise Bound (if (zero? n) (error "Bound")
I (n,a) =) 1 (n-l, f a) (1 (- n 1) (f d))>l>

in fn a=>1 (n,a) end (lambda (a) (1 n a)>)>)
21n  fact, there is a close correspondence between these two approaches: in a CBV language with first-class

continuations, any function returning a sum-typed result has a unique co-curried form where one of the two cases
is returned via a non-local continuation [Fil89]. In a precise sense, this is the dual concept to non-local values and
currying.
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We can use this to define a bf ix exactly as before. The immediate impression might be that
a bound on the number of iterations in bloop would translate directly into a bound on the total
number of recursive calls. However, a closer inspection shows that the bound actually controls
the depth of recursion (essentially because for “parallel” recursive calls, the loop counter gets
reinstantiated to the value it had when the loop continuation was captured). In particular, the
Fibonacci function above will run with n as a bound. We can thus get an exponential amount of
work done with what looks like a linearly-bounded primitive.

In fact, computational-complexity analysis of programs with continuations seems to be a little-
explored field. For example, [DF90] presents a direct simulation of a non-deterministic finite au-
tomaton in a simple first-order functional program extended with generalized control operators.
Using two levels of CPS translation, it is possible to perform collections over all paths of such a
nondeterministic computation. Very speculatively, it would seem that every level of CPS adds the
expressive power of an additional quantifier alternation in the polynomial hierarchy. This may or
may not be related to similar-looking results about CPS transformation and logical complexity of
predicate-calculus formulas [MurSl]. Also possibly relevant are the exponential-slowdown results
for translation of functional programs into tail-recursive form [Kfo87].

Another way of bounding the number of iterations would be to decrement an updatable variable
every time through the loop. Since the store is single-threaded, this wuill result in a hard bound on
the number of recursive calls. More generally, the whole technique of “subverting the fixpoint” may
have interesting applications - by intercepting all recursive definitions “at the root” we can express
concepts like algorithmic profiling (i.e., counting recursive invocations, while remaining insensitive
to compiler optimizations like in-line expansion of function bodies), engines, or preemptive thread
scheduling, etc., without explicit system support.

6 Comparison  with related  work
A fair amount is known about transforming programs using recursion into iterative form, the
so-called “flowchartability” problem. Most such work has been done in an explicitly procedural
setting (e.g., [Gre75]), or for first-order recursion equations [WS73]. However, some extensions to
higher-order call-by-name functional programs are reported in [Kfo87].  Interestingly, the methods
in the latter work rely heavily on a notion of contexts, but the author apparently never draws
any connections to continuation-passing style, let alone first-class continuations. The simulation
presented above attacks a somewhat different problem: instead of considering general program
transformations, we restrict ourselves to defining a fixpoint combinator - a construction made
possible only by the additional expressive power of call/cc.

The operational derivation of fix in section 2 appears similar to “stepping” techniques used
in some approaches to computational reflection [Baw88]. However, while the overall effect may be
similar, the actual code (in a slightly different form) was discovered completely unexpectedly from
a category-theoretical analysis of the symmetry between iteration in CBV and recursion in CBN
[Fi189].  Informally, by adopting a syntax in which call/cc-like continuation abstractions look
like the mirror images of ordinary X-abstractions, the abstract principle of duality can be used to
expose a number of otherwise obscured symmetries involving data types, control structures and
evaluation strategies.

As it turns out, a similar kind of symmetries arise for translations of either CBV or CBN A-
calculus with control operators into a system of linear control [Fi192].  Here, the same repetition
operator corresponds to either a looping primitive in CBV or a fixpoint combinator in CBN.
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7 Conclusion and Issues
The additional expressive power of first-class continuations allows us to decompose the usual CBV
fixpoint combinator into an iterative core, whose semantics corresponds directly to a fixpoint com-
binator at the CPS level, and an administrative wrapping presenting a more convenient and general

.’ interface. In other words, in the presence of a call/cc-like operator, reasoning about CBV recur-
sion can be reduced to reasoning about simple loops.. - There seem to be considerable benefits from investigating first-class continuations in a typed
setting. The exciting connections to classical logic [GriSO, MurSl] rely fundamentally on types, as
does the author’s work mentioned above. In the present investigation, the type system of SML
was also a big help, ensuring that the all unbounded repetition could originate only in the loop
operator itself, not from a disguised Y-like combinator in the administrative superstructure.

More generally, the equivalence of iteration and recursion gives another reason for why some
form of first-class continuations should be considered a natural part of a CBV language, especially
one defined by a continuation semantics. Traditionally, non-termination has been treated differently
from other computational effects (i.e., the deviation of procedures from the intuitive ideal of total,
set-theoretical functions). For example, a result like type soundness is often stated as: if the
program terminates, it will do so with a result of the expected type.

In the last few years, however, there has been a shift towards a more unified view of general com-
putation, conveniently expressible in the framework of computational monads [-Mog89]. As noted
by several authors, monads and CPS are very closely related [DF90,  Wad92, FS92]. In this context,
control operators like call/cc allow us to separate the study of non-termination (generalized to
arbitrary non-returning behavior, including exceptions and non-local exits) from recursion/domain
theory proper (approximations, fixpoints, etc.); in fact, what appear to be purely domain-theoretic
concepts like strictness have natural generalizations in the world of control. [Fi189,  Fi192].  No
doubt, continuations will play an important role in any comprehensive theory of programming
language semantics, far beyond what was initially imagined.
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Abstract

Meyer and Wand established that the type of a term in the simply typed X-calculus may be related in
a straightforward manner to the type of its call-by-value CPS transform. This typing property may be
extended to Scheme-like continuation-passing primitives, from which the soundness of these extensions
follows. We study the extension of these results to the Damas-Milner polymorphic type assignment
system under both thi: call-by-value and call-by-name interpretations. We obtain CPS transforms for
the call-by-value interpretation, provided that the polymorphic let is restricted to values, and for the
call-by-name interpretation with no restrictions. We prove that there is no call-by-value CPS transform
for the full Damas-Milner language that validates the Meyer-Wand typing property and is equivalent to
the standard call-by-value transform up to Ppconversion.

1 Introduction
In their study of the relationship between direct and continuation semantics for the simply typed X-calculus
(A-‘), Meyer and Wand note that the type of a term in A-) may be related in a simple and natural way to
the type of its call-by-value continuation passing style (CPS) t ransform [8]. This result may be extended
to the calculus that results from extending A-) with Scheme-like continuation-passing primitives callcc and
throw (A+  + cant)  [l, 31. Since A+ under a call-by-value operational semantics is “type safe” in the sense of
Milner [9, 21, and since the call-by-value CPS transform faithfully mimics the call-by-value semantics [12],
it follows that A+ + cant under a call-by-value operational semantics is also type safe.

In a subsequent study Duba,  Harper, and MacQueen  studied the addition of callcc and throw to Stan-
dard ML [lo]. T he extension of the Meyer-Wand transform to A+ + cant establishes the soundness of the
monomorphic fragment of the langua.ge,  but the soundness of the polymorphic langua.ge with continuation-
passing primitives waz5  left open. It was subsequently proved by the authors [7] that the full polymorphic
langua.ge is unsound when extended with callcc and throw. The source of this discrepancy may be traced to
the interaction between the polymorphic let construct and the typing rules for callcc. Several ad hoc methods
for restricting the language to recover soundness have been proposed [6, 141.

In this paper we undertake a systematic study of the interaction between continuations and polymorphism
by considering the typing properties of the CPS transform for both the call-by-va,lue  and call-by-name
variants of the Damas-Milner language [2]  and its extension with continuation-passing primitives. We obtain
suitable extensions of the Meyer-Wand theorem for the call-by-value CPS transform, provided that the
polymorphic let is restNricted  to values, and for the call-by-name transform, under no restrictions. Finally, we

*This work was sponsored by the Defense Advanced Research Projects Agency, CSTO, under the title “The Fos Project:
Advanced Development of Systems Software” , ARPA Order No. 8313, issued by ESD/AVS under Contract No. F1962S-91-C-
0168.

t Supported by a ITaztiollal  Science Foundation Graduate Fellowship.
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prove that there is no call-by-value CPS transform for the full Damas-Milner  language that both satisfies the
Meyer-Wand typing property and is equivalent to the usual transform up to /?vconversion.  In particular,
the standard call-by-value CPS transform fails to preserve typability.

2 Untyped Terms
The language of untyped terms is given by the following grammar:

e ..-..- x 1 Xx.e 1 el e2 1 let x bee1 in e2 1 callcc 1 throw

Here t ranges over a countably infinite set of variables. We include the let construct as a primitive because
it is needed in the discussion of polymorphic type assignment. callcc and throw are continuation-passing
primitives whose definitions are derived from analogous constructs in Scheme [l] and Standard ML of New
Jersey [3].

We consider two CPS transforms for untyped terms, corresponding to the call-by-value and call-by-name
operational semantics [12].  Each CPS transform consists of a transformation I-1 for untyped terms and a
transformation I I- I I for untyped values. Exactly what is considered a value depends on which operational
semantics is being used. Under call-by-value, variables, X-abstractions, and constants1  are considered values.
Under call-by-name, only X-abstractions and constants are considered values. We shall use v as a meta-
variable for call-by-value values and w as a meta-variable for call-by-name values.

Definition 2.1 (Call-by-Value CPS Transform)

IVlcbv = M-k IlVllcbv
lel e21cbv  = ~k.lellcbv  (Xx1  +21ch (X22.x1  22 k))

llet x be el in e2

II4
lb4

I lcallccl
llthrowl

cbu = ~Qhlc6v  (~4e21cbv  k)

cbv = 2
cbv = ~x./elcbv

cbv = Xf.Xk.f  k k
cbv = Xc.Xk.k (Xx.XZ.c x)

Lemma 2.2

1. II [+I~’ llcbv = [ ll~llcbv/4  ll~‘llc6v-
2 1 [+]e lcbv = [ ll4Icbvl4 klcbv*
We shall also have need of a variant call-by-value CPS transform (cb~‘)  defined on untyped terms sat-

isfying the restriction that all let expressions are of the form let x be v in e. I.e., the let-bound expression is
required to be a (call-by-value) value. Because of this restriction, a simpler rule can be given for the let case:

llet x be v in elcbvl = Xk.let x be ~/v~~c~v~  in ( lelcbv~ k)

This simpler rule for let expressions is t’he only difference between the two transforms.

Lemma 2.3 Let v and 21’ be values obeying the restriction on let expressions ancl e be a term obeying the
restriction on let expressions. Then

1. II [++’ llc6d =  [  jlVIIcbt+‘]  ~lv’llcbd-

2. 1 [‘+]e  ICbV’ = [ llullc6vf/4  lelCbtt’.

‘Note that callcc and  throw are considered to be constants.
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Definition 2.4 (Call-by-Name CPS Transform)

. l?&m = Xk.k IIWIIctm
l&n = x

iv2 lcbn = Ak.lellcbn  (&.x1 le21cbn  k)
/let x be el in e2 lcbn = Xk.let  z be ]er  lcbn  in ( le&bn k)

IlAx.el lcbn = Welch
1 lcallccl lcbn = Xf.Xk.f (Af’.f’ (X1.1 k) k)

1 Ithrow lcbn = Xc.Xk.k (Xx.XZ.c (AC/.X (Xz’.c’x’)))

Lemma 2.5

1. II[e/x]wIlh = [ lelch/x] II~llch.

2. 1 [kl+]e’ lcbn = [ l&h/x] le’lcbn.

The correctness of these transforms may either be established by relating them to an independently-
defined operational semantics (as in [12,4]), or else taken as the definition of call-by-value and call-by-name
semantics. .

3 Simple  Type Assignment
In this section we review Meyer and Wand’s typing theorem for the call-by-value CPS transform for the
simply- typed X-calculus (A+), and present an analogous result for the call-by-name CPS transform.

Definition 3.1 (A-’ Types and Contexts)

types r ::= b I q + r2 _

contexts I? ::= - I I?, 2:~

Here b ranges over a countable set of base types. We assume that among the base types there is a distinguished
type LY, which will be used in what follows to represent the “answer” type of a CPS transform.

Definition 3.2 (A-’ Typing Rules)
r D X : r(X) @AR)

r, 2:~~  D e : r2 (ABS)

r D el :T2-W rDe2:T2

r D el e2 : 7
(APP)

rDel  :rl r, 2:~~ D e2 : T

r D let X be el in e2 : T
(MONO-LET)

The type system A+ + cant  is defined by a.dding the type espression r cant and the following typing rules
for the continuation-passing primitives:

r D callcc  : (rcont -+ 7) -+ T (CALLCC)

r D throw : rcont --+ r -+ T’ (TIIRo~V)
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Definition 3.3 (Call-by-Value Type Transform for A+)

llbllcbv = b
I Iv+72  llcbv = llnllcbv -+ 172lcbv

The type transform is extended to contexts by defining III’llc(,v(x)  = llI’(x)llcbv  for each x E dom(I’).

Theorem 3.4 (Meyer-Wand)

1. IfA-’ k r D 21 : r, then  A-)  t- lpycbv  D llvllcbv  : Il&bv-

2. If A+ I- I? D e : T, then A-+ k llI’llcbv  D lelcbv  : I&,.

The’call-by-value type transform is extended to A-) +cont by defining II~contlIcbv  = ll~llcbv  + a,. It is
straightforward to verify that Theorem 3.4 extends to A-) + cant in this way [3].

Definition 3.5 (Call-by-Name Type Transform for A+) 2

17.lcbn  = (Il+wa -+ a) + f2
.

llbllctm = b
IIn+72Ilcbn  = Inlcbn + 17llcbn

The type transform is extended to contexts by defining II’lcbn(  x) = II’(z) lcbn for each x E dom( I’).

Theorem 3.6

1. IfA--+  t- r D w : T, then A+ I-- lrlcbn D ll~llcbn : lj~llcbn.
2. If A-+ t- r D e : T, then A-’ t- lrlcbn D lelcbn : I+bn.

The call-by-name CPS transform is extended to A-+ + cant by defining ll~contlIcbn = ~~~~~c~n  + (Y,  just
as for call-by-value. It is straightforward to verify that Theorem 3.6 extends to A-) + cant in this way.

4 Polymorphic  Type Assignment
In this section we study the extension of the Meyer-Wand typing property to Damas and Milner’s polymor-
phic type assignment system (DM).

The syntax of types and contexts in (DM) is defined by the following grammar:

Definition 4.1 (DM Types and Contexts)

m o n o t y p e s  r : : =  tp+q +-T-J
polytypes  0 ::= r 1 Vt.0

contexts r ::= - 1 r,x:fl

Here t ranges over a. countably infinite set of type variables. The typing rules of the Damas-Milner  system
extend those of A-) as follows:

2The  term “call-by-name type transform” is something of a lnisnomer  since there exists a by-value C!PS transform that
validates the by-name typing property [5]. Nevertheless we stick with the suggestive, if somewhat misleading, t,erminology.
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Definition 4.2 (Additional DM Typing Rules)

r D e : Vt.a
(t $! FTV(l-y) @EN)

r D e : ‘&.a

r D e : [r/t]U
(INST)

r D el : cl r, 2-1  D e2 : 72
rD letzbeelinez : 72

(z 4 dam(r))
(POLY-LET)

The system DM + cant  is defined by adding the type expression r cant,  as before, and adding the following
typing rules:

r D callcc : W.(tcont  + t) + t (CALLCC')

I? D throw : Vdikscont  -+ s -+ t (THROW')

Let  ucailcc and athrow be the polytypes assigned to callcc and throw, respectively.

4.1 Restricted Call-by-Value
Let DM- denote the sub-system of DM obtained by restricting let expressions so that the bound expression
is a call-by-value value. The Meyer-Wand typing theorem may be extended to terms of DM-, provided that
we use the variant call-by-value CPS transform (cbv’)  given in Section 2.

Definition 4.3 (Call-by-Value Type Transform for DM-)

ITlcbu = (Il~llcbu + a) + cr
IVt.+bu = Vt.l&bv

ll4lcbv  = t
llbllcbu = b

11Tl + r211cbv = ll~lllcbv + 1T22lcbv
Il~~.&J, = V~.Ila/l.bv

This definition extends the Meyer-Wand type transform to polymorphic types. In the terminology of
Reynolds [13], polymorphic instantiation is given a “trivial” interpretation in that no interesting computation
can occur as a result of the specialization of a value of polymorphic type. The definition of IVt.ulcb,, reflects
the fact that in DM- there is no need of continuations whose domain is a polymorphic type.

Lemma 4.4

1. Il[~/~I4lcbv  = [ll~llcbvl~l  Il4lcbtJ.
2. I[+l~lcbv  = [II+w/tl l~lcbv-

Theorem 4.5

I. I’DM- t- I’ D v : 0. then DM-  t- llrllcbvl D II&W : Il&bv.

2. If DM- t- I’D e : CT. then DM- I- ljI’jlcbv/ D jelCbv/ : l&bv.

The proof hinges on the following observakions. First, the definitions of the transformations I-lcbz, and
II-llcbu on polytypes a.re  such that the GEN and INST rules carry over to a.pplications  of the sa,me rule.
Specifically, if I? D e : u and t does not occur free in I’, then t does not occur free in I Ir I Icbvl,  and hence
IIUI cbu’ D lelcbir~  : vt-1 ICT cbu is derivable 1,~ a.n application of GEN a.nd the induction hypothesis. A similar
argument suffices for the value transform. Uses of INST are handled similarly.



Second, the restriction on let expressions in DM- combined with the use of the variant transform ensure
that let’s are carried over to let’s, and hence that polymorphic typing is preserved. Specifically, if I? D

Vl :  al a n d  I?,Z:ul D  e2 : 72 are both derivable, then by induction llI’llcbvl  D llvlllcb,,’ : llulllcbV and
IPAl cbv’,Z:llUl(lcbv  D le2lcbd : 172l&,  are derivable, and hence Ilr(l&/  D Xk.let  2 be (lVljlCbv/  in le&bvl k :
172  lcbv  is also derivable.

Theorem 4.5 extends to DM- + cant by defining 11rcontll&  = llrll&,  + cr. We need only verify that
llCallCCll&,l and Ilthrowllcbvl, given in Section 2, have types IIUcallccll&  and IlothrowlIcbv,  respectively. The
soundness of DM- + cant under call-by-value follows from the extended theorem. (Same proof as for the
soundness of A-) + cant under call-by-value.)

4.2 Call-by-Name
Theorem 3.6 (the Meyer-Wand-like typing theorem for call-by-name) can be extended to the unrestricted
D M langauge .

Definition 4.6 (Call-by-Name Type Transform for DM)

Iltllcbn  = t
llbllcbn  = b

h+~2licbn = l&bn  + 172lcbn
1 Ivt-ul lcbn = Vt-IIullcbn

Lemma 4.7

1. 11 [$]u llcbn  =  [  ilrjlcbn  /i] Ilullcbn-

2. 1 [$]uIcbn  = [ jl+bn /t] j+bn.

Theorem 4.8

1. If DM k- r D w : U, then DM k lrlcbn D Il?&bn : IlUllcbn-

2. If DM k r D  e : 6, t h e n  DM + lrjcbn  D lelcbn  : I&bn-

The proof proceeds along similar lines to that of the call-by-value case. For example, if I? D el : ~1
and I?, z:ul D e2 : r2 are derivable, then by induction so are lrjcbn D lellcbn  : luljcbn and Irlcbn, z:lt~11cb~ D

le2icbn : 1r21&n,  and hence so is lr& D Xk.leta: be lell&n  in le2lcbn k : 172l&n,  as required.
Theorem 4.8 extends to DM + cant by defining 117contjjcbn  = 117.11&,  + Q. We need only verify that

1 l-llccl  lcbn and IIthrowllcbn,  given in Section 2, have types ()uc,~~cc~~cbn  and ~~~~~~~~~~~~~~  respectively. The
soundness of DM + cant under call-by-name operational semantics follows from the extended theorem in a
manner similar to that of the call-by-value case for DM- + cont.

4.3 Unrestricted Call-by-Value
Having established suitable typing properties for the variant call-by-value transform for DM- and the call-
by-name transform for full DM, it is natural to consider whether there is a call-by-va.lue CPS transform for
full DM that satisfies a Meyer-Wa.nd-like typing property. Since cbv’ is only defined on terms with restricted
let expressions, we can not simply extend Theorem 4.5 to full DM.

Let us consider attempting to extend Theorem 4.5 to full DM by using cbu instead of cbu’ as the transform.
Consider the induction step for the polymorphic let case. By induction we have

and
DM I- Ilrllcbu, .~:ll~~lIcbu  D le&bu : I&~u.
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We are to show that
DM t- llrllebv D Akale lcbv &+21cbv  k) : 1721cbv.

Since the call-by-value interpretation of let requires that el be evaluated before e2, the call-by-value CPS
transform of let x be el in e2 involves a continuation whose argument may, in general, be of polymorphic type.
To capture this we must change the definition of I-l& so that ldl& = (Ilull&  + CV) + (Y.  But this takes
us beyond the limits of the Damas-Milner  type system since llullcbv is, in general, a polytype. We therefore
consider as target language the extension, DM +, of DM, in which the distinction between monotypes and
polytypes is dropped, leading to full polymorphic type assignment [ll].  The decidability of type checking
for DM+ is unknown, but this is not important for our purposes. We shall rely, however, on the fact that
the subject reduction property holds for P-reduction in DM+ [ll].

With these changes to the type transformation and the associated enrichment of the target type sys-
tem, the induction step for general let’s works. However, polymorphic generalization becomes problematic.
Specifically, if DM I- I? D e : u with t # FTV(r),  then by induction DM+ t- llrll&,  D lel& : l&,,  and
t # f??v(llrllcbu).  we are t0 show DM+ k llrllcbv D lel : Ivt.ul&,  and there is no evident way to proceed.
We can indeed show that lel has type Vt.(ll IIu cbu + a) + cy, but this is not enough. In fact we shall prove
that any variant call-by-value CPS transform lel verifying the Meyer-Wand typing property for DM must
not be ,&-convertible to lelcbV.

The argument proceeds by way of the extension of DM with continuation passing primitives. Under the
call-by-value evaluation strategy, DM + cant is unsound. Specifically, we can find a term e such that e has
a type 7, but whose value, when executed, fails to have type r. In other words, evaluation fails to respect
typing. Assuming that we have base types int and bool, and constants3  0 : int and true : bool, the following
term is well-typed with type bool in DM + cant but evaluates under call-by-value to 0:

e0 = let f be callcc (Xk.Xz.throw  k Xy.x)
in (Xz.Xy.y)  (f 0) (f true)

Using the typing rules of DM +cont, the let-bound identifier f is assigned the type Vt.t+t,  and hence may be
used at types int+int and bool+bool  in the body. But the binding for f grabs the continuation associated
with the body of the let expression and saves it. Upon evaluation off 0, the continuation is invoked and,f is
effectively re-bound to a constant function returning 0. The body is re-entered, f 0 is evaluated once again
(without difficulty), but then f true is evaluated, resulting in 0.

It follows that there is no call-by-value CPS transform for DM + cant that preserves typability. Con-
sequently, any call-by-value CPS transform for DM must be of a somewhat different form than the usual
one.

Theorem 4.9 (No Call-by-Value CPS Transform) There is no call-by-value CPS transform lel for DM
that simultaneously satisfies the following two conditions:

1. h?jUiValence:  lel =pv lelcbu.

2. Typing: If DM t- I? D e : u, then DM+ t- jpycbv  D lel : lc&u. .

Proof: Given such a transform we could form leol ( w here eo is given above) by regarding callcc and
throw as variables of polytype uca~lcc  and uthrow,  respectively. By the typing property this term has
type Iboo&,, under the assumption that callcc and throw have types lldcallccllcbV  and II(TthrOWIIcbV,  re-
spectively. Consequently the substitution instance el = [IIcallccll&,,  ~~throw~~cbv/callcc,  throw] leol has type
Iboollcbu = (bool + a )  -+ IX. But the corresponding substitution instance of leOl&u  is precisely the call-
by-value CPS transform of eo, taking account of callcc and throw directly. Since &-conversion is preserved
under substitution, we have by the equivalence property tha.t el is ,@-convertible  to leI-Jl&.  Now, we know
tha.t leOl&u  XZ.Z evaluates under call-by-value to 0. Consequently, this expression’s ,&J (and hence p) norma.

“This argument can be made without constants but at the cost of increased complexity. Ctonstants  of base type can easily
be added to any of the transforms presented in this paper by defining 11~11 = c. c a constant. CJonst.ants of non-base type must
be handled on a case-by-case basis.
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form is 0. Therefore, we have that el Xz.z is P-reducible to 0. But this is a violation of the subject reduction
property of DM+ [ll] since el X2.2  has type bool!

