
Lecture Notes on Approximation

Algorithms { Volume I

Rajeev Motwani�

Department of Computer Science

Stanford University

Stanford, CA 94305-2140.

�Part of this work was supported by NSF Grant CCR-9010517, and grants

from Mitsubishi and OTL.

Abstract

These lecture notes are based on the course CS351 (Dept. of Computer
Science, Stanford University) o�ered during the academic year 1991-92.

The notes below correspond to the �rst half of the course. The second
half consists of topics such as MAX SNP, cliques, and colorings, as well
as more specialized material covering topics such as geometric problems,
Steiner trees and multicommodity
ows. The second half is being re-
vised to incorporate the implications of recent results in approximation

algorithms and the complexity of approximation problems. Please let
me know if you would like to be on the mailing list for the second half.
Comments, criticisms and corrections are welcome, please send them
by electronic mail to rajeev@cs.stanford.edu.

Contents

1 Introduction 5

1.1 Preliminaries and Basic De�nitions : : : : : : : : : : : : 7

1.2 Absolute Performance Guarantees : : : : : : : : : : : : : 10

1.2.1 Absolute Approximation Algorithms : : : : : : : 11

1.2.2 Negative Results for Absolute Approximation : : 12

1.3 Relative Performance Guarantees : : : : : : : : : : : : : 15

1.3.1 Multiprocessor Scheduling : : : : : : : : : : : : : 16

1.3.2 Bin Packing : 19

1.3.3 The Traveling Salesman Problem : : : : : : : : : 22

1.3.4 Negative Results for Relative Approximation : : : 25

1.4 Discussion : 30

Problems : 31

2 Approximation Schemes 33

2.1 Approximation Scheme for Scheduling : : : : : : : : : : 35

2.2 Approximation Scheme for Knapsack : : : : : : : : : : : 37

2.3 Fully Polynomial Approximation Schemes : : : : : : : : 41

2.4 Pseudo-Polynomial Algorithms : : : : : : : : : : : : : : 43

2.5 Strong NP-completeness and FPAS : : : : : : : : : : : : 48

1

CONTENTS Page 2

2.6 Discussion : 52

Problems : 52

3 Bin Packing 53

3.1 Asymptotic Approximation Scheme : : : : : : : : : : : : 55

3.1.1 Restricted Bin Packing : : : : : : : : : : : : : : : 56

3.1.2 Eliminating Small Items : : : : : : : : : : : : : : 59

3.1.3 Linear Grouping : : : : : : : : : : : : : : : : : : 60

3.1.4 APAS for Bin Packing : : : : : : : : : : : : : : : 62

3.2 Asymtotic Fully Polynomial Scheme : : : : : : : : : : : : 64

3.2.1 Fractional Bin Packing and Rounding : : : : : : : 64

3.2.2 AFPAS for Bin Packing : : : : : : : : : : : : : : 69

3.3 Near-Absolute Approximation : : : : : : : : : : : : : : : 71

3.4 Discussion : 76

Problems : 76

4 Vertex Cover and Set Cover 79

4.1 Approximating Vertex Cover : : : : : : : : : : : : : : : : 82

4.2 Approximating Weighted Vertex Cover : : : : : : : : : : 89

4.2.1 A Randomized Approximation Algorithm : : : : : 91

4.2.2 The Nemhauser Trotter Algorithm : : : : : : : : 96

4.2.3 Clarkson's Algorithm : : : : : : : : : : : : : : : : 100

4.3 Improved Vertex Cover Approximations : : : : : : : : : : 104

4.3.1 The Nemhauser-Trotter Algorithm Revisited : : : 105

4.3.2 A Local Ratio Theorem : : : : : : : : : : : : : : 108

4.3.3 An Algorithm for Graphs Without Small Odd
Cycles : 114

4.3.4 The Overall Algorithm : : : : : : : : : : : : : : : 117

CONTENTS Page 3

4.4 Approximating Set Cover : : : : : : : : : : : : : : : : : : 119

4.5 Discussion : 124

Problems : 124

5 Bibliography 127

CONTENTS Page 4

Chapter 1

Introduction

Summary: The notion of approximation algorithm is introduced and
some motivation is provided for the issues to be considered later. Ba-
sic notation and some elementary concepts from complexity theory are

presented. Two measures of goodness for approximation algorithms are
contrasted: absolute and relative. Both positive and negative results are
described for the following problems: scheduling, bin packing, and the
traveling salesman problem.

A large number of (if not, most of) the optimization problems which
are required to be solved in practice are NP-hard. Complexity theory
tells us that it is impossible to �nd e�cient algorithms for such problems
unless P = NP, and this is very unlikely to be true. This does not

obviate the need for solving these problems. Observe thatNP-hardness
only means that, if P 6= NP, we cannot �nd algorithms which will �nd

exactly the optimal solution to all instances of the problem in time

which is polynomial in the size of the input. If we relax this rather
stringent requirement, it may still be possible to solve the problem

reasonably well.

There are three possibilities for relaxing the requirements outlined
above to consider a problem well-solved in practice:

� [Super-polynomial time heuristics.] We may no longer re-

quire that the problem be solved in polynomial time. In some

5

CHAPTER 1. INTRODUCTION Page 6

cases there are algorithms which are just barely super-polynomial

and run reasonably fast in practice. There are techniques (heuris-

tics) such as branch-and-bound or dynamic programming which

are useful from this point of view. For example, the Knapsack

problem is NP-complete but it is considered \easy" since there

is a \pseudo-polynomial" time algorithm for it. (We shall say

more about this in Chapter 2.) A problem with this approach

is that very few problems are susceptible to such techniques and
for most NP-hard problems the best algorithm we know runs in

truly exponential time.

� [Probabilistic analysis of heuristics.] Another possibility is
to drop the requirement that the solution to a problem cater

equally to all input instances. In some applications, it is possible
that the class of input instances is severely constrained and for
these instances there is an e�cient algorithm which will always
do the trick. Consider for example the problem of �nding Hamil-
tonian cycles in graphs. This is NP-hard. However, it can be
shown that there is an algorithm which will �nd a Hamiltonian

cycle in \almost every" graph which contains one. Such results
are usually derived using a probabilistic model of the constraints
on the input instances. It is then shown that certain heuristics
will solve the problem with very high probability. Unfortunately,
it is usually not very easy to justify the choice of a particular

input distribution. Moreover, in a lot of cases, the analysis of
algorithms under assumptions about distributions is in itself in-

tractable.

� [Approximation algorithms.] Finally, we could relax the re-
quirement that we always �nd the optimal solution. In practice, it
is usually hard to tell the di�erence between an optimal solution

and a near-optimal solution. It seems reasonable to devise algo-

rithms which are really e�cient in solving NP-hard problems, at

the cost of providing solutions which in all cases is guaranteed to

be only slightly sub-optimal

In some situations, the last relaxation of the requirements for solving

a problem appears to be the most reasonable. This results in the notion

1.1. PRELIMINARIES AND BASIC DEFINITIONS Page 7

of the \approximate" solution of an optimization problem. In this book

we will attempt to classify as one of three types all hard optimization

problems, from the point of view of approximability. Some problems

seem to be extremely easy to approximate, e.g. Knapsack, Scheduling

and Bin Packing. Other problems are so hard that even �nding very

poor approximations can be shown to be NP-hard, e.g. Graph Color-

ing, TSP and Clique. Finally, there is a class of problems which seem

to be of intermediate complexity, e.g. Vertex Cover, Euclidean TSP or
Steiner Trees. In some cases we will be able to demonstrate that a

problem is provably hard to approximate within some error.

1.1. Preliminaries and Basic De�nitions

We �rst de�ne an NP-hard optimization problem and explore two no-

tions of approximation. The following is a formal de�nition of a maxi-
mization problem; a minimization problem can be de�ned analogously.

De�nition 1.1: An optimization problem � is characterized by

three components:

� [Instances] D: a set of input instances.

