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ABSTRACT

Fault-tolerant computer systems have redundant paths connecting their components. Given

these paths, it is possible to use aggressive techniques to reduce the average value and variability of

the response time for critical messages. One technique is to send a copy of a packet over an alternate

path before it is known if the first copy failed or was delayed. A second technique is to split a single

stream of packets over multiple paths. We analyze both approaches and show that they can provide

significant improvements over conventional, conservative mechanisms.

This paper is a revised and extended version of [7]. The main differences from [7] are the inclusion of Section 4 and the
Appendix (containing proofs).
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1. Introduction

In many applications, computer systems have redundant communication paths to improve relia-

bility. At the local level there may be multiple busses or local area networks connecting processors.

For example, a Tandem cluster has a dual high speed local broadcast channel[9]. At the network

level, in most cases there are at least two independent paths between every two points, so that a single

failure cannot partition the network. At the application level, it is also common to have multiple links

between critical components. For example, a bank with two main processing centers may have two

(or more) separate connections, each provided by a different vendor. As the January 15, 1990 failure

of the AT&T network illustrated[10], complete networks may fail, so it is desirable to have a fully

independent alternative. In this paper we deal exclusively with reliable systems, and hence assume

that redundant paths (of one type or another) exists.

Traditionally, redundant paths are utilized by the communication software in aconservative

fashion: Given a particular message or packet to be sent to a destination, the source computer or

switch selects, from the available paths, the one expected to perform best. (Statistics of previous

response times may guide the decision.) The packet or message is sent along the selected path. If

problems arise (e.g., no acknowledgement arrives within a timeout period), an alternate path is

selected and the packet or message is re-transmitted. An even more conservative approach is to keep

one of the paths unused as a hot standby, and to switch all traffic to it when the primary path fails.

This approach is more likely to be used for application level redundant paths.

In this paper we explore moreaggressiveapproaches. One simple idea is to split a stream of

packets over the available paths to improve response time. The goal is to use the extra bandwidth

available in no failure periods. A second, less obvious idea is to send redundant copies of the packet

or message over independent paths at once, without waiting for a failure or a timeout to occur. This

also reduces the expected message delivery time for two reasons. First, since multiple copies are sent,

the probability that one makes it in the first attempt is much higher, thus costly timeout and re-

transmissions may be avoided. Second, if the transmission time over one network is variable (due to



channel collisions, congestion, switch delays, etc.), then the overall delay will be reduced, as the des-

tination only has to wait for thefastestcopy to arrive. Note that not only are expected response times

reduced, but thevariability in response time is also reduced.

Incidentally, redundancy in data communications is not entirely new. Error correcting codes are

sometimes added to packets to enable reconstruction of lost bits. This type of redundancy improves

response times by making it unnecessary to re-transmit when a few bits are lost. We use the same

principle, except that we send the redundant data over existingindependentpaths to avoid delays and

failures associated with a single path. Ramanathan and Shin [19] have also studied the use of multi-

ple copies in real-time systems. While their studies focuses on minimizing the expected cost incurred

as a result of messages missing their deadlines, our work addresses the response time speedup obtain-

able through the agressive approaches. Also, we study the case of 100% redundancy (2 full copies of

packet), at least in this initial paper. We will discuss shortly how redundancy can be reduced while

retaining some of the speedup benefit.

In order to convince the reader that aggressive transmissions are a good idea, we must address

three critical questions: (1) Is the cost reasonable? That is, by doubling transmissions or splitting

streams, will we not create more load and cause delays that will offset gains? (2) Why are improved

response time and reduced variability important? (3) What exactly are the gains we can expect in

response time? This last question is the main focus of this paper. As we will see, there are cases

where gains can be very significant, but there are other cases, depending on the communication proto-

col used and the message size, where they are not. Thus, a careful and realistic evaluation of the

potential gains is important. Before going into this topic, we address the first two questions.

To argue that the cost of redundant transmissions is reasonable, we first note that we arenot

proposing duplication ofall transmissions. We are focusing on a small fraction of time critical trans-

missions, so that the overall load increase may not affect the response time of transmissions over sin-

gle paths significantly. Furthermore, in most dependable applications, there is already an excess of

communication capacity. The system should continue to operate with acceptable performance even



when one or more of the links have failed. This means that during normal operation there must be

extra bandwidth. We wish to utilize this spare capacity during normal operation to provide more than

just the bare minimum acceptable service. Furthermore, communications cost (dollars/bit) is drop-

ping rapidly with new technology (e.g., optical links). This means that redundant transmissions may

be cost effective, just like mirrored disks (redundant storage) and processor pairs (redundant comput-

ing) are. Similarly, the extra CPU cost of sending and receiving duplicate messages can be justified

by dropping processor costs and the transmission time improvements we will show in this paper.

Finally, we note that "partial redundancy" is feasible. For example, if three paths are available, we

can send one packet via one path, a second packet via the second, and a parity packet via the third

(see Figure 1). Any two of the arriving packets can be used to reconstruct the two data packets. This

reduces the overhead, while still achieving some of the response time benefits. We do not analyze

this partial redundancy case in this paper, but we do mention it as an area of future research. Arguing

for split streams is easier, since all that is involved is higher processing and buffering requirements.

Again, given current hardware trends, the extra resources may be well invested.

A faster and more predictable response time is important for time-constrained applications[12]

where messages must be delivered within a certain time limit, or they will be useless. Examples of

such applications include packetized voice[2], distributed sensor networks, and other real-time control

applications[21].

Conventional applications can also benefit from reduced response times. Message transmission



time represents a major portion of the total execution time of many distributed algorithms, and a

reduction in response time can therefore provide a significant speed up. For example, in mutual

exclusion[14, 15], commit[8], and election[6] algorithms running time is dominated by message

delays, since there is relatively little processing.

In some cases, the response time gains can be magnified substantially due to reduced resource

contention. For example, during a distributed commit protocol in database applications, participants

typically hold locks on modified database objects. With reduced network response times and conse-

quently faster commit protocols, resources are held for a shorter period of time, alleviating con-

tention. As a result, total system throughput is improved.

A smaller variability in response time is another source of potential gains. For example, in order

to achieve accurate clock synchronization, a transmission time with small variability is required.

Many clock synchronization protocols[20] have upper bounds on synchronization accuracy inversely

proportional to the variability of message transmission delay. Therefore, a network with a more pre-

dictable latency gives us tighter clock synchronization. This has important implications in areas like

distributed agreement and consensus protocols[18]. In particular, many consensus protocols assume a

synchronous model — processors with closely synchronized clocks.† Moreover, these algorithms are

usually designed to be carried out in rounds (made possible by their synchronized clocks), with the

duration of each round being equal to the maximum send-receive-forward time — the time taken by

each processor to broadcast a message, to receive all incoming messages, and to perform some com-

putation. It has been shown that[4] in a synchronous fail-stop model, the worst case time complexity

is k + 1 rounds wherek is the upper bound on the number of failures tolerated. A shorter response

time together with less variability enable these consensus protocols to have shorter rounds, immedi-

ately giving us faster algorithms. Finally, with a more accurate global snapshot obtainable using

closely synchronized clocks, we can reduce the likelihood of the occurrences of anomalies in a dis-

tributed environment such as those suggested by Lamport[13] and phantom deadlocks[17].

†Without clock synchronization (i.e., for asynchronous models), it has been shown that no proto-
col exists for reaching agreement in the fail-stop model that can tolerate a single failure[5].