. The conditions of Theorem 4.9 leave open the possibility of either finding a variant call-by-value transform
that is not convertible to the standard one, or else varying the type transform in such a way that a Meyer-

.. - Wand-like typing property can be proved, or both. Any variant type transform must be such that either
Ilcallccll,b,  or IIthrow(J,bv fail to have the required types under this transform so as to preclude extension to
DM + cont. We know of no such variants, but have no evidence that none exist.

4.4 Related Transforms

. . .

It seems worthwhile, however, to point out that there is a variant type transform that “almost” works. This
transform is defined by taking IlVi!.ull= W.101,  and Ial = (11 IIa + CV) + cy. The intuition behind this choice
is to regard polymorphic instantiation as a “serious” computation (in roughly the sense of Reynolds [13]).
This interpretation is arguably at variance with the usual semantics of ML polymorphism since it admits
primitives that have non-trivial computational effects when polymorphically instantiated. Nevertheless, we
can use this type transform to extend the Meyer-Wand theorem to a variant call-by-value CPS transform for
DM- and to a variant call-by-name CPS transform for DM, provided that we restrict attention to programs
of monomorphic type. It does not provide a variant call-by-value CPS transform for full DM because of the
way in which polymorphic generalization is handled. m

To make these observations precise, we sketch the definitions of variant CPS transforms based on this
type interpretation. The main idea is to define the CPS transform by induction on typing derivations so
that the effect of polymorphic generalization and instantiation can be properly handled. We give here only
the two most important clauses, those governing the rules GEN and INST:

II’ D e : Vt.al = Xk.k lel, where
II’D e : 01 = lel

IL’ D e : [r/+~l = M.lel (Xx.x k), where
Il?r>e :Vt.al = lel

This definition may be extended to the other inference rules in such a way as to implement either a call-
by-name or call-by-value interpretation of application. However, the transform fails (in general) to agree
with the usual (call-by-value or call-by-name) ML semantics on terms of polymorphic type. Specifically,
the transformation of a GEN rule applies the current continuation to the suspended computation of e.
If this continuation is not strict, then an expression that would abort in ML terminates normally a.fter
transformation into CPS. For example, consider the principal typing derivation of the term hd nil in a
context assigning the obvious types to hd and nil. The resulting transform, when applied to Xx.0,  will yield
answer 0, despite the fact that the usual ML semantics leads to aborting in this case.

By restricting attention to programs of monomorphic type, we may obtain a correct CPS transform
for DM- (under call-by-value) and DM ( under call-by-name). This is essentially because in DM- under
call-by-value there are no non-trivial polymorphic computations, and because in DM under call-by-na.me the
semantics is defined by substitution. But the above argument shows that this transform is incorrect, for DM
under call-by-value. Specifically, it fails to correctly implement the usual ML semantics for expressions such
as let x be hd nil in 0 (which, under the above transformation yields result 0 rather than aborting).

5 Conclusion
The Meyer-Wand typing theorem for the call-by-value CPS transform for the simply-typed X-ca.lculus  es-
tablishes a simple and na.tural  relationship between the type of a term and the type of its call-by-value CPS
transform. Meyer and Wand exploited this relationship in their proof of the equivalence of the direct’ a.nd
continuation semantics of X-’ [8]. A minor extension of this result may be used to establish the soundness
of typing for X’ + cant,  the extension of X’ with continuation-passing primitives [3], under call-by-value.

In this paper we have presented a. systema.tic  study of the extension of the Meyer-Wand theorem to t,he
Damas-Milner  system of polymorphic t,ype assignment. Our main positive results a.re  the extension of the
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Meyer-Wand theorem to the call-by-value interpretation of a restricted form of polymorphism, and to the
call-by-name interpretation of the unrestricted language. These results have as a consequence the soundness
(in the sense of Damas and Mimer  [2])  of these programming languages. We have also argued that there is
no “natural” call-by-value CPS transform for the unrestricted language, but this leaves open the possibility
of finding a transformation that is radically different in character from the usual one.

Our investigation makes clear that there is a fundamental tension between implicit polymorphism and the
by-value interpretation of let. In particular, we are able to provide a CPS transform for the full Damas-Milner
language that extends to continuation-passing primitives, but which is “not quite” equivalent to the usual
call-by-value semantics. This suggests that a language in which polymorphic generalization and instantiation
are semantically significant would be well-behaved, and might be a suitable alternative to ML-style implicit
polymorphism. We plan to report on this subject in a future paper.
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Abstract

In the paper we study the termination problem for a typed X-calculus with continuations.
We do not bound ourselves to study a particular reduction strategy, like call-by-value or call-
by-name. Reductions may be applied to any part of any term in any order.

Our main result is that every reduction sequence in the system terminates.

1 Introduction

Recentely,  in the computer science community, efforts have been made in order to understand and
investigate functional languages enriched with so called control operators.  One esample of such
control operators the Call/cc of the programming language SCHEME [s]. ,4n operator like that
allows us to have, even in a. functional enviroment, a sort of goto-like facility which enable the pro-
grammers to write, in many cases, shorter and more coincise  programs. This is of course a, useful
feakure, but one could now wonder if such a feature, when embedded in a, functional progra,mming
langua.ge,  does not destroy any of its good properties. In particulax!  those peculiar properties of
~JWE  functiona. langua.ges which have been the main motivations of their development T naxnely
espressiveness, possibility of developing programs sakisfying  their specificakions  and so on. This
risk is a* serious one. However, the benefits we can gain from control operakors axe definitely worth
a study and investigakion.  What one needs is to frame control operakors for functional langua.ges in
a. correct and c1ea.r Oheoretica.1 setting. Such a theoretical setting is the necessary basis for a0 deep
understanding of control operators and would ena.ble one to define precise and “haxmless” method-
ology for their use. In fact, thak has been the main motivation which led people like Felleisen to
in\;estiga.te  pure cakuli  in which to isolate a.nd study the properties of control operakors.  A possi-
ble yur*e control langua.ge is the pure lambda calculus enriched with a, particuk operat.or  C (Xc)
[4],[5].  C which can be considered as an abstraction of the actual control operators. To study this
la.nguage it is possible to give a machine-like operational sema.ntics or to define a, ca.lculus extending
the notion of /&reduction  of the X-calculus. Of course, for the purpose of theoretica  investiga,t.ion
it is better not to restrict oneself just to machine-like operakional semantics, since forma.1 cakuli
a.llon; precise ma.thenla.tica.1  reasoning a,bout  programs. In pa.rticu1a.r  they a.llow reasoning a.bou t
programs equiva.leuces  under variolls  possible eva,lua.tors.  Such  caAculi  a,ncl their equahonal  tlleor>~
have been a.nd axe still widely investigatecl  [4][5].

r\zlor~e  recentely. the ii1 terest, for control ca.lculi leas increased even niore  bc?ca.rlse  of the st rang
con~~e~tiot~ which has been unveiled with classical logics. Recent  reslllts  ([rj],[:]JS;])  Ilaw .sho\\*t~
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that there exists a precise proofs-as-programs correspondence between classical proofs and control
functional languages. More precisely, Fellaisen’s control operator C can be consistently interpreted
as the “computational content” of the classical rule of double negation elimination. This corre-
spondence with classical logics could be in the future a key tool for the design of environments for
developing programs in functional languages with control operators (and maybe also imperative
languages), in the same way the correspondence with constructive logics has been (and is still) of
much help in the field of pure functional languages. Of course there is still a lot to do. The corre-
spondence with the logics, for instance, makes necessary to investigate more closely typed version
of control calculi. Besides, the correspondence results have been obtained just for control calculi
with particular reduction strategies. Each time one wishes to use a new strategy one has to check
for it all the properties we whishes the calculus to have.

The present paper tackles some of these problems. We consider a typed control calculus Xc7-
in the style of [6],[7],[8].  Of this calculus we prove the property of strong normulizability  without
sticking to any particular reduction strategies. Such a property has never been considered as
relevant for such calculi, even because it is widely believed that control operators have a sense only
in languages with precise reduction strategies. This is not our opinion. First of all because, given
a calculus, it is a properties worth being investigated by itself. Besides, strong normalizability for
reductions performed in whatever order allows one to settle the question of termination of any
possible reduction strategy once and for all.

There is another relevant argument which leads to investigate a continuation calculus in which
no fixed reduction strategy is given. Once one considers terms in the typed XC as classical proofs,
the reduction rules of the calculus can be viewed simply as reduction on proofs, enabling to extract,
for instance, witnesses from existentially quantified classical proofs, in the style of [1],[2]  and [9].
By not forcing a particular reduction strategy we get a calculus which is not Church-Rosser. This
means that different reductions stra,tegies  allow us to get different ” answers” (witnesses) from a,
given term (proof) which we can now look at as a non-deterministic program. If we restricted
ourselves to a fixed reduction strategy, we would choose only one answer, in a. rather arbitrary
wa.y. In a sense, if we forced it to be deterministic we would “mutilate” the algorithm implicitly
expressed by a classical proof.

The proof of strong norma.lization  use a non trivia.1 va.ria.nt  of Girard’s method of ca,udicla,tes of
reducibility.

In Section 2 we shall  describe the control calculus ACT-,  while whole Section 3 is occupied by
the strong normalization proof.

2 The system ACT--

In this section we shall describe the typerc! system Xc,- a.nd the set, or reduction rules on its terms.
The terms of Xc7- a.re typed lambda, terms enriched ivith the control opera,tor  (3. The typing for
the terms will follows the one proposed in [6] [-I I1 ’ -1I w 11~  i is esseiitia.lly a. typing for ckr.s.Gcar! proofs.
This means that our types are formulas, a.nd terms a.re anything but l%tleal*izecl!  c1assica.l proofs. For
motiva.tions we shall make clear in the following, we restrict the types of ACT-  to a strict subset of
a.11 the possible logical formulas (the superscript l ?-‘? on the r in the na,me ACT-,  espressing in turn
the ” typefulness” of the system, is to recall that we do not. consider all the possible types ).

The types of our system are a. subset of the simple types ,i la C’urr,v?  i.e. of the t.ypes built out
of akomic t,ypes a, I), CT.  . . and rising the con nect,i\*es  --+ (“in)  plicak.ion”)  a,ncl  I (“fa.lsehood“).  The
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negation in our system is defined as usual, by

-A =Def A + 1.

We restrict the types a la Curry by forbidding types to have sttict  subtypes of the form 1lA. We

: also forbid I to occur on the righthand side of + (like in I + A).
Hence 1-A and ‘(I3 + ‘A) (A, B # I) are types of our system, while A -+ 1lB and A + (I -+

. B) are not.
This restrictions on types is indeed no restriction for the classical logic associated to the calculus:
in classical logic 1-A can always be replaced by A. Moreover types of the form I + A are of no
real use, since from I we can deduce any A.

The formal definition of the types of Xc7- runs as follows:

.-
Definition 2.1 The sets of Positive types (P), Negative types (N), PosNeg types (PfV)  and Double
negated types (NN) are defined by the following grammars, where a denotes the set of type constants

P ::= alP + PIP + 1pIlP + PIlP + 1P
N . - 7 P
PN:= PIN
NN := 11P.
The set of Types (T) of Xc7- is the union of the sets defined above, i.e. it is defined by

T := LlPlNlNN

Then positive types are those which are not negations; I can occur in a0 type only in subt.ypes
of the form 1A and a double negated type can occur alone, but not inside other types.
In the following, positive types will be denoted by P, P’, P”,. . . . Types and PosNeg types will be
denoted by T, L4, B, C,. . . (then if ‘4 is a. PosNeg type, 1A will denote a correct type, ma*ybe double
negated, while ,,A instead may be out of the set of correct types, if A is itself negated).

For each type T, we suppose to ha.ve infinitely many varia#bles  labelled  with T:

T T TVarT =Def x0, $1 , x2,. . .

We shall not use the label ‘7’ when it will be clear from the contest.

We define now a set of “pseudoterms” a.nd a set of typing rules. The set of terms of system
Xc7- will be the pseudoterms having a. correct type. The pseudoterms are built out of variables,
using abstraction, application and the operators C (continuation operator) and sl (abort operator).
We shall assume each occurrence of the operakor  A to have a type la.bel T # I (its) \vhicll w:e
shall not show when unnecessary.

Definition 2.2 ‘7ixe set of Pseudoterms of Xc,- is defined by th.e folloroirzg  yummcw  :
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Definition 2.3 (Typing rules) Let A, B be PosNeg  types, P a positive type, and M, N pseu-
doterms.

v a r )  xA :  A

-+I) MzBXxA.M: A -+ B
+E) M:A+B N : A..

11) M: A-
XxA.M :-A

‘~1 M:lA N : A
MN:I

We call then term a pseudo term having a correct type.

It is not difficult to see that the type of a term is unique (because of the type labels on variables)
and may be computed.
We shall denote by TermT the set of terms having type T.
A term of the form CM will be called a continuation. One of the form AM an abort.

We introduce now reductions on terms, and define strong normalization for them. Reductions
CR and CL are the typed version of Felleisen’s reductions [4][5]. To deal with the case when the
redexes (CM)N or M(CN) h ave a negative type we introduce rules Ck and CL that, instead of
moving the continuation outside, make it disappear. This is possible because a triple negation is
intuitionistica.lly equivalent to a negation. The necessity of having these latter rules depends on
the restriction on types we imposed to the system. Rule Cj$ is an instance of the general rule
E[CM]  --+I  M(Xx.E[x]) for continuations and is introduced in order to deal with the case of the
elimination of negation.

Definition 2.4 (Reduction rules)

j3) (Xx.M)N -+1 M[N/x]
C L )  (CM)N +Q CXk.M(Xf.k(fN))  (‘)
CL) (CM)iV +1 XP-M(Xf  *(f WP) (“)
CR) M(CN) +1 CJ&.N(xa.~(Ma)) (3)
w M(CW +1 Xp.N(Xa.(Ma)p) (“)
C;) M ( C N ) +1 N(Aa.(Ma)) 50
A) E[AM] j1 M 60

Provisos:
(‘) i\i 1rcc.s  to have type of th,e for-m ll(A + P)
(“) 114 11~s  to have type of the form 11(.4  -+ 1P)
(“) A/l bus to have type of the form .4 -+ P
(“) A/r 1srr.s  to have type of the form A + 1P
(“) M has to have type of the form 1P
(“> q---l is II context # [-I with. type I and IV(M) C FV( E[AnI])

+ will denote the reflexive and transitive closure of --+I.
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In the reductions defined above we have not put the type decorations for sake of semplicity. We
give below the reduction rules with all the type decorations.
p) ( (  X&M~)A-+~NA)~ -)I ww4)B
CL) ((C ( M)“(A+p))A-+pNA)p -+l

(C(X~~P.(M(XfAjP.(k(fN))~)~(Aj~))~)~~P)P
CL) ((C(M)“(Aj’P))A~lPNA)lP  -)I

(XpP.(M(XfA”P.((frv)-Pp)~)~(Aj~p))*)~p
CR) (MA-+p(C(N)llA)A)p +1

(C(XIC’P.(N(XuA.(k(~a)P)I)‘A)I)“P)P

CL) (MA++(C(N)-A)A)+ +1

(XpP.(N(XuA.((~a)‘P)~)~A)~)~P

C$) (APA(C(N)-A)A)L +1 (N(XuA.(Mu)‘)-A)~

4 UN~~~w- +1 ML
Definition 2.5 Let n be an integer, ikl a term and T a type.
i) n is ‘a bound for M if the reduction tree of M has a finite height 5 n.
ii) M strongly normalizes if it has a bound.
iii) SNT = ( ME TermT 1 M strongly normalizes)

Then a term strongly normalizes iff its reduction tree is finite.
This definition has to be preferred to the usual one, i.e. “each reduction sequence from hf is
finite”, because the latter is intuitionistically weaker than the former (classically, they are equivalent
through ICiinig Lemma).

In the nest section we shall give the proof of strong normalization for terms of ACT-.

3 Strong normalization for XC-,-

Our proof method of strong normalization is essentially a non-trivial modification of Girard’s can-
didakes.  We sketch briefly now why, even with the restriction on types, Girard’s method isnot
a.pplica.ble direcly as it is, and what are the modifications we made to it.
Girard’s method, following Tait, is based on a notion of “computability”. Computa8ble  terms
strongly normalizes. Thus the goal to prove strong normalization becomes to show that each term
is computable, a. thing that is not difficult to prove by induction on the term. To define a, notion
of computability for continuations, instea.d, is not easy. The first attempt which naturally would
come in mind, in order to define a notion of computability, would be the following :

1. a. varia.ble  is computable outright.

‘L. Xx.:\4 is computable if, for all computable terms !V with the same type of m, M[N/x] is
computaOble.

3. C(M) is computable if M is computable.

4. ;\dN is computa.ble  if it, strongly norma.lizes,  and all its reducts  which are not applications
are computa.ble (i.e.? they satisfy either I., or 2.: or 3.).

This definition is uncorrect as stated. While ‘2. is a definition by induction on the type of the
term, 3. forces a circularity. By 3., the computa.ble  t,erms C(M) of type A a,re defined froul the
coin pu table terms of type 11.4.  The latters,  by ‘L.? are defined form the con~putable  t.erlns of type
1.4, and by ‘L. again, from the computable terms of type A.
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What we have done is to break this cycle by stratifying the above definition over an ordinal
parameter, i.e. by considering it as a general inductive definition and using this ordinal induction
during the proof.
We add terms of the form CA4 to the interpretation of A by steps. In the first step we put in the
interpretation of A only the terms which are not continuations. Then in step (x + 1 we considers
the terms produced in step cy, and we add to A all the terms CM such that M introduced in 1lA
at the a@ step. For Tarski theorem it is impossible to go on indefinitely in adding terms to the
interpretation of A; we have to stop at most at step WI, the frst uncountable ordinal.

A formal definition of our notion of computability will be given in the next subsection.

3.1 Stratified Girard candidates for XcT-

In this section we define a notion of candidates for the language, and we associate a candidate to
each type.

Definition 3.1 A set X of terms is a candidate for a type T ifl the following conditions hold :

CandO)  X > Vaq-

Candl) SNT 2 X

Car&?) X is closed by reductions

Cand3) for every MN E Tern?q-  : if (t/Q E TermT)(~\lN +1 Q j Q E X) then MN E X.

Lemma 3.1 SlV, is n candidate for 1.

Proof.
Straightforward. •I

In order to associate a pa.rticu1a.r  candidate to each type, we first define some operators on sets
of terms : Lambda, La,mbda,‘, Not, Ap, CJlos, Cont, Abort, having the following functionality

Lambda : P(Ter?72A) -+ P(TermB) + P(Ter’mA+B)
Lambda’, not : P(TermA) + P(TermA)
Ap, Clos, Co11t : P(TermA)  + ‘P(‘TermA4)

Abort.4 : 'P(Tern2d4)

28



It is possible to see that Lambda and Lambda’ express the constructive meaning of lambda
abstraction, while Ap says that the constructive meaning of a term MN depends on the construc-
tive meaning of its reducts.  The use of the operator Clos is to close a set of terms X under Ap.
The operator Not translates the constructive meaning of the negation. Cont expresses that the
constructive meaning of a term CM is nothing but the constructive meaning of M.

It is not difficult to see that the operator Lambda’ is decreasing w.r.t. the set-theoretical in-
clusion order; Ap and Continuation are instead increasing. iFrom the observations above it easily
descends that Not is decreasing and NotoNot is increasing.

We are now ready to define, for each type T, a candidate [T] associated to it. If T is positive,
we shall define [T] as the wi limit of an increasing chain [Tla of subsets of TermT, where a denote
an ordinal and wi is the first uncountable ordinal. For non positive types the associated candidate
will be defined using the definition of candidate for positive types and the operator Not.

Definition 3.3 (‘II) [I] =~~f  SNL.
(ii) Let T be a type. We define [T] and [T], E P(T ermT), for each ordinal cy, as follows:

. c4!=0

1. If P is cm ato*mic type a # I :
[PI 0 =&f Clos(Varp~ Abortp)

2. If P is A -+ B, assume to have already defined [P’] for all subtypes P’ of P :
[PI, =Def Clos(VarpU Abortpu  Lambda([A], [B])

3. IfT=TP:
PI 0 =Def NotfiP]O)

1. If T is yositi,ce  :
[TIT+1 =Def ~!os( [T&J Cont( [-T]J)

2. If T = 1.4 :
PI Y+l =Def jVot&$+~)

l a is a limeit ordinnl,!3  :

1. If T is positive :
VIP =Def U,<pPla

2. If T = --A :
[T]p =Def fyot([-4],~?)

[T] is now clefifaed as follows :
[‘T] =Def [T]w,

If P is a positive type it is easy to check that the chain [pIa is increasing because [Plc7+1 =
Clos([P], u . . .) 2 [PIti. There ore,.f by Tarski’s  Fixed Point Theorem we get [P] = [Q,,, = [PIU,+l.
Thus by putting Q’ = LL’~ in the definition of [P],y+l we have that:

[P] = Clos([P]  u C~0nt([11P]))

If T = 1.4, b\: t,he sa.me argument we ha.ve instead [7’] = Not([.-l]).
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Definition 3.4 Let M be a term and A its type.
Following Tait, we shall call M computable ifl M E [A].

Later we shall prove that every term is computable. It will follow, by Candl, that every term
strongly normalizes.

3.1.1 Compound candidates

In this subsection we shall check that [T], defined previously, is a candidate for any type T.
In the following Lemmas 3.2-3.5 we shall prove relevant properties of the operators we intro-

duced. Then we shall be able to prove (in Lemma 3.6) that for each type T and ordinal cy, the set
[Tla (in particular [T]) is a candidate.

Lemma 3.2 Let T be type and X E P( TermT). Then:
X satisfies CandO, Candl, Cand2 + Clos(X) is a candidate.

Proof:
We check separately CandO,. . . , Cand3 for Clos(X).
Recall that Clos(X)  = X U AI>(X).

CandO)  Clos(X)  > X _> VarT.

Candl) SNT 2 Clos(X)  by definition of Ap and SNT 2 X.

.

Cand2) -4ssume M E Clos(X) and h/l + N in order to prove N E Clos(X).  Then either M 6 X, or
M E Ap(X). In the first case! we apply Cand2 on X to &-I --+ N to deduce N E ,Y. Thus,
N E Clos(X) because Clos(X)  2 X. In the second case, by definition of Ap we know that
M = h/lMz E SNT, and that

(VQ E TermA) (Q not application and M1fkf~ -+ Q) 3 Q E ,X (1)

Suppose now N not to be an a.pplica.tion. Then from Ml &fz + N we deduce N E X by 1.
We are so reduced to the first case. If N is instea.d a.n a.pplica.tion,  then, since (N -+ Q) +
(MlM2 + Q), from 1 we conclude:

(VQ E TermA)(Q  not application and ;V + Q) + Q E X) (‘2)

Therefore, N E AI>(X) by definition of Ap. Thus, IV E Clos(X) becaxse  Clos(X)  _> Ap(X).

Ca.nd3)  Assume:
(VQ E Term-A)(MN  -+ Q) + Q E Clos(X) (*9.

in order to prove MN E Clos(X).  It is indeed enough t,o prove MN E Ap(X). There a,re
finitely many Q’s such that MN ---+I Q; sa,y, Ql, . . . , Qn. Since ea.ch Qi E Clos(.Y),  a.nd

Clos(X)  satisfies Candl), then each Q; has a bound 71;. Therefore, max;{?zi + l} is a. bound
for MN, and MN E SN,q. To prove MN E ‘41>(x),  there is still left to check:

(VQ E rrernu) (Q not applica,tion  a,lld M/V -+ Q) + Q E ,Y (4

To prove 4! assume Q is not an a.pplica.tion.  a.nd Mi\r + Q. Then Q # &JiV. It. follows that. for
some Q’ we have MN -+I Q’ -+ Q. By the assumption 3, Q’ E Clos(.Y).  Then Q E Clos(-Y)
follo\\x by Q’ -+ Q, beca.use Clos(-Y)  sa.tisfies C’a.ntl2. Since Q is not a.11  a.pplica.tion! t heir
Q 6 t-\p(  -Y), a.ncl therefore Q E .Y. •I
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Lemma 3.3 Let A, B be positive or negative types, C any type # I, X E P( TermA), Y E
P(Tem&,Z,Z’E (Termc).

(i) X satisfies CandO, Y satisfies Candl, Cand2 + Lambda(X,Y)  satisfies Candl, Cand2.

(ii) X satisfies CandO + Lambda’(X) satisfies Candl, Cand2.

(iii) (2, 2’ satisfy Candl, Cand2) and (Z or Z’ sa,tisfy  also CandO)  + Z u 2’ satisfies CandO,
Candl and Cand2.

(iv) Varc satisfies CandO, Candl and Cand2.

(v) varc u Aborti satisfies CandO, Candl and Cand2.

Proof.
i) Let Xx.M E Lambda(X, Y). We check Candl and Cand2 separately.