� [Solutions] S(I): the set of all feasible solutions for an instance

I 2 D.

� [Value] f : a function which assigns a value to each solution,

i.e. f : S(I)! <.

A maximization problem � is: given I 2 D, �nd a solution �Iopt 2
S(I) such that

8� 2 S(I); f(�Iopt) � f(�)

We will also refer to the value of the optimal solution as OPT (I),

i.e. OPT (I)
�
= f(�Iopt).

CHAPTER 1. INTRODUCTION Page 8

We will abuse our notation a bit by sometimes referring to the op-

timal solution also as OPT (I). The meaning should be clear from the

context. The following example should help to
esh out these de�ni-

tions.

BIN PACKING (BP): Informally, we are given a collection of

items of sizes between 0 and 1. We are required to pack them into bins

of unit size so as to minimize the number of bins used. Thus, we have
the following minimization problem.

� [Instances] I = fs1; s2; . . . sng, such that 8i; si 2 [0; 1].

� [Solutions] A collection of subsets � = fB1; B2; . . .Bkg which is

a disjoint partition of I, such that 8i; Bi � I and
P

j2Bi sj � 1.

� [Value] The value of a solution is the number of bins used, or

f(�) = j�j = k,

We would like to specify at the outset that an underlying assumption

throughout this book will be that the optimization problems satisfy the
following two technical conditions. This will be particularly important
when we present complexity-theoretic results.

1. The range of f and all the numbers in I have to be integers. Note

that we can easily extend this to allow rational numbers since
those can be represented as pairs of integers. For example, in the
Bin Packing problem we will assume all item sizes are rationals.

2. For any � 2 S(I), f(�) is polynomially bounded in the size of

any number which appears in I.

It is not very hard to see that the �rst condition is reasonable since
no computer can deal with in�nite precision real numbers. As for the

second condition, we defer the justi�cation and the motivation to Chap-
ter 2.

We are only going to be concerned with NP-complete optimiza-

tion problems such as Bin Packing. Some people may �nd this concept

1.1. PRELIMINARIES AND BASIC DEFINITIONS Page 9

slightly puzzling since normally the notion of NP-completeness is ap-

plied to languages or decision problems. For example, when we say that

Bin Packing is NP-complete, it is understood that we are referring to

the problem of deciding whether a given instance I has a solution of

value at mostK, whereK is also speci�ed as a part of the input. There-

fore, we de�ne the notion of NP-hardness for optimization problems.

De�nition 1.2: If an NP-hard decision problem �1 is polynomially

reducible to computing the solution of an optimization problem �2, then
�2 is NP-hard.

Typically, the problem �1 is the decision version of the problem

�2. In other words, for a maximization problem �2, �1 is of the form:
\Does there exist � 2 D(I) such that f(�) � K?"; however, this is
not always the case. In fact, the above de�nition uses the more general
notion of Turing reducibility and this permits a wider applicability of
the termNP-hardness. Refer to the book by Garey & Johnson [15] for

a discussion of these issues.

Given an NP-hard optimization problem �, it is clear that we can-
not �nd an algorithm which is guaranteed to compute an optimal so-

lution in polynomial time for all input instances, unless P = NP. We
now relax the requirement of optimality and ask for an approximation
algorithm. This is de�ned as follows.

De�nition 1.3: An approximation algorithm A, for an optimiza-

tion problem �, is a polynomial time algorithm such that given an input
instance I for �, it will output some � 2 S(I). We will denote by A(I)
the value f(�) of the solution obtained by A.

A couple of remarks are in order. First, note that we are only

interested in polynomial time algorithms and so this is built into the
de�nition of an approximation algorithm. We will abuse notation and

use A(I) to denote both the value of the solution and the solution itself.

Consider, for example, the Bin Packing problem. Let DA (Dumb

Algorithm) be an algorithm which packs each item into a bin by itself.

CHAPTER 1. INTRODUCTION Page 10

Clearly, this is an approximation algorithm for the problem BP. Of

course it is not a very good approximation algorithm in the sense that

the number of bins it uses need not be close to the optimal number of

bins.

Thus, we need some way of comparing approximation algorithms

and analyzing the quality of solutions produced by them. Moreover, the

\measure of goodness" of an approximation algorithm must somehow

relate the optimal solution to the solution produced by the algorithm.
Such measures are referred to as performance guarantees and the exact
choice of such a measure is not obvious a priori. We will explore severalWhat do you think

is the most natural

choice of such a

measure?

notions of performance guarantees in what follows.

1.2. Absolute Performance Guarantees

We know that packing a collection of items into the smallest possible
number of bins is \impossible". So what is the next best solution
that we could obtain? Clearly, this would be a solution which uses at

most one extra bin when compared to the optimal solution. In general,
it would be desirable to have a solution whose value di�ers from the
optimal by some small constant. This is formalized in the absolute
performance measure.

De�nition 1.4: An absolute approximation algorithm is a poly-
nomial time approximation algorithm for � such that for some constant

k > 0,

8I 2 D; jA(I)�OPT (I)j � k

This is clearly the best we can expect from an approximation al-

gorithm for any NP-hard problem. But can we �nd such algorithms?
We give below a couple of examples where such algorithms are possible

to �nd.

1.2. ABSOLUTE PERFORMANCE GUARANTEES Page 11

1.2.1. Absolute Approximation Algorithms

Consider the problem� of coloring the vertices of a graph such that no

two adjacent vertices have the same color. The goal is to minimize the

number of colors used. The decision version of this problem is NP-
hard even when restricted to graphs that are planar. We now show

that the planar graph coloring problem has an absolute approximation

algorithm.

We �rst present the following theorem about the NP-hardness of
the planar graph coloring [15].

Theorem 1.1: The problem of deciding whether a planar graph is 3-
colorable is NP-complete.

It is also well-known that any planar graph is 5-colorable. In fact,
the (in)famous Four Color Theorem for planar maps [2, 3] tells us that
every planar graph is 4-colorable.

Consider the following approximation algorithm A for the planar
coloring problem. It �rst checks if the graph is 2-colorable (or, bipartite)
and computes the 2-coloring if possible. Otherwise, it just computes Do you know how

check if a graph is

bipartite?
the obvious 5-coloring in polynomial time. It follows that A never uses
more than 2 extra colors.

Theorem 1.2: Given any planar graph G, the performance of the ap-
proximation algorithm A is such that jA(G)�OPT (G)j � 2.

Consider now the related problem of edge coloring. Here we have to
color the edges of a graph with the smallest possible number of colors
such that no two adjacent edges have the same color. The following

theorem of Vizing [8] relates the maximumdegree � to the edge coloring

number.

Theorem 1.3: Every graph needs at least � and at most �+1 colors
to color its edges.

�We will not explicitly specify the various components of optimization problems

in the rest of the book.

CHAPTER 1. INTRODUCTION Page 12

In fact, the proof of Vizing's Theorem gives a polynomial time algo-

rithm to actually �nd a coloring using � + 1 colors. It is therefore

amazing that even a very special case of the edge coloring problem is

NP-hard, as described in the following theorem of Holyer [26].

Theorem 1.4: The problem of determining the number of colors

needed for a 3-regular planar graph is NP-hard.

Putting all this together we can construct another absolute approx-

imation algorithm for an NP-hard optimization problem. The algo-
rithm A just colors the input graph using � + 1 colors as per Vizing's
Theorem.

Theorem 1.5: The approximation algorithm A has the performance
guarantee jA(G)�OPT (G)j � 1.

1.2.2. Negative Results for Absolute Approxima-

tion

One may conclude from the preceding examples that only a very spe-
cial type of optimization problem can have an absolute approximation

algorithm. These are problems where the value of the optimal solution
can easily be pinned down within a small range, and the hardness of
the problem lies in determining the exact value of the optimum solution

within this range. An absolute approximation algorithm merely uses
this information to give a trivial solution. It remains open whether

some really interesting problem (i.e. one where the optimum value is
not so easily pinned down) has an absolute approximation algorithm.