The rest of the paper is organized as follows. In the next section, we present our model for the

end-to-end round trip latency of a network. In sections 3, 4 and 5 we analyze the response time speed

up that aggressive strategies provide for single packet message, medium sized message, and long

message transmissions respectively. Finally, section 6 offers some conclusions.

2. The Model

Our goal is to evaluate the response time gains obtained by sending packets over multiple net-

works. We assume we have a source node transmitting data to a destination node. We study and com-

pare two scenarios: (a) the source and destination are connected by two independent networks, i.e., a

2-net, and (b) they are connected by a single conventional network, a 1-net. In this paper we will ana-

lyze three cases: a short one-packet message (Section 3), a medium sized message that consists of

several packets (Section 4), and a long message transmitted using a sliding window protocol (Section

5).

Before analyzing the effect of flow control protocols and of duplicate transmissions, we need to

understand the basic performance of the underlying communication medium. That is, we need to

model the distribution of theround trip delaybetween the source and the destination nodes for a sin-

gle packet, as well as the probability that the packet gets lost. This base model doesnot take into

account re-transmissions performed by the source when a packet is not acknowledged; such effects

are incorporated later. We would like our model to be general enough so it can be applied to any type

of network, either wide-area, point-to-point or local-area multiple access (see Figure 2).

If we think of the source-destination round trip latency as a random variable, what probability

density function (pdf) should it have? We believe it should have the shape shown in Figure 3 (experi-

mental data [3] supports this). There is a minimum transmission time dictated by the speed of light

and the processing time at intermediate switches (if any). The probability that the transmission time

is less that this minimum is zero. Beyond this limit, there is a range of times that are the most likely

to occur, but larger delays may also occur. These long transmission times arise due to congested or



faulty switches in a wide-area network or due to collisions in a local area network. Some messages

may never arrive, but we model this in our next step.

f(t)

t
Figure 3 : End-to-end round trip delay

For our analysis we desire a function that has the shape of Figure 3 and is also relatively easy to

work with. Thus, we chose a shifted two-stage hypoexponential random variable with parameters

1/λ1 and 1/λ1+1/λ2 to represent the underlying round trip latency of a single network. Its probability

density function (pdf) is given by :

f (t) =







λ1 + λ2

λ2
1

(1 − e−(t−∆)/λ2)e−(t−∆)/λ1

0

t > ∆,

t ≤ ∆,

where∆ is the minimum delay. By varying the values ofλ1 and λ2, we can model networks with



different transmission delay characteristics: The smaller the value ofλ1, the fasterf (t) rises att = ∆.

The smaller the value ofλ2, the fasterf (t) falls ast grows. Choosing∆ = 1 time unit, Figure 4 shows

curves of f (t) for various values ofλ1 andλ2. From this figure, one can see that our model can cover

a wide range of networks, either slow or fast, with low or high variance.

0

0.1

0.2

0.3

0.4

0.5

f(t)

t
Figure 4 : f(t) for various (λ1, λ2) pairs
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Another argument in favor of the hypoexponential distribution is that it arises from a series of

exponential distributions. That is, if the network is a point-to-point and if we approximate the IMP-

IMP transmission delay by an exponential (or hypoexponential) distribution with some minimum

delay, then it can be shown that the overall end-to-end round trip latency of the network is hypoexpo-

nentially distributed with some minimum delay[23].

To model lost packets we truncate our distributionf (t) at a constantT2. In other words, we

assume that packets that take more thanT2 to be acknowledged willneverbe acknowledged. The

probability that a packet makes it,p, is given by

p =
T2

0
∫ f (t)dt.

With probability 1− p a packet will not be delivered. Figure 5 shows the relationship betweenp and

T2. Note that assuming a cutoff timeT2 is reasonable, as most networks that can store packets inter-

nally do discard them if they loiter for a long time (this is also required by some transport layer



protocols for proper connection management)[22].

T2

f(t)

t
Figure 5 : end-to-end round trip delay

area =p

Given our assumption, it makes no sense at all for the source node to set a timeout interval larger

thanT2. If the packet does not arrive byT2, it never will. Conversely, if timeout is set smaller than

T2, the source node risks the possibility of sending a redundant packet and this complicates our analy-

sis. Therefore, we assume that the source node sets its timeout interval to be equal toT2. (In reality,

messages can arrive after the sender times out. Our computed transmission times are hence slightly

overestimated, but the difference is small given that very few messages show up after a time out. Fur-

thermore, the response time reduction is greater for a 2-net, so the speed up values we compute later

are pessimistic, i.e., 2-nets performbetterthan what we indicate.)

If we let X be the conditional random variable denoting the round trip latency of a single net-

work given thatthe packet is not lost, thenX has its pdf,h(t), given by

h(t) =







1

p
f (t)

0

t ≤ T2,

t > T2.

Note that

Pr[ X > t] =
∞

t
∫ h(t)dt and,



E[ X] =
∞

0
∫ Pr[ X > t]dt.

The Appendix contains the formulae and their derivations for Pr[X > t] and E[X], given a hypoexpo-

nential distribution for the round trip latency. They are required in our analysis later.

In our model of redundant transmissions in a 2-net, a sender node is connected to a receiver node

by two networks with independent failure probabilities. For each packet to be transmitted, two copies

of it are created and routed independently through the two networks to the destination node. As soon

as the destination node gets the first arrival, an acknowledgement is sent back to the source through

the network from which the copy is received.† As argued in Section 1, we assume that the extra load

incurred by duplicate transmissions does not change the response time of the underlying networks or

processors significantly. We also assume that the source has at least two network interface (or con-

trol) devices, so that the two copies can essentially be transmitted in parallel.

Let XM be the conditional random variable representing the effective round trip latency of a

2-net given thatboth copiesof the packet get through the network. We haveXM = min {X1, X2}

whereX1 andX2 are two random variables having the same pdf asX. Moreover,

Pr[ XM > t] = Pr[ X1 > t] . Pr[ X2 > t] = { Pr[ X > t]} 2.

So,

E[ XM ] =
∞

0
∫ Pr[ XM > t]dt =

∞

0
∫ { Pr[ X > t]} 2dt

The formula for E[XM ] is a little bit lengthy and is included in the Appendix.

Figure 6 compares the pdfs ofX and XM for p = 0.95 (T2 = 8.2), λ1 = 1, andλ2 = 5. It can be

seen from this example that the curve forXM is more skewed to the left and has a thinner tail. It thus

† A better alternative would be for the destination node to send two acknowledgements back to the
source node, riding through both networks, as soon as it gets one copy of the packet. This has the
effect of bringing the momentarily slower network up to speed. However, the transmission times
would no longer be independent and our analysis would be more complex. Again, this means that
2-nets could perform better than our analysis shows.



has a smaller expected value and a smaller variance.
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Figure 6 : ComparingX with XM
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Figure 7 shows the variances ofX and XM for λ1 = 2 andλ2 = 5, and for values ofp > 0.95.