Candl) We have to prove that Ax-M E SNA+B. By CandO, x E X; by definition of Lambda(X,Y),
it follows M E Y; by Candl, we deduce M E S NB. Since Xx.M has not type I, it is not an
d-redex, and each reduction out of Ax.M is indeed a reduction on M and any bound for M
is a bound for Xx.M as well. We conclude that Xx.M E SNA+B.

Cand2) Assume Xx..M  + N in order to prove N E Lambda& Y). Since Xx.M is not an d-recles, ea.&
reduction out of Xx.&1  is indeed a reduction on 1v; then N = Xx.Q and M -+ Q. Therefore,
it is enough to check that, for every S E -y, Q[S/x]  E Y. By kc.M E La.mbda(X, Y) it
follows that M[S/x]  E Y. S ince M[S/x]  + Q[S/x],  a.pplying Cand2 for E’ we conclude tha,t
Q[S/x] E Y. Thus, N E La.mbda(X,  Y).

ii) Analogous to point i). We use the fact that SNl is a ca,ndidate.
iii) If Z 2 Varc, then Z U 2’ > VarC. If S NC 2 2, Z’, then S Nc 2 2 U Z’. Assume now 2 a.nd Z’
to be closed by reduction, and that iif E 2 U Z’, M + N. If &I E 2 then N E 2; if M E 2’ then
N E Z’. In both cases, N E Z U 2’.
iv) Left to the rea.der. We use the fact that no reduction is possible on a va.ria,ble.  v) By (iv) and
(iii), Var& Abortc satisfies CandO,  Candl and Cand2 if Abortc satisfies Cand1 ancl Cand2. Thus,
we have to prove Candl, Cand2 for Abortc. Since C is positive or nega&tive, then c’ # I, sic: 111  is
not a.11  d redes, and each reduction sequence out of dcM E Abortc is a reduction sequence out
of .&l. Then Abortc sa.tisfies Ca.ndl  a,ncl Ca.ncl2 since M E ,!5’1\[1  for each .&RI E Abortc:. 0

Lemma 3.4 Let -4, B be positive or negative types: a an atomic type, X E %‘( TermA).
i) X sai5.sfie.s  CandO * Not(,7i) candid&e for 7‘4.
ii) [a]~ is a candidate for a.
iii) [A], [B] we caw~idates for A, B j [A -+ B]o is a cantlidate jar .4 -+ B.

Proof.
i) Since -$- satisfies CandO, then La.mbda.‘(.Y) satisfies Candl, Cancl2  by Lcnlma. S.S.(ii).  RJ~ ~1.1~
plying 3.3.(v).  (  )iii in this ortler, we cledrlce  that. \ya.r‘,,..\  U ,b\  bortTAA  U LamMa.’ sa.tisfies C’a.11clO.
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Candl, Cand2. Thus, by Lemma 3.2, Not(X) = Clos(Var,A U AbortA  U Lambda’(X)) is a candi-
date.
ii) By Lemma 3.3.(v) and Lemma 3.2, [a]0 = Clos(Var,  U Abort,,) is a candidate.
iii) If [A] and [B] are candidates for A and B, then Lambda([A], [B]) satisfies Candl, Cand2
by Lemma 3.3.(i). By applying 3.3.(v), (“‘)in in this order, we deduce that VarA+B U AbortA U
Lambda([A], [B]) satisfies CandO,  Candl, Cand2. We conclude by Lemma 3.2 that [A + III0 =
Clos(VarA+B  U Lambda([A], [B])) is a candidate. 0

Lemma 3.5 Let P be a positive type, X E P( Termp).
i) X satisfies CandO + Cont(Not(Not(X))) satisfies Candl, Cand2.
ii) [PIa is a candidate j [PIa+ ia a candidate.
iii) Let ,0 be a limit ordinal, [PIa a candidate for all Q! < ,0 + [P]p in a candidate.

Proof.
i) Assume that X satisfies CandO. Then, by applying Lemma 3.4.(i) twice, Not(Not(X)) is a
candidate. In particular, if M E Not(Not(X)) and M + N, then M E SN,,p by Candl and
N E Not(Not(X)) by Cand2. We check now that Cont(Not(Not(X))) satisfies Candl, Cand2.

Candl) Each reduction on CM is indeed a reduction on M, because M cannot have type 1-1 and
thus CM is not an d) redex. It follows that if CM E Cont(Not(Not(X))) then C1M E SNp.

’ C a n d 2 ) For the same motivation, if CM + N’, then N’ = CM’ and h/l + M’, and therefore A/r’ E
Not(Not(X)), N’ = CM’ E Cont(Not(Not(X))).
ii) Assume [PIa is a candidate.
Then, by point i) above, Cont([llP],)  = Cont(Not(Not([PJ-J) satisfies Candl, Cand2. By
Lemma 3.3.(iii) wededuce that [P],UCont([P],) satisfies CanclO,  Candl, Ca.nd2.  We conclude
that [PIa+ = Clos( [PIa U Cont( [PI,)) is a candidate by Lemma. 3.2.

iii) By definition, [P]p = U,<p[Pla  . Therefore we have to prove tha,t,  the union of a non- empty
increasing chain of candidates satisfies CandO, Candl, Cand2, Cand3.

CandO) The condition [PIa 2 Varp are clearly preserved under non-empty unions.

Candl) Simolarly for SNp I> [PI*.

Cand2) assume !\/I E U,.,,[Pla and M + N. Then M E [PIti for some c1’, a.ncl N E [PIa by Candl
for [PI,. Thus, N E U&P],.

Cancl3) Assume
(VQ E Term.4)(MN  -+I Q) =+ Q E U [PI&

a</3

M,V has a finite number of one-step reducts, say &I,. . . , QIL. For each of t,hem we ha,\:e
Qi E U,,p[P],.  Therefore, Q; E [Plot for some a; < p. Let a’ = mas{c~l, . . . 7 a,,} < j3
(with n’ = 0 if n = 0). Since [PIa is an increasing chain7 then [PI,, 2 [PI,,., and thus
Q l,...!Qn E [f’lc+ We apply Cand3 to [P] al and we deduce MiV E [Plcyl.  It follows
MN E U&![P]cr.  0
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Proof.
By induction on the definition of [Tla,  [T]; i.e., by principal induction on the number of arrows
in T, and by secondary induction on CY. All the properties required in the inductive steps are in
Lemma 3.1, Lemma 3.4 (i), (ii), (iii) and Lemma 3.5 (ii), (iii). q

We are ready to prove now, in the next section, that every term is computable.

3.2 Computability for terms of &-

In order to prove that every term is computable, we have to check that all constructors of the
language build computable terms from computable terms. For some connectives, this fact follows
by the definition we have given. For variables it follows from the fact that [A] is a candidate and
from CandO.

Lemma 3.7 Let A, B be positive or negative types, P a positive type, Xx.M E Tern&A  and Xx.N E
TermA+B.  Then :

i) (‘d& E [A]a)(M[Q/x]  E Sk) * h.M E [-A],
ii) (VR E [A],)(N[R/x]  f [I$) * h.N E [A + B]a
iii) M E [l+], a CM E [P]a
i v )  M  E SN, * JbM E [Ala

Proof.
i) [-A] 2 Lambdal([A]), and Xx.M E Lambda’([A]) by definition of Lambda’.
ii) [A + B] 2 Lambda([A], [B]), and Xx.N E Lambda([A], [B]) by definition of Lambda..
iii) [P] = Clos([P]  U Cont([llP]))))  r> Cont([llP]) by Tarski Theorem, and CM E Cont([llP],,)
by definition of Cont.
iv) From the definition of [Ala it is easy to check that [Ala > AbortA and hence JtAM E [A]* when
M f SNl. cl

To check instead that M E [A -+ B] and N E [A] imply MN E [B] is more difficult. It will
justify the need for the heavy candidate machinery we introduced.

The difficulty to prove MN E [B] 1 ies in the fact that MN has a functional constructive mea.n-
ing (it may be reduced by ,f3) bu a so non-functional ones (it may be reduced by CL, CR! CL, Ck,t .1
CE). Suppose, for instance? that M = CM’, and reduce MN by CL to CXrC.M’(Xf.lc(fN)).  If we
try to prove CXk.M’(Xf.k(fN))  E [B], ,fta er a while, because of the presence of Xf . . . (fN) . . . in
CXk.M’(Xf.k(fN)), we are reduced to prove AP’N E [B] for any A/r” E [.4 + B].
The situation seems to be hopeless; in an attempt to prove MN E [B], we are reduced to prove
AP’N E [B] for all M” E [A + B]. In other words, the reduction rules we ha.ve seem to give a, cyclic
definition of the constructive mea.ning of MN. The idea is to brea.k this cycle, by sa,ying that \ve
introduced M(= CM’) in [A.-+ B] after we introduced M’ in [ll(A -+ B)], and A/r” in [.4 -+ B].
This informal idea has been forma.lized  in the definition [P] cu+l =D~J Clos( [P3Ly  U Cont( [P]cy>). This
definition says that if we introduced M’ in [--P] at the stage 0, then we introduced CL\/[’ in [P]
at the stage a + 1.

The nest lemma (Lemma, 3.8) chaxactcrizes  the terms of the form CM occurring in [PIa. Then
we will check (Lemmas 3.9 and i3.10)  that M E [1.4], N E [.4] imply MN E SNI, and fina.11)
(Lemma 3.1’2) tha.t IIf E [.4 + B], N E [A] imply AIX E [B]. The lasttwo propert,ies  axe rea.lly
hard to prove, but they are required in order to prove tl1a.t every t.erm is compu t.a ble.
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Lemma 3.0 Let P be a positive type and cy an ordinal. Then:

for some a’ < 0.

Proof. -+) M E [-+‘I,, for some cy’ < cy + (CM) E [Pltyt+l and ct’ + 1 5 a j (CM) E [Plcy
(because the chain [Plcl is increasing).
+) We proceed by induction on cy. The case Q! = 0 is trivial because CM 6 [PI0 by definition of
[PI O-
In the case a! = a’+ 1, if CM E [PIa’+ =Def Clos([P],‘UCont([llP],,)) then, since CM is not an
application, either CM E [PlQ 1 or CM E Cont([llP],,). In the first case we apply induction hy-
pothesis on ar’ obtaining M E [-lP],,’ for some o!’ < o! < o! + 1; in the second one, M E [llP]cy,
by definition of Cont, and o! < a! + 1, as we wished to show.
In the case a is a limit ordinal, if CM E Urr,.,a[P]a,  then CM E [PIa,  for some o! < cy. We apply
the induction hypothesis on o! and we obtain M E [--P]a’l for some o!’ < o! < cy. q

We check now (in Lemmas 3.9 and 3.10) that M E [TA], N E [A] imply MN  E SNI.

Lemma 3.9 Let P be a positive type and Q an ordinal. Then:
(i) M E [-PI,,  N E [TP]~  * MN E SNL
(ii) M E [l-P], N E [-PI + MN E SN~

Proof.
(i) By lemma 3.6, [llPlfl  and [-PIa are candidates. By Candl, M and N have bounds m and n.
We prove now that MN E SNI by induction on m + n. Since SNI is a candidate by Lemma 3. I,
by Cand3 it is enough to prove: (VQ E Terml)(MN  +1 Q) + Q E SNl.
Assume MN --+I Q in order to prove Q E SNI. Then there axe four cases : either & = A/I1lV
a.nd M -+I Ml, or & = MN1 and N +1 N1, or Q = M’[N/x] and A4 = Xx-M’ or Q = R and
MN = E[dR] (by definition, C$ caOnnot be applied). In the first case, A41  has a bound ~72~ < 117
and Ml E [llPICY by Cand2. In the second one N1 has a bound n1 < n and N1 E [‘PIN by Cancl;!.
In both cases we apply the induction hypothesis and deduce MlN (or MNl)c SNI, a.s required to
prove. In the third case, M = Xx-M’ E [l-P], E Not([lP],). Since M is neither an application
nor a vaxiable nor an abort, then M E La.mbda’([lP],), and we conclude A4’[N/x] E ,S’fVI by
definition of Lambda,. In the fourth case R is necessaxily a subterm of M or N. In both ca.ses
R E SNI since A4 and N have bounds.
(ii) Straightforward by (i), putting a! = ~1. 0

Lemma 3.10 Let P be a positive type and cy an ordim.1.  Then:
(i) M E [,P], N E [PIa + MN E SNI
(ii) M E [-PI,  N E [P] 3 MN E SNI

Proof.
(i) By lemma. 3.6, [lP] and [PIti axe ca.ndidates.  By Candl,  m a.nd N ha,ve t~ouucls m and ~1. \Ve
prove now MN E ,S’Nl by principal induction on a and secondaxy  induction on m + II. Since ,S’!V,
is a. ca.nditla.te by Lemma. 3.1, by Ca.nd3  it is enollgh to prove: (VQ E TermL)  (MX --+I Q) + 0 E
s fV1 .
,ksunie AlN +1 Q in order to prove Q E ,SL\~~. There are five subcases:
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1. Q = I&N and M +1 Ml
.

2. Q = MN1 and N +1 NlN.

3. Q = M’[N/x] and M = Xz.M’ (we applied p)

: 4. Q = N’(Xa.(Ma)) and N = CN’ (we applied C@

5. Q = R and MN = E[AR] (we applied A).

We check Q E SNI separately in each case.

1. If&= MIN and M +1 Ml then Ml has a bound ml < m and Ml E [+I by Cand2. By
the secondary induction hypothesis we deduce Ml N E SNl.

2. If&= MN1 and N -+ N1 then N1 has a bound nl < n and N1 E [PIa by Cand2. By the
secondary induction hypothesis we deduce MN1 E SN,.

. . 3. Assume Q = M’[N/z] and M = Xs.M’.  Then M E Lambda’([P]), because M E [lP] and
M is neither an application nor a variable nor an abort. We conclude M’[N/x]  E SNI by
definition of Lambda’, N1 E [PI, and [P] 2 [PIa (the inclusion holds because P is positive).

4. Assume Q = N’(Xa.(Ma)) and N = CN’. Then N’ E [llP],j for some a’ .< cy, by Lemma
3.S and N E [PI,. To prove N’(Xa.(Mu))  E Slv,, by Lemma 3.9 it is enough to prove
Xu.(Mu) E [lP],I. By Lemma 3.%(i), Au.(Ma) f [-PI cuf may be proved if we prove (VN” f
[PICyl)  (IMN” E SNL). This last statement follows by principal inductive hypothesis on n/’ < cv.

.5. R is necessarily a subterm of M or N. In both cases R E SNI since 1M and N ha.ve bounds.

(ii) Straightforwaxdly by (i), putting a, = ~1. 0

Lemma 3.11 For uny positive or negative type A,

M E b-41, N E [A] =+ MN E SN*.

Proof.
By Lemma 3.9 (if A is negative) or 3.10 (if -4 is positive).a

We prove now the last and harder lemma of this paper.

Lemma 3.12 Let -4, B be positive or negutive types and a, ,l3 be ordinals. If .4 is a negutive  type.
usume also ,5’ = cc?1 . ‘Then:
ti) Ad E [A + lTja7N E [Alp =+ &lN E [B]
(ii) A4 E [A --+ B] , N E [A] =+ MN E [B]

Proof.
(i) By lemma. 3.‘i, [.-1 + B],! [.4]~ a*nd [B] are ca.ndidates.  By Candl, M a.nd N ha,ve bounds 111

tml Iv, thea.ntl U. We prove now 1/1iV  E [B] by threefold induction on the illcleses a, b, 1~. + 11.. (AC

order between the first tc\ro indeses does not. matter). By Ca,nd3 it is enough to prove:

(VQ E Terml)(MN  -+I Q) 3 Q E [B]

,L\ssllrlle  ,\I.\; --+] Q it) order to prove Q E [n]. There a.re five subcases:
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1. Q = MIN and M +1 Ml

2. Q = MN1 and N +1 N

3. Q = M’[N] and M = Xs.M’ (we applied rule (p))

4. Q = CAk.M’(Xf.k(fN))  , M = CM’ and B is positive (we applied rule CL)

5. Q = Ap.M’(Xf.(fN)p)  , M = CM’ and B is negative (we applied rule CL)

6. Q = CXk.N’(Xu.k(Mu))  , N = CN’ and B is positive (we applied rule CR)

‘7. Q = Xp.N’(Xu.(Ma)p)  , N = CN’and B is negative (we applied rule CA).

We check Q E [B] separately for each case.

1. If&= M1N and M +1 Ml then Ml has a bound ml < m and Ml E [A -+ Bla by Cand2.
By induction hypothesis on (ml + n) we deduce MlN E [B].

2 .  If&= MN1 and N + N1 then N1 has a bound nil < n and Nl E [Alp by Cand2. By the
induction hypothesis on (n2 + nl) we deduce MN1 E [B].

3. Assume Q = It/l’[N] and M = Xx&!‘. Then M E Lambda([A], [B]), because M E [A + Bla
and M is neither an application nor a variable nor an abort nor a continuation. We conclude
M’[N/x]  E [B] by definition of Lambda and N E [Alp, [A] I> [Alp.  Remark that [A] r> [Alp
holds because either A is a positive type (and the chain [Ala is increasing) or p = w1 (and
[Al = PM-

4. Assume Q = CXk.il/r’(Xj.k(fN))  ) J/r = CM’ and B positive. Then M’ E [ll(A -+ B)INI
for some a! < cv, by Lemma 3.8 a.nd &I E [A + Bla. We proceed now backwards from
our thesis. To prove Cxk.M’(Af.k(fN))  E [B] by Lemma 3.7.(iii) it is enough to prove
Xk.!\/r’(Xf.k(f!V))  E [l-B].  By I,emma 3.?.(ii), Xk.h!‘(Xf.k(fiv>)  E [l-B] may be proved if
we prove (VQ E [lB])(M’(Xf.Q(fN))  E SNI). By Lemma 3.11 and h/l’ E [ll(A + B)],,,
M’(Af.Q(fN))  E S?VI may in turn be proved if we prove xf.Q(fN)  E [l(A --+ B)],,,.  This
last statement, by Lemma. 3.?‘.(i), is implied by (VM” E [A -+ B],r)(Q(M”N)  E SNI). Since
Q E [-B], by Lemma 3.11 all we ha,ve to prove is (VM” E [A -+ B],,)(M”N  E [B]). This last
sta8tement ma#y be obtained by the principal induction hypothesis on cy’ < CY.

5. Assume Q = Xp.M’(  Af. (fN)p) ancl M = CM’, with B = 1P for some positive type P. Then
Ad’ E [+A -+ B)]*, for some o! < ok, by Lemma 3.S and n/r E [A + B],. We proceed 11ow
backwards from our thesis. To prove X~.M’(X~.(~N)I,)  E [B] = [lP] by Lemma 3.7.(i) it is

enough to prove (VQ E [P])(i\4’(xf.(fM)Q)  E SNI). By Lemma 3.11 and M’ E [ll(Acl -+
ad 7 M’(Xf.(fN))Q E SN1 may in turn be proved if we prove xf.(fN)Q E E-c.4 + B)]lll.
This last staOtement, by Lemma. 3-i.(i), is implied by (Vhf” E [A -+ BICyl)( (M”N)Q E S:lyI).
Since Q E [PI! by Lemma. 3.11 all we ha.\:e to prove is (Vhf” E [.4 -+ B]l;yl)(A/J”h’  E [B] =
[iPI).  This last stakement  ma,\: be obtained by the principa,l induction hypothesis on CI” < a.s

6. .&ume Q = CXk.!\;~“(Xrr.l;(  MU)), X = CX’ and B positive. Then N’ E [lld4]p,  f’or some
(3’ < 3. by Lemma. 3.8 a.nd  .V E [Alp. Rema.rk tl1a.t:  for the restriction we put on typillg!
A niustJ  be a. positive type, and therefore rue did not ui5iiw.e p = q . \;Ve proceed no\\
backwards from our tllmis. To prove ~Xl;.~~T’(Xc~.k(n/r~~))  E [B] by Lenima :3.7.(iii)  it is c110t1gh

to prove Ax?.;\-‘(Xn.k(,\/a))  E [-lB].  Dy T, enima  :3.7.(ii), Xk.;\!‘(Xa.k(Mcr)) E [l-U] ina)-  Ix\
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proved if we prove (VQ E [+])(N’(Xa.Q(Ma))  E SNL). By Lemma 3.9 and N’ E [l-A]p,
N’(Xa.Q(Ma))  E S N1 may in turn be proved if we prove Xa.Q(Mu) E [lA]pl. This last
statement, by Lemma 3.7.(i), may be deduced from (VN” E’ [A]p)(Q(MN”) E SNL). Since
Q E [+I], by Lemma 3.11 ‘all we have to prove is (VN” E [Alps)  (MN” E [I?]). This last
statement may be obtained by the secondary induction hypothesis on ,fY < p (in order to
apply inductive hypothesis to ,8’ < p, it is crucial that we did not assume ,O = wr).

7. Assume Q = Xp.N’(Xu.(Mu)p) and N = CN’ with B = -P. Then N’ E [--Alp  for some
p’ < p, by Lemma 3.8 and N E [Alp. Remark that, for the restriction we put on typing,
A must be a positive type, and therefore ure did not assume p = wr. We proceed now
backwards from our thesis. To prove Xp.N’(Xu.(Mu)p) E [B] = [lP] by Lemma 3.7.(i) it
is enough to prove (VQ E [P])(N’(Xu.(Mu)Q)  E SNL). By Lemma 3.9 and N’ E [-lA]p,
N’(Xu.(Mu)Q)  E S N1 may in turn be proved if we prove Xu.(Mu)Q E [lA]pt.  This last
statement, by Lemma 3.7.(i), may be deduced from (VN” E [A]p)((MN”)Q E SNl). Since
Q E [PI, by Lemma 3.11 all we have to prove is (VN” E [A]p,)(MN” E [B] = [lP]). This
last statement may be obtained by the secondary induction hypothesis on ,8’ < /I (in order
to apply inductive hypothesis to ,O’ < p, it is crucial that we did not assume /3 = wr).

(ii) Straightforwardly by (i), putting a! = p = ~1. CI 4

3.3 The result

We now ready to prove a’ Soundness Theorem and to deduce Strong Normalization from it. We
only need a last definition before.

Definition 3.5 Let kf be any term.

(i) A substitution is uny mup from Q finite  set of ,vnriubles to the term,s.

(ii) A substitution CT is on h/l if the free variubles  of M ure cdl in the domain of CT.

(iii) If a is CI.  substit,ution on M, we denote by a(M) the resdt of replucing  each z free in 114 by a(x).

(iv) A *- kt -t tsu 4’ I u ion CT is compvtnble ij’cr (x) is computable for ull vuriubles  x in the doqlin  oj* 0‘.

Theorem 3.1 (Soundness) Let M be uny ter,m nncl CT u substitution on it. Then:
cr is comyutuble 3 a(M) is computable

Proof.
By induction on AI.

l .41  is a variable.
The thesis holds by definition of cornput.able  substitution.

\‘Ve apply Lemma, 3.7.(i) or 3.7.(ii). if the type of 114 has the form 1A or A --+ R respectively.
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0 MrCM1
We apply Lemma 3X(iii).

0 MEAM
We apply Lemma 3.7.(iv). 0

Corollary 3.1 (Strong Normalization) Every term M of Xc7-
strongly normalizes.

Proof. Consider the identical substitution on M, defined by id(x) = z for each 2 free in M. The
substitution id is computable because zA E [A] by CandO. Therefore by the Soundness Theorem
M(= id(M)) is computable. Thus, M E [A] for the type A of M. Then, by Lemma 3.6 and Candl,
M strongly normalizes. 0
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1 Monads  capture semantic  structure
We propose three monads that express the structure of different modes of continuation seman-
tics. The first is the familiar CPS semantics, the second is a semantics for languages with
first-class continuations, and in the third we have ‘composable continuations’ that are useful
to express the semantics of backtracking such as occurs in the computations of logic programs.
The third structure is not actually a monad, as the left identity law fails for reasons that we
discuss. The object map of each monad, if expressed as a formula of propositional logic, forms
the hypothesis of an implication from which one can derive full classical propositional logic.

In each monad (or pre-monad), certain morphisms of an underlying category can be ‘taken
for granted’, rather than constructed. These morphisms are respectively, eval, the evaluator
of applicative expressions, call/cc, a meta-language analog of the call/cc control primitive
of Scheme, and a new (but related) morphism that we call eval/cc.

1.1 Monads of a Cartesian-closed category

As a model for programming language semantics, we assume an underlying Cartesian-closed
category. The intended interpretation is that objects of the category correspond to types and
morphisms to functions. State is easily accommodated in such a model [ll, lo]. We shall use
the following characterization of a monad [8]

Definition 1: A Kleisli triple (T, q, ( -)*) in a category C consists of

l an object mapping function T :Obj(C) + Obj(C),

l a natural transformation called the unit, 7~ : X + TX,

*The research reported here was supported in part by the National Science Foundation under grant No.
CCR-9101721.
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.

l a natural extension operation that takes each morphism f : X + TY to a morphism
f* : TX + TY in C.