Possibly the best candidate for such a result would be the Bin Packing
problem.

But what if there is no such algorithm for Bin Packing? How do

we go about proving that such an approximation is impossible? First

note that if P = NP then we can �nd the exact optimum for any NP-
complete problem. Thus, any hardness or impossibility result must

be predicated upon the assumption that P 6= NP. It turns out that
most optimization problems are hard to approximate in the sense that

1.2. ABSOLUTE PERFORMANCE GUARANTEES Page 13

�nding an absolute approximation is itself NP-hard. The following

two examples will help to illustrate this.

Let us �rst consider the KNAPSACK problem. An instance of the

problem consists of:

� Items I = f1; . . . ; ng.

� Sizes s1; . . . ; sn for each of the corresponding items.

� Pro�ts p1; . . . ; pn for each of the corresponding items.

� Knapsack capacity B.

A feasible solution to the problem is a subset I 0 � I such thatP
i2I 0 si � B. We want to maximize f(I 0) =

P
i2I 0 pi. More informally,

we would like to pack some items of di�ering sizes into a knapsack of
�xed capacity, so as to maximize the payo�s obtained from packing
each item.

This problem is NP-hard and so it is natural to try for an absolute
approximation algorithm for it. Unfortunately, there exists no such
algorithm unless there is a polynomial time algorithm which can �nd
an optimum solution.

Theorem 1.6: If P 6= NP then no approximation algorithm can solve
KNAPSACK with jA(I)�OPT (I)j � k, for any �xed k.

Proof: We will prove this by contradiction using a scaling argu-

ment. Assume there exists an algorithm A with performance guarantee
k which is a positive integer. We will show that this algorithm can be

used to construct an optimum solution to any instance of Knapsack,
thereby establishing the theorem.

Suppose we are given some instance I of Knapsack. We then con-
struct a new instance I 0 such that s0i = si and p0i = (k + 1)pi. In
other words, we leave everything unchanged except the pro�ts which

are scaled up by a factor of k + 1. It is easy to see that every feasible

solution for I is also a feasible solution for I 0, and vice versa. The only

CHAPTER 1. INTRODUCTION Page 14

di�erence is that the value of the solution for I 0 is k+1 times the value

of the solution for I.

We now run the algorithm A on I 0 to obtain the solution A(I 0).

This gives us a solution � for I. Clearly,

jA(I 0)�OPT (I 0)j � k

) j(k + 1)f(�) � (k + 1)OPT (I)j � k

Recall that we are only dealing with integer values here. Upon dividing

across by k + 1 we get

jf(�)�OPT (I)j � k

k+1

) jf(�)�OPT (I)j � 0

This, of course, means that we have found the optimal solution �.

2

The key ingredient in the proof was the observation that KNAP-
SACK has a certain scaling property due to the linear dependence of

the value function on some numbers in the input. It may seem that this
will only be possible when the problem involves numbers in some cru-
cial sense. As the next example shows, we can use \scaling" arguments
in purely combinatorial problems which do not have any numerical as-
pect. But this relies on the notion of \graph products" which implicitly
provides us with the required scaling.

Consider the CLIQUE problem. The problem is that of �nding the
largest clique (or, complete subgraph) in the input graph G. This is

an NP-hard problem. Note the problem is essentially the same as
the MAXIMUM INDEPENDENT SET (MIS) problem. The followingCan you see why

MIS and CLIQUE

are related?
theorem establishes the hardness of approximating the largest clique.

Theorem 1.7: If P 6= NP, then there is no absolute approximation
algorithm A for the CLIQUE problem.

Proof: We �rst de�ne them-power of a graph G, sayGm, as follows.

Take m copies of G and connect any two vertices which lie in di�erent

copies. We leave the proof of the following claim as an exercise.

1.3. RELATIVE PERFORMANCE GUARANTEES Page 15

Claim: The largest clique in G is of size � if and only if the largest

clique in Gm is of size m�.

Again, let us assume for the purposes of contradiction that the ap-

proximation algorithm A gives an absolute error of k. Then we claim

that the clique problem can be optimally solved by the following strat-

egy. Run A on Gk+1. If the largest clique in G is of size �, then we

have that:

jA(Gk+1)�OPT (Gk+1)j � k

) jA(Gk+1)� (k + 1)OPT (G)j � k

Now it is not very hard to see that given any clique of size � in Gm, we
can �nd a clique of size �

m
in G in polynomial time. Thus, we can �nd

a clique C in G such that

jjCj �OPT (G)j �
k

k + 1

Since both jCj and OPT (G) are integer-valued, it follows that C must
be an optimal clique.
2

1.3. Relative Performance Guarantees

From the preceding section it is clear that, while absolute performance

guarantees are the most desirable ones, it is quite unlikely that we
can give such guarantees for any interesting class of hard optimization

problems. Therefore it seems reasonable to relax the requirement for a

\good approximation algorithm". We start by examining the problem
of multiprocessor scheduling and use it to motivate the de�nition of

relative performance guarantees. Interestingly enough, the whole �eld
of approximation algorithms has its roots in the work of Graham [18]

in 1966 on the problem of scheduling. In fact, scheduling problems
probably have the most well-developed body of work from the point of

view of approximation algorithms. In this book, however, we will not

be able to cover most of these results and the reader is referred to the

survey article by Lawler et al [40] for further details.

CHAPTER 1. INTRODUCTION Page 16

1.3.1. Multiprocessor Scheduling

Consider the simplest version of the multiprocessor scheduling problem.

The input consists of n jobs, J1; J2; . . . ; Jn. Each job has a correspond-

ing runtime p1; . . . ; pn, where each pi is assumed to be rational. The

jobs are to be scheduled on m identical machines or processors so as

to minimize the �nish time. The �nish time is de�ned to be the max-

imum over all processors of the total run-time of the jobs assigned to
that processor. The set of feasible solutions consists of all partitions of
the n jobs into m subsets, and the value of a solution is the maximum
over all subsets of the total run-time of the subset. The problem is
known to be NP-hard even in the case where m = 2.

Consider the following algorithm due to Graham which is called the
list scheduling algorithm. The algorithm considers the n jobs one-by-
one, assigning each job to one of the m machines in an online fashion.

The rule is to assign the current job to that processor which is (at that
point) the least loaded processor. Note that the load on a processor is
the total run-time of all the jobs assigned to it.

Theorem 1.8: Let A denote the list scheduling algorithm. Then, for
all input instances I,

A(I)

OPT (I)
� 2�

1

m

Moreover, this bound is tight in that there exists an input instance I�

such that
A(I�)

OPT (I�)
= 2 �

1

m

Proof: Let us �rst prove the upper bound on the ratio. Assume,

without loss of generality, that after all the jobs have been assigned the

machineM1 has the highest load. Let L denote the total run-time of all
the jobs assigned to M1. Also, let Jj denote the last job to be assigned
to this machine.

We claim that every machine has a total load of at least L � pj.
This is because when Jj was assigned to M1, M1 was the least loaded

1.3. RELATIVE PERFORMANCE GUARANTEES Page 17

processor with a load exactly L� pj. It then follows that

nX
i=1

pi � m(L� pj) + pj

But it is also the case that

OPT (I) �

Pn
i=1 pi

m

since some processor must have this much load at the end of the schedul-

ing process. Since A(I) = L, we obtain that

OPT (I) � (L� pj) +
pj

m
= A(I)�

�
1 �

1

m

�
pj

Observing that OPT (I) � pj since some processor has to execute the
job Jj, we obtain the desired result.

To see that the algorithm actually achieves this ratio, consider the
following input instance I�. Let n = m(m � 1) + 1 and let the �rst
n� 1 jobs have a run-time of 1 each, while the last job has pn = m. It

is easy to see that OPT (I�) = m while A(I) = 2m� 1. This gives the
desired lower bound on the ratio. 2

The interesting thing to note about this result is that we are mea-

suring the quality of the approximation algorithm in terms of the ratio
between the value of its solution and that of the optimal solution. This
is exactly what we mean by a relative performance measure. The fol-
lowing de�nition formalizes this notion.