(The Appendix contains the formulae.) Note that in our graph, as well as in others in this paper, we

focus on high values ofp, i.e., reasonable networks should not lose too many packets.
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Figure 7 : Variances ofX andXM
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Note that the variances increase asp increases. To see why this is so, recall thatp is defined by

the equation :

p =
T2

0
∫ f (t)dt,



whereT2 is the time constant denoting the maximum life time of a packet (see Figure 5). A larger

value of p means a biggerT2. (Given the base transmission time defined byλ1 andλ2, to lose fewer

packets, we must extend our timeout period.) AsT2 grows, the tail for the round-trip delay distribu-

tion grows. This explains why the variances ofX and XM increase asp increases. Moreover, since

the distribution ofXM is much skewed to the left (see Figure 6), the area under the tail of the distribu-

tion is much thinner and therefore the increase in variance due to a largerp value is much milder than

that for X.

In Figures 6 and 7 we assume that packets are not lost. However, we already see the advantages

of redundant transmissions: significantly reduced delays and variances. In the following sections we

analyze the impact of lost packets and the flow control protocol.

3. A Single Packet Message

Our response time analysis is dependant on the flow control and re-transmission policies used by

the networks. This in turn depends on the type of traffic: different protocols are typically used for

short messages (e.g., datagram service) as opposed to long messages. Thus, we start our analysis by

considering the transmission of a one-packet message.

One-packet transmissions are of special interest because in a large class of distributed algorithms

small control messages are exchanged (e.g., in commit or election protocols). In these algorithms

there is little opportunity for pipelining data (as in the window protocols we study in Section 5).

Essentially, each packet must be sent and acknowledged before the next one can be sent. As we

argued in Section 1, the major factor in the running time of these distributed algorithms is the trans-

mission time of these short messages. Thus, the speedup computed by our analysis will essentially be

the speedup obtained by these algorithms.

In Section 1 we stated that there are two main ways to use aggressively a 2-net: redundant trans-

missions and "stream splitting" (sending some of the packets over one net, the rest over the other). In

the case of a single packet transmission, stream splitting does not make sense. Thus, we only study



redundant transmissions, and compare them to transmissions over a single network.

To send a single packet reliably over a single net, the sender must transmit it and wait for an

acknowledgement. If the packet is lost or discarded, the sender eventually times out and sends the

packet again. LetRone be the random variable representing the time to successful transmission of one

packet in a 1-net. Say a particular packet is transmitted for the first time at timet1. If there are losses,

the packet will be re-transmitted, and eventually an acknowledgement arrives at another timet2.

Then Rone will be t2 − t1. We note that with probabilityp, we have a successful transmission on the

first attempt and thereforeRone = X, whereX is the conditional random variable denoting the round

trip latency of a network given that no packet is lost (see Section 2). In general, if the transmission of

a packet failsi times before the last trial succeeds, then the response time (Rone) is equal toiT2 + X.

The first term corresponds to thei timeout intervals and the second term represents the round trip

delay caused by the last successful transmission. Hence,

Pr[Rone = iT2 + X] = p(1 − p)i i = 0, 1, . . .

This gives us the following expected value ofRone.

E[Rone] =
∞

i=0
Σ p(1 − p)i [iT2 + E[ X]]

= E[ X] +
T2(1 − p)

p
.

The first term is the expected round trip delay of a successful transmission while the second term is

the delay due to an expected number of timeouts.

The probability that at least one copy of a packet gets through a 2-net (p2) is given by

p2 = 1 − (1 − p)2.

If we let Y denote the effective round-trip latency of a 2-net given thatat least one copyof a packet

arrives at the receiver, we have,

Y =
p2

p2
XM +

2p(1 − p)

p2
X and,



E[Y] =
p2

p2
E[ XM ] +

2p(1 − p)

p2
E[ X].

Therefore, ifRone,M is the random variable representing the time to successful transmission of one

packet using a 2-net, we have,

E[Rone,M ] = E[Y] +
T2(1 − p2)

p2
,

Let us define the speedup (suone) of response time for the one packet case by

suone =
expected response time using a 1-net

expected response time using a 2-net
.

Therefore,

suone =
E[Rone]

E[Rone,M ]
=

E[ X] +
T2(1 − p)

p

E[Y] +
T2(1 − p2)

p2

.

Figure 8 shows how speedup varies againstp, the reliability of the network, for variousλ1’s andλ2’s.
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Figure 8 :suone for various (λ1,λ2) pairs
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We note that a 2-net gives us a smaller expected round trip delay (E[Y] < E[X]) and a smaller

number of re-transmissions (
1 − p2

p2
<

1 − p

p
). Both of these factors contribute to a smaller response



time. Takingp = 0.95,λ1 = 5, λ2 = 1 for example, E[X] = 6.04, E[Y] = 4.24,T2(1 − p)/p = 0.89, and

T2(1 − p2)/p2 = 0.042. The ratio
E[Y] − E[ X]

T2[(1 − p)/p − (1 − p2)/p2]
measures the relative contribution to

response time speedup by the 2 factors. For our example values ofp, λ1, andλ2, this ratio is equal to

1.804/0.848 = 2.13. This means that the reduction in expected round trip delay contribute more than

twice as much as the reduced number of re-transmissions. That is, the round trip reduction is the more

important factor. We also notice that as the value ofp increases, the difference betweenp and p2

decreases, while the difference between E[Y] and E[X] increases (see the formula of E[Y]). There-

fore, for reasonably large values ofp (e.g., p > 0.95), a large portion of the speedup is due to the

reduced variability of the round trip latency of the network.

To illustrate the effect ofλ1 on speedup,† we choose two representative values forp (0.95) and

λ2 (3), and plot speedup as a function ofλ1 in Figure 9. The curve shows us that the more unpre-

dictable the round-trip delay (biggerλ1) is, the more speedup advantage we can obtain by using a

2-net. The conclusion drawn from Figures 7 and 8 is that the speedups due to redundant transmission

can be significant, anywhere from 20 to 65 percent. These results are obtained over a wide range of

base distributions and network reliabilities.
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1.2

1.3

1.4

1.5

1.6

λ1
Figure 9 : Effect ofλ1 on speed up

suone

λ2 = 3

p = 0.95

† Recall thatλ1 is a parameter controlling the shape of the round trip delay distribution of a com-
ponent network — the largerλ1 is, the more spread out the distribution is (see Figure 4).



4. Medium Sized Message

In this section, we study the transmission of a medium sized message over a high latency net-

work. A medium sized message consists of more than one packet but is not large enough to fill up the

network pipeline. By this we mean that the round trip latency of the network is larger than the total

time taken by the sender to pump all packets onto the network. If we letTa be the amount of time

taken by the sender to put a packet onto the network, then with a medium sized message ofk packets,

we have,

kTa < ∆§

The transmission protocol we are going to study is very simple. When the sender sends out a

packet,pi , a timer for pi is enabled. When the receiver receives a packetpi , an acknowledgement

ACKi is sent back to the sender. If the sender does not receive anACKi T2 time units afterpi is sent,

pi is retransmitted. We assume thatk is sufficiently small that each packet can be individually

buffered at the receiver and can be individually acknowledged. We choose to study thisselective

repeatprotocol, even though it requires more complicated logic and more buffer space at the receiver

than the more commonly used go-back-N algorithm [22], because it is more efficient and the addi-

tional buffer space requirement is easily accommodated for smallk. Moreover, go-back-N is more

sensitive top for the range we are interested (0.9 <p < 1.0)[16]. This implies that an improvement

in error rate increases network utilization by a bigger margin when go-back-N is used than when

selective repeat is used. As we will see later in this section, a main advantage in using a 2-net is an

improved error rate; therefore, we expect speedups that are greater than what we show in this section

for go-back-N using 2-net.