These components of a monad must satisfy three laws:

Pw 7% = idTjy

w9 POT = f

m (g* O f I* = g* 0 f*

0

Laws (Kl) and (K2) express that the unit is respectively, a left and a right identity with respect
to Kleisli composition. Law (K3) expresses that natural extension is associative with respect to
morphism composition. We shall call a monad-like structure a left or a right pre-monad if it
satisfies (K3) and one of the identity laws, (Kl) or (K2), but the other identity is not assured.

A morphism h : X + Y of the underlying category can be ‘lifted’ to a T-monadic morphism
by composition on the left with the unit of the monad, 77y o h : X + TY. Such morphisms are
called the proper, (or existing) morphisms of T. The natural extension of proper morphisms
provides a mapping of morphisms X + Y to TX + TY which together with the object
mapping function constitutes a functor T : C + C. The more interesting morphisms of a
monad are those of types X + TY that are non-proper. For each of the monads we consider,
we shall be interested in the interpretation given to its non-proper morphisms.

1.2 What is a monad for continuations?

Each of the monadic structures studied here can be used to transform a direct semantics for the
X-calculus to a call-by-value semantics that uses continuations explicitly. As the language is
extended, we do not expect that every function will denote a proper morphism in the category.
Hence, functions given the type X + Y in the language will correspond to morphisms from X
to TY in the category, i.e. they will map values to computations. Furthermore, an expression
representing a function value acquires a type T(X + TY). These observations yield what has
been called the Kleisli interpreter [2]:

The natural extension of a function in the monad allows substitution of computations, rather
than values, for argument variables. This is the essence of continuation semantics.
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1.3 The continuation-passing monad

The functions of CPS semantics are captured in the monad whose object function, unit and
natural extension operation are:

T X = (X+A)+A
rlX = xxxc.cx
f = At.Xc.t(Xz.  f xc)

where f : X + TY

We call this the CPS monad. It has previously been called the monad of continuations [lo]
but, as we shall see, it is not the only interesting monadic structure that captures computation
with continuations.

If C is to be a nontrivial Cartesian-closed category, then the naturality required of the unit
and the extension restrict the choice of object A. Intuitively, A should correspond to a universal
type for final answers; a type on which we-can assume no interesting operations to be defined.
Formally, A must be an involution object [9, 71 of C, satisfying two conditions 1

(11) the function space [A 4 A] is a final object in C;

(13 VA E Obj(C) there is a monk arrow rcx : X --+ A.

Continuations are modeled as arrows X + A. Condition (12) guarantees that there is a
continuation that can distinguish the elements of X from one another.

In the propositions-as-types analogy between intuitionistic propositional logic and the sim-
ply typed kalculus, X-terms of type t correspond to proofs of the formula corresponding to
t in the logic. Closed lambda terms correspond to proofs of tautologies. Griffin [5] observed
that the analogy extends to one relating classical logic to a X-calculus extended with typed
continuations, and used the analogy to suggest types for control operators.

An involution object is analogous to the absurdity proposition of an intuitionistic logic [5].
An object TX is analogous to a double-negation proposition, 11X, in intuitionistic logic. The
formula 11X * X, when added as an axiom scheme, yields classical logic. Analogous to this
formula is a morphism evalx : TX + X in the category C. For proper computations of T it
satisfies:

eval(/\c.cx) = x

Such a morphism cannot be defined as a closed &expression, i.e. it does not necessarily exist as
a consequence of the Cartesian-closed property of C. Although evalx is natural in X it is not
universal unless every arrow Y + TX in C is proper for the monad T. Its formal introduction
rule is:

I-‘+t:TX
l? t- evalx t : X

‘The reader should note that involution does not imply isomorphism
phism would have as a consequence that if C is Cartesian-closed, it is
most one arrow between any pair of objects [S].

of objects X and TX. Such an isomor-
an order category, in which there is at
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The CPS monad internalizes as objects TX the morphisms that map X-accepting contin-
uations to final results. Such objects are sets of ‘latent computations’ that provide semantics
for applicative expressions. If f’ : X + Y is a morphism of C, then the proper morphism
f = rly o f’ : X + TY satisfies the equation

f xc = c(f’ 2)
Non-proper morphisms of this monad are those whose codomain element may represent a com-
putation that discards the nominal result continuation and instead uses a different continuation
to effect a tail-call or to raise an exception, or which diverges.

1.4 The monad of control alternatives

The second monad we consider is motivated by the desire to provide semantics to expressions
abstracted on a continuation variable. The constituents of the monad are:

s x = (X + A)+X

VX = xx.xc.x
f* = As.xc.f(s(xx.c(fxc))c

where f : X + SY

As before, A is required to be an involution object, and an object [X + A] is interpreted as a
type of X-accepting continuations.

The intuitionistic formula analogous to an object SX is 1X + X, which in classical logic is
abbreviated as X V X. A morphism SX + X can be interpreted as evaluating a computation
that might produce a value of type X in two different ways, either by a direct evaluation,
ignoring the continuation argument, or by invoking the argument continuation. The analogy
with a disjunctive formula of logic hints that SX may be related to a disjoint sum, X + X.
This is indeed the case, provided there is added to the set of monad morphisms a constructor
AX : A + X, called ‘abort’ [4]. Then we can define

in1 = q = xx.xc.x
inr = Ax.Xc.A(cx)

The discriminator is
case(s, f 9 g) = Xc.f (s(Xx.c(gx  c))) c

in which s : SX, f : X + Y and g : X + Y. Notice the similarity in form between the
discriminator and the natural extension of a function in the monad S,

f’= As.case(s, f, f).

It is informative to compare this formulation with Griffin’s construction of disjunctive types
[5] in the CPS monad. That construction requires the explicit addition of both the operator
A and of Felleisen’s control operator [4], C, while in the monad S we need add only A as an
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explicit operator. However, since A is conventionally defined in terms of C, an independent
axiom is needed for A if we are to define it without C. The necessary axiom is

(Vx : X) (Vc, c’ : X -+ A) c’(Ax(cx)) =  c x

Abbreviating Xs.case(s, f,g) as [f,g],  l t1 is now easy to check that the axioms of a coproduct
hold:

[f,gloinl  = f [f sl7 0 inr = g [id, inr] = id

Thus, types SX indeed become coproducts if the met a-language includes the abort operator
Ax.

’ Additionally, one can simply postulate a constructor that injects expressions of type SX
into a X-calculus. The introduction rule is

Iv-s:sx
I? t- caU/ccX s : X

The explanation of call/cc is that when applied to an abstraction expression, Xc.e, binds the
abstraction variable, c, to the current continuation. Any subexpression of the form c e’ is
interpreted as a ‘throw’ of the value of expression e’ to the bound continuation.

But what if the value of e’ is itself constructed with call/cc? The semantics of composite
expressions in this monad are explained by the Kleisli composition, i.e. by using the natural
extension in the monad S of functions that may either produce normal values (the arrows
proper for the monad) or values constructed with call/cc (the non-proper arrows).

In Scheme, call/cc has been lifted from its status as a semantic operator of the meta-
language to become a syntactic operator of the programming language. The Kleisli interpreter
for the monad S can be extended to account for this language construct:

[call/cc~x.M[ p = Xc.(lMl  p[x H c]) c

To complete the analogy with formulae of logic, note that the logical formula (1X + X) +
X is Peirce’s law, also sufficient to yield full classical logic when added to intuitionistic logic
as an axiom scheme. This formula corresponds to the type of call/ccx : SX + X.

1.5 The pre-monad of composable contexts

The third structure is intended to provide a complete foundation for a semantics of logic
programs, or of a language with the prompt and control primitives introduced by Felleisen
[3] (or the reset and shift primitives of [l]). This s ructure is a composite of the two previoust
ones, with constituents:

R X = T(SX) = (((X+A) +X)+ A)+A

rlX = 7:x 06 = Xx.Xh.h(Xc.x)
f’ = k.Xh.r(k.f(s(Ax.fxh))h)

where f :X+RY
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This structure is not a monad, as the left identity law (Kl) fails, but it is a right pre-monad. The
left identity law would be provable if elements of type SX were restricted to those constructed
by application of qx,s but then the monad R would be isomorphic to the CPS monad. We
conjecture that the left identity law may also be provable in a category without fixpoints, which
would imply that it is connected with the uniform termination problem for R-computations.

An object RX is a space of computations that take SX-expecting continuations to final
results. We call an SX-accepting continuation an X-expecting context. A context supplies its
SX-typed argument with both an X-expecting continuation for a result produced by normal
evaluation and a second continuation of the same type for use if the evaluation aborts. Thus
an aborted computation need not escape to the ‘top level’, but may backtrack. Aborting
a computation with an alternate continuation is equivalent to continuing the computation
in another context. This intuition is summarized in the CPS transformation of SX-typed
expressions:

(idx!T h = h(in1 x)
[inr X[T h = h&d x)

where ho is a context constant, or initial context. (There is no closed X-term of type SX + A.)
A semantics of either applicative or relational expressions built with this monad allows

contexts to be composed incrementally. Incremental composition of continuations was not
possible in either of the monads T or S, because continuations do not compose as ordinary
functions. It is possible in R, because higher-order continuations are available as contexts.
The Kleisli composition in R allows context abstractions to occur as arguments of functions,
in effect subsuming higher-order CPS transformations.

A morphism RX + X can be interpreted as evaluating a latent computation that uses
an SX-accepting continuation to produce an X-typed result. A morphism of this monad is
eval/ccx : RX -+ X (evaluate-in-current-context), which is defined by the rule:

eval/cc( f ) = eval( Xc.r (Xs.c( sc)))

where eval is the morphism that supplies the immediate continuation to a computation of type
TX.

The formula of propositional logic analogous to the type of eval/cc, namely 11(1X +
X) * X, also yields classical logic when added to intuitionistic logic as an axiom.

1.6 A hierarchy of monads

The monad T provides a semantics in which sequential computation is made explicit. It allows
the definition of first-class suspensions. If e is an expression, then Xc.ce is a suspension, where
c is a continuation variable, and e contains no free occurrence of c. To evaluate a suspension,
a current continuation is supplied by eval, by forming an expression eval(Xc.ce). In a call-
by-value language, suspensions are made explicit when delayed evaluation is specified. In
a non-strict programming language, the notation for suspensions and for their evaluation is
implicit.
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In the monad S, the restriction that e contains no free occurrence of a continuation variable
is lifted. A continuation abstraction is evaluated by call/cc(Xc.e) which binds the continuation
variable to the current continuation. An expression Xc.e is not considered to be a suspension,
but one that may depend upon an alternate continuation. The normal result continuation is
implicitly furnished whenever an expression is evaluated.

The pre-monad R is a CPS monad of control alternatives. It subsumes both suspended
computations and backtracking control. In it, expressions may be abstracted on variables of
types X + RX which represent context transformations. Application of such a variable to
an argument expression can represent a backtrack with that expression or the raising of an
exception or the extension of the current context with a previously specified context fragment.
We conjecture that the monad R will provide a framework suitable for the semantics of logic
languages as well as functional languages with explicit control primitives.

As an example, in Section 2 we give a semantics in the monad RX to the Scheme-like
language enriched with shift and reset that was used by Danvy and Filinski. We shall see
that these primitives can be realized with eval/cc. a

2 Semantics of applicative  expressions  with shift and reset
The shift/reset (S/R) language we consider here is essentially that given in [l], except for a
minor variation in the definition of the shift operator. It is a language of lambda expressions
augmented with (strict) operator symbols, a conditional expression, and control operations that
allow an alternate context for control to be specified, invoked, or composed with a bounded
context segment. There are three explicit control primitives: .

0 reset sets a contextual control point. A reset is indicated by angle brackets. When
an expression is bracketed, l l l (E) l -0, the context outside the brackets is marked as
accessible. Evaluation of the bracketed expression may depend upon this context in
interesting ways, if it contains occurrences of either of the other two control primitives.
If E does not refer to these primitives, it is evaluated in the surrounding context just as
if the reset brackets were not present. A top-level program is implicitly bracketed by a
reset that marks an initial context.

l abort is an abstraction operator that binds a variable to the immediate context of the
abstraction. When a variable bound to an abort is applied to an argument expression,
the argument is evaluated in the bound context, ignoring the immediate context of the
application.

l shift is an abstraction operator that binds a variable to the bounded context segment
found between the immediate context and the context mark set by the enclosing reset
brackets. Application of a variable bound to a shift extends the current context of the
application with the bounded context segment. Repeated applications iterate the ex-
tension. A shift abstraction is trivial if there is no occurrence of the bound variable in
the body. Then the body of the abstraction is evaluated in the current context just as
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if the abstraction were not present. Thus elaboration of a shift abstraction duplicates
the bounded context segment one or more times. In the version of the S/R language
presented in [l], a trivial shift abstraction is equivalent to an abort with the body of the
abstraction, thus elaboration of a shift abstraction duplicates the bounded context zero
or more times.

A semantics of the S/R language is given below. The meaning function is

& 0 - 1 : E~pr + Env + R( Value)

where Em = Identifier + Value. Variables appearing in the formulae are typed as:

h, h’, h” : SX+AorSY+A
S,Sl,S2 : So, where cy ranges over types,

c, c’ : X+AorY-+A
X,V :x -

: X * Y, a strict operator
: X+RY

The semantic equations for applicative expressions with shift and reset are:

.
(unrt)

(P 1a

( f)i

(WP)

Ws)

(abort)

(Shift)

(reset)

&blPh = h(Xc.p[ x I)

WdPh = h( Xc.Xv.Xh’.h’(  Xc’.n v))

c 0 if(&, El, &) 0 p h = C 0 EO 0 p (As.h(Xc.s(Xb.b  = true + E 0 El 0 p h; E 0 E2 0 p h)))

~~EI&BP~ = C 0 El 0 P (&.C 0 E2 0 P (As20
let f’ = $1 (AfeE 0 E2 0 P (AS-f (s(Xx*f x h)) h))
in f’(s2 (Ax.f’x h)) h))

C[Xx.E[ph = h(Xc.Xv.EO E[p[Ox[ H v])

COck.EOph = E 0 E 0 p[o k 0 H Av.Xh’.h(Xc.v)]  h

~WEOPh = C 0 E 0 p[[ k 0 w Xv.Xh’.h’(Xc.eval/cc(Xh”.h(Xc’.v)))] h

alwllPh = h( Xc.eval/cc( E 0 E 0 p))

Expressions like Av.Xh’.h’(Xc?r  v), which occurs in (pi) and Xv.C 0 E 0 p[o k 0 - v], which occurs
in (abs), represent normal values that have functional types, X + RY. Formulas (unit), (ah)
and (app) are calculated directly from the definition of the Kleisli interpreter for this monad.
Formulas (pi) and ( j)i are similarly obtained from an extension of the intepreter. The formula
(abort) is a straightforward formalization of the informal description of the abort operator.
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We shall not attempt to give an operational interpretation of the (shift) and (reset) seman-
tics, but note that each uses the eval/cc operator in a different way. In (shift), the argument
expression given to eval/cc discards its context argument. Thus eval/cc is used here simply
to coerce to a value a computation that uses the context of the shift abstraction as an imme-
diate context. The value so produced is then injected by the unit of the monad to continue
computation in a context surrounding an application of the bound variable. The use of eval/cc
in (reset) distributes the normal continuation of the immediate context of the reset brackets
as both the normal and the alternate continuation to be used in evaluating E. This is how a
surrounding context is made accessible.

The reader may wish to contrast these semantic equations with those given in [l]. There
the semantics is obtained by iterating the CPS transformation twice. Thus we might expect
meanings to have types T(TX) and indeed they do, up to an isomorphism of Cartesian closed
categories. The authors point out that the CPS transform can be further iterated if one wishes
to accommodate nested reset brackets in a language. The semantic equations then become
rather unwieldy, although orderly. This is because T2 is not a monad. By giving semantics in
the monad R, iteration of the CPS transform is rendered unnecessary.
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Abstract

Control operators are an important programmin g language feature, and are being incorpo-
rated into more and more functional programming langua.ges. It is becoming clear that, such
operators permit beautiful, elegant solutions to many difficult programming problems. Unfor-
tunately, it is difficult to statically type-check these operators. In this paper, we focus on a
pazticu1a.r  hierarchy of control operators [DF90]  a.nd p oint out how this hierarchy can be given
an expressive type system via A-tra.nsla.tion. The type system is expressive in that one ca.n
give types to programs which intuitively model their operational behaviour,  and do not rest,rict
their usage in order to achieve type-safety. We define the hierarchy of control operakors  and
delimiters, as in [DF90], and present a monomorphic simple type system. We proceed with a.
set of loca,l  reduction rules which capture the global  evaluator, in the manner of [FFI<D86], and
discover the evaluator a.lso. With the A-translakecl  type-syst,em,  we prove a subject recluckion
theorem, showing that, reduction, as well as program-contraction, indeed preserves typing. This
work highlights the importance of A-translat,ion in providing accurate type systems for complex
control-operakor la.ngua.ges.

1 Introduction

Control-operator langua.ges  [FFKDSG, FelS-i,  CR%] are becoming more a*nd  more popular, both
for the users of programming la.ngua.ges,  a.nd for designers. Hence, it becomes important, to ha.\re
efficient., versatile systems for reasoning a.bout  programs written in such langua.ges, mcl.  secondly,
to ha.ve useful, genera&purpose techniques for constructing such reasoning systems. In t$his  paper,
we consider a parku1a.r  control-operakor la,nguage  - t.he hierarchy of Danvy k Filinski [DF90].
This hierazchy is defined by a semantic interpreter, \\Tritten  in estended continuation-passing-st!:le.

*An e.upanded version of this paper’, containing ftlll  pl.oofs,  can he hacl (at. least  unbil the end of 199’2) \+a anonyn1oiiy
FTP at ftp.cs.cornell.edu:pub/murthy/cw92-big-version.dvi,

+ Sl,pportecl  in part. 1,~ an NSF gratlnnt.e  fellowship ancl NSF grant, CCR-86165.5~ ancl ONR grant. NO001  -1-~~-Ii-O.10!)
and ESPRIT B<asic  Research Action  “Logical Fr~~tnewo~+s”
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Control & A-Translation

As a result, it is sometimes difficult to understand what a program written in the hierarchy does.
Further complicating matters is the fact that the “intuitive semantics” (for many people) of control-

: operator languages is based on C-rewriting machine technology [FF86]. Thus, when we write down
a C-rewriting machine for the hierarchy, there rests the immediate problem of verifying adequacy

.
between the two semantics.

To ameliorate these problems, we use A-translation techniques [Fri78,  MurSl],  and devise a
type system for the language which accurately reflects the runtime behaviour of terms. The type
system is operationally sound, in that evaluating a well-typed program in the semantic interpreter
produces a well-typed result. Using this type system as a guide, we then construct a set of local
rewrite rules, in the spirit of Felleisen’s. Each is verified by the semantic interpreter, but it becomes
obvious that the type system is an indispensable guide to finding the rules.

*-
With the rules, and the type system, in hand, we already have a considerable improvement

over the original situation. The type system provides intuitive information about the runtime
behaviour of terms. We then apply the techniques of Felleisen and Friedman [FFSG],  and define an
abstract machine for the hierarchy 1 in the spirit of the CEK machine [Rey72],  and then proceed to
concretize it completely, yielding a C-rewriting machine. This machine is then proven equivalent to
the original continuation semantics. Moreover, a slight variation of the presentation of the machine
yields the intuitive C-rewriting semantics.

Plan

The plan of this paper is as follows. We begin by presenting a quick overview of Danvy k Filinski’s
hieraxchy,  esplaining its connections with other hieraxchies,  and why we chose this particulax system
of control operators for our study. The following sections discuss pseudo-classical typing in the case
of X + C, the extension with a “prompt” operator, pseudo-classically typing the entire hieraxchy,
discovering local reduction rules, and discovering a C-rewriting machine. Then we conclude. ,

Preliminaries

For wa.nt of a better place, we introduce here a few basic definitions. We define a value as a
basic constant, pair, injection of values! or a X-abstraction. A concrete value is one devoid of
X-a.bstractions.  A concrete type is one whose values are devoid of kbstractions.

2 Danvy & Filinski’s Hierarchy of Control Operators

Da.nvy k Filinski’s hierarchy is a na.tura.1  estension of the ca.ll-by-value la.ngua,ge X+C, discovered by
Felleisen, Friedman, and their co-workers at Indiana [FFKDN].  Thus, we begin with the la.ngua,ge
x+c:

Definition 1 (A +C) Term Set: To the CBV kcalculus, add two new uua.ry t,erm-forming  oper-
ators. A neither binds nor creates free va.ria.bles; c binds a. free va,riable, and creates 110 new ones.
Terms I/ (resp. J4. X). perhaps subscripted, axe values (resp. axbitraxy expressions).

Evaluation (denoted ~c~(LRJ):

machine  only afLer  p-iv&e  cow tli~lnicaliori  \\.iIIi
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Program Contraction Rules:

E[(Xz.b)V]  b1 E[b[V/~]
E[Ck.M]  bl M[(Xz.dE[z])/k]

E[dM] bl M

Evaluation Contexts (Call-by-Value, Left-to-Right):

E= [I I WY I V(E)

Thus, the action of a C-term is to grab the eval’uation context, and package it up into a procedure-
like object, which is substituted for the bound variable in its subterm  argument. When this
procedure-like object is applied to some value, the then-current evaluation context is erased, in
favor of the saved context. One puzzling thing about this operator, though, is that the transitions
for C and d are defined with respect to the entire program being evaluated; hence, it is difficult to
produce observational congruences which capture these transitions. The essential difficulty is that
the “limit” of the effect of the control operator-is the “top” of the program, and there is no way of
denoting this except for a complete program.

So one solution (there are others) to this problem is to introduce a kind of “delimiter” for the
action of control operators, dubbed “prompt” by Felleisen [FelSS],  by analogy with the “prompts”
in programming-language interpreter top-levels. Thus, we have the following modification to our
langua.ge:

Definition 2 (A +C + #) Term Set: To X + C a,dd another una.ry term-forming opera.tor,  #,
neither binding nor creating variables. I/ are values.

Evaluation (denoted b~#,,(~q)  :

Program Contraction Rules:

E[(kb)V] b1 E[b[V/x]]
El[Eo[Ck.M]] b1 El[M[(A~.dEO[~])/k]l

El [Eo[dM]] D 1 El [fif]
El [Eo[#l/ll D 1 ~l[Eo[~ql

Evaluation Contexts (Call-by-Value, Left-to-Right):

Eo = [I I ~o(W I 1 -(Eo)
El = [I I ~1EhmI
E = El[Eo[]]

This evaluator specifies that the “extent?’ of action of a. control operator is clelimitecl by the
“prompt.” Thus,  code which is run “inside” a. prompt cannot a.bortively  esit, a.nd, in pa.rticula,r,
when t ha.t code computes a concrete va,lue? t,he eva.lrla.tion proceeds as if it were purely functi0Jla.l
- no side-effects ca.n be observed.

Now, na.tura.lly? one might ask: is there a, ivay to “jump over” the delimiters? This would lead US
to invent. a. ne\v cont.rol-operator, which could jump over the prompts. and gra.b a.11 of the evaluation
coiltest: I.0 the top of t.lie program. And a.fter t1la.t.:  we uigh t wa.111  to tlelilnit  the action of t Itis
OpPI-a  tor. too. AntI so on. Thus, we conle t.o the hiera.rcl1.v of Felleisen k Sita.ra.m  [F’S!IO]. ivhich is
(\Spwssctl as a. set of definitions, on top of the operatots  .F, a t1d prompt. using side-effects.
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Danvy & Filinski’s hierarchy is another way of doing this, and has the wonderful property
that its semantics is not expressed via side-effects, but rather via iterated CPS-translation. Here,
we present first the “standard” semantic interpreter for the language, and then, a version where
q-redeses have been removed. Both interpreters are found in [DF90],  and are reproduced here for
completeness. Finally, we will work with the CPS-translation version of the semantics, which is
omitted, as it, can be trivially inferred from the interpreter presented below.

Definition 3 (Danvy & Filinski’s Hierarchy) Let the integer m > 1 be a fixed parameter for
the rest of this paper. Moreover, stipulate that all control operators are of “height” less than m - 1.

Term Set: To the CBV X-calculus, add two new families of term-forming operators indexed
syntactically by 72 > 0, S,k.M, which binds k in M, and #n(M), which neither binds nor crea,tes
free variables. Define the “height” of a control operator as its numeric subscript.

Semantic Interpreter: Suppose that a closed pr0gra.m  P contains operators of “height” m - 2

or less. Let (0 5 i < m) :

8; G AVK;i+l  * ’ * K,aKi+lVKi+2 ’ ’ * Km

and 6, z Xz.z.
Interpretation Function:

Interpretation of Programs: The interpreta.tion of P is (recall 6, E Xx.x):

[ # m - l  (P)]pinit81  ’ ’ *~m-l~m  *

The stipulation that. a.11 control-opera.tors ha.ve height less tha*n 772 - 1 allows us to sa,fely enclose
the entire program in a0 prompt of height m - 1. This allows us to not concern ourselves with the
interaction of control-operators and the “top” of the program.