De�nition 1.5: Let A be an approximation algorithm for an optimiza-

tion problem �. The performance ratio RA(I) of the algorithm A on

an input instance I is de�ned as

RA(I) =
A(I)

OPT (I)

in the case where � is a minimization problem. On the other hand

when � is a maximization problem we de�ne the performance ratio as

RA(I) =
OPT (I)

A(I)

CHAPTER 1. INTRODUCTION Page 18

The ratio is de�ned di�erently for maximization and minimization

problems so as to have a uniform measure for the quality of the solu-

tion produced by A. The ratio is always at least 1 and the algorithm

produces a better approximation if the ratio is closer to 1. We now

de�ne the worst-case ratio for the algorithm A.

De�nition 1.6: The absolute performance ratio, RA, of an ap-

proximation algorithm A for an optimization problem � is

RA = inffr jRA(I) < r;8I 2 Dg

Applying these de�nitions to the list scheduling algorithm A, we
have that RA = 2� 1

m
. Actually there is an even better approximation

algorithm for the scheduling problem called LPT . This algorithm �rst

orders the jobs by decreasing value of their run-times. After this, the
algorithm behaves exactly the same as the list scheduling algorithm.
Graham proved the following result for this new algorithm. We leave
the proof as an exercise.

Theorem 1.9: The LPT algorithm has a performance ratio of RLPT =
4
3
� 1

3m
.

In some problems, the absolute performance ratio is not the best
possible de�nition of the performance guarantee for an approximation
algorithm. This is because there may be input instances where the
value of the optimal solution is very small, and the performance of the

approximation algorithm di�ers only slightly from the optimal value.

However, the small value of the optimum solution will make the ratio
appear to be large. This is unreasonable since on larger instances the

ratio is bounded by a small constant. We will see an example of such
a problem in the next section. To take care of such anomalies, we will

also de�ne an asymptotic performance ratio.

De�nition 1.7: The asymptotic performance ratio, R1A , of an
approximation algorithm A for an optimization problem � is

R1A = inffr j 9N0; RA(I) � r for all I 2 D� with OPT (I) � N0g

1.3. RELATIVE PERFORMANCE GUARANTEES Page 19

We note that there is no di�erence between the absolute and asymp-

totic performance ratios of any approximation algorithm for scheduling.

This is due to the scaling property of this problem. The scaling prop-

erty is that we can multiply all the run-times by any large constant

N , thereby scaling up the value of the optimal solution by N , with-

out really changing the problem being solved. On the other hand, we

will see that the approximative behavior of the Bin Packing problem

changes dramatically when we move from the absolute to the asymp-
totic ratios. Most NP-complete optimization problems do not have the

scaling property.

Before we start proving bounds on the performance ratios of speci�c
algorithms, it is useful to consider how such a bound may be derived

in general. Assume without loss of generality that � is a minimization
problem. Then the proof of an upper bound on RA for any algorithm
A can be broken up into two parts. The �rst part is a proof of a lower
bound on the value of OPT (I) in terms of some parameters x. The
second stage is to show that we can provide an upper bound on A(I)

in terms of x. To obtain the bound on the ratio, we merely eliminate x
from these two inequalities. It is reasonably easy to see what the two Can you identify

these two parts of

the proof in

Theorem ?

parts of the proof need to be in the case where � is a maximization
problem and/or when proving a lower bound on RA.

1.3.2. Bin Packing

Recall the Bin Packing problem de�ned earlier. This problem is very
closely related to the scheduling problem { they are duals of each other.
Therefore, it is not very surprising that similar ideas crop up in devising

approximation algorithms for these two problems.

We �rst consider the algorithm called First Fit or FF. This algo-
rithm goes down the list of items and �ts each item into the �rst bin

where it will �t. More precisely, let us number the bins according to

the time at each the �rst item was inserted into it. While trying to
pack item i, FF successively tries to �t it into the already opened bins

in this order. If no open bin has any room for the current item, then it
opens a new bin and place item i in it.

CHAPTER 1. INTRODUCTION Page 20

Claim: For all instances I, FF (I) < d2
P
sie.

Proof: The proof is based on the observation that at most one

bin is more than half empty at the end of the entire packing process.

Suppose this is not the case. Let Bi and Bj be two bins which are more

than half empty, such that i < j. Then the �rst item placed into bin

Bj is of size at most 0:5. But this item would have �t into Bi and FF

would not have opened the new bin Bj .

From this we conclude that total size of all the items is at least half
of the number of bins used by FF. But the total size of all the items is
also a lower bound on the value of the optimal solution. This gives the

desired bound. 2

Actually, much stronger bounds were obtained for the First Fit
algorithm by Johnson et al [31] in 1974. They established the following

result.

Theorem 1.10: R1FF = 1:7 and more precisely we have the following

bounds.

� 8I; FF (I)� 1:7OPT (I) + 2

� 9I; FF (I)� 1:7(OPT (I)� 1)

It is fairly easy to see an example where FF (I) � 5
3
OPT (I). Con-

sider the following instance I with 18m items. Here � denotes a suitably

small constant.

� 6m items of size 1
7
+ �.

� 6m items of size 1
3
+ �.

� 6m items of size 1
2
+ �.

It is clear that OPT (I) = 6m { the optimal packing puts one item of

each type into each bin. On the other hand, FF will distribute theCan you see why

there is no better

packing?
items as follows.

� m bins with 6 items of size 1
7
+ � each.

1.3. RELATIVE PERFORMANCE GUARANTEES Page 21

� 3m bins with 2 items of size 1
3
+ � each.

� 6m bins with 1 item of size 1
2
+ � each.

A seemingly smarter heuristic is called Best Fit or BF. This puts

each item into a bin where it �ts the best. In other words, if the item

�ts into a bin which is already open, then it is placed into that bin

where the empty space left over (after the current item has been added)

is minimized. If no currently open bin can accommodate the current

item then a new bin is opened for it. Quite surprisingly, Johnson et
al showed that the BF algorithm also has an asymptotic performance
ratio of 1.7.

In the lower bound example for FF it seems that the poor perfor-
mance is due to the fact that all the small items are placed earlier in the
list. A natural modi�cation is to �rst sort the items in decreasing order
of sizes, and then run the FF or BF algorithm. This is quite similar to
the LPT modi�cation to the list scheduling algorithm. Let us call the

resulting algorithms FFD (First Fit Decreasing) and BFD (Best Fit
Decreasing). Once again both algorithms have the same asymptotic
ratio of 11

9
.

The proof of the upper bound for FFD or BFD is very involved
(over 100 pages long!). However, it is easy to see that the bound of 11

9

is achieved for the following input instance: 6m items of size 1
2
+ �, 6m

items of size 1
4
+2�, 6m items of size 1

4
+ �, and 6m items of size 1

4
� �.

We leave the proof as an exercise.

Finally, we comment on the di�erence between the absolute and

asymptotic performance ratios for the Bin Packing problem. The fol-

lowing theorem can be proved by using an input instance consisting of

only seven items { the proof is again left as an exercise.

Theorem 1.11: RFFD �
3
2

Contrast this result with upper bound of 11/9 on the asymptotic
ratio for FFD. This gives an example of an approximation algorithm

with very di�erent performance in terms of the two kinds of ratios.

CHAPTER 1. INTRODUCTION Page 22

1.3.3. The Traveling Salesman Problem

As a �nal example to illustrate the notion of performance ratios, we

consider the famous problem of TSP. The input instance for TSP con-

sists of a directed graph G with edge lengths d(i; j), for all vertices i

and j. Some of the edge lengths may be in�nite, so we can assume that

the graph is complete without any loss of generality. A feasible solution

consists of a tour of the graph which visits every vertex exactly once.
The goal is to �nd a tour of minimum length. We will only consider
the symmetric version of the TSP, i.e. where d(i; j) = d(j; i). Thus, we
may restrict ourselves to the case of undirected graphs only. At this
point we are interested in an even more special case of this problem

called �TSP.