4.1 Computing Response Time for a Single Network

In order to demonstrate how response time is calculated, we consider the following two scenar-

ios for transmission using 1-net.

§ ∆ is the minimum round trip latency of a network. See Section 2.



Scenario (1) : No Retransmission

In this case all packets survive through the first transmission. Therefore,

Response time= kTa + E[ X],

where kTa is the time taken for the source to put allk packets onto the network and E[X] is the

expected time taken for the last packet (pk) to get to the destination and its acknowledgement to be

received by the source (see Figure 10).

Scenario (2) : One Retransmission

In this case, some packets get lost in the first trial, but make their ways through the second time.

To illustrate, suppose we want to transmit 7 packets at time 0 (see Figure 11). In our first trial packets

#3 and #5 are lost. At timeT2 + 2Ta and timeT2 + 4Ta respectively, the timers ofp3 and p5 expire

and the two lost packets are retransmitted. Finally, at timeT2 + 5Ta + E[X], ACK5 is received and the

transmission is completed. Note that the total transmission time is not affected by the fact thatp3 gets

lost in its first trial.

We can generalize the analysis to the the case whenn retransmissions are required (i.e., there is

at least one packet that takesn + 1 trials to complete). Letpj be the last packet received at the desti-

nation in the last (n + 1st) trial. Then the response time for sending the message would be

nT2 + E[ X] + jTa (see Figure 12). The probablity of such event happening is :

Pr[Response time= nT2 + E[ X] + jTa] = Pr[ A & B & C]



where,

A = the event that packetpj is received at then + 1st trial.

B = the event that none of the transmissions ofp1, . . . , pj−1 takes more thann + 1 trials.

C = the event that none of the transmissions ofpj+1, . . . , pk takes more thann trials.

Letting q = 1 − p, it can be seen that

Pr(A) = qn p,

Pr(B) = (1 − qn+1) j−1, and

Pr(C) = (1 − qn)k− j .

Therefore,

Pr[Response time= nT2 + E[ X] + jTa]

= Pr(A) . Pr(B) . Pr(C)

= qn p(1 − qn+1) j−1(1 − qn)k− j .



Let R1 be the expected response time of transmitting a medium sized message ofk packets using a

1-net. Then,

R1 =
∞

n=0
Σ

k

j=1
Σ qn p(1 − qn+1) j−1(1 − qn)k− j (nT2 + E[ X] + jTa).

As shown in the Appendix, this can be rewritten as

R1 = E[ X] + B(q, k)T2 + C(q, k)Ta,

where,

B(q, k) =
k

i=1
Σ 


k

i


(−1)i+1 qi

1 − qi
.

C(q, k) =
k

j=1
Σ pj

j−1

i1=0
Σ

k− j

i2=0
Σ 


j − 1

i1





k − j

i2



(−1)i1+i2

qi1

1 − qi1+i2+1
.

4.2 Redundant Transmissions

By duplicating packets and transmitting the duplicates over a second network in parallel with the

originals, we effectively form a 2-net that has a shortened expected round trip latency (E[Y]) and a

higher effective probability of successful transmission. The probability of a successful transmission

is p2 = 1 − (1 − p)2, and the probability of a loss is 1− p2 = 1 − (1 − (1 − p)2) = q2. Hence, if we let

R2,red be the response time of a 2-net using redundant transmission, we have,

R2,red = E[Y] + B(q2, k)T2 + C(q2, k)Ta.

In this expression,B(q2, k)T2 is likely to be the dominating factor. This is because for a high

latency network,T2, the timeout interval, should be much larger thanTa, the packet duration. Con-

stantT2 should also be larger thanE[ X], otherwise the network will time out too early. Thus, before

studyingR2,red we study the factorB(q2, k). (Note also that valueE[Y] has been studied in Section 2

and Figure 6.)



Intuitively, B() is the expected number of retransmissions. Figure 13 showsB(q,k) as a function

of p (= 1− q) for various values ofk. From the figure, we see that as the network becomes more and

more reliable (asp increases), the number of retransmission (B()) decreases. Moreover, the slope of

the curves gets steeper ask becomes larger. Therefore, as the size of the message increases, the

improvement in response time attributable to a higher probability of successful transmission (p) also

increases.
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Redundant transmission helps reduce retransmissions by essentially increasing the effective

value of p (to p2 = 1 − (1 − p)2). For example, ifp = 0.94,k = 20, the expeccted number of retrans-

missions is about 0.79 (pointa in Figure 13). A 2-net pushesp to p2 (= 0.9964), andB(0. 0036, 20)≈

0.06 (pointb).

Figure 14 showsB(q2, 10)T2, B(q, 10)T2 and their difference forλ1 = 2, λ2 = 5, and for various

values ofp. The value ofT2(B(q, 10) − B(q2, 10)) represents the improvement, due to reduced re-

transmissions, brought about by a 2-net.

0.9 0.92 0.94 0.96 0.98 1

0

2

4

6

8

unit
time

p

∆

+

•

∗

×

∆

+

•
∗

×

∆

+

•∗

×

∆

+

•∗

×

∆

+

•
∗

×

∆

+

•

∗

×

∆

+

•

∗

×

∆
+

•

∗

×
∆
+

•

∗

×
∆

+

•

∗

×

∆

+•

∗

×

∆

+
•

∗
×

— E[X]

— E[Y]

— B(q,10)T2

— B(q2,10)T2
— E[X] - E[Y]

— (B(q,10) - B(q2,10))T2



The figure also showsE[ X], E[Y], and E[ X] − E[Y]. The valueE[ X] − E[Y] represents the

response time improvement provided by a 2-net due to reduced transmit times. Comparing

T2(B(q, 10) − B(q2, 10))) andE[ X] − E[Y], we see that the savings on retransmission contributes to a

more significant factor in speedup, unless the underlying network is very reliable.

Now that we have studied the factors that make up the transmission time, let us study the overall

speedup obtainable by a 2-net. Definesuk,red to be the speedup obtainable by a 2-net in sending ak-

packet message using redundant transmission. We have,

suk,red =
response time of 1-net

response time of 2-net

=
E[ X] + B(q, k)T2 + C(q, k)Ta

E[Y] + B(q2, k)T2 + C(q2, k)Ta
.

For our evaluation we need to select a value forTa. Typically, for a high latency network,Ta varies

from 1/30 (satellite link) to 1/100 (optical fiber, long-distance transmission) of∆, the total latency[1].

For our next graph we choose a medium value ofTa = ∆/50. Since we are assuming thatkTa < ∆

(medium size messages), we will letk range from 2 to 50. Results are plotted in Figure 15 which

showssuk,red as a function ofp.
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Taking a look at thesuk,red expression, we see that for small values ofp, the number of retrans-

missions is large, and theB() terms tend to dominate both in the numerator and in the denominator.

And hencesuk,red behaves more or less likeB(q, k)/B(q2, k). B(q2, k) decreases faster thanB(q, k)

as q decreases, we would expectsuk,red to increase asp increases for small values ofp. This

explains, for example, the part of the curve labeledab in Figure 15.

Now as p increases further, the number of retransmissions, (i.e.B()) becomes smaller, and

suk,red therefore, tends to (E[X]+∆)/(E[Y]+∆), a fixed value. This explains the curves labeledbc in the

graph.