This a.11 looks rather complica8ted7 and perhaps too complicated. But there are severa. simplifi-
ca.tions we call make. First, we call note that there a.re many q-redeses to be eliminated. Removing
these yields:

Nest, we can not.ice that. the selua.ntics of shift  is rather conlples, and seems to contail~
instances of reset. so. \ve arc lead t,o simplify shift, which yields a. uew control operator. CT,, . t11t
hierarchy’s countct~part  of Felleiseil’s CT:
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The two operators, Sn and C,, are interdefinable in the presence of reset:

S,c.M s C,~.M[AU.#~(~V)/C]
C,k.M G S,c.M[h.S,-.(cv)/k]

Indeed, the way to discover C, is to expand the definition of S,c.M[Av.S,-.(cv)/k],  and perform
all possible reductions. However, we are still a long way from a simple understanding of this
semantics. We are still at the stage of reasoning only about CPS-translated programs. To have a
better understanding, we would like:

l A C-rewriting machine evaluator, in the style of Felleisen and Friedman

l A set of local rewrite rules, which characterize evaluation

l A type system, which guarantees type-safety

We will find these things in the opposite order, discovering the type system by an analysis of
typings of CPS-translated programs, and using typings to help us discover reductions, and so on.
Let us, for the record, state what we wish to find:

We wish to find a type system for source programs of the hierarchy, such that, under
CPS-translation, well-typed source-programs always yield well-typed result-programs.

2.1 An Informal Operatiollal  Semantics

To help understand the terms of the hieraxchy,  it is useful to. have some sort of informal notion of
how they compute. In the end, we will find that this informal notion coincides with the forma.1 one
we develop, but CI priori, iv-e can develop some sort of very general idea of how programs esecut.e.
Intuitively, we think of a. program (in which all control operators are of “height” less than m - 1)
as being either ~nZzre.s:,  or composed of an eonlzmtion co,ntezt, within which resides a0 tern?. of one of
the following forms:

(hW)V #,JV) S,k.hf

In the first case, we ha,ve a. simple &contraction. In the second, the term is replaced by V. In the
third, the evaluatiou contest ma,y be devoid of reset’s of height greater tha.n IZ - 1. If this is the
case! then the evaluation contest E[] is wrapped in Xx.#n(E[2]),  k is bound to this expression,
a.nd the current eva.luation  contest is set empty. If there is a. reset of height 71 or greater, t.hen t,he
evaluation contest up to that point is removed, and wra.pped  up as before, but that paxt,  of the
eva.luation  contest comprisiu,0’ the reset, a.rld that code outside it! is preserved.

Now, such a. description is quite informal, but essentia.lly parallels the espla.na.tion  for1  nd
in [DF90]. 0 ne of our ta.sks (the easiest) will be to verify thaf this description of eva.lua.tion is
indeed correct. To begin Lvit.11,  w-2-e ca,n Ivrite it out a little more esplicitly:

Definition 4 (“Intuitive” C-Rewriting Machine) Evaluation Contexts:

0 #,,l([]) i s  mi insta1tc.e #;([I). where i < IL. Similarly with #>n ([I)-

53



Control & A-Translation

l Cc” is a context which contains no prompts of level n or greater.

l Cany is a context which contains prompts of any level.

l Cln is either an empty context, or can contain anything, as long as its innermost frame is a
prompt of level at least n.

Transitions:
CyXZ.B)v]  Dl Cany[B[v/~]] (P >

CLn[C’n[S,k*M]]  D1 C’n[M[Xs.#n(C’n[~])/k]] (i)
PY[#,(V)] Dl PyV] (?+I

3 Pseudo-Classical Typing of C

The first task we must complete is to discover a type system for prograOms in the hierarchy, such
that well-typed programs, under CPS-translation, yield well-typed purely functional programs. As
a warm-up, we will show the equivalent development, for the call-by-value language X+C, yielding a
pseudo-classical type system. We have already given the operational semantics of the call-by-value
version of this language. We can also give a continuation semantics,

which is provably equivalent to the call-by-va,lue  (left-to-right) operational semantics. (BY.
partial eva,luation,  we could find a continuation-passing-style (CPS) t ranslation, but this woulcl be
a waste of space, as it is evident.) Nest, we would like to discover a type system for this langua.ge.
In a0 certain sense, if we wish a type system which directly speaks a*bout the process of evaluation,
then, since the contraction rules for control-operators manipulate the entire program, we must
espect that the type system will somehow at least mention the type of the entire program. And
this is esactly what happens:

Definition 5. (Pseudo-Classical Typing)

The iutended meaning of a sequent P I-A M : T is thak under t,he typing assumptions l?, in a.
c0mplet.e prograni of type A, espression M has type T. C’omplebe  progra.ms a.lwa,ys  ha,ve t$ype

The ilnporta.nt. theorem we ca.u prove is t.ha,t. this t.yping;, I1ncler CIPS-translat,ion, yields an
approptiatel,v tvpecl t railslated term:

i
E
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Definition 6 (Double-Negation/A-Translation) For 4 an atomic type, define ;(7’) - T + 4.
CBV Translation on Types:

. P = (fl- 2 E A (A atomic)
A+ B’ E -A’=+;;(B’)

CBV Translation on Sequents:

Theorem 7 (Type-Translation)
If r l-4 ikf : T, then i? t- h/l: ;-$T’).

Proof: By induction on the typing proofs.
In addition, the evaluator enjoys subject-reduction in this type system.

Cl

Theorem 8 (Subject Reduction) Every program contraction rule of DC~(LR),  preserves pseudo-
classical typing of programs I--T k1 : T.

Proof: Mechanical checking. The only interesting cases are the program-contraction rules for A
and C.
Case C: Since E[~k.n/rl  D1 A/I[(Xs.slE[x])/k]: we have the following typings:

k:T~1t---9M:I x : T I-,+ E[x] : t$

x : T $, E[x] : 4
x : T 6 dE[x] : I wbort 1

b Xx.dE[x] : l(T) * -I
tkTaItpVI:I k:T=Ut+W:I  *-E

lyj M(Lr.AE[x])  : d, I - T

Case J1: Cases, depending on whether t,he control-st,ring  is typed with &o&l or chortz. In both
cases, the contraction step is E[.&U]  D !&I.
Case clbortl  : Since the typing rule is crbortl! it follows thak 151 : 4.
Case clbort2: Since the typing rule is aborts, it. follows t,ha.t 114 : J-; hence, kl : $5 by J--T. 0

In a. like manner, Felleisen’s equakional  theories of control [FF‘ICDS6] also enjoy subject reduction
in this type system.

3.1 Extended to Prompt/Reset

To extend this development to the operakor  reset, iye simply  examine the CPS-tra.nslatiotl  of
r e s e t :
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Let us assume that we wish to produce a typing for the source terms, by analysis of the typings
of the result terms. Further, suppose that the term M has type 11(T), where 4, T are atomic.

Then Xx.x  will have type T + 4 (hence 4 E T). Thus, we can infer that t-T M : T will be the
typing judgment for M (like a “top” of program - which is what a “prompt” is for). Next, we note
that A4JXx.z) will have type T; hence #(M) will have type a--(T),  for any $. Thus, t-4 #(n/r) : T

is (one) proper typing of the entire term. But if M contains free variables, then these could perhaps
only be well-typed when the type under the turnstile was T. Hence, we must restrict I? to contain
only concrete types, since these will be invariant under translation:

Definition 9 (Pseudo-Classical Typing of Reset)

l? bpM:T
l-’ I-+ #(M) : T

reset (I? concrete)

We could also prove type-translation and subject reduction theorems, but since this is only the
first stage of the hierarchy, we delay them until later.

3 .2 An “Effect” Version of the Type System

Intuitively, the type under the turnstile in a judgment I? l-4 M : T is the type of the entire pr0gra.m
in which M is embedded. Thus, any abortive terms in M must abort with expressions of this
type, in order to ha.ve type-sa.fety. In a case like l?, f : A + B t-4, #(M) : T, if we allowed ~14 to use
f, then ‘the sub-sequent would be I?, f : il --+ B FT A/r : T. But, this says that if f, when a.ppliecl
to a value of type -4: can a.bort with an espression of type 4: then it is well-typed in a contest
where aborts sl~oulcl be with espressions of type T. Clearly, type-sa.fety  has been lost; hence the
restriction that the hypothesis list should be concrete.

But perhaps there will be times when we a.ctua.lly do want this estra, expressive power l to
construct a function which aborts with an espression of type T, and then pass it to a. place where
the function cannot be used in a well-typed manner, which will in turn pass it onwaxcls, to a. place
where it can be used. To give typings to these situations, we can always type CPS-terms directly.
But this, as always, is cumbersome a.ncl awkward.

Instead, we can note tl1a.t  the call-by-value CPS-translation we have been using wra#ps  a. $4t ’
(a “dou ble-&ation”)  around the conclusion, and around the rig11 t- hand-side of every fu nc Lion- t,ype
in the program. This looks very much like a conap,lctcc.tio?zclE  eflect,  and so we might. try t,o build a?.11
“effect” typing system7 where we a.nnota.te  function-types, and t.he type of the conclusion:

Definition 10 (“Effect” Version of Pseudo-Classical Typing) For d a.11  a.tomic t,ype, dcfinc
&b[Tl - z”‘.

rJ! : P * K,#] I-M : n&q
r I-Ck.M : P Tl-

E

I? I-M : K&A]
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We can prove that this typing is simply a “wrapping/hiding” of the CPS-typing; note that CPS-
translating the conclusion of a control-effect typed proof yields a valid typing; tha.t is, if I? I- ikl : T
in the effect-typing, then

W-M::

also holds (when the “effect’‘-definitions have been unfolded, of course). Now, we have no restriction
on the types of hypotheses in the typing of reset. However, we have an increase in the complexity
of the types. This is to be expected, though, since possibly every hypothesis of functional type
could be well-typed in a d#erent  context. Another way to look at this typing is as a close relative
to the monad of continuations [MogSl].

It is once again not too difficult to show that this alternative typing is sound with respect to
evaluation, as well as Felleisen’s reduction rules. Again, we omit these proofs, as this system is a
fragment of the hierarchy we will now consider.

The treatment of I in this last version is different from that of our original pseudo-classical
typing - in particular, the “effect” typing of C does not mention 1. This can be ameliorated, at
the expense of some extensionality arguments (essentially, showing that M : (I + (b) -+ 4 implies
h/l : (4 + 4) + 4, which follows by extensionality, and noticing that anything of type 4 + q5 is also
of type I + 4).

We make one last comment about the rule reset. Notice that 4 is free in the conclusion, and
instead of K+[T], we could ha.ve written nQ,[T], taken to mean the intersection over a.11 $ of

$
K+[T]. This type cannot even be expressed in the original ckassical logic; nevertheless, it expresses
the intuitive meaning of a reset.

4 Pseudo-Classical Typing of the Hierarchy

At this point, we are ready to give a typing for the hierarchy, using the same mecha.nisms we used
before.

4.1 Intuition

Before we give the type system, let’s try to get some intuition for wha.tl is going on. In the ca.se of
X + C, we found tl1a.t  the process of CPS-translation induced a double-nega.tion/.4-transla.tion on
typings  of programs. In  particular, if lL1 : A + B, a.nd IV : A, yielding n/r(fV)  : B, then (for a,ny 4):

Since the CJPS-tra.rlslations  of a.pplica.tions in the hiera.rchy q-reduce to the sa.me term! our first
a,ttempt  to give translations t.o terms in the hierarchy wo~lld be to simply  duplicate the work for
X + C. But if we consider for a moment terms which have wt been q-reduced. tllen we ca.11 see

57



_. Control & A-Translation

immediately that a simple double-negation/A-translation does not suffice. Suppose that m = 2:

Moreover, when we look at the “top” of the program:

IMI : ((a -+ (a + b) + b) + (c + c) -+ d)
[M](Xzx.~(v))(Xs.x) : cl

and at the semantics of a constant value,

c : a

we find that

l 61 expects to be passed a value, a.nd something of the same type as ~2.

l The result type of q is the same as that of ~2.

If we repeat this for m = 3, we find:

l %1 expects to be passed a. value, and two other arguments, of the same types as ~2 and ~3.

l ~2 expects to be passed a value, and something of the same type as ~3.

l The result types of all three continua.tions a.re the same.

Thus, in the general case, where we ha.ve a program phrase, iW, applied to 772 continua,t.ions,
[M]~l * * - K,, we find that each continuation tii expects to be a#pplied to a va,lue, and then to
arguments of the types of each of the continuations Ki+l . - + K,, and finally, to return a. final answer.

In other words, suppose [M] is applied to ~1 . . SK,, respectively of types rl . . . r,, and produces
a result of type a. Then each ri takes as a.rguments  a value of some type, a.nd values of types
?+I  * ’ ar7n, a-nd produces a. result of type CY.  So, the type of [*W] can be written:

(T + (7i -. ‘7, + a)) + T2”‘T, + CL

This should immediately remind the reader of double-nega,t.ion/,L\-transla.tion,  and indeed, if we 1001;
at the typing of spplica.tion,  with these rema.rks in mind, we find tha,t the typing a,bove, genera.t.etl
by ML, can be simplified, to

lIM(W  = Xr;lr;z.I[;\/rg(xn2~l,.END(Xllli’2/.n?,(n.)~lK’2/)h;~)K2

IIMI : ((n + ((b + 0’) + 0’)) + 0’) + o’
.. (n -+ 0’) + 0’
.. (b + 0’) + o’

where o’ G (c -+ cl) --+ cl. It should be obvious now tl1a.t  wl1a.t haqpened to applica.tion was that
instead of performing an A-transla.tion  with some a.tomic type (4, we did it with a type (c -+ ~1) ---+ (1.
If \fye were to esperiment  some more. \Yith, say, 172  = 3: \Ye would fincl t1ia.t d was in turn replaced
b,v some dou ble-nega.ted/A-transla.t.ecl type. The sizes of these types esplocle espouentia.1l.v wit Ii I)).:
IIe\:ert,heless~ the a.mount# of inforiiia.tion used t.0 construct t!heill is linear, and the constrrrct.ion is
s!:stellla.t,ic: hence? we ca,n invent some notatiotl to help us wri le down the types:
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Notation 11 (Iterated A-Translated Types) Define some abbreviations for sequences of type
expressions/variables, and then the operator K, which summarizes an iterated double-negation/A-
translation.

E : a sequence of type-expressions, of fixed, but unspecified, length.
P” : sequence of n identical type-expessions, p.
zi? : sequence of n different type-expressions.

&[T] = (T + K&]) -+ K&-]

And with this notation, we can rewrite the typing of application:

4.2 The Type System

Finally, we have a.11 the tools we need to write down a type system for the hierarchy. Before we do
so, we ought to say a word or two aSbout  intersection types. We will use the notation nT[a] for the

cr
intersection over a.11 monomorphic types ~2, of T[or].  We will only instantiate such intersections tvitli
concrete types (that is, free of implications). In the rule for intersection-elimination, we identify
one subscripted type, ,8, for elimination. There might be other types which are qua.ntified also? e.g.
we might eliminate /?2 in n K~pzf~2p,[T], without changing the quantification of p3, ,&.

p3fl2fll

Definition 12 (Type System for the Hierarchy) The type system has two kinds of judgmer1t.s:
M : T and T concrete. The first is a judgment of membership of a program in a type, a-ncl the

second, of the concreteness of a type. Likewise, there are two kinds of assumptions, of the sa,me
form. We do not go into details of how to prove that a type is concrete; essentially, a type varia.ble
declared to be concrete is thus, as are conjunctions, disjunctions, and primitive concrete types.
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I’ h &K-M : Lm...an+lp~n-l . ..sl [T]
shift

1. Notice, that in n - E, B is a new type, which we substitute in for ,O, and not a type-variable.

And, again, the type system enjoys a type-translation theorem with respect to the CPS-
translation. Since this proof is what actually sa.ys that our type system makes sense, we do it
in rather great detail. First, a few useful lemmas: m

Lemma 13 (K-X-Intros) A term Xlcn . ..K..M (n < m> has type K,,...,,[T] iff, under the as-
sumptions:

%a : T + &w-ant1 [an]

K, : &n-l  -+ %n,

M has type cv,.

P/*oof: Direct calculation. First step is that !&,...,,[T] E (T -+ Kn,,...a,tl [an]) -+ K,,,,...,,,+, [a,].
Cl

Lemma 14 (AC-A-Elims)  A term A4(lv,) . . -(fVm) (n < nx) has type aTn when:

Ad : A&,,...,,, [On-l]
N, : 07x-l  + L,,yQ,+  1 [%I

Ni : h-1 + ~a,n...rr,+JwL]

PI*oo~: Direct calculation, with some induction, and some tests a,t the extrema.

Lemma 15 (0; Typing) Hi (i < ~1,)  (G XVK.K(U))  has type T + K,YOl...OII+,~[T].

cl

Pmof: Tile desired type unfolds to T --+ (T --+ KO.,,L...L-,l+l  [T]) --+ K,‘y,l...lu,,+, [T]. If 2’ : r/l, 6 :
T + A’LY,,l*.*cT,,+l  [Tl. ,It len Ii has the desired type. cl
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Lemma 16 (0; Application I) For any types CY~***CY,,  &,-I, (n < m), 0,-1M(N,)--*(N,)
has type 0, when:

M : ~r,.,-~
Nn : h-1  + Kam”‘an+  1 an[ I

Nm : am-1  + am

Proof: Since n < m, 8,-l = ~SK.K(Z).  Thus, B,-1MN, has type ICa,...a,tl[~,]. The conclusion
follows by Lemma 14. cl

Corollary 17 (0; Application II) If A4 : K,m...a,tlp[P],  then A&? : Kam...a,tJP].

Proof: By Lemma 15. 0

Theorem 18 (Type-Translation) If I? l-x A4 : T then I? I- [M] : T (i.e. with all abbreviations
expanded.)

Proof: By induction on proofs: [Note: This proof is found in the expanded version of the report] •I

However, since we have neither a0 C-rewriting machine evaluator, nor a set of local rewrite rules,
there is really nothing else we can prove. Type-translation guarantees that evaluating well-typed
programs by first translating them, a.nd then running the translated programs, will never produce
type errors. But it says nothing about, more direct means of understanding the evalua.tion process.
To do this, we need a C-rewriting machine, and a calculus.

5 Local Reduction Rules

In this section, we find a sound equa.tionsl  reasoning system for our langua,ge.  In the case of X + C,
Felleisen took the CPS-transla.tion/a,bstract  machine as a guide, and produced va,rious reduction
rules, which he then verified. But this process is essentially one of guesswork, and for a CPS-
tra*nslation as la.rge as t*he hierarchy, it seemed intractably difficult. However, by observing tha.t all
the reduction rules should preserve pseudo-classical typing, we ca.n “cut down” the search space,
a.nd thus discover the following reduction rules:

Definition 19 (Reduction Rules for the Hierarchy)

#i(Sjk.!l4)  il #i(dV[XX.X/k]) S<# j  5 i #i(#.i(i’4)  > +1 #mrcr(i,j)  (n’l) ##

#i(S.jk.l+I) -1 Sjk.114 S& j > i
# i ( V )  +1 V #?I

(X.u.M) (V) +1 M[V/x] l?(,

This ruleset enjoys soundness, bot.11 wit,11 respect to the CPS-t,ra.nslation, a,nd n-ith respect to
t,lle pseudo-classical type system. First! we need a. few 1ernma.s:

Definition 20 (S-Telescoping) ‘l?he reduction S T, the tc2lescopi ng of’ S:

c - ~#.;z(cl(#h

is defined a.~:
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While we do not add this rule to our set of reductions, we might want to, since it in a sense is
already present, in the rules SL and SR~. If we were to add S f, we could simplify the other two
rules significantly - they would only have to account for the case n = 1. We do not do this, only
because our chosen ruleset seems easier to standardize. However, we will feel free to use S t, as a
simplifying device only, while pointing out how to remove it, in favor of SL, SR~.

Lemma 21 (S-q) The two terms &K.&L and S,C.M[K e xZ.#,(c s)] are denotationally equiva-
lent.

Proof: Direct calculation. The essential idea is that an abstracted context is going to already
contain a reset, so adding another one will not change anything. Cl

Lemma 22 (S-Telescope-Step) The two terms

S,C.M[K  * Xc?LC[#&2)]] Sn-&-&-l.SnC,.it~[K  +l X2.C[#n(Cn#n-~(Cn-~x))]]

and (where C[] is an arbitrary term-context) are denotationally equivalent.

Proof: Again, direct calculation. The essential idea, is that a n-level abstracted context can be
replaced by a tower of its n - l-level component, and the remainder at level n, in any place where
the n-level context was used. Cl

Lemma 23 (S-Telescoping : Soundness Under Translation) The reduction S T is sound in
the semnn  tics.

Proof: This one is now simple. Use the S-q lemma, to unfold S,k.M into S,c.M[%  I+ XX.#,(CX)],
and then use the telescope-step lemma to unfold the captured context, Xz.#,(cz) into
~~.#n(Cn(*  * -#2(c2(#1(c1(2)))))). cl

Lemma 24 (S-Telescoping: Typing) The rule S T enjoys subject-reduction.

Proof: We do this in detail. [Note: This proof is found in the expanded version of the report] q

Theorem 25 (Type-Soundness of Reductions) The reductions above are a.11 type-sound; if
the left-hand-side is a. well-t.yped program, then the right-hand-side is also, and of t,he same type.

Proof: By cases on the reduction rules. .Aga,in,  since this sa,ys a lot about our programming
la,ngua,ge? we do it in detail. [Note: This proof is found in the expanded version of the report] q

Theorem 26 (Semantic Soundness of Reductions) The reductions above a,re all semantica,lly
sound; in the semantic interpretakion,  the two sides of each reduction are equal.

Proof: Another proof by cases: [Note: This proof is found in the expanded version of the report] 0
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6 A C-Rewriting Machine Evaluator

In order to show that our reduction ruleset is reasonable, we must show a C-rewriting machine, to
which it can be compared. Since such has not been published, we give one here. It is constructed
in essentially the same way as Felleisen’s machine for X+C - by a concretization of the continuation
semantics, followed by a process of simplifying the abstract machine, until it became a rewriting
system on source-code programs. We produce the development below. To give credit where credit
is due, before we worked out this means of arriving at the correct C-rewriting machine, Danvy had
informed us of his work in this same direction. [Dan92].

We show the machine because:

l It exists, and provides justification for the informal operational semantics

l More importantly, it becomes clear that even though we have this machine, to discover re-
duction rules for a calculus is far from simple, and indeed having the machine around does
not (surprisingly) help very much.

We begin with the continuation semantics, and construct a series of machines, mimicking faith-
fully the development of Felleisen 8~ Friedman [FF86]:

l a CEK+-machine  (control-string, environment, a.nd list of one or more continuation codes)-

l a CK+-machine (replacing the environment manipulation with direct substitution)

l a CC+-machine (replacing the continua.tion codes with marked Sk-contexts)

l a CC-machine (colla.psing  the severa. continua.tion codes into only one)

0 a “rigorous” C-rewriting machine in the sta.nda.rd  style of Felleisen cti Friedman, but with a,
more complex definition of evaluation context,

0 finally7 a.11  “intuitive” C-rewriting machine, with the same transitions as the previous machine,
but with a more natural definition of eva.luation  contexts.

Since this process is relatively systematic, a.nd space-consuming, \ve simply give the CEIi’+-
machine, a.nd the “rigorous” C-machine (the “intuitive” C-lnachine has aJready  been given).

Definition 27 (CEK+-Machine)  The CEK+-machine  is aOn extension of Felleisen 8~ Friedma.n’s
CEK-machine, with est.ra continuation-strings. ‘l?he origina. three components reta.in t,heir origina.
form:

0 a control-string, which is either empty ($), or contains a term,

l a.n environment, which is either empty, or contains a ma.pping  from vnriables  to either pairs
of (t,erln,en\rirontneut). or continua.tion-context  (to be defined later)

l a cont,inna*tion-string,  which is a, list of frames, representing  a. corn bination of the a,rgument
a.nd control stacks.

We add 171.  - 1 more continrlation strings:

0 the second coiitin~iation string stores a. list of’ first.-kvd coiitinuat.ion strings.
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l the third continuation string stores a list of pairs, of first- and second-level strings

l the n-th continuation string stores a list of n - 1-tuples, of 1, . . -, n - l-level continuation-
strings.

Finally, a continuation-context is a pair of a natural number n, and a list of continuation-strings,
of levels l,.s*, n, written [n, q, . .4,].