De�nition 1.8: The Metric Traveling Salesman Problem (�TSP) is
the special case of the TSP where the input instances satisfy the triangle

inequality. More precisely, for all vertices i, j and k,

d(i; k) � d(i; j) + d(j; k)

Consider the following heuristic for �TSP called the Nearest Neigh-
bor heuristic or NN. Starting at any vertex, construct a Hamiltonian

path by going to the nearest unvisited vertex at each step. Finally,
the cycle is completed by returning to the starting vertex. This is a
natural heuristic but its performance is very poor as demonstrated by

the following result due to Rosenkrantz et al [51].

Theorem 1.12: Let n denote the number of vertices in an instance of

�TSP. Then, R1NN = �(log n)

However, it turns out that we can do much better by using more

complex ideas. In fact, there are several heuristics known to achieve an

asymptotic ratio of 2 [51]. Most of the good heuristics for �TSP are
based on �nding an Eulerian tour and then using \short-cuts" to obtain

a Hamiltonian tour. We start by reviewing the notion of an Eulerian
tour (refer to any standard graph theory book for more details).

1.3. RELATIVE PERFORMANCE GUARANTEES Page 23

De�nition 1.9: Let G be a multigraph. An Eulerian tour in G is a

walk that visits every vertex at least once and each edge exactly once.

Note that in a multigraph every edge can be repeated arbitrarily

often. The following theorem characterizes the class of graphs which

permit an Eulerian tour. Constructing such a tour in polynomial time

is an easy consequence of the proof of this theorem.

Theorem 1.13: A multigraph G has an Eulerian tour if and only if G
is connected and all vertices are of even degree.

Let us now consider the heuristic for �TSP based on the Minimum
Spanning Tree (MST) in a weighted graph. The MST heuristic starts

o� by �nding (in polynomial time) any MST for the graph G. It then
constructs an Eulerian tour ET from the edges of T (using each edge
exactly twice). The Eulerian tour yields a Hamiltonian cycle as follows.
Starting at any vertex, visit the vertices in the order in which they are
�rst visited in ET .

Algorithm MST:

Input: Graph G(V;E) with distance function d.

Output: A Hamiltonian tour in G.

1. Find a minimum spanning tree T in G.

2. Construct a multigraph T 0 by making two copies of each edge in T .

3. Find an Eulerian tour ET in T 0.

4. Construct a Hamiltonian tour by short-circuiting the Eulerian
tour. That is, starting at any vertex, follow the Eulerian tour as

long as new vertices are being visited. At any point where the

Eulerian tour repeats a vertex, jump directly to the next

unvisited vertex. Finally, complete the cycle by returning to the

starting vertex.

CHAPTER 1. INTRODUCTION Page 24

Theorem 1.14: The MST heuristic applied to �TSP has R1MST = 2.

Proof: To prove correctness, it su�ces to note that the graph T 0 is

Eulerian since it is connected and all degrees are even.

Given any collection of edges H from G, denote by d(H) the sum

of all the edge lengths for the edges in H. We �rst claim the d(T) �
OPT (G). This is because any Hamiltonian cycle with an edge removed

gives a spanning tree. Thus, we obtain that d(ET) = d(T 0) � 2 �
OPT (G). Finally, the short-cut procedure ensures that AMST (G) �
d(ET). This gives us an upper bound of 2 for the ratio.Do you see why

AMST � d(ET)?

We leave the construction of an instance where this ratio is achieved
by AMST as an (easy) exercise.
2

It turns out that there is a modi�cation to this heuristic which
improves the performance ratio substantially. This is the heuristic due
to Christo�des [9] which we will refer to as CH. The basic idea is to
avoid doubling the edges in going from the MST to an Eulerian graph.

All we really need to do is to add a collection of edges which will increase
the degree of every odd-degree vertex in the MST by exactly 1. This
collection of edges is nothing but a matching on the odd-degree vertices.Why does such a

matching always

exist? Recall that a matching for a collection of vertices S in G is a subset
of edges from G such that the set of end-points of these edges is exactly
S, and each vertex in S has exactly one edge from the matching incident

on it. Since G is complete, there exists a matching for every set S.
Moreover, using standard results [38], the minimum-weight matching

in G for S can be found in polynomial time.

It is relatively easy to modify the MST heuristic to incorporate the
ideas presented above. We obtain the following result for Christo�des

heuristic.

Theorem 1.15: R1CH = 1:5

Proof: Let M be the minimum weight matching on the set O of

odd degree vertices in the MST T . We claim that d(M) � OPT (G)

2
.

1.3. RELATIVE PERFORMANCE GUARANTEES Page 25

To see this, consider the tour X obtained by taking short-cuts in the

optimal solution so as to exclude all vertices which are not in O. The

claim follows from the observations that d(X) � OPT (G) and that the

tour on O is the union of two matchings for O (consider the alternate

edges in the tour). Thus, one of these two matchings has weight at most

half that of the entire tour. Now the Eulerian tour ET is constructed

in the graph T [M and has weight at most 1:5 �OPT (G). This gives
the desired result. As usual, we leave as an exercise the construction
of an example to show that this bound can be achieved.

2

This last heuristic is the best-known for �TSP. Note that the MST
heuristic is very e�cient since it runs in almost linear time. The heuris-

tic due to Christo�des is much more ine�cient since �nding a minimum
weight matching [38] requires time O(n3). An interesting open problem
is to �nd a simple construction of a class of algorithms which allows a
smooth trade-o� between the running time and the performance ratio.
The results of Vaidya [57, 58] on exact and approximate minimum-

weight matching (for points in the Euclidean plane) does give a trade-
o�, but it would seem that better results should be possible. Of course,
improving the bound of 1:5 would be a major breakthrough! Another
way of looking at the Euclidean TSP problem is: given n points in the
plane, embed a Hamiltonian cycle on these points so as to minimize
the total length of the embedded cycle. This can now be generalized

to the embedding of any graph, and not just the Hamiltonian cycle.

Interesting approximation results of this type can be found in the work
of Bern et al [7] and Hansen [23].

1.3.4. Negative Results for Relative Approxima-

tion

We have seen several problems which permit good approximation al-

gorithms under the relative performance measure. However, there are

a large number of problems which do not exhibit this behavior. For
example, in the GRAPH COLORING, CLIQUE or TSP problems we

do not know of any algorithm which provides a performance guaran-

CHAPTER 1. INTRODUCTION Page 26

tee that is substantially better than n, the number of vertices in the

graph. It is desirable to come up with some explanation for why certain

problems are easy to approximate and others are as intractable in their

approximating versions as in the optimization version. Unfortunately,

the theory of NP-completeness does not provide any insight into this

issue. There appears to be no connection between the approximate

version of problems which are very closely related in their optimization

versions (as all NP-complete problems must be!).

A good example is provided by the problems of VERTEX COVER
(VC) and MAXIMUM INDEPENDENT SET (MIS). Given a graph
G(V;E), a vertex cover is a set C � V such that each edge in E has
at least one end-point in C. The VC problem is to �nd a minimum

cardinality vertex cover in the input graph G. An independent set
in G is a set I � V such that there are no edges between any pair
of vertices in I. The MIS problem is to �nd a maximum cardinality
independent set in G. An independent set is exactly the complement
of a clique, so the MIS problem is the same as the CLIQUE problem

in the complement graph.

Exercise 1.1: Show that in every graph G, C is a vertex cover if and
only if I = V n C is an independent set. Moreover, C is an optimal
solution to VC if and only if I = V nC is an optimal solution to MIS.