Lastly, as more packets are sent (k increases), more retransmissions are expected, and this leads

to biggerB() terms. Therefore, theB() terms tend to donimate for a wider range ofp values. This

explains why the curves for largerk peak more to the right.

4.3 Stream Splitting

With stream splitting, we divide the set ofk packets into two equal sized groups and send them

independently over two networks. If we letTTA, and TTB be the random variables denoting the

response times of transmittingk/2 packets over each network, then,

E[TTA] = E[TTB] = E[ X] + B(q, k/2)T2 + C(q, k/2)Ta.

The total transmission timeR2,split would be

R2,split = max {TTA, TTB}

≥ TTA.

Therefore, the expected value of the response time using stream splittingR2,split has the following

lower bound :

R2,split ≥ E[ X] + B(q, k/2)T2 + C(q, k/2)Ta.

Hence, an upper bound on the speedupsuk,split can be computed as

suk,split ≤
R1

E[TTA]



≤
E[ X] + B(q, k)T2 + C(q, k)Ta

E[ X] + B(q, k/2)T2 + C(q, k/2)Ta
.

Figure 16 shows this upper bound as a function ofp for various values ofk.
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We observe that the maximum speedup obtainable using stream splitting in this case can hardly

exceed 35% while at least 40% improvement in response time is almost always guaranteed by redun-

dant transmission (see Figure 15). Therefore, we conclude that redundant transmission is a better

choice for transmitting medium sized messages.

By generating graphs like Figure 15, intelligent decision can be made concerning the choice of

transmision mode. Say for example, we have two slow but cheap networks, and a fast and expensive

network, and we have a soft real-time application. By considering the costs of transmitting the mes-

sage, the size of the message, and the penalty of a missed deadline, we can choose to send the mes-

sage through (1) the slow network, or (2) the polynet formed by the slow networks, or (3) the fast net-

work. Moreover, we can also consider the level of reliability, and the variability in transmission time

(a measure of risk) each transmission mode provides.



5. A Long Message

In this section, we analyze the transmission of a long message (many packets) over a high

latency network. For such transmissions, a sliding window protocol is typically used. In particular,

we analyze protocol #6 (selective repeat) in [22]. This is the most complete sliding window algo-

rithm presented in that textbook. Our results are also applicable to other algorithms of this type with

slight modification.

Let m, the message to be sent consist ofk packetsp1, p2, . . , pk. Instead of having the source

node block every time it sends out a packet and wait for the acknowledgement, we allow the sender to

transmit packets continuously. When the sender puts a packetpi onto the network, a timer for it is

started. If acknowledgements always arrive before timeout, the sender just keeps on sending one

packet after another, without delays. However, if no acknowledgement for a packetpi is received

when the timer goes off,pi is re-transmitted. The receiver transmits an acknowledgementAi only if

p1, . . , pi have all been received. We assume that the receiver has a lot of buffer space (a large win-

dow), so packets received out of sequence are buffered (but not acknowledged). Since we are inter-

ested in networks with reasonable reliability (p ≥ 0.95), we make the following simplifying assump-

tion: the probability that the transmission of a given packet fails twice in a row is extremely small.

As a result, we assume that if a packet is re-transmitted, it is properly received and acknowledged.

Once again, the effect is that we underestimate (by a small amount) the potential speedup generated

by a 2-net.

If we let Ta be the amount of time taken by the sender to put a packet onto the network, then we

can think of time being divided into slots, each slot beingTa units long. If the network is perfect, no

packets will ever get lost, and as have been explained in last section,

Response time =kTa + E[ X],

Complications arise when the network is not perfect. We letl be the timeout interval in units of

time slots (i.e.,l = T2/Ta), and letr be the round trip latency in units of time slots (i.e.,r = E[ X]/Ta).

Consider the following sample scenario : packetsp1, . . , pi−1 get through the network but notpi . So at



time slot numberi + l , the timer forpi goes off andpi is re-transmitted. The sequence

. . . pi pi+1
. . . pi+l pi

——→ time

shows the stream of packets sent by the source node.

In sliding window protocols, typically packetspi+1 pi+2
. . . cannot be acknowledged by the desti-

nation until packetpi is received. (The acknowledgement forpi+1 implicitly acknowledges all pack-

ets throughi + 1.) Therefore, at the source the timers for packetspi+1, pi+2 .. etc. will also go off suc-

cessively andpi+1, pi+2... etc. will be re-transmitted. Thus, the sequence of packets is :

. . . pi pi+1
. . . pi+l pi pi+1 pi+2

. . .

As mentioned earlier, we assume that the second trial of the transmission ofpi succeeds. So at time

slot numberi + l + 1 + r , the sender gets the acknowledgement forpi+l and can proceed with the next

packet,pi+l+1.

. . . pi pi+1
. . . pi+l pi

. . . pi+r pi+l+1

Note that missing a single packet,pi , not only caused us to waste one slot re-transmitting, but also

caused the unnecessary transmission ofr other packets (which were not lost, but simply unacknowl-

edged). Thus, the number of slot overhead (d) that can be charged to the loss ofpi is equal to

d = (l + r + 1) − (l ) = r + 1.

Sincer = E[ X]/Ta (defined above), where E[X] is the expected round-trip latency of a network,

then,

d = r + 1 = E[ X]/Ta + 1.

We note that ifpi+1 is also lost in the first trial but makes its way through the second time, no addi-

tional overhead is incurred by its loss. The number of wasted slots is stilld. In general, the loss of a

packetpi causes a "burp," an overhead ofd additional time slots. However, any subsequent losses of

pi+1, . . . , pi+r do not cause any additional "burps."



We compute the overhead in the general case as follows. LetNi be the expected total number of

burps that occur given that packetsp1, . . . , pi−1 have arrived safely (p1,. . . , pi−1 caused no burps) at

the destination. If packetpi arrives intact, the number of burps is be equal toNi+1. Conversely, if

packet pi is lost, one burp occurs and this burp is good for any subsequent losses of an additional

d − 1 packets. The expected number of burps in this case is thus 1+ Ni+d. We can formalize the above

idea by the following recurrence :

Ni

Ni

=
=

pNi+1 + (1 − p)[1 + Ni+d]

0

i ≤ k,

i > k.

This recurrence enables us to computeN1, the expected number of burps in transmitting thek-packet

long message.

The total transmission time (TT) is given by

TT = Ta(k + N1d) + E[ X]

= kTa(1 + N1d/k) + E[ X].

The above formula is useful in the following subsections for computing speedups.

5.1 Redundant Transmissions

Let us now analyze the case where the full stream of packets is sent over two networks. The

analysis is similar, except that we have a different expected round trip latency, E[Y], and therefore a

different burp lengthd′, which is equal to E[Y]/Ta + 1. Let the sequence {N′i } be determined by the

following recurrence

N′i
N′i

=
=

pN′i+1 + (1 − p)[1 + N′i+d′]

0

i ≤ k,

i > k.

Then the speedup of a 2-net (with redundancy) over a conventional single network (su1n/red) would be

su1n/red =
kTa(1 + N1d/k) + E[ X]

kTa(1 + N′1d′/k) + E[Y]
.

When k is large (e.g., we want to transfer a big file which consists of hundreds or thousands of



packets), E[X] and E[Y] are negligible compared with the other terms. Hence,

su1n/red −∼
kTa(1 + N1d/k)

kTa(1 + N′1d′/k)
largek.