The transitions of the machine are given in two pa.rts:  the first part are those transitions which
it shares with the CEK-machine. For these, the “extra” continuation-strings are not affected, and
are simply passed along. Thus they are not displayed. For the other transitions, since they affect
the extra continuation-strings, we display the complete machine-state:

( 7P7
(1 M p

4-L 0 7 K ret PW
. 7 7

&N) P
+-+(L 0 ,K ret (Xx.M,p))

9 7 4 - (M7 P 7 li a=g WY P>>
0 0 K arg (iV,p)  ret F) w (IV, K fun F)
0 $K fun (Xx.M,p) ret V) H (M,p[z  I? V]: 4

(#n(W P
++(M  > P

Lil * - * h~n+l~n+:!  . . - b?,)
0, --.On,~,+l  then (IC~...K,),#,~+~...~.~,~)

In the process of going from the G’EI<+-machine to the “rigorous” C-ma.chine,  we end up
erlcoding the continuation-contexts, [n, ~1 . . SK,], as a. X-a.bstrsction. But t.his is operationa.lly
sound, and causes no problems.

Definition 28 (“Rigorous” C-Rewriting Machine for the Hierarchy) Evaluation Contexts:

cl E []I 1 C’(N) 1 V(P)
C” s []” 1 CfTLICn--l[* * *C’[#n-I([])] *. ‘]]

Transitions:
,““[. . . ~“[(X.L:.B)I’] . . .] D, ,1”‘[-. . c:‘[B[\‘/.c]] . . .] UP )

,W,[. . . c’“+l [~1~[c,71-I [. . . C’[S,,k.;\f] . . .]]] . . .] D, c’” [. . . C”‘+’[!\I[x.c.#,,(c:“[G”‘-‘[. . . Cl’[.r]. . -]])/k]]. . .] (S)
c”,[. . . ~7~+‘[~‘f1[~vJ’--[. . .c”[#,,(\*-)]. . .I]]. . .] D, ,““[. . .~“‘+‘[~l”[~‘l’-‘[. . .c”[\,-1. . .I]]. . .] (#I
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Lemma 29 (Equivalence of C-Machines) The “intuitive” and “rigorous” C-machines are iden-
tical rewriting machines.

.
Proof: Since every program is either a value, or outermost a prompt of level m - 1, it follows. - that every “rigorous” C-machine context “stack”, Cm[* ..C~+l[C”[PB1[.  . .Cl[]. . .]]]. e-1 divides
naturally into an “intuitive” C-machine context, Czn[C<n[]],  where Cn[CnV1[.  . .Cl[]. . .I] = Ccn[].
Also, the stack is already a Cany [I. Since both definitions are unique - given a program phrase,
there is only one way of producing either, and since the transition rules are identical, it follows that
the two machines are identical. 0

We delay proofs of subject reduction for the machines, since the representation theorems (that
we can represent the course of computation of the C-rewriting machines by series of well-typed,
sound, reduction rules), will immediately imply subject reduction.

Lemma 30 (Well-Typed Programs are not Wrong) Well typed programs in the hierarchy
are either values, or contain C-machine redexes.

Proof: This proof is rather trivial, since every possible term in the hierarchy is either a value or a
redex. We have not included constants; hence there are no cases of ‘wrong. Nevertheless, even in
the presence of function and basic constants, the proof still goes through. 0

Theorem 31 (Semantic Equivalence) The semantic interpreter and the “intuitive” C-machine
compute the sa.me results when restricted to programs of concrete type. Formally, the [l\/rgcl, . . so,,
evalua.tes to some concrete value b, if and only if the intuitive C-machine evaluates the program M
to the sa.me value. This proof does not depend on the stipulation that all control-operators in t,he
program have height less than m - 1, nor on the program being “wrapped” in a prompt of height
m - 1.

Proof: We use the method of Felleisen 8~ Friedma,n [FFM].  One shows that the CEK+! CK+,
CC+, a.nd CC-machines all compute in lockstep. We then prove a, unique context lemma, and
show that one step of the CC-machine induces one or zero steps of the rigorous C-machine. Since
the CC-machine is in lockstep with the semantics, this means that ea.ch step of computation
semantics becomes zero, one, or two steps of the C-machine. (The case of two steps occurs when a8
continuation-context: coded as a X-a,bstraction,  is applied.) Termination of the semantic interpreter
implies termination of the C-machine.

To get the other direction, we use the fa,ct that the rigorous C-machine enjoys subject reduction)
a.nd tha.t well-typed progra,ms are either va,lues, or ha.ve C-ma.chine redeses. Hence, if t,he rigorous
C-machine terminates, it will be with a value. This value ma.ps  back t,o a. fina.l st,a.te of the CC-
machine. Finally, the equivalence of t.he intuitive and rigorous C-machines finishes the job. 0

6.1 Representation (Standardization/Correspondence?)

So now we know that, the reductions preserve typing, and tha,t they are semantica.lly  sound. a ntl
we have an eva,lua.tor. The logically next obliga.tion  is some sort of sta.ndardiza.tion/corresponclence
theorem. Jt seems intuitively clear tha,t this ruleset. conta,ins enough reductions to standa.r*dize. for
the sa.me reasons that. Felleisen’s ruleset was enollgh.  Ho\vever, just, a.s with Felleisen’s calcllli,  t.he
ruleset does not cont,a.in enough reductions to prove a. direct correspouclence t.heorem7 again. for
the same reasons as for control-opera.tor calculi - the process of lifting a control-opc~a.t,o~  out 01’ ;I
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context introduces many ,B-redexes, which are not contracted by the standard reduction sequence,
and are not even &redexes.

Thus, here, we will add a few other reductions, and prove a representation theorem. We make
no attempt to prove a standardization theorem, even though that should be technically feasible,
essentially since it would be a great waste of time and space. Even more of a waste would be
a correspondence theorem, as it would be another (even more complex) rendering of Felleisen’s
analysis of encoded contexts. Nevertheless, three facts:

l the reductions we add are simple

l their use is very controlled

l The lack of these reductions was essentially what caused problems with a direct correspon-
dence theorem for Felleisen’s investigation of C (on the other hand, related reductions appear
in work of Talcott  [Tall)

lead us to believe that correspondence is a “mere” technical matter. The proofs in this section
depend on the stipulation that all control-operators are of height less than m - l! since this allows
us to finesse issues of the “top” of a program. First, some definitions and technical details:

Definition 32 (Extra Reductions: ,f3~) Define the reductions ,OE by:

Lemma 33 (PE Soundness) The ,L?E reductions are type-sound, as well as being sound under
CPS- translation.

Proof: Direct calculation. 0

Notation 34 (SS) The notation SSi...jc; s.. cj.M (i 5 j) is shorthand for Sic;. a . ~S~c~.M.

Theorem 35 (Representation) The ruleset alrea.dy given, a.long with ,8~, suffices to represent
the “intuitive” C-rewriting machine esactly. By the correspondence between the intuitive a,ncl
rigorous machines, we thus have representation of the rigorous machine also.

Proof: By cases on the program-contraction rules. [Note: This proof is found in the expanded version

of the report] Cl
It is interesting that the reductions we discovered here were not simple genera.liza.tions of

Felleisen’s ruleset.  Indeed, we first tried such simple generaliza.tions,  a.nd found tha,t they were
type-unsound; hence we were forced to sea#rch further. Upon finding these rules, calcula,ting  their
denotations told us that we had indeed succeeded; but without the pseudo-classical typing to guide
us, it would have been a much longer process.

As can be seen from the proof, the reductions ,OE are used in very specific places, t,o “c1ea.n up”
the estra recleses produced by Yifting?*  a8 S up to its corresponding reset. We find four recurring
patterns of “ga*r ba#ge” ? produce by lifting a. S from the left. a,nd right, sides of a.pplica.tion notles, past
a. lower-numbered reset, and fina.lly, when \ve aci.ua.lly a.rrive a.t our destination. It, seems clc1a.r  that
these pa,tterns could be characterized, a?.ntl  a. correspondetlce theorem such a.s ohta.ined by Felleiscn
,ti Friedn1a.n  could be obtained here also.
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7 An Example

For our example, we will type a program which decides if one list is a suffix of another. This
program is surely taken from one of Danvy’s publications, though we first learned of it directly
from him [DanSl].

fun  f l ip  (> G &c. (c t t )  o r  (c ff)
fun ret suffix 1 G if 1 = nil + nil

I flip0 = true + 1
I else + suffix(cdr  1)

fun suffix-p II 22 G #~(ZI = suffix r,)

So with a few definitions of primitive operators:

l-nil : r)K&ist]
nil

z
t- tt , ff :n&$ool]  truth

E
eq

t-0 =o: nKb[T -+ K~[T -+ ~~~~~~~~~~

l-0 ore: "k,[bool  + K;j;[booZ + K~[bOOZ]]]  Or

I-B : Ks[6Zol] t-u : K&r] l-v : Kz[T] if
I-if(B; U; V) : &$!J

f:A~#~[B],~:.4~M:iCa[B]
t-fix(f, LM) : Kh[A -+ &[B]] rec

we ca,n type our program, and find that szlfiz-p  has the type

nK&ist + K&ist + Kz[booZ]]]
z

I- f l ip  :  K~oo~[2~.nit  --+ &,l[bool]]
I -  Sic. (c tt) o r  (c ff) :  K~oo~[boO1]

c:booZ  -+ nK,[bool] t -  (c tt) o r  (c ff) :  K~oo~[600Z]

t -  (c it), (c f f ) :  K&@OOI]

I- suffix:Kbool[list  -3 KbuO~[Zist]]
1:list I- if(l=nil;nil;if(flip();l;cdr(l))):&-,~[~ist]

I-  l=nil:K~oo~[bOO1]
I- flip0 : K/)oul  [bool]
I- 1 : A&~[Iist]
t- cdr(1) :K~oo~[li.~t]

I- suffix-p : K,[list  -+ K,[li.st -+ X:,.[Gool]l]
II, 1.2:  I- #1(/l =  s u f f i x  /,) :  KI,[bool]

I-- (11 = suffix 12) :  K&,o~[hoI]
suffix /2 : Khool [bool]
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8 Is This A-Translation?

In the literature, Friedman’s A-translation [Fri78]  is characterized in two ways. First, one can
begin with a double-negation translation from classical to intuitionistic logic, and then, disjoin
every atomic formula with a fresh constant, A. Other variants exist, for instance, disjoining every
proposition (everywhere) with A. But another, and equivalent, way to do this is to stipulate
that the double-negation translation is from classical to minimal logic, and then, the A-translation
becomes the replacement of falsehood with some fresh constant A. [Lei85]

When we look at the relation with denotational semantics, we see that a double-negation trans-
lation to minimal logic, when considered along with a compatible translation on proofs, induces
easily a denotational semantics of classical logic. (On the other hand, a double-negation translation
into intuitionistic logic which is not into minimal logic also does not induce such a semantics - the
Kuroda negative translation is such a counter-example).

In the setting, then, of double-negation translations into minimal logic, the choice of the A, is
nothing more, and nothing less, than the choice of an answer-type for the denotational semantics.

Now all of this works well for simple double-negation translation, which corresponds with the
standard CPS-translations, and maps classical logic into minimal logic. What happens when we
consider the type system of the hierarchy, and the undeniably complex semantic interpreter? Quite
simply, this semantic interpreter effects an iterated double-negation/A-translation. Consider the
types of elements of an application, under a standard call-by-value double-negation/PI-translatioui
and assume that U, V are atomic types:

Aud if we unwind the definition of &2$1  [o], we find:

l Alrea.cl,v we know t.ha.t. to get. the second level of the sema.utic interpreter from the standard
C’B\;  C’PS-tra.nsla.tiou,  it suflices to do some q-espausions.

l At the level of types, this corresponds to replacing <‘, by h:,,,j2 [CJr]  - c/rjrl thclt i.~ (1.11.
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Thus, we can see that the operators K: are really iterated double-negation/A-translations. They
hide this mess, since in reality the structure being computed over is much simpler - a linear-length
stack of contexts, and not an exponential-size type.

Indeed, this is where the essential simplification in the type system for the hierarchy arises -
in noticing that instead of replacing I by 4 in double-negation/A-translation, if we replace it by
1 1
4242

(4 11 , we can:

l specify 41, which specifies a result-type for the first level of contexts,

l repeat the process, allowing us to give types for higher-level contexts,

l or terminate, by assigning a concrete type, which allows US to give the type of the entire
program.

Thus, while our translation from the hierarchy’s type system into a purely intuitionistic type
system is not a standard double-negation/A-translation, we feel that it deserves the na,me A-
translation, in the sense that, just as for the original A-translation, we are replacing an indetermi-
nate answer-type in a typed denotational semantics, by a defined one, which can itself contain yet
another indeterminate type, and so on.

9 Related Work

Obviously, our work is related to that of Danvy & Filinski [DF90],  which it extends. Our typ-
ing also extends that of Danvy & Filinski [DFS9]  to a hierarchy, and also seems to simplify the
meanings of various typings even for the first-order hierarchy case (though this has not been ver-
ified in detail). We use many techniques first invented by Felleisen, Friedman, and the tea.m
at Indiana. [FFSG,  FFKDSG, FelS7], and also further researched by Felleisen and his team a,t
Rice [FelSS,  FS90]. 0 ur work on typing the hierarchy estends that of Griffin [GriSO], and is a.
direct outgrowth of our work on progra#m  extraction from classical proofs [MurSl].  There has been
other work on typing control-operators in higher-order functional/imperative languages: Harper
et. al. [BD91] gave typings in monomorphic languages, and Harper and Lillibridge found that
the sta,nda.rcl methods of giving typings to control-operators did not work under erasure polymor-
phism [HL91]. 0 ne distinguishing feature of most work on typing control operators is tl1a.t it has
dealt with continuations as essentially single-ended objects - an input, but no output. When we
consider the hierarchy, though, the sta.nda,rd  wa,v of abstracting a0 cont.ext  produces a two-ended
continuation - indeed, we must esplicitly wra,p the a8bstracted  context in an abort in order to
minnick the beha.viour  of C. Thus, it becomes crucial to deal with the types of the output-ends of
continua.tions. -4nother close relative of our work is that of Moggi and others on monads [MogQl]
- in pa.rticular,  there seem to be strong correspondences between our “wrappings” and the monad
of continuations.

Our work on the reduction syst,em appears to ha.ve close pa,rallels in the computational la.mbcla.-
calculus [MogSl], and Talcott’s work on IOCC [Tall, in that their “extra” reductions, and ours, a.re
mot.iva.ted by the sa.lne concerns - reca,ptiiring  the evaluator directly as a0 sequence of rewrite steps.

10 Conclusions and Directions for Future Work

This paper has focused on how. applying stanclazct techniques, oue ca.n ta,ke a. new control-operator
la.nguage, and discover the st,a.nda.rcl  reasouiug svstenrs  for it. W’e bega.n with a. cont,inuat.ion

69



Control & A-Translation

semantics for Danvy & Filinski’s hierarchy of control operators, and found a type system for the
language which enjoyed the appropriate relationship with the continuation semantics, viewed as a

: translation from the hierarchy into a pure functional language.
Next, we took the pseudo-classical type system, and, using it as a guide, discovered operationally. - sound observational congruences - enough of them to represent the evaluator, and of these, a subset

which were intuitively enough to standardize. The importance of pseudo-classical typing here was,
again, that it gave us a powerful tool in the sea.rch for valid equivalences - since checking equivalences
by translation is difficult, being able to check them by typing them was a significant aid.

We then proceeded to develop a C-rewriting machine evaluator, using Felleisen & Friedman’s
methods of syntactifying abstract machines. Their method also renders the semantic equivalence
proof routine, though tedious.

For future work, it seems that standardization and Church-Rosser theorems are de rigueur for
.- the reduction system. Likewise, for the type system, extensions to polymorphism (perhaps not

Milner-style polymorphism, of course!), recursive types, fixpoints, etc., seem tenable and necessary.
Moreover, further work will be necessary to see if the reduction system proposed is indeed the ideal
one. Unlike C, there is great room to maneuver in the construction of the calculus; for instance, we
noted that instead of the comples  rules SL, SR~, we could have used the telescoping rule, S T, and
first-level versions of the two lifting rules.

Another avenue of research is to experiment with a call-by-name version of this hiera.rchy. While
this direction seems rather theoretically motiva,ted,  one interesting reason to do this would be to
integrate control operators directly into lazy functional languages, rather than thru the sta,nda.rcl
uses of monads, which normally produce call-by-value control. On the other ha.nd, a ca,ll-by-
name version of the hierarchy could be coded into a lazy functional language, by using mona.d-like
techniques. Even a “Reynolds”-interpreter - t’hat  is, a. language which admits either call-by-name
or call-by-value functions, seems possible, a.nd even easily achievable. Of course, the value of
call-by-name control la.ngua.ges has y’et to be conclusively established.

What we find most striking about our entire development is that at every step along the waxy,  we
were lead by the type system. The type system gave us our first intuitions about the opera.tiona.1

I behaviour of terms, in a way which we could then reinforce by discovering reduction rules, a.nd
afterwards, a C-rewriting machine.
patterns which preserved typing.

Again, we discovered our reduction rules by seaOrching for

Finally, perhaps the most important (and also the most intracta.ble) task is to estend t.his
type system to encompass some of the patterns of usa,ge of the hierarchy. We have seen that we
ca.n provide non-dependent typings for progra,ms, but it would be even more satisfying to have
tota.l-correctness typings a.lso. This seems int,ra.cta.ble, since the hierarchy can be used to simulate
assignable va.ria.bles.  Nevertheless, the pa&tern of usa,ge of the hiera.rchy in programming suggests
tl1a.t. such a. typing is indeed possible.

To sum up, we ha.ve a.t.tempted in t.his paper to explain how a3 new technique for giving type
systems to control-opera.tor languages - pulling back type systems thru denota~tiona.1 semantics -
yields type systems for Danvy Lb Filinski’s hiera8rchy.  The obtained type system illumina.tcs  the
operational beha.viour of the hierarchy, aiding us in constructing the standa,rd  reasoning tools I’or
understanding this programming langua~ge.
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On PaiLisp Continuation and its Implementation

Takayasu Ito and Tomohiro Seino
Department of Information Engineering

Faculty of Engineering
Tohoku University
Sendai, Japan 980

Abstract
PaiLisp continuation is an extension of Scheme continuation, introduced in

a Scheme-based parallel Lisp language PaiLisp. Unlike Multilisp continuation
an invocation of PaiLisp continuation can change the flow of control in another
process, since for each process PaiLisp continuation packages up its process-
id and continuation as a functional object. Actually the PaiLisp continuation
can be used to kill a process. As in Scheme and Multilisp the PaiLisp con-
tinuations are denoted as (call/cc f) , where f must be a procedure of one
argument. A continuation ca.ptured by call/cc may be invoked many times,
but multiple-use continuations often incur some troublesome semantic problems
in concurrent interactions between continuations and concurrency constructs.
PaiLisp provides a new construct (call/ep  f), a. restricted PaiLisp call/cc
for the single-use continua.tion. Some details of Pa.iLisp call/cc and call/ep
are explained, using several  esa.mples.

A PaiLisp interpreter is implemented on a &axed  memory pa.ra.llel  machine
Alliant FX/SO. Examples of using PaiLisp call/cc on this interpreter are given
to demonstrate its behaviors, and some evaluations of PaiLisp call/cc are also
given.

1 Introduction

PsiLisp  continuation is an estension of Scheme continuation, introduced in a Scheme-
based parallel Lisp language PaiLisp [ItoMSO,  ItoSl]. &jIultilisp  [Hal&l,  HalsSO]  is
another Scheme-based paxallel  Lisp, and it adopts Scheme continuation in a straight-
forward manner. ,411  invocation of h4ultilisp  continuation closure does not give my

effect to other processes. Unlike IvIultilisp continuation a.11  invocation of a Pa.iLisp
continuation can cha.nge the flow of control in a.nother  process, since for each pro-
cess PaiLisp continua.tion  packages up its process-id a#nd  cont,inuation  as aa functional
object. Pa.iLisp  continuation is a na.tura.1  extension of Scheme continua&ion into con-
currency. The process continua,tion  of Hieb-Dybvig  [HieDSO]  also offers another
interesting extension of continuakioii  in to concurrency, but it is based on so-called
2--continuation  of Felleisen et. al [FeWFDW,  l?ellW].  Halstead’s  excellent. survey
[Hals90]  contains some nice coinparative remarks 011 these continuaLions.

III this paper we discuss

1. PaiLisp  continua.t.ionT  call/cc a4cl its restricted version call/ep
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2. how to use PaiLisp call/cc and call/ep

3. an implementation of PaiLisp continuation and its evaluations

2 PaiLisp Continuation

PaiLisp continuation was introduced in a parallel Lisp language PaiLisp and its
kernel PaiLisp-Kernel as an extension of Scheme continuation. PaiLisp-Kernel is a
small subset of PaiLisp, defined to be Scheme with four concurrency constructs. Pai-
Lisp continuation was demonstrated its usefulness in describing PaiLisp constructs
by use of PaiLisp-Kernel. This was shown in [ItoMSO].  See [ItoMSO]  and [It0911 for
more details of PaiLisp and PaiLisp-Kernel.

’ Before discussing on PaiLisp continuation we briefly explain about Scheme con-
tinuation and Multilisp continuation.

2.1 Scheme continuation

The notion of continuation was originally introduced in Denotational Semantics to
model the rest of computation following from a, point of the computation [StoySl,
SchSG]. Continuations are known to be powerful to denote semantics of various
control structures in t.ra,ditiona.l programming languages. Scheme is a dialect of
Lisp to provide continuation as a basic construct. In Scheme the continuations de-
noted as call-with-current-continuation are the procedures that progra.mmers
can manipulate directly as a first class object of Scheme. The Scheme procedure
call-with-current-continuation is usually aabbreviated as call/cc. It  has the
following syntax:

(cal l /cc  proc)

where proc must be a procedure of one argument. A continuation created by call/cc
pa.cka.ges up the current continuation as an escape procedure of one argument and
passes it as an argument to proc. When the esca.pe procedure is applied to its argu-
ment. its current continuation will be discarded. Instea,d the continuation that the
escape procedure was created will become in effect. Intuitively speaking “continua-
tion” behaves just like a control stack of an interpreter.

In the style of denotational semantics we may write as

p[call/cc] = X~~.~(X~'d.~f')h:

where /3 is a.11  environment such that p E Env : I ---+ Val. This rna,y be read as
follows:

call/cc receives a. procedure E of one argument and a0 continuation rl;!
then a,pply 6 to a continuation closure (X8yi’.&). When this contin-
uation closure (X8&‘.&)  is a.pplied to E’ with the continua.tion  t? the
continuation I;.’ will be discarded. and the continuation ti will be ese-
cuted with t’! where ti is the continuation at the time of creating t.he
con tin uation closure (XE’ri’.h.8).
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2.2 Multilisp continuation

.’ Multilisp adopted Scheme continuation into parallel Lisp in a straightforward man-
ner. In case of Multilisp continuation the content of the control stack that executes

.. - call/cc will be kept in the continuation closure, and when its continuation closure
is invoked the content of the control stack will be copied into the control stack of
the process that invokes the continuation. The continuation captured by Multilisp
call/cc will be esecuted by a process that invokes the continuation. Hence in case
of Multilisp continuation there is no chance that an invocation of a continuation
closure gives any effect to other processes.

Remark: Single-use and multiple-use continuations

A continuation captured by call/cc may be invoked many times. But, as is dis-
cussed in [HalsSO] it is useful to distinguish between single-use and multiple-use
continuations from the standpoint of efficiency and concurrent process interactions.
According to our Scheme programming experiences Scheme continuations are used
in the “single-use” style in most of actual Scheme programs. call/ep proposed by
the first author is such a restricted call/cc based on the single-use continuation
with the following syntactic definition:

(call/ep p~c)

where proc must be a procedure of one argument as in (call/cc proc). An es-
perimental sequential Scheme with this call/ep was implemented by 0. Hishida,
(a former student of the first author) [His1881 and it was adopted and estended in
PaiLisp [ItoMSO].

2.3 PaiLisp continuation

PaiLisp continuation was introduced in the course of designing PaiLisp-Kernel.
PaiLisp-Kernel is a small subset of PaiLisp, defined to be Scheme with four con-
currency constructs; that is,

Pa.iLisp-Icernel  = Scheme + {spawn, suspend, exlambda, call/cc}

where call/cc is  an estension of call-with-current-cant inuat ion to denot,e
Pa.iLisp continua.tion. PaiLisp  continuat.ion  played a.n essential role in describing
Pa.iLisp  constructs by use of PaiLisp-Kernel.

A Pa.iLisp continuation is defined for each process; t1~a.t  is, a. Pa.iLisp continua.tion
of a. process packages up its process-id and cont,inua.tion.  In a.nother wools, a. PaiLisp
continuation records

t.he content of the control stack that executes call/cc
a.nd tile ic1ent.it.y  of the process that ca.ptured  the continua.tion.