From this one might conclude that approximating VC and MIS are
related problems. This is not the case! As we will see in Chapter 4,

there is an approximation algorithm for VC with the ratio 2. On the

other hand, we do not know of any approximation algorithm for MIS
with a ratio signi�cantly better than jV j = n. To see why the approx-

imation of VC does not help in approximating MIS, let G be a graph
with an optimal VC of size n

2
� 1. Then we are guaranteed a vertex

cover of size at most n � 2 by the approximation algorithm. Unfortu-

nately, the complement of this vertex cover gives us an independent set
of size only 2, as opposed to the optimal independent set of size n

2
+ 1.

Even though NP-hardness reductions shed little light on the ap-

proximative behavior of optimization problems, it turns out we can use

1.3. RELATIVE PERFORMANCE GUARANTEES Page 27

the theory of NP-completeness to show that certain kinds of approxi-

mation algorithms do not exist unless P = NP. Let us �rst de�ne the
best possible performance ratio for a given optimization problem.

De�nition 1.10: We de�ne RMIN(�), the best achievable perfor-

mance ratio for an optimization problem �, as follows

RMIN(�) = inffr � 1 j 9 poly-time algorithm A for � with R1A � rg

The most desirable situation would be to have RMIN = 1 for a
problem �. We see in the next few chapters that this can be achieved
for problems such as KNAPSACK and BIN PACKING. These are the
problems which are very easy to approximate. The next level of prob-
lems are those for which we can show that RMIN is bounded, as in the

case of �TSP. Finally, there are the really hard problems for which
RMIN is unbounded. In the rest of this chapter we examine a few
problems of the latter type.

Consider the general TSP problem, i.e. without the triangle inequal-
ity. The following theorem due to Sahni and Gonzalez [55] shows that
this is a really hard problem to approximate. Note that, as usual, the
hardness of an approximation problem is predicated upon P and NP
being di�erent.

Theorem 1.16: If P 6= NP then RMIN(TSP) =1.

Proof: Assume that there is an algorithmA such that R1A = K, for
some constant K. The proof idea is to use A to construct a polynomial

time algorithm to solve HAM, the Hamiltonian cycle problem. Since
the HAM is NP-complete, we get a contradiction if P 6= NP.

Suppose we have an instance of HAM, i.e. an undirected and un-
weighted graph G(V;E). We construct an instance I for the TSP as
follows. Let H be a complete graph on the vertex set V . The length

of an edge in H which is from E is set to 1, and the length of all other

edges are set to Kn, where n is the cardinality of V . The following
claim is easy to prove.

CHAPTER 1. INTRODUCTION Page 28

Claim: If G has a Hamiltonian cyle then OPT (I) = n. Otherwise,

OPT (I) � (K + 1)n � 1.

Consider what happens when we run the algorithm A on I. If

G is Hamiltonian, then A(I) � Kn. Otherwise, A(I) � OPT (I) �
(K + 1)n � 1. Thus, the value of the solution found by A tells us

whether G is Hamiltonian or not. In e�ect, we have given a polynomial

time reduction from HAM to the approximate version of TSP. This

contradicts the fact that HAM is NP-complete, unless P = NP.
2

So far we have seen results which prove the impossibility of �nding

absolute approximation algorithms (e.g. for CLIQUE), and the above
result shows that for the TSP there is no approximation algorithm
with a bounded performance ratio. It is possible to devise algorithms
whose performance lies somewhere in between these two kinds of ap-
proximation algorithms. For example, we will see shortly an approx-

imation algorithm A for BIN PACKING where jA(I) � OPT (I)j �
O(log2OPT (I)). Another example is the result of Lipton and Tar-
jan [42] where it is shown that there is an approximation algorithm A

for �nding maximum independent sets in planar graphs such that

jA(I)�OPT (I)j � O

0
@ 1q

log logOPT (I)

1
AOPT (I)

using the planar separator theorem. Notice that such results imply that

R1A = 1.

Given the possibility of such intermediate performance guarantees,

it becomes interesting to prove impossibility results for such approxima-

tion algorithms. It is not very hard to modify the proof of Theorem 1.7

to obtain the following hardness result for CLIQUE. A series of such

results have been obtained by Nigmatullin [47] and Kucera [37].

Theorem 1.17: For all constants �, K > 0, there is no approximation

algorithm A for the CLIQUE problem such that

jA(I)�OPT (I)j � K �OPT (I)1��

1.3. RELATIVE PERFORMANCE GUARANTEES Page 29

Notice that this theorem does not rule out the possibility that there

is some algorithm A for CLIQUE such that R1A = 1. (For example,

one could obtain a result similar to that obtained for the case of planar

graphs.) We do not know whether this is possible for CLIQUE but

believe it to be extremely unlikely. Unfortunately, we do not know

of any way of showing that the asymptotic ratio 1 is not achievable,

besides showing that RMIN > 1 if P 6= NP. The latter is strictly

stronger result.

Assuming that the ratio 1 is not achievable for CLIQUE, we can
show that no constant ratio is achievable either. This is a consequence
of the following very curious theorem. Basically the result says that
if that problem can be approximated within a speci�c constant fac-

tor, then it can be approximated within any constant factor. This is
an example of a self-reducibility result for the approximation of an op-
timization problem. This result is usually interpreted as saying that
CLIQUE is very hard to approximate as we do not believe that it has
RMIN = 1.

Theorem 1.18: For the CLIQUE problem, either RMIN(CLIQUE) =

1 or RMIN(CLIQUE) = 1.

The idea behind this theorem is to use a notion of graph product
to amplify the size of the optimal clique.

De�nition 1.11: The product of two graphs G1(V1; E1) and G2(V2; E2)

is de�ned as a graph G(V;E) such that

� V = V1 � V2.

� an edge f(u1; u2); (v1; v2)g is in G if either (u1; v1) 2 E1 or (u1 =
v1 and (u2; v2) 2 E2).

We write G = G1 �G2 and de�ne GN = GN�1 �G.

Note that the product operation is non-commutative. We will need

the following lemma whose proof is left as an exercise.

CHAPTER 1. INTRODUCTION Page 30

Lemma 1.1: Let OPT (G) denote the size of the largest clique in G.

Then OPT (GN) = OPT (G)N for all N > 0. Moreover, given any

clique of size C in GN , we can �nd in polynomial time a clique of size

C 0 � dC
1

N e in G.

We are now ready to prove the theorem.

Proof: Assume that RMIN(CLIQUE) <1. Then there exists an

approximation algorithm A for the clique problem which has R1A = r,
for a some constant r. We now �x any � > 0 and construct an algorithm

A� such that R1� < 1 + �. This would imply the desired result.

The algorithm A� �rst chooses N such that r
1

N < 1+�. It then runs
the algorithm A on GN . Clearly, A �nds a clique of size at least

OPT (GN)

r
=
OPT (G)N

r

in GN . By the preceding lemma, this can be used to construct a clique
of size at least

OPT (G)

r
1

N

>
OPT (G)

1 + �

in G.

To see that the algorithm A� runs in polynomial time, observe that
the graph product can be computed in polynomial time and N is a
constant.

2

1.4. Discussion

We are following the notation of Garey and Johnson [15] which is now

universally accepted. Their book is well-known as a good reference on

the theory ofNP-completeness. It also provides a great introduction to
the area of approximation algorithms, although it is quite a bit outdated
in this respect. You could also refer to some of the other standard text-

books on combinatorial algorithms [27, 48]. Unfortunately neither of

these is up-to-date and they only provide a very cursory description of

1.4. DISCUSSION Page 31

the work in this area. There are some survey articles on approximation

algorithms [13, 30, 35] but again all of these are really old and out-

dated. A more recent article by Kannan and Korte [32] is much more

useful.

Problems

1{1 Using the fact that every planar graph has a vertex of degree at
most 5, show that all planar graphs are 5-colorable. How do you
�nd such a coloring in polynomial time?