Definingn =
k→∞
lim N1/k, andn′ =

k→∞
lim N′1/k, we have

k→∞
lim su1n/red =

1 + nd

1 + n′d′
.

In the Appendix we show thatn = q/[1 + (d − 1)q] and n′ = q′/[1 + (d′ − 1)q′], whereq = 1 − p and

q′ = 1 − p2 (and as before,p2 = 1 − (1 − p)2). Figure 17 showssu1n/red plotted againstp, for various

values ofλ1 andλ2.
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We observe that if the network never loses packets (p = 1), the number of burps that occur is

zero and a 2-net has no advantage over a 1-net (speedup is one). However, speedup rises sharply

when p starts decreasing from 1. For example, even if the network drops only one packet out of a

hundred, a 2-net can already achieve a speedup of 17%. This is due to the magnification effect of

burps: a single loss causes a break in the pipeline and a string of re-transmissions. If packet delivery

rate drops further, top = 0.9, a gain of 50 percent is obtainable with a 2-net.

The curves shown in Figure 17 correspond to networks with widely differing round-trip variabil-

ities (see Figure 4). The overlapping of their speedup curves shown in the figure suggests that the

speedup in the transmission of large messages is quite immune to the network transmission delay



distribution.

Finally, we note that it is possible to modify sliding window protocols to avoid the burps we

have analyzed. The key is to have the destination acknowledge packets individually. That is, the

acknowledgement forpi now means thatpi was received, but it says nothing aboutpi−1 or the previ-

ous packets. This generates slightly more acknowledgement traffic.† On the other hand, the number

of wasted slots per loss is now simply one. Withp being the probability of a successful transmission,

the expected number of transmissions required to get a packet from the source node to the destination

node is now 1/p. Therefore, the total transmission time iskTa/p for a 1-net, andkTa/p2 for a 2-net.

The speedup made possible by a 2-net is thus equal to

p2

p
=

[1 − (1 − p)2]

p
= 2 − p.

For p > 0.95, a 2-net can only buy us a 5% speedup, probably not worth the extra effort spent.

5.2 Stream Splitting

A second alternative is to split the stream into two streams, each withk/2 packets. Thus, packet

p1 is sent over one network, packetp2 over the second one,p3 over the first,p4 over the second, and

so on. This approach is only feasible if there is enough buffer space at the source and destination to

keep two full windows.

Consider a 2-net that is composed of two networksA and B. Let TTA andTTB be the random

variables denoting the response times of transmittingk/2 packets over networksA andB respectively.

Then, for largek,

E[TTA] = E[TTB] = (k/2)Ta(1 + nd).

The total transmission time (TT) of the 2-net would be

† If packets arrive in order, then the modified protocol uses the same number of acknowledge-
ments as the conventional protocol: one per received packet. It is only when packets arrive out of
order that the modified protocol would send more acknowledgements.



TT = max { TTA, TTB }.

In the Appendix we show that,
k→∞
lim σ TTA

/E[TTA] = 0 whereσ TTA
is the standard deviation ofTTA (A

similar statement holds forTTB). Therefore, for large value ofk, the transmission time of a network

will not deviate from its mean by any significant amount. Hence,

E[TT] = E[TTA] = (k/2)Ta(1 + nd) largek.

Comparing this to the response time of a 1-net and to the response time of a 2-net with redundant

transmission, we get

su1n/split −∼ 2

sured/split −∼
2(1+ n′d′)

1 + nd
.

The fact that stream splitting provides a speedup of 2 over a single network is what one would intu-

itively expect, given that twice the bandwidth is available. Redundant transmissions also provide a

speedup with respect to a 1-net (Figure 17), but oursured/split shows that splitting is better. Figure 18

showssured/split as a function ofp. As can be seen, splitting is superior by a factor ranging from 1.33

(at p = 0.9) to 2 (atp = 1).
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Note that redundant transmissions could be more effective than splitting at lower values ofp.

However, we do not consider values ofp less than 0.9 realistic (plus our analysis is only for relatively



reliable networks). Also note that stream splitting requires two full sets of windows, so it may be

infeasible if memory is tight. In conclusion, for "moderately reliable" networks where memory is

plentiful, stream splitting is the best alternative for very long messages.

6. Conclusions

If two computers wish to communicate, it is much more efficient to have a single path linking

them, rather than two separate paths, each with half the bandwidth[11]. However, all reliable systems

opt for the two path solution to avoid vulnerability to a single failure. So, given that separate paths

exist, it is possible to use aggressive transmission techniques to improve the response time (and

decrease the variance) of critical messages.

For sending a single short packet, duplicate transmissions may improve response time by 20 to

60 percent, depending on the network characteristics. This may in turn improve the overall perfor-

mance of distributed algorithms that are limited by network latency (not by network throughput). In

turn these savings may reduce resource contention, as is the case for distributed commit protocols.

We have also analyzed an intermediate case, in which a small number of packets is to be sent

over a high latency network. Here again, duplication pays off, as it is better to be pessimistic and

send copies, rather than to wait and see if all the packets made it. As a matter of fact, since there is

now more than a single packet, the probability that at least one is lost or delayed increases, making

the payoff for duplication even larger than for the single packet case. (Stream splitting is not effective,

as latency and not bandwidth is the major factor)

For sending long messages (e.g., file transfer), full pipelining makes speedup rather insensitive

to network latency characteristics. In this case, splitting the stream over 2 networks is superior, by up

to a factor of 2, to redundant transmission. This is true even for unreliable networks.

Our last observation concerns the price and speed of communication lines. Sometimes vendors

provide lines of varying qualities and prices. (A higher grade line needs more expensive equipment,

more repeaters, needs to run slower, and so on.) Given that multiple paths exist and that aggressive



transmissions are used, it may be feasible to uselower grade lines (either to save money or to get

faster lines). That is, the duplicate paths compensate for losses that may occur on one path, so good

performance can still be obtained. In other words, aggressive transmissions and redundant paths open

the door for many interesting alternatives in the price/performance/reliability spectrum.



Appendix

Computing Pr[ X>t], E[ X] and Var[ X]

Pr[ X > t] =
∞

t
∫ h(t)dt.

For ∆ ≤ t ≤ T2, we have

Pr[ X > t] =
T2

t
∫ h(t)dt

=
1

p

T2

t
∫ f (t)dt

=
1

p
[

∞

t
∫ f (t)dt −

∞

T2

∫ f (t)dt]

=
1

p
[

∞

t
∫

λ1 + λ2

λ2
1

[e−(t−∆)/λ1 − e
−(t−∆)(

λ1+λ2

λ1λ2
)
]dt − (1 − p)]

=
1

p
[

λ1 + λ2

λ1
e−(t−∆)/λ1 −

λ2

λ1
e

−(t−∆)(
λ1+λ2

λ1λ2
)

− (1 − p)].

We also have

E[ X] =
∞

0
∫ Pr[ X > t]dt

=
T2

∆
∫ Pr[ X > t]dt +

∆

0
∫ 1 . dt

=
1

p
[(λ1 + λ2)α1 −

λ2
2

λ1 + λ2
α2 − (T2 − ∆)(1 − p)] + ∆,

where

α1 = 1 − e
(
−(T2−∆)

λ1
)
,



α2 = 1 − e
−(T2−∆)(

λ1+λ2

λ1λ2
)
.

Moreover,

Var[ X] = E[ X2] − E2[ X]

=
T2

∆
∫ t2h(t)dt − E2[ X].