In Pa.iLisp  a,ntl  Pa.iLisp-Kernel  a, Pa.iLisp  conlinrla.tion  ca.n  be captured using call/cc
as in Sclierne and I!Iultilisp. When a. Pa.iLisp  cot] tinua.tion  is invoked by the sa.rne
process that. cap t,ured it,. tile resulting bcllavior  is same as irl Schefne and Multilisp.
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When a PaiLisp continuation is invoked by a different process, the process to execute
the rest of computation denoted by the continuation is the process that captured
the continuation, discarding its current continuation, and the process that invoked
the continuation continues its execution without any disturbance.

With this definition of PaiLisp continuation a PaiLisp program that uses PaiLisp
call/cc but no other concurrency constructs produces the same results as in a
sequential Scheme. But when a PaiLisp continuation is invoked by a process different
from one that captured it, it can be used to give an effect to other processes. Actually
it can be used to kill a process to be explained below, and this ability to kill other
processes was especially important to define parallel-OR, parallel-AND and other
constructs of PaiLisp by use of PaiLisp-Kernel.

2.4 Use of PaiLisp continuation to give an effect to other processes

With the PaiLisp continuation it is possible to give an effect to other processes.
Actually we can write a PaiLisp-Kernel program to kill a process. After giving a
brief description of PaiLisp-Kernel we esblain how to initiate, suspend, resume and
kill processes; then we give an example to use PaiLisp continuation to kill processes.
More programming esa,mples  of PaiLisp a.nd PaiLisp-Kernel will be given in the nest
section.

[PaiLisp-Kernel]

PaiLisp-Kernel is defined as Scheme with four concurrency constructs {spawn, suspend,
exlambda, call/cc}, where call/cc is PaiLisp’s  call-with-current-continuation,
espla.ined  in the preceding pa.ragraph  2.3. Assuming the reader’s familiarity on
Scheme [ReesSG,  SprFSS] we esplain only four concurrency constructs here.

(spawn e): (spawn e) crea.tes a process to compute e, and the parent process cap-
tured this statement will be esecuted  concurrently with this newly-created
process.

(suspend) : When (suspend) is encountered in the course of esecution of a process
its esecution will be suspended, a.nd  the execution will be resumed when the
continuakion  creaked by the process is invoked.

(exlambda (q . . . ;c?~) el . . . el,&)  : This statement crea,tes a new queue a.ntl an es-
elusive closure. When the esclusive closure created by this statement is used
by a. process7  a,nother  process that invokes this closure will be suspended in
t,he queue until this closure is released.

(call/cc e): c must be a. procedure of one aOrgunient.  (call/cc e> creakes  a. pro-
cedure of one argument to denote its current continuation with its process-id.
a.ncl e will be applied to this procedure. When the continuation is invoked the
process tl1a.t ca.ptured  it beha.ves as in the way explained in 2.3.

In order t.o describe a. concurrent process we usually n~ust.  know how to ‘init.ia.te’.
‘~i~~petrcl‘~  ‘rest1  me’ a iitl -kill  processes. The iiiitia.tion  will be rea.lizetl  by (spawn
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e) to create a process. to compute e and initiate its execution. The temporary
suspension of a process will be realized by use of (suspend), and a suspended
process will be resumed by invoking a continuation. In order to resume a process
suspended by (suspend) its continuation must be created by call/cc and passed to
other processes before the suspension. Killing of a process created by (spawn e) will
be done by invoking the continuation of e. When the continuation of e is invoked,
the process falls into the killed state. The following PaiLispKernel program is an
esample to kill and resume processes.

( l e t  ( ( k i l l  ( c a l l / c c  ( l a m b d a  ( r e s u m e )
(spawn (cal l /cc  ( lambda (k)

(resume k)

(suspend)))))  ‘*
3)

AAA)
In this program the variable resume will be bound to the continuation that the body
of the let construct is executed after assigning a value into kill. The parent process
that executes spawn will be temporarily suspended by (suspend), and the created
child-process ca,ptures  its continuation. Then the value of k will be the continuation
which forces the pro.cess to termina.te. The invocation of resume resumes the exe-
cution of the parent process. The varia.ble kill can be used to kill a child-process
in esecution of AAA.

This a,bility to kill processes by PaiLisp continuation played an essentially im-
porta8nt  role to define parallel-OR, parallel-AND and other PaiLisp constructs by
use of PaiLisp-Kernel [ItoMSO].

2 . 5  call/ep -A construct for single-use continuation

Concurrent interactions between continuations and concurrency constructs yield
some troublesome sema.ntic  problems, and it is useful to distinguish between single-
use a,nd multiple-use continuations as is discussed in [Hals90].

PaiLisp provides a. new construct (call/ep e) which is the PaiLisp call/cc
restricted to the single-use continuation. e must be a procedure of one argument,
called a8 receiver, which receives a,n escape procedure as its argument.

Firstly, we explain call/ep in a. sequentia.l Scheme setting.
Following Ha.lstead [Ha.lsSO] we can give a.11  operaAiona.1 explanation of call/cc in

the following wa.y. A continua.tion ma#y be viewed as the stack and register contents
that espress the current state a,ncl tJ:e rest of computation. call/cc ca.ptures those
stack a.nd register contents, a4nd it copies them into a. continuation object. Whenever
the continua.tion object is a.pplied to a. value V, the sa*vecJ  stack and register contents
a,re re-installed as the current, stack and register contents, and v is installed in the
a.ppropria.te result register, continuing the computa.tion  from that state. Then, a re-
turn from the 0rigina.l invocation of call/cc occurs, with IT being the va,lue returned.
Iii this \vay each invoca.tioii leads to a3 new return from the invocation of call/cc
tl1a.t.  captured the continuation. In the st.a.ncla,rcJ Scheme call/cc t,he nlultiple-rise
continua,t,ions  are allo\ved and they leads to severa, returns from a, proceclllre call.
J-Io\ve\:er.  call/ep allows only a si iigie-rise of corit~inuxtior~ in invocation a.iid return.
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In case of call/ep there is no need to copy the control stack information, for safe-
keeping of the working stack. This call/ep was installed into a sequential Scheme
by 0. Hishida and it has been exhibited that the execution costs of call/ep can be
reduced about lo%, compared to those of call/cc.

This call/ep has been imported into PaiLisp as a restricted version of PaiLisp
call/cc, keeping its single-use style feature of continuation.

Usually (call/cc e> is used in the following form:

(call/cc (lambda (k) e(. . .k.. .) ))

which means that the continuation captured by call/cc is bound to the variable
k, and it may be accessed possibly many times from the inside and outside of
e<. . .k.. .>.

Likewise (call/ep e> can be used in the following form:

(call/ep (lambda (k) e(. . .k.. .)>)

which means that the continuation captured by call/ep is bound to the variable k,
and it may be accessed at most once within e(. . . k. . . > .

According to our experiences to describe PaiLisp using PaiLisp-Kernel and Scheme
programming most cases of using call/cc could be replaced by call/ep.

[Behaviors of call/cc and call/ep]

In order to explain more details of PaiLisp call/cc and call/ep we give several
esamples of using call/cc and caWep.

(Example 1) [Con tinuations used ii1 the downward and single-use style]
Consider the following PaiLisp program [HalsSO]:

( ca l l / c c
(lambda (k)

(+ ( f u t u r e  1)
( f u t u r e  ( k  (* 2 3))))))

where future is the concurrency construct introduced in Multilisp  by Ha1stea.d
[HalsSI],  and it is imported into PaiLisp [It.oMSO].

In this program the continrmtions are used in the downwa,rd a.nd single-use style.
In this case call/cc can be replaced by call/ep.

N.B. The “downward” use of continua.tion means that the continua,tion  is
passed deeper into the computa.tion to be used. The “upward” use of continuation
means that the continuation is passed out of the context in which it was captured
a.nd invoked from elsewhere. This terminology comes from [Ha.lsSO].

The future construct has the foilon-ing  meanings: (future e> imrnecliately
returns a. future-va.lue  for e a.nd creates a, task t.o evaluate e. The use of the future-
va.lue and the evallration  of e ma.y be concurren t,ly esecuted. When the eva.lua4tion
of e produces an actual va.lue that \.aIue r~~places tile future-value.
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(Example 2) The following receiver-tester program [SprFsS] uses the continua-
tions in the upward and multiple-use style.

(define receiver
(lambda (cant inuat ion)

(cont inuat ion cont inuat ion)))

( d e f i n e  t e s t e r
(lambda (continuation)

(print “beginning”)
(cal l /cc  cont inuat ion)
(print “middle”)
(call/cc continuation)
(print “end”) > >

1. Consider (tester (call/cc receiver) >. In this case the continuation re-
ceived by receiver will be invoked at execution of the first (call/cc continuation)
of tester, and the continuation of the first (call/cc continuation) will be
sent to tester. This continuation can be invoked once again a*t execution of
the first (call/cc continuation). At this point the variable cant inuation
is bound to the continuation received by receiver.

Then the second (call/cc continuation) of tester will be executed, and
the continua.tiou  of the second (call/cc continuation) will be sent to tester.
This continuation will be invoked a.ga,in a.t esecutiou of first (call/cc continuation).
Thus, the result of (tester (call/cc receiver)) is

beginning
beginning
middle
beginning
end

2. Consider (tester (call/ep receiver)). In this case, the escape procedure
sent to receiver will be invoked within receiver, and a.fter then no invoca,tion
lvill become in effect, so that (tester (call/ep receiver)) produces

beginning
middle
end

3. Next, we change tester as follows:

( d e f i n e  t e s t e r 1 ( d e f i n e  t e s t e r 2
(lambda (continuation) (lambda (cant inuat ion)

(pr in t  “beginning”) (pr in t  “beginning”)
(call/ep c o n t i n u a t i o n ) ( c a l l / c c  c o n t i n u a t i o n )
(pr in t  “middle”) (pr in t  “middle”)
(call/cc continuation) (call/ep c o n t i n u a t i o n )
(print “end”) )> (print “end”) > >

Tn case of tester1 the first call/cc of tester is changecl to call/ep. antI ill
case of tester2 t,he second call/cc of tester is changed to call/ep.
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Consider (testeri (call/cc receiver)). After the escape procedure has
been sent to tester i no invocation to the continuation will take place. The
resul t  of  ( tes ter1  (ca l l /cc  receiver) )  i s

beginning
beginning
middle
end

Consider (tester2 (call/cc receiver)). In this case, after call/ep is ex-
ecuted and the escape procedure is sent to tester2 no invocation to the con-
tinuation will take place. The result of (tester2 (call/cc receiver)) is

beginning
beginning
middle
beginning
middle
end

3 Implementation of PaiLisp Continuation and its Eval-
uat ions

An interpreter of PaiLisp has been implemented on Alliant FX/SO with eight pro-
cessor units. The PaiLisp interpreter has been tested a,nd evaluated using the bench-
ma.rk programs of [MaPTWSO], a!nd it has been used in implementation of a,n alge-
braic Petri net, ma.nipulation system by S. Kawamoto  at our group. In this section
we esplain how PaiLisp continuations are implemented in this PaiLisp interpreter,
a.ntl then we give several esamples to show how they work. (More details of PaiLisp
interpreter and its a8pplications  will be discussed and published elsewhere.)

3.1 Outline of PaiLisp interpreter

The PaiLisp  interpreter is implemented on the CONCENTRIX-OS of Alliant FX/SO!
a,ncl it has been prograXmmed  in C. The PaiLisp interpreter uses the following registers
and the control stacks:

1. genera.l  registers: exp, val, fun, argl, unev

2. environment register: env

3. continua.tion register: cant

The continua&ions are stored in the control stack.
The interpreter reads a.11  expression! eva.luates  it a.ud  prints its result repeat,eclly.

In order to carry out these interpretive processes the follo\ving  three routines a.re
implemented:

reader: rea.cl a.11  expression into val, then jump to a. label (leuotecl by cant

eval -dispat ch: eva I ua.t.e a.11 espression in exp uucler
its va.lue  into val, then julnp to a. label denoted

a.n
by

environment
cant

env, mcl set.
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printer: print the espression in val, then jump to a label denoted by cant

The C program of eval,dispatch is as follows:

int eval,dispatch(void){
i f self ,evaluat  ingp (exp)

go(ev,self,eval);
i f  variablep(exp)

go (ev,variable) ;
i f  (lengthcexp)  <= 0)

go (unknown,exp) ;
fun = car(exp)  ;
i f  syntaxp(fun)

go(sym,syntax(fun));
if macrop  (fun)

go (expand-macro) ; .
i f  (cdr(exp)  == Nil )

go (ev,no,args) ;
go(ev,application)  ;

3

3.2 PaiLisp process and continuation

In PaiLisp interpreter a process is defined as an object with

its process name
its current value
its current state
its current continuation
the information on the exclusive resources used by the process

A Pa.iLisp process is actually realized as a process object with the following structure:

I current continuation
1 list of continuations to be resumed at termination of esecution 1

the final value of the process I
I pointers to other processes

1

type
1

state 1 lock- byte

A PaiLisp  continuation is realized as a.11 object with the following structure:

pointer to the process which the continua,tion belongs to
pointer to the control information tha.t denotes the content
of the stack at execution of continuation

I return value

3 . 3 On executions of PaiLisp processes

A process esecution mea.ns a.11 esecution of its current. continuation. In a.~ idea.1 case
that a.n infinik number of processors a.re a.vaila.ble the state tra.nsitions  of PaiLisp
processes will become as in Figure I. However, in an actual case that only a. finite
number of processors a.re ava.ila.ble the state t*ra.nsit,ions cvill become as in Figure 2.



Figure 1: The state transitions in an ideal case.

That is, an executable continuation resides in the queue, and an available non-busy
processor executes a continuation in the queue. When a continuation is executed
the control information of its continuation will be moved into the stack area and
the return value will be stored in the val register. The processor allocation of a
resumed continuation has higher priority than that of a newly-created continuation.
The current continuation of a process may be altered by invoking continuations of
o t h e r  p r o c e s s e s .An invoked continuation will be esecuted only when a processor
is allocated to it. An invoked continuation will be eventually esecuted unless it is
hampered by other processes.

Figure 2: The state transitions in a.11  actual case.

3 .4 Realizations of spawn, suspend, and call/cc

The basic concurrency constructs of PaLisp-Kernel( spawn, suspend, exlambda,
call/cc) we realizetl as  the C: programs. The C1 progra.ms of spawn, suspend



and call/cc are given in Figure 3, but the C program of exlambda is omitted here,
since it is rather complicated and lengthy.

int ev-spawn(void){
cons(exp, Term, cdr(exp));
allocp(va1, Nil, Nil, Nil, PROCESS);
create,cont(argl, exp, env, val);
add-new-cont(arg1);
return-value;

3

int terminate,process(void)(
lock(p-lock(process));
killed-state(process);
unlock(p,lock(process));
go(take-cant);

3

[suspend]

int suspend(void)(
go(take-cent);

3

[call/cc]

int cwcc-apply(void)(
fun = car(arg1);
stack,to,list(argl);
allocate-cont(exp, process, argl, Nil);
cons(arg1,  exp, Nil);
go(apply,dispatch);

int invoke-cont(void)(
tmp = k-p(fun);
val = car(arg1);
lock(p-lock(tmp));
allocate-cont(fun, tmp, k-stk(fun), val);
p-cc(tmp) = fun;
if (p-stat(tmp)  & RUNNING)

run-cont(fun);
unlock(p-lock(tmp));
popcont; .
return-value;

3

Figure 3: The C programs of spawn, suspend, s11d call/cc.

3.5 Evaluations of PaiLisp continuation

\Yit.ll the abo\re inlplerllellt,a,tions  of Pa.iLisp alId Pa.iLisp coutin uation  we coIlsicIer
t,llt overhea.ds of PaiLisp colltinua.tioll. 111 execut ion of (cal l /cc F) the result  of
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evaluating the argument e must be a function of one argument and a new continua-
tion will be created. The copy of the content of the control stack will be set into the
newly-created continuation, together with the process name that captured call/cc.
The list of the resultant continuations will be sent to the function e. On invocation
of continuation invoke,cant that invokes the continuation will be executed, receiv-
ing its argument, and invoke-cant returns the value of its argument. If the process
to which the continuation belongs is not in the killed state the current continuation
will be changed to the newly-invoked continuation, discarding the previous contin-
uation. Thus the pointer of the current continuation must be the pointer to the
newly-created continuation object. The invocation of a continuation will be checked
by a processor which execute a continuation of a process, whenever the eval routine
eval-dispatch returns a value. If the process state indicates several occurrences
bf invocations, the processor will be allocated to another executable continuation.
These behaviors of capturing and invoking PaiLisp continuations may be illustrated
as in Figure 4.

stack list control stack stack list

Figure 4: Behaviors of ca.pturing and invoking PaiLisp continuation.

From these behaviors of PaiLisp call/cc we can see

1. the cost of capturing a PaiLisp  continuation is sanle  as Scheme continuation.

2. when a PaiLisp continuation is invoked by the sa.rne process tha,t captured it,
the cost of invoking the Pa.iLisp continuation is essentially sa.me as in Multilisp.

~3. when a PaiLisp continua.tion  is invoked by a different. process, the cost of
invoking the PaiLisp continuation n1a.y be high because of

l checking process states

0 switching continuations

0 allocating processors to processes

Mo\vever the actual cost, of PaiLisp cont,in~la.tions is not high a.ccorcling to 0111
experiences to be esplained below.

84



.

Let us consider the following simple program:

( l e t  ((c < n u m b e r - o f - i t e r a t i o n s > ) )
( l o o p  (cond ( ( z e r o ?  c) ( e x i t ) )

( e l s e  ( s e t !  c  (- c  1))))))

where <number-of -iterations> means the number of looping.
Using call/cc we can write the following program to perform an essentially

same looping computation.

( l e t  ((c < n u m b e r - o f - i t e r a t i o n s > )  ( t a g  ‘init))
(call/cc (lambda (k) (set! tag k)))
(cond ( (zero?  c) (exit ) )

(else (set! c (- c 1)) (tag ‘dummy))))

Changing <number-of-iterations> we obtained the following experimental results
of executing the above programs on the PaiLisp interpreter.

<number-of- i te ra t ions> [diff-process] [same-process] [looPI
1000 1.13 set 1.03 set 0.76 set

10000 11.22 10.28 7.62
100000 112.19 102.82 77.07

where [different-process] means tha*t the continuation was invoked by a different pro-
cess, [same-process] mea.ns that the continuation was invoked by the same process
that captured it, and [loop] means the a,bove program of using the loop construct.
The results of [same-process] are essentially same with those of using Scheme con-
tinuations. This shows that the execution overheads of PaiLisp continuations are
about 1070,  compared to Scheme continuations.

3.6 Running PaiLisp continuations on PaiLisp interpreter

In this section we give several PaiLisp programs of using PaiLisp call/cc. All these
programs were actually executed on PaiLisp interpreter.

(Example 3) [downward and single-use style continuation]
This is the esample mentioned in [HalsSO].

( c a l l / c c  ( l a m b d a  ( k )  (+ 1  (k (+ 2  3 ) ) ) ) )

Next we insert future into t.his program.
(cal l /cc  ( lambda (k)  ( fu ture  (+ 1  (k  (+  2 3)) ) ) ) )

-+ [ f u t u r e - v a l u e ]
+5

( c a l l / c c  ( l a m b d a  (k) (+ 1  ( f u t u r e  (k (+ 2  3))))))
-+5
These three programs  produce the same reslllt  a,ccording to the PaiLisp interpreter.
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(Example 4) [upward and single-use style continuation]

(define a
(let Us '0) (I: 'ON

(lambda (>
(set! r (call/cc (lambda (k) (set! s k) #f)))
(print "This is a. ‘I)
(cond (r (I: itf))

(else (b d>>))>

(define b
(let Us '0) (r 'ON

(lambda (c)
(set! r (call/cc (lambda (k) (set! s k) #t>)>
(print "This is b/l>
(cond (r (c s>>

(else (print "That 's  al l . " ) ) ) ) ) )

(a>
This is a.
This is b.
This is a.
This is b.
That's all.

(Example 5) [upward and multiple-use style continuakion]

(let UC 0) (tag ‘ON
(set! c (call/cc (lambda (k) (set! tag k) 3)))
(print c>
(if (zero? d 0 (tag (- c 1))))

3
2
1
0

Inserting future in front of call/cc we get the following program.

(let UC 0) ( t a g  ‘ON
( s e t !  c  ( fu ture (call/cc (lambda (k) (set! tag k) 3)
(print c>
(if (zero? c> 0 (tag (- c 1))))

3
.4t esecution  of  ( tag (- c 1) > the future-value is determined already and the pro-
cess that.  crea.ted  continuation  is terminated, so thak the invocation of its continua.-
tion will give no effect.

(Example 6) [pa.ra.llel-OR]
0rigina.ll.v  the Pa.iLisp  continuation was invented to describe the PaiLisp  construct,s
like-parallel-OR, pa.ra.llel-.AND,  etc. by use of PaiLisp-Kernel.  The pa.ra.llel-OR,  is
defined in Pa.iLisp  as follo\vs:

syntax: (par-or el c-:2 . . . c,,)
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semantics: The expressions el , e2, . . . , e, will be executed in parallel.

Whenever one of el , e2, . . . , e, gives non-NIL par-or returns this non-NIL
value as its result, and the executions of other expressions must be killed for
termination. If none of el, e2, . . . , e, becomes non-NIL, then par-or returns
false as its value.

A complete PaiLisp-Kernel program to describe par-or is given in Appendix.
In this description the actions of killing processes are realized by use of PaiLisp
continuation. However in the PaiLisp interpreter par-or is directly realized as a C
program. It is possible to compare par-or of Pa.iLisp interpreter and the PaiLisp-
Kernel program of par-or, since both of them are executable on PaiLisp interpreter.

Table 1 gives the result of running (OR (fib el> (fib e2> (fib ez> >
using 1) sequential or

2) par-or of PaiLisp
and 3) k-par-or which is the PaiLisp-Kernel program in Appendix.
where (fib e) is the following Scheme program to compute a8 Fibonacci number of e.

(define fib
(lambda (nj

( i f  (< n  2 )
1
(+ ( f i b  (- n  1)) ( f i b  (- n  2 ) ) ) ) ) )

(eh e2, e3)
OR (10, 15, 20) (15, 10, 20) (20, 10, 15)
o r 0.1s set 2.05 set 22.5 set

p a r - o r 0.19 0.1s 0.19
k - p a r - o r 0.21 0.21 0.21

Table 1: The result of running (OR (fib el> (fib e2> (fib e3>>

From this result we ca.n see that the overl1ea.d  of k-par-or is about 0.02 set,
compa.red to par-or: and the sequent.iaJ  or depends on the order of arguments of
OR-operation.

4 Concluding Remarks

[l] The PaiLisp continuation was introduced as an est,ension  of Scheme continu-
akion into concurrency. PaiLisp continuation ca.n be created by use of call/cc in
PaiLisp, and its restricted version call/ep serves as a. construct of a. single-use style
continuation. They have been implemented in Pa.iLisp interpreter, but it remains
to find good and efficient implementation st.ra.tegies of Pa,iLisp continuations. Also
there are some possibilities to estencl PaiLisp contintla.tioll  frlrther. For esample  lve
n1a.y be a.ble to ima.gine a.11 estended call/cc n-hicll allows Inultiple  capturings  and
invokings  of continuations in multi-threads of pa.ra.llel comprltation.
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[2] PaiLisp continuation may be called a parallel continuation, in short, P-continuation.
In this paper we explained the operational meanings of P-continuation informally.
There are at least three directions to give formal semantics of P-continuation:

1. Plotkin’s structural operational semantics of P-continuation
We gave a structural operational semantics for a subset of PaiLisp-Kernel,
called mini-PaiLisp-Kernel, with the following syntactic definition:

E : : =  KIII(E E*)i(lambda ( I * )  E  E*:)l(lambda (I*.I> E  E*)
1 (if Eo El Ez) I (if Eo El) I (set! I E)
l(spawn E)l(suspend)l(exlambda  ( I * )  E  E*)l(call/cc E)

where K is the set of constants and I is the set of identifiers. However our SOS
semantics for the above language beca.me complicated to treat P-continuation
although a complete SOS semantics of mini-PaiLisp-Kernel is reported in M.S.
thesis of M. Umemura(March,  1990). A clean SOS style formal semantics of
P-continuation and mini-PaiLisp-Kernel is open for future study.

2. Process calculus description of P-continuation
There have been proposed a number of powerful process calculi like 7r-calculus
of Milner-Parrow-Walker, CHOCS of Thomsen a,nd y-calculus of Berry-Boudol.
According to our preliminary experiences it seems that all of them are rather
wea.k to describe semantics of P-continuation and mini-PaiLisp-Kernel. The
first author is currently working to use a-calculus to give a semantics of P-
continua.tion. The a-calculus introduced by the first author is the sum of
CHOCS and an extended y-calculus with n-ary cooperation operators. In an-
other words the a-calculus is a .process  calculus with the associative parallel
composition and the non-associative parallel compositions to treat processes
as the first class objects of the calculus.