1{2 Consider the following variant of the traveling salesman problem

called the bottleneck TSP problem. The goal is to �nd a Hamilto-
nian tour of the input graph so as to minimize the length of the
longest edge in the tour. Assuming that the input graph satis�es
the triangular inequality, show that this problem has a polynomial
time approximation algorithm with ratio 3.

1{3 Consider the following generalization of the TSP called k-TSP
which is de�ned for any �xed k > 0. Notice that the 1-TSP

problem is exactly the �TSP.

Instance: Complete graph G(V;E), with a distance function d :
E ! <+ which satis�es the triangle inequality.

Feasible Solutions: A collection of k subtours on G such that

each subtour starts and ends at v1, and all other vertex occur

exactly once in exactly one of the subtours.

Goal: The objective is to minimize the total length of the k sub-
tours.

Modify the Christo�des Heuristic to solve this problem approxi-

mately and provide upper and lower bounds on its performance
ratio.

(Hint: There is a polynomial time algorithm to �nd a minimum

spanning tree T of G such that a speci�c node v has a speci�c

degree d in T .)

CHAPTER 1. INTRODUCTION Page 32

1{4 De�ne the product of two graphs G1 and G2 as G = G1 � G2,

where G is obtained by replacing each vertex of G1 by a copy

of G2 and putting all possible edges between two copies which

correspond to adjacent vertices. Let GN be the graph de�ned by

the recurrence relation Gi+1 = Gi � G. Prove the following two

claims.

� Let OPT (G) be the size of the largest clique in G. Then,

OPT (GN) = OPT (G)N .

� Given a clique of size C in GN , we can construct in polyno-
mial time a clique of size at least dC

1

N e in G.

1{5 A Hamiltonian walk in a graph G(V;E) is a closed walk that visits
each vertex at least once. Let � denote the optimization problem
of �nding a minimum length Hamiltonian walk.

a). Show that � is NP-complete.

b). What can you say about the hardness of approximating �?

c). Construct (and analyze) the best approximation algorithm
you can for �.

1{6 The Edge-Disjoint Cycle Cover [ECC] problem is to �nd a col-
lection of cycles in G(V;E) which are edge-disjoint and which
include every vertex at least once. Comment on the relationship
between the optimization version of �nding a cover by the small-
est number of cycles and the Hamiltonian walk problem. Analyze

the approximability of ECC by presenting positive and negative
results.

Chapter 2

Approximation Schemes

Summary: The concept of an approximation scheme is de�ned and
is illustrated by presenting such schemes for multiprocessor schedul-
ing and the knapsack problem. This de�nition is then strengthened to

that of fully polynomial approximation schemes and illustrated via the
knapsack problem. It is observed that the existence of such schemes
is intimately related to the existence of pseudo-polynomial time algo-
rithms. The notion of strong NP-completeness is presented and a
connection is made with the existence of approximation schemes and

pseudo-polynomial time algorithms.

Recall the result for CLIQUE which states that either RMIN = 1

or RMIN =1 for that problem. We had said that this is a \hardness"

result. Why should this not be viewed as an \easiness" result? After
all, we have only to �nd any bounded-ratio approximation algorithm

for CLIQUE, and then that can be turned into an approximation algo-

rithm with a ratio arbitrarily close to 1. One reason for viewing this
as hardness result is similar to the commonly held view of an NP-
completeness result as a hardness result. The existence of a bounded
ratio algorithm for CLIQUE would imply a result which seems much

too good to be true, given the lack of success in solving the problem
so far. Another reason is that not too many problems seem to have

algorithms which can achieve a ratio arbitrarily close to 1. We will try
to provide some characterization of such problems in this part of the

33

CHAPTER 2. APPROXIMATION SCHEMES Page 34

book.

Let us start by formalizing the notion of \having an algorithm which

can achieve a ratio arbitrarily close to 1."

De�nition 2.1: An approximation scheme for an optimization

problem � is an algorithm A which takes as input both the instance

I and an error bound �, and has the performance guarantee

RA(I; �) � (1 + �):

Notice that we can view such an algorithm A as a family of algorithms
fA� : � > 0g such that RA� � 1 + �. However, the de�nition of
an approximation scheme has the stronger requirement that the entire
(in�nite) family of algorithms have a �nite and uniform representation.
This is a very good solution to a hard optimization problem and most

people would consider a problem well-solved for all practical purposes if
such an algorithm could be found. As we shall see, one can impose even
stronger conditions on the approximate solution to a problem. Our con-
vention has been to assume implicitly that an approximation algorithm
must run in polynomial time. However, for the sake of tradition, we

will make this explicit in the following de�nition.

De�nition 2.2: A polynomial approximation scheme (PAS) is
an approximation scheme fA�g where each algorithm A� runs in time

polynomial in the length of the input instance I.

We would like to emphasize that the above de�nitions are made

in terms of the absolute performance ratios, and not the asymptotic

performance ratio. We will see later that this is a crucial di�erence.

We now provide some examples of problems which permit of a PAS,

viz. SCHEDULING and KNAPSACK.

2.1. APPROXIMATION SCHEME FOR SCHEDULING Page 35

2.1. Approximation Scheme for Schedul-

ing

Recall the multiprocessor scheduling problem: Jobs J1, . . ., Jn have run-

times of p1, . . ., pn. They are to be scheduled on mmachines/processors

so as to minimize the �nish time. We have already seen some approx-

imation algorithms with bounded ratios for this problem. We now

present a PAS for this problem due to Graham [18].

Assume that n > m, and that the run-times are arranged in non-
increasing order (i.e. i < j implies that pi � pj). Note that the latter
assumption can be easily ful�lled by sorting the jobs based on their
run-times. Consider now the algorithm Ak which is de�ned for each

integer k 2 [0; n].

Algorithm Ak:

Input: Runtimes of n jobs fp1; . . . ; png and processor count m.

Output: A feasible schedule.

1. Schedule the �rst k jobs J1, . . ., Jk optimally.

2. Starting with the partial schedule obtained in the previous step,
schedule the remaining jobs greedily using the LPT rule.

Recall that the LPT rule picks the next largest unscheduled job
and schedules it on a processor which has the least load currently. This
algorithm clearly runs in polynomial time. As for its performance ratio,

we have the following result due to Graham.

Theorem 2.1: RAk � 1 +
1� 1

m

1+b kmc
.

Proof: LetK denote the �nish time of the schedule found in Step 1.

Clearly, ifAk(I) = K then this algorithm has found an optimal schedule

CHAPTER 2. APPROXIMATION SCHEMES Page 36

and we are done. Assume now that the �nish time of the total schedule

is strictly greater than K. Then it must be the case that there is some

job Jj with j > k that is �nished at time Ak(I). This implies that

all processors are busy during the time interval [0; Ak(I) � pj], since

otherwise the job Jj would have been scheduled earlier on. (Notice

that once a processor becomes idle, it remains idle till the end of the

schedule.) Let T =
Pn

i=1 pi be the total run-time of the n jobs. WeWhy cannot a

processor get a job

after becoming

idle?

now conclude that
T � m(Ak(I)� pj) + pj

Since the jobs are arranged in non-increasing order of run-times, we
have that

T � mAk(I)� (m� 1)pk+1

Observing that OPT (I) is at least T=m, we have the following inequal-

ity.

Ak(I) � OPT (I) +

�
1�

1

m

�
pk+1 (2.1)

If we can now show that pk+1 cannot be too large in terms of
OPT (I)�, we will have the desired result. This may be established
as follows. Consider the k largest jobs which were scheduled in Step

1. In an optimal schedule, some processor must be assigned at least
1 + bk=mc of these k jobs. Since each of these has run-time at least as
large as Jk+1, we conclude that

OPT (I) �
�
1 +

j
k

m

k�
pk+1

) pk+1 �
OPT (I)

1+b kmc

Combining this with equation 2.1, we have the desired result.