This equation was solved numerically using Mathematica to obtain Figure 7.

Formula for E[ XM ] and Var[ XM ]

E[ XM ] =
∞

0
∫ Pr[ XM > t]dt =

∞

0
∫ { Pr[ X > t]} 2dt

=
1

p2
[ζ1β1 + ζ2β2 + ζ3β3 + ζ4β4 + ζ5β5 + (1 − p)2(T2 − ∆)] + ∆

where

ζ1 =
(λ1 + λ2)

2

2λ1
, β1 = 1 − exp(

−2(T2 − ∆)

λ1
),

ζ2 =
−2(λ1 + λ2)λ2

2

(λ1 + 2λ2)λ1
, β2 = 1 − exp(−(T2 − ∆)(

λ1 + 2λ2

λ1λ2
)),

ζ3 =
λ3

2

2λ1(λ1 + λ2)
, β3 = 1 − exp(−2(T2 − ∆)(

λ1 + λ2

λ1λ2
)),

ζ4 = − 2(1− p)(λ1 + λ2), β4 = 1 − exp(
−(T2 − ∆)

λ1
),

ζ5 =
2(1− p)λ2

2

λ1 + λ2
, β5 = 1 − exp(−(T2 − ∆)(

λ1 + λ2

λ1λ2
)).

Letting hM(t) be the pdf ofXM , then

hM(t) =
d

dt
(Pr[ XM ≤ t])



=
d

dt
(1 − Pr[ XM > t]).

Therefore,

Var[ XM ] = E[ X2
M ] − E[ XM ]

=
T2

∆
∫ t2hM(t)dt − E[ XM ].

This last equation was also solved numerically.

Formula for R1

R1 =
∞

n=0
Σ

k

j=1
Σ qn p(1 − qn+1) j−1(1 − qn)k− j (nT2 + E[ X] + jTa),

which can be broken down into three terms as follows :

R1 = A(q, k) . E[ X] + B(q, k) . T2 + C(q, k) . Ta

where,

A(q, k) =
∞

n=0
Σ

k

j=1
Σ qn p(1 − qn+1) j−1(1 − qn)k− j ,

B(q, k) =
∞

n=0
Σ

k

j=1
Σ qn p(1 − qn+1) j−1(1 − qn)k− j n, and

C(q, k) =
∞

n=0
Σ

k

j=1
Σ qn p(1 − qn+1) j−1(1 − qn)k− j j .

Now, A(q, k) is the sum of the probabilities of all the cases, therefore,A(q, k) = 1.

Let

D(q, n, k) =
k

j=1
Σ qn p(1 − qn+1) j−1(1 − qn)k− j ,

then,



B(q, k) =
∞

n=0
Σ nD(q, n, k).

Now, the probability that a packet gets through the network withinn trials is (1− qn). The probability

that all k packets get through the network withinn trails is therefore equal to (1− qn)k. Since

D(q, n, k) is the probability that exactlyn retransmissions (i.e.,n + 1 transmissions) are required,

D(q, n, k) = Prob[ All k packets get through the network withinn + 1 transmissions but not allk

packets get through the network withinn transmissions]. We thus have,

D(q, n, k) = (1 − qn+1)k − (1 − qn)k.

Hence,

B(q, k) =
∞

n=0
Σ n[(1 − qn+1)k − (1 − qn)k]

=
∞

n=0
Σ n





k

i=0
Σ 


k

i


q(n+1)i (−1)i −

k

i=0
Σ 


k

i


qni(−1)i





=
∞

n=0
Σ n

k

i=0
Σ 


k

i


(−1)i qni(qi − 1)

=
k

i=1
Σ 


k

i


(−1)i (qi − 1)

∞

n=0
Σ n(qi )n

=
k

i=1
Σ 


k

i


(−1)i (qi − 1)

qi

(1 − qi )2

=
k

i=1
Σ 


k

i


(−1)i+1 qi

1 − qi
.

Finally,

C(q, k) =
∞

n=0
Σ

k

j=1
Σ qn p(1 − qn+1) j−1(1 − qn)k− j j ,

=
k

j=1
Σ pj

∞

n=0
Σ qn(1 − qn+1) j−1(1 − qn)k− j



=
k

j=1
Σ pj

∞

n=0
Σ qn

j−1

i1=0
Σ 


j − 1

i1



(−1)i1qi1(n+1)

k− j

i2=0
Σ 


k − j

i2



(−1)i2qni2

=
k

j=1
Σ pj

j−1

i1=0
Σ

k− j

i2=0
Σ 


j − 1

i1





k − j

i2



(−1)i1+i2

∞

n=0
Σ qn+i1(n+1)+ni2

=
k

j=1
Σ pj

j−1

i1=0
Σ

k− j

i2=0
Σ 


j − 1

i1





k − j

i2



(−1)i1+i2

qi1

1 − qi1+i2+1
.

Computing n and n′

The original recurrence (for a 1-net) is :

Ni

Ni

=
=

pNi+1 + (1 − p)[1 + Ni+d]

0

i ≤ k,

i > k.

We would like to computen =
k→∞
lim N1/k. But this is equivalent to computing

i→∞
lim Mi /i for the follow-

ing recurrence :

Mi

Mi

=
=

(1 − q)Mi−1 + q(Mi−d + 1)

0

for i ≥ 1,

for i ≤ 0,

whereq = 1 − p.

We can interpretMi as the expected number of burps that occur during the transmission of ani-packet

long message.

Simple inductions show that for alli :

(1) Mi is a polynomial inq, and

(2) Mi has 0 as its constant term.

We can therefore letMi = q
∞

j=0
Σ ai , j q

j . For example, sinceM0 = 0 andM1 = q, we have

a0, j = 0 for all j , and

a1,0 = 1, a1, j = 0 j > 0.



By the recurrence, we have

Mi = (1 − q)q
∞

j=0
Σ ai−1, j q

j + q(q
∞

j=0
Σ ai−d, j q

j + 1)

= q[
∞

j=0
Σ ai−1, j q

j −
∞

j=0
Σ ai−1, j q

j+1 +
∞

j=0
Σ ai−d, j q

j+1 + 1]

= q[
∞

j=1
Σ(ai−1, j − ai−1, j−1 + ai−d, j−1)q

j + ai−1,0 + 1] (1).

So, fori >d,

ai ,0 = ai−1,0 + 1

. . . . .

. . . . .  (telescoping)

= a0,0 + i

= i .

Hence,

i→∞
lim

ai ,0

i
= 1.

Claim : −\/ j ——
—

constantCj such that

ai , j = Cj + i(1 − d) j for i > jd.

Proof: We prove our claim by induction onj .

Base case: For the case withj = 0, we chooseC0 = 0. Our claim for the base case is clearly satisfied.

Induction Hypothesis : Assume claim is true up to somej -1.

Inductive Step : By equation (1), we have forj ≥ 1

ai , j = ai−1, j − ai−1, j−1 + ai−d, j−1



= ai−1, j − [Cj−1 + (i − 1)(1− d) j−1]

+ [Cj−1 + (i − d)(1 − d) j−1] for i − d > ( j − 1)d

= ai−1, j − (1 − d) j−1(i − 1 − i + d) for i − d > ( j − 1)d

= ai−1, j + (1 − d) j for i > jd

. . . . .

. . . . .  (telescopingi − jd times)

= ajd, j + (i − jd)(1 − d) j

= ajd, j − jd(1 − d) j + i(1 − d) j .