.

3. Logical approach for formal semantics of P-continuation
There are several interesting logical approaches to give formal sema.ntics  of
sequentiaJ  continuations by T. Griffin7  C. Murthy, and S. Nishizal<i. Is there
any powerful logical framework to give a formal semantics of P-continuatiou
in a logical setting?

[33 Halstead [Hals90] proposes the criteria for “continuation”. Halstead’s criteria
a.re designed to check fitness for Multilisp. tJis criteria, are as follows:

1. Programs that use call/cc but no concurrency constructs should yield the
same results as in a sequential Scheme.

2. Programs that use continuations exclusively in the single-use style should yield
the sa.me results as in a sequential Scheme.

3. Programs should yield the same results as in a, sequential Scheme. even if
future is wrapped a,round arbitrary subespressions, with no rest ric t.ions on
how con t.i n uations are used.
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He states that Katz-Weise approach to change the definition of future is the best
for Multilisp [HalsSO].

The following questions on P-continuation arise:

l Can we think of any good criteria for P-continuation?

l Should we change the definitions of concurrency constructs for semantic safe-
keeping with P-continuation?

l Should we change the meanings of P-continuation to meet semantics of con-
currency constructs?

Similar questions may be raised to PaiLisp call/ep. In case of call/ep we may
have the following additional question.

a Can we give an algorithm to detect which call/cc can be replaced to call/ep?
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Appendix: PaiLisp-Kernel program of par-or
(macro k-par-or

(lambda (form)
'(call/cc (lambda (*return*)

(let* ((*pr&ess-list*  ‘0)
(*kill-lock* (exlambda (e) (e)))
(*l* ,(length  (cdr form)))
(*l-unlock*

(exlambda ()
(if (= *l* 1)

(*return* #f)
(set! *l* (- *l* 1))))))

(letrec ((*kill-all*
(lambda (k pl)

(cond ((null? pl) 'dummy)
((eq? k (car pl)) (*kill-all* k (cdr ~1)))
(else ((car pl) 'dummy)

(*kill-all* k (cdr ~1)))))))
(let ((*start-process*

(lambda (e)
(*kill-lock*
(lambda ()

(call/cc (lambda (r)
(spawn

(call/cc (lambda (k)
(set! *process-list* (cons k *process-list*))
(r 'dummy)
(let (b-es W>>

(cond (res (*kill-lock*
(lambda ()

(*return* res)
(*kill-all* k *process-list*))))

(else (*l-unlock*)))))))
(suspend))))))))

,O(map (lambda (x) '(*start-process* (lambda () ,x)))
(cdr form))

(suspend) ) > > > > >)
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Graph Reduction and Lazy Continuation-Passing Style

Chris Okasaki Peter Lee David Tarditi

School of Computer Science
Carnegie Mellon University

Pittsburgh PA 15213

1 .  xxwoliuction

Some implementations of lazy functional programming languages compile programs into graphs [253. The use of
graphs makes it easy to express normal-order evaluation and the sharing of bindings, thus providing a simple and
relatively efficient method for implementing lazy evaluation. Augusteijn and van der Hoeven [2] and Koopman and
Lee [16]  have shown how self-modifying code can model directly and efficiently the self-reducing nature of such
graphs. In these approaches, graphs are compiled into threaded code in which reductions of the graph are accomplished
by modifying the code stream.

In a different arena of programming language implementation, interest has steadily increased during the past fifteen
years in the use of continuation-passing style (CPS) as a compiler intermediate representation [24,17,1]. Techniques
for converting both applicative-order X,-terms and normal-order &-terms are well known [23,22,7], but to the best
of our knowledge CPS-conversion has never previously been described for lazy X-terms. In this paper we present a
lazy CPS transformation and examine its relationship to graph reduction.

We begin by reviewing the basic concepts of graph reduction. We then present in more detail self-modifying
graph reduction and show how graphs resemble continuations. Looking at this resemblance loom the other direction,
we modify Plotkin’s  CPS transformation for the normal-order k.alculus to account for laziness, and then show how
the result resembles graph reduction, especially the self-modifying approaches. Finally, we describe where graph
reduction and lazy CPS fit into the broader landscape of implementation techniques for lazy evaluation.

2. A Brief Review of Graph Reduction

Turner proposed the use of graph reduction to implement lazy functional programming languages [25].  He described
what is referred to as combinator-graph reduction, which is based on the well-known fact that any closed X-expression
can be transformed into an expression involving only applications and combinatorsl

Such a combinator expression is easily represented as a binary tree, where the interior nodes represent the
applications and the leaves represent the combinators. Furthermore, by moving to a binary directed graph, the

This research was partially supported by the National Science Foundation under PYI grant #CCR-9057567, with matching funds from Bell
Northern Research. David Tarditi  is supported by an AT&T PhD Scholarship. The views and conclusions contained in this document are  those of
the authors and should not be interpreted as representing the official  policies, either expressed or implied, of the National Science Foundation, the
US Government, or m&T.

‘A combinator is simply (the name of) a closed Xexprcssion [4]. In addition to being closed, there is typically the stipulation that &abstractions
not occur in the argument position of an application.
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Figure 1: Representation of the graph for ((S K K) (K S)).

occurrence of common s&expressions can be represented by subgraph  sharing and recursion by cycles. The (possibly
cyclic) path of left-branches starting from the root node is referred to as the spine of the graph.

In combinator graphs, the definitions of the combinators denote graph-rewriting rules, and executing programs
becomes a process of graph reduction. The spine of the graph is traversed and the spine nodes are pushed onto the
“spine stack.” When a combinator is encountered, the graph is rewritten according to the corresponding rewrite rule.
This process is repeated on the new graph. Program execution terminates if and when an irreducible graph is produced.
The consistent reduction of the spine corresponds to the “leftmost outermost” rule of normal-order reduction. This, in
conjunction with the sharing and destructive update of pointers to subgraphs, leads to the so-called “lazy” evaluation
of functional programs.

As an example, consider the reduction of the graph shown in Figure 1, corresponding to the combinator expression,
((S K K) (K S)). Here we can see that the graph is implemented as a collection of application nodes (depicted by “@“)
and combinator nodes. Application nodes contain references to other nodes, whereas the combinator nodes contain a
token denoting a graph-rewriting action.2

When a graph is reduced, the spine nodes are pushed onto the spine stack, The spine stack provides references to
the arguments required by a combinator, and a combinator consumes part of the spine stack in addition to rewriting a
graph node. The result of such a rewrite is depicted in Figure 2. Note in this figure that a node has been destructively
updated by this rewriting. This allows the result of the reduction to be shared by several parts of the program, thereby
leading to “lazy” behavior.

To make things more concrete, consider the following representation of combinator graphs:3

stack = Nodelist
Answer = program answers (unspecified)
Node = Comb of Stack - Answer

1 AppofNode  x N o d e

Note that we use a list to represent the spine stack and that combinators are represented by “code” that computes a
program answer from a spine stack. A graph is reciuced by forcing it with the empty stack, where the force function is

2We ignore the issue of strict combinators which might be used, for instance, for arithmetic on integer baseconstants. Hence for the purposes
of this paper there  arc no nodes that contain base-constant values.

3Throughou  thi p pct s a r, code exampks will be presented in a notation loosely based on Standard ML.
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Figure 2: The original and rewritten graphs. Note that node 1 has been destructively updated and node 4 is now shared.
Nodes 2 and 3 are now garbage (unless referred to by some other unshown node). Nodes 5 and 6 were created by this
rewrite.

defied by
forcegs = casegof Combc * cs

App(rn,n) * foroem(n : :  s )

The notation, “n :: s” denotes the cons of n and s, that is, the result of pushing the argument node onto the spine stack.

The above deGnitions are incomplete in that they fail to account for the need to share and update nodes destructively
during graph rewrites. For this, we borrow Standard ML’s [19] notation for references to provide a mechanism for
destructive updates4 and modify the representation as follows:

s tack  = (Noderef)list
Node = Comb of Stack + Answer

1 AppofNoderef x Noderef

Then the force function is given by

force g s = case!gof Combc * cs
App (U-L n) * force 112 (g :: s)

The reason g is pushed onto the stack instead of n is so that it can serve as the target for an update. The value of n

‘Standard ML u8es  the following notation for rcfkrenccr:

l “TrCf(&n~thetypeof~~~ncestoobjectsoftype  7,

l “rcf 2)” denotes the creation of a rcf cell with value 21,

0 “! 7~” denotes the extraction of a value from a rcf cell (a “&reference”  operation),

l � n := 2”’ denotes the assignment of c to the rcf cell n, and

l “f’ denotes sequencing.
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code for S

Figure 3: A graph as self-modifying code.

may be extracted ikom g when needed by an operation referred to as fetch, where

fetch (ref (App(  -, n))) = n

Now the S combinator (which corresponds to the graph rewrite rule S f g x 3 (f x) (g x)) can be defined as
follows:

S = Comb(Xs.  case s of n1 :: n2 :: n3 :: s’ *
n.3 := App(refApp(fetchni,fetchn&refApp(fetchn2,fetchn3));
force 123 s’)

This code assumes that there will always be enough arguments on the stack. If not, the graph is irreducible and program
execution terminates.

3. Graphs as Self-Modifying Code

A number of techniques for compiling programs into graphs [3, 121  and efficiently reducing them [8, 141 have been
proposed. Of particular interest are those approaches that use self-modifying code to model the self-reducing nature
of combinator graphs [2, la]. In these approaches, the key observation made is that the spine stack is actuaZZy
the subroutine return stack for a threaded program. Thus, the left-hand-side field of each application node can be
implemented by a subroutine call. As these subroutine caUs are executed, the “return addresses” that are saved on the
subroutine-return stack are references to the right-hand-side fields of the spine-which is exactly the desired behavior.
Combinators can be represented as pointers to code sequences that perform graph rewrites by consuming return-stack
elements and modifying the code stream in an appropriate manner. Figure 3 shows the representation of our example
graph in this scheme. Note that j sb is the VAX mnemonic for the “jump to subroutine” instruction, which stacks the
value of the address following the j sb instruction and then transfers control.

Architectures that allow self-modifying code and provide a subroutine-call instruction, such as older VAX com-
puters, allow a direct implementation of this approach. Great efficiency is gained from the use of the native hardware’s
instruction-decoding mechanism to implement the case analysis on graph nodes. Unfortunately, in practice self-
modifying code is seldom feasible, especially on modem architectures that enforce a separation of cache memories
for instructions and data [ 161.  Furthermore, many RISC architectures do not provide a subroutine-call instruction, and
may further complicate matters by introducing branch delays.
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4. Graphs as Contln~tlons

It is natural to think of self-reducing graphs as self-modifying programs. Doing so gives rise to a notion of “direct
execution”: graphs are no longer interpreted as described in Section 2, but rather executed directly as shown in
Section 3. The benefit in execution time comes from the fact that explicit case analysis on graph nodes is no longer
necessary.

A similar effect is also obtained by viewing graphs as continuations. In this view, a graph (and hence each graph
node) is a continuation which takes a stack and performs the remainder of the computation. This is reflected in the
following representation:

Node = (Stack - Answer) ref

(The ref simply allows continuations to be destructively updated.) Again, there is no case analysis but instead of
performing a subroutine call to a node, one “throws” (a spine stack) to a continuation. ‘Ibe continuation for an
application stacks both itself and the argument continuation and throws the result to the left-branch continuation:

appmn = Gxr.ref  (Xs.forcem ((f,n) :: s))

where
Stack = (NodexNode)list
foicegs =  g s

Both the application continuation itself and the argument continuation must be stacked because in this representation,
application nodes are opaque-we can no longer “look inside” the application to extract the argument like the fetch
operation does in Section 2. ‘Ihe fix is required for the continuation to know its own “location.”

With this representation, the S combinator is de&d as follows:

S = ref(As.casesof  (-.nl)::(-,n2)::(g,n.3)::s’  *
update  9 (am w 123 1 hpp n2 n3 >;
force g s’)

where
u p d a t e g m n  =  g := Xs.forcem ((g, n) :: s)

Note that update is just like app except that it overwrites an existing cell instead of allocating a new one.

Looking again at the self-modifying code approach, we can now view the use of subroutine calls as a shorthand,
or optimization. The VAX j sb instruction has the convenient effect of stacking the current node and then “throwing”
to the left branch. (Actually, the address of the right subnode is stacked, but simple address arithmetic allows us to
compute the address of the node itself from this.) There is no need to stack both the current node and the argument
node because of course, at the machine level, the latter may be extracted from the former

5. Lazy Continuation-Passing Style

Having noted that graphs are continuations, it is natural to wonder if graph reduction can be written in continuation- .

passing style. We answer in the af&mative but first  we must describe CPS-conversion for lazy programs.

Plot&n’s  transformation of (normal-order) &terms into CPS (see [22])  is given by the following rules:

[xl
[Ax. nr] 2 L. k (Ax. [Al])
[M n;] * Xk. [Al]  (Am. m [IV]  k)

Before modifying this transformation for laziness, we first examine more closely how Plotkin’s transformation
actually works by isolating the essential operations in the generated programs and encapsulating those operaticns
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within auxiliary functions with (hopefully) more descriptive names. Modifying the transformation then consists of
redefining the relevant auxiliaries.

The evaluation of an expression is delayed by packaging the expression into a thunk. In this context, a thunk is
a function that takes a continuation, evaluates the expression, and throws the result to the continuation. A thunk is
forced by applying it to a continuation. We make each force explicit by rewriting the rule for application as follows:

[Al N] * Ak. force [n/r] (Al??. force (172  [,V]) k)

where
forcemk = mk

Inside the application rule, the thunk in the function position is forced with a continuation that accepts a function
value and applies it to the argument thunk. This continuation is given the name arg. Inside the lambda-abstraction
rule, the continuation is applied to a value. This is given the name return. The transformation may then be rewritten

[Xl
[Ax. M] 2 Llm (Xx. [AI])
[Al Iv] * Ak. force [kf] (arg [N] k)

* force [Al] 0 arg [IV]

where
retu.mv = Ak. k 2)
argnk = Xm.force(m n) k

Finally, we give the names fun and app to the right-hand-sides of the lambda-abstraction and application rules,
respectively, and write the final version of Plotkin’s transformation as follows:

[xl[Ax. M] z iln (Xx. [M])
[A4 Iv] * app [M][M]

where
flmf = returnf
appmn = force [M] 0 arg [IV]

Now, in order to obtain a lazy transformation, we must arrange that when a thunk is forced for the first  time, the
result is saved so that it may immediately be returned whenever the thunk is subsequently forced This is accomplished
by physically replacing the thunk with a new thunk that immediately returns the desired result. But before we can do
this, we must first make the thunks mutable. Only the auxiliary functions fun, app, and force need be modified.

funf = ref(retumf)
app m n. = Ef (fOrCe [;21] 0 Wg [LIT])
forcemk =  ! m k

Next, we must specify the actual update. This could be associated with the forat  operation, but we do not wish
to update thunks every time they are forti nor do we wish to require an explicit test to determine whether the thunk
has been previously forced. Instead, we add to each thunk a continuation which captures the result, updates the
thunk, and passes on the result to the next continuation. Note that we do not need to save the results of evaluating a
lambda-abstraction, since thunks for such expressions are already in the desired form, that is, they immediately return
a value. Only the auxiliary function app need be modified

appmn = fix t’. ref (force [Jf] 0 arg [X] 0 update 1‘)

where
updaterk = Xz:.(r := retumv; kc)
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[Ax. AI] z iln(Xr. [Al])
w Nl * app [MJ[X]

hnf = Ief(retuInf)
appmn = Gxr.ref(force772  0 argn 0 updater)
forcemk = !?7? b
retum2~ = Xk. k 21
argnk = Am. force (In n) k
updaterk = Xv.(r := retumv;  kr)

[Xl * 2
[Xx. A/r] a ref (Xk. k (Xx. [M]))
[M Iv] + fixr.ref (![M]  (Xrn. !(~n [X]) (XL (1’ := Xk’. k’ ~1;  k v))))

Figure 4: The lazy CPS transformation (with auxiliaries and in expanded form)

This completes the modifktions for laziness. The entire transformation is shown in Figure 4.

An important theoretical property of Plotkin’s normal-order CPS transformation is independence of evaluation
order, it does not matter whether the the resulting programs ate evaluated using call-by-value or call-by-name [22].
Unfortunately, this property no longer holds for the lazy CPS transformation. The way that assignments are used to
model laziness restricts the resulting programs to a call-by-value discipline. In practice, this is not a difkulty since
the resulting programs are usually evaluated using call-by-value anyway. The same problem arises, for example, with
assignment conversion in the CPS transformation used by the Orbit compiler [17].

Finally, note that we could easily modify other normal-order CPS transformations for laziness in a similar manner.
In particular, the optimal transformation of Danvy and Filinski [7] could be so modifkd.

6. Lazy CPS as Graph Reduction

We are now in a position to compare lazy CPS and graph reduction. Doing so, we find a strong similarity the two,
especially between lazy CPS and self-modifying graph reduction.

Consider first the following minor m-cation to the lazy CPS transformation in which the functionality of fun
and app has been “pushed” into force.

Node = Fun of Value - Node ref
1 App of Node ref x Node ref

funf = ref(Funf)
appmn = ~fbpp(w-4)
force r =  case!rof F u n f * Ietumf

App(m.,n)  3 forceIn 0 argn. 0 u p d a t e r
updaterk = Xzj.(r : =  Funzj; kv)

(Note that the Fun constructor appears in the update function only because the current language is limited to functional
values. However, it is not difficult to extend the language with other types of values, such as integers or lists.)

A comparison with the code in Section 2 reveals a clear similarity to graph reduction. The same resemblance
exists between lazy CPS programs and self-modifying graph reduction, as described in Section 4. The only substantial
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funnf = ref (fkf’.Xs.cases of 1711  :: . . . :: 172, :: s’ * force ( f ml . . . 77~~.  ) s’
otherwise =a re tumf’s )

app, 111  1711  . . . 177* = fixrref  (Xs.force?n(q :: . . . :: in., :: nil) 0 updaters)
force In s b = !msk
retumfsk = k (As’. xv. f (@Is’) /I’)
updatersk =  Xt:.(r : =  21; vs k)

Figure 5: The lazy CPS transformation extended with a spine stack. Standard ML list notation is used for stacks: nil
is the empty list, :: is right-associative ink cons, and @ is ink append. The case-statement in the detition of fun,,
corresponds to the argument satisfaction check.

differences between the CPS programs and graph reduction are the absence of a spine stack, a different strategy for
updates, and a more perkssive treatment of functions. We address each of these points in turn.

The most glaring difference from the code in Sections 2 and 4 is the lack of a spine stack. In the-current framework,
arguments are captured in continuations instead of on a stack. However, an examination of the way argument
continuations occur in lazy CPS programs reveals a stack discipline, so it is sensible to use a concrete stack (the spine
stack) to represent these continuations5 Figure 5 shows how this stack may be added to the lazy CPS transformation.
Thexe are several things to note about this stack-based transformation. The fkrst is that the use of a stack allows an
efficient implementation of curried functions that consumes all of a function’s arguments at once, rather than one at a
time. However, it also requires an additional test, called the argument satisfaction check, which determines if there
are enough arguments on the stack for the given function. When this test fails, a closure is returned which contains
the partial stack.

Another sign&ant difference between the two models is the strategy used for updates. Simple graph reducers
update the graph after every reduction (see for example the update that occurs in the code presented for the S combi-
nator).  Unfortunately, under this approach a node may be updated many times with intermediate results before being
updated with its final value. A more efficient approach, which we adopt here, is to perform only the final update. The
use of continuations makes it obvious when this should occur. Several other graph reducers adopt a similar strategy,
notably the Spineless G-machine [6] and the Spineless Tagless G-machine [13].  This update strategy also simplifh
the treatment of the spine stack. In the current framework, an application stacks its argument but in the code presented
earlier, the application node itself is stacked and the argument must be extracted separately when required. This is
because the updates that appear in the combinator rewrite rules need to know the location in the graph that is to be
overwritten. By separating the updates from the reductions, the need to stack the application node is obviated.

the source programs but they are converted into combinator form via a separate pass known as lambda-lifting [ 10,111.
A similar phase appears in CPS-based compilers, where it is known as closure-conversion [ 11, but it is not shown here
because it typicaLly occurs afrer CPS-conversion.

sThe non-argument continuations also obey a stack discipline and may also be represented with a concrete stack, either interleaved with the
argument stack or stored separately. However, we will not make use of this fact in this paper.
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7. Related Work

Having described the relationship between graph reduction and lazy CPS, we now place the two in the broader landscape
of implementation techniques for lazy evaluation. Of course, such techniques may vary along such dimensions as the
presence of a stack or whether functions are restricted to be combinators, but these issues are really irrelevant to the
question of laziness. The key issues are the representation of thunks (i.e., delayed expressions) and the mechanism for
Updates.

Bloss et al. [5] describes two implementation techniques for lazy evaluation, called closure mode and cell mode.
In closure mode, a thunk is simply a nullary closure (i.e., a closure that takes no arguments) which is forced by
entering the closure, that is, transferring control to the code of the closure. The environment of the closure contains
a status flag that tells whether this thunk has been evaluated before. If so, the environment contains the value of the
thunk; othenvise, the environment contains whatever information will be required to determine that value. The code
checks the status flag and then either evaluates the associated expression or returns its value. When the expression
is evaluated, the status flag is set and the value is written to the environment. Cell mode is similar except the status
flag is exposed to outside perusal, and status-checking is made the responsibility of the force operation rather than the
code within the closure. This strategy enables a set of optin&ations  whereby the status check is bypassed if a thunk
is forced in a context where it is definitely known to be evaluated or unevaluated.

Peyton Jones [13] describes a variant of closure mode, called self-updating mode, which avoids status checks
altogether. A thunk is again represented by a nullary closure, but the status of the thunk is not made explicit. Instead,
the status is implicitly represented by the code within the closure. The thunk is initialized to contain code that evaluates
the delayed expression and then replaces itselfwith code that simply returns the result value. Subsequent attempts to
force the thunk thus immediately return the desired result. Usually the code within a closure is physically represented
by a code pointer, so replacing the code is accomplished simply by modifying the code pointer However, if the code is
small enough, it is efficient to represent the code directly in the closure rather than indirectly via a code pointer In this
case, replacing the code is accomplished by physically overwriting it with new code. Such self-modifying approaches
are described in [2] and [16].

Graph reduction may be seen as either cell mode or self-updating mode, depending on the representation of tags. In
either case, graph nodes are simply closures while graph edges are the free variables in the environments of closures.
Nodes also contain a tag that distinguishes between interior nodes and leaf nodes (and furthermore between the
different kinds of leaf nodes such as combinators or integers). This tag serves essentially the same purpose as the status
flag which determines if a thunk has been evaluated or not. Interior (application) nodes and leaf nodes correspond to
unevaluated and evaluated thunks respectively. Graph reducers which represent the tag explicitly (and branch on its
value) may be seen as implementations of cell mode, while so-called ‘tagless” reducers [13] which represent the tag
implicitly as code (or code pointers) correspond to self-updating mode. Self-modifying graph reducers of course fall
into the latter category.

The CPS equivalent of a nullary closure is a closure that takes just a single argument, a continuation. It is
natural to consider corresponding continuation-passing modes for each of the modes mentioned above. Wang [ 181
describes implementations of closure continuation-passing mode, celI continuation-passing mode, and self-updating
continuation-passing mode using call/cc in Scheme. Josephs 1151  presents a continuation-based denotational
semantics for a lazy functional language, using cell continuation-passing mode. Both approaches use continuations,
but not continuation-passing style. Lazy CPS, as presented in this paper, may be seen as a description of self-updating
continuation-passing mode in the context of CPS.

8. Conclusions and  Future Work

In this paper we have made an observation about the connections between self-modifying graph reduction, continua-
tions, and continuation-passing style. There are a number of possible directions for further work.

It has been suggested to us that the presentation of the lazy CPS transformation might be better made through the use
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of monads [20].  This seems like a good idea, though we have not yet worked out the details. An interesting approach
would be to express Plotkin’s transformation as a monad. Then, it might be possible to use monad transformers to
capture the modifkations  that are required to obtain the lazy CPS transformation.

Another subject for future investigation is the use of the lazy CPS transformation in implementations of lazy
programming languages. CPS has become an increasingly popular intermediate representation in compilers [24,17,1].
One possibility, which we are currently investigating, is using a single CPS-based compiler back-end to support front-
ends for both lazy and eager languages (or even languages with both lazy and eager features). A preliminary
investigation indicates that this framework is also convenient for expressing optimizations based on semantic analyses
such as strictness analysis [21] and sharing analysis [9]. Our early experience with implementations of the techniques
presented here gives us reason to believe that this approach is viable.

The authors wish to thank Mark Leone for many detailed and useful comments on earlier drafts of this paper.
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