Setting

Cj = ajd, j − jd(1 − d) j ,

we have

ai , j = Cj + i(1 − d) j fori > jd. Q.E.D.

Moreover,

i→∞
lim

ai , j

i
=

i→∞
lim

Cj + i(1 − d) j

i

= (1 − d) j .

Hence,

i→∞
lim

Mi

i
=

i→∞
lim

q
∞

j=0
Σ ai , j q

j

i

= q
∞

j=0
Σ

i→∞
lim

ai , j

i
. qj

= q
∞

j=0
Σ [q(1 − d)] j



=
q

1 − q(1 − d)

=
q

1 + (d − 1)q
.

Therefore,

n =
q

1 + (d − 1)q
.

Similarly,

n′ =
q2

1 + (d′ − 1)q2
, whereq2 = 1 − p2.

Proof of √ Var[TTA]

E[TTA]
→→ 0 ask →→ ∞∞

If we let the random variableXi denote the number of burps that occur during the transmission of an

i-packet long message, then we have the following recurrence:

Xi = ZXi−1 + Z[1 + Xi−d] for i ≥ d,

whereZ has the following distribution

Pr[Z = 1] = p,

Pr[Z = 0] = 1 − p,

andZ = 1 - Z.

For i ≤ 0, the distribution ofXi is

Pr[ Xi = a] =




1

0

a = 0,

otherwise.

Let σ i be the standard deviation ofXi , i.e.,σ i = √ Var[ Xi ]. Also letσ TTA
be the standard deviation of

TTA. We prove that
k→∞
lim

σ TTA

E[TTA]
= 0 by first proving that

i→∞
lim

σ i

E[ Xi ]
= 0. We begin with the following



Lemma.

Lemma 1. If A andB are two independent random variables, then,

Var[ AB] = Var[ A]Var[B] + E2[B]Var[ A] + E2[ A]Var[B].

Proof:

Var[ AB]

= E[ A2B2] − E2[ AB]

= E[ A2]E[B2] − E2[ A]E2[B] —(1).

Var[ A]Var[B]

= (E[ A2] − E2[ A])(E[B2] − E2[B])

= E[ A2]E[B2] − E[ A2]E2[B] − E2[ A]E[B2] + E2[ A]E2[B] —(2).

(1) - (2) gives

Var[ AB] − Var[ A]Var[B]

= E[ A2]E2[B] + E2[ A]E[B2] − E2[ A]E2[B] − E2[ A]E2[B]

= (E[ A2] − E2[ A])E2[B] + (E[B2] − E2[B])E2[ A]

= Var[ A]E2[B] + Var[B]E2[ A].

Lemma 1 follows.

From the distribution ofZ andZ, we get

E[Z] = p, Var[Z] = p(1 − p),

E[Z] = 1 − p, Var[Z] = p(1 − p).

From the recurrence ofXi ’s, we have



Xi = ZXi−1 + Z[1 + Xi−d] for i ≥ d,

and hence, fori > d,

Var[ Xi ] = Var[ZXi−1] + Var[Z(1 + Xi−d)] + 2Cov[ZXi−1, Z(1 + Xi−d)]†

= Var[ZXi−1] + Var[Z(1 + Xi−d)] +

2{ E[ZXi−1Z(1 + Xi−d)] − E[ZXi−1]E[Z(1 + Xi−d)]}.

= Var[ZXi−1] + Var[Z(1 + Xi−d)] − 2E[ZXi−1]E[Z(1 + Xi−d)].

Using Lemma 1,

Var[ Xi ] = Var[Z]Var[ Xi−1] + E2[ Xi−1]Var[Z] + E2[Z]Var[ Xi−1] +

Var[Z]Var[ Xi−d] + E2[1 + Xi−d]Var[Z] + E2[Z]Var[ Xi−d] −

2E[Z]E[ Xi−1]E[Z]E[1 + Xi−d]‡

= p(1 − p)Var[ Xi−1] + p(1 − p)E2[ Xi−1] + p2Var[ Xi−1] +

p(1 − p)Var[ Xi−d] + p(1 − p)E2[1 + Xi−d] + (1 − p)2Var[ Xi−d] −

2p(1 − p)E[ Xi−1]E[1 + Xi−d]

= pVar[ Xi−1] + (1 − p)Var[ Xi−d] + p(1 − p)(E[ Xi−1] − E[1 + Xi−d])2.

From recurrence

Xi = ZXi−1 + Z[1 + Xi−d] for i ≥ d,

so,

E[ Xi ] = E[Z]E[ Xi−1] + E[Z]E[1 + Xi−d]

= pE[ Xi−1] + (1 − p)E[1 + Xi−d].

Since E[Xi ] ≥ E[Xi−1],

† Cov(X,Y) = covariance ofX andY = E[XY] - E[ X]E[Y].
‡ Z, Xi−1 are independent, so asZ andXi−d.



E[ Xi−1] ≤ pE[ Xi−1] + (1 − p)E[1 + Xi−d],

(1 − p)E[ Xi−1] ≤ (1 − p)E[1 + Xi−d],

(1 − p)(E[ Xi−1] − E[1 + Xi−d]) ≤ 0,

E[ Xi−1] − E[1 + Xi−d] ≤ 0.

On the other hand,

E[ Xi−1] − E[1 + Xi−d] = E[ Xi−1] − E[ Xi−d] − 1

≥ − 1 (becauseE[ Xi−1] ≥ E[ Xi−d]).

Therefore,

(E[ Xi−1] − E[1 + Xi−d])2 ≤ 1.

Hence,

Var[ Xi ] ≤ pVar[ Xi−1] + (1 − p)Var[ Xi−d] + p(1 − p).

Let vi = Var[Xi ], we have,

vi ≤ pvi−1 + (1 − p)vi−d + p(1 − p)

≤ p max { vi−1, vi−d } + (1 − p) max { vi−1, vi−d } + p(1 − p)

≤ vi−δ1
+ p(1 − p), —(3)

whereδ1 is either 1 ord depending on whethervi−1 or vi−d is bigger.

Telescopingm times until the subscript ofv on the right hand side of (3) gets down to some valueh

such that 1≤ h ≤ d, we get,

vi ≤ vh + mp(1 − p).

Since each telescoping step decrements the subscript ofv by at least 1, and sinceh is between 1 and

d,

m ≤ i − d.



Therefore,

vi ≤ vh + (i − d)p(1 − p),

σ i ≤ √ vh + (i − d)p(1 − p),

σ i

E[ Xi ]
=

σ i /i

E[ Xi ]/i
.

Now,

i→∞
lim

σ i

i
= 0 and,

i→∞
lim

E[ Xi ]

i
= n, a  constant > 0 (see last section of the Appendix).

By L’hospital rule,

i→∞
lim

σ i

E[ Xi ]
= 0/n = 0.

Finally,

TTA = kTa/2 + Xk/2dTa,

Var[TTA] = d2T2
aVar[ Xk/2],

σ TTA
= dTaσ k/2, and

E[TTA] = kTa/2 + dTaE[ Xk/2].

σ TTA

E[TTA]
=

dTaσ k/2

kTa/2 + dTaE[ Xk/2]

=
d

σ k/2

E[ Xk/2]
k/2

E[ Xk/2]
+ d

,

k→∞
lim

σ TTA

E[TTA]
=

d . 0
1

n
+ d



= 0.
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