2

We can now extract the promised PAS from the above result. Let
A�, for any � > 0, be the algorithm Ak with k chosen such that the

�The proof of an upper bound on RA(I) usually consists of two parts. First,

there is an upper bound on A(I), possibly in terms of OPT (I) and some parameter

X; then there is a lower bound on OPT (I), possibly in terms of A(I) and X.

Eliminating X from these two inequalities gives the upper bound.

2.2. APPROXIMATION SCHEME FOR KNAPSACK Page 37

performance ratio of Ak is at most 1 + �. Verify that this will be the

case provided k � 1��
�
m. However, we have left out one crucial detail

in the description of the algorithm Ak. Exactly how does Step 1 get

implemented? It is not very hard to see that there is a brute-force

algorithm which compute an optimal schedule in time O(mk), for k

jobs on m processors. The running time of this step is polynomially

bounded in the length of I for su�ciently small values of m, say for

constant m. We have established the following theorem. Exactly how large

can m be without

making the time

super-polynomial?Theorem 2.2: For �xed m, there is a polynomial approximation
scheme for the m-processor scheduling problem.

Notice that this algorithm is by no means a practical algorithm even

for relatively small value of m. The running time is exponential in 1=�
and so we cannot ask for ratios arbitrarily close to 1 without excessively
increasing the running time. It is instructive to compute the running
time of A� for small values of �. For example, �gure out the running
time when m = 10 and � = 0:1.

We would like to point out that this trade-o� between the running-
time and the quality of the approximation obtained is an important
feature of any approximation scheme. In general, we would like the

trade-o� to be such that the running time does not increase too fast
with a decrease in the performance ratio. We will see this feature in
the approximation schemes presented in the next few sections.

2.2. Approximation Scheme for Knap-

sack

In the KNAPSACK problem we are required to �nd a subset of the

speci�ed items such that the total size of the subset does not exceed the
knapsack capacity, while maximizing the sum of the payo�s associated

with the items. More formally,

Instances: Set U = fu1; . . . ; ung of items where each item ui has a
size si and a pro�t pi associated with it. The capacity of the

CHAPTER 2. APPROXIMATION SCHEMES Page 38

knapsack, B, is also speci�ed as a part of the input.

Solutions: Subset U 0 � U such that
P

ui2U 0 si � B.

Value: The value of a solution is the total pro�t,
P

ui2U 0 pi, of the items

packed into the knapsack. The goal is to maximize the net pro�t.

As usual we assume that the numbers involved in the input instance are

non-negative rationals. There is no loss of generality in requiring that
each item has size at most B. The following greedy algorithm GA is an
obvious approximation algorithm for knapsack. The idea is to consider
the items one-by-one in the order decreasing pro�t to size ratio. Each

item is inserted into the knapsack if adding it does not cause the set of
current items to exceed the knapsack capacity.

Algorithm GA:

Input: The knapsack size B, the item sizes fs1; . . . ; sng and the
pro�ts fp1; . . . ; png.

Output: Subset of the items of total size at most B.

1. Sort the items in non-increasing order of their pro�t densities
pi=si. At this point, we have that if i < j then pi=si � pj=sj ;

2. U 0 ;;

3. for i = 1 to n do begin

if
P

j2U sj � B � si then U U + i;

end .

Unfortunately, this natural greedy algorithm does not do well in

the worst case. For example, consider the case where there are only
two items { the �rst has size 1 and pro�t 2, while the second has

size B and payo� B. Surprisingly, there is a very simple modi�cationWhat is RGA?

to GA which substantially improves its performance. Let MGA be

2.2. APPROXIMATION SCHEME FOR KNAPSACK Page 39

the Modi�ed Greedy Algorithm which picks the better of the solutions

provided by GA and the solution obtained by packing just one item of

the largest possible size into the knapsack. We leave the proof of the

following theorem as an easy exercise.

Theorem 2.3: RMGA = 2

In 1975, Sahni [53] came up with a PAS for this problem. The
basic idea was quite similar to the one used for the scheduling problem.
For all k, 0 � k � n, de�ne the algorithm Ak as follows. First the
algorithm Ak chooses a subset S of at most k items as being in the
knapsack initially. Then it runs the algorithm GA using the remaining

items. This process is repeated for all possible choices of the k-set S.
This paradigm is generally referred to as k-enumeration for obvious
reasons. Almost every PAS that has been devised is based on this
approach. The application of this idea to knapsack gives the following
result.

Theorem 2.4: For all k, Ak has a performance ration RAk � 1 + 1
k

and runs in time O(knk+1).

Proof: The number of subsets of size at most k is O(knk). For each
such subset the amount of work done byAk is O(n), implying the bound
on the running time. We now turn our attention to the performance
ratio for Ak. It can be shown that the bound on the performance ratio is

tight, the construction of an input instance for this is left as an exercise.

Let us �x our attention on any one optimal solution, say X � U .
If jXj � k, then it is obvious that Ak will �nd an optimal solution

and we are done. Assume then that x = jXj > k. Let the items

Y = fv1; . . . ; vkg � X be the items with the largest pro�ts in X. The
remaining items Z = X n Y = fvk+1; . . . ; vxg all have smaller pro�ts

than the items in Y , and are assumed to be numbered in the order of
decreasing pro�t density pi=si.

The algorithm Ak will try Y as the initial k-set at some point.

We are only interested in this one iteration of the algorithm. After

CHAPTER 2. APPROXIMATION SCHEMES Page 40

initializing the knapsack to Y , the algorithm will greedily try to �t into

the knapsack all the remaining items one-by-one in the order of their

pro�t densities. De�ne m as the index of the �rst item in the set Z

which is not placed into the knapsack by the algorithm Ak, i.e. items

vk+1, . . ., vm�1 are placed into the knapsack.

The reason that the item vm did not get placed in the knapsack

is that the remaining empty space at that point, say E, was smaller

than sm. At the time when vm is rejected the knapsack contains the
items from Y , the items vk+1, . . ., vm�1 and some items which are not
present in the optimal set X. Let G denote the items that are placed
into the knapsack so far by the greedy stage of AK. (These are all the
items added to the knapsack up to this point that are not in Y .) It is

clear that the items in G nX are of total size � = B � E �
Pm�1

i=1 si.
Moreover, each of these items has pro�t density at least pm=sm since
they were considered earlier than vm by the greedy stage of Ak. It then
follows thaty

profit(G) �
m�1X
i=k+1

pi +�
pm

sm

We can now write profit(X), the net pro�t of the optimal solution
X, as follows.

kX
i=1

pi +
m�1X
i=k+1

pi +
xX

i=m

pi

� profit(Y) +

�
profit(G) ��

pm

sm

�
+

B �

m�1X
i=1

si

!
pm

sm

= profit(Y) + profit(G) + E
pm

sm

� profit(Y [G) + pm

Since the solution produced by Ak is a superset of Y [G, we get

OPT (I) � A(I) � pm. Noting that there are at least k items with

a higher pro�t than pm in X, viz. the items in Y , we have that

yWe will use profit(T) and size(T) to denote the total pro�t and size, respec-

tively, of the items in the subset T .

2.3. FULLY POLYNOMIAL APPROXIMATION SCHEMESPage 41

pm �
profit(X)

k+1
. This completes the proof.

2

To obtain a PAS for KNAPSACK, let A� be the algorithm Ak with

k =
l
1
�

m
.

Corollary 2.1: There exists a PAS for KNAPSACK where the algo-

rithm A� runs in time nO(
1

�).

2.3. Fully Polynomial Approximation

Schemes

Consider the running times of the algorithm A� in the PAS presented
above for KNAPSACK and SCHEDULING { the running times are
really enormous even for reasonable values of �. The de�nition of fully

polynomial approximation schemes is designed to remedy this short-
coming in the de�nition of a PAS.

De�nition 2.3: A fully polynomial approximation scheme

(FPAS) is an approximation scheme fA�g where each algorithm A�

runs in time polynomial in the length of the input instance I and 1=�.

Assuming that P 6= NP, the existence of a FPAS is the best one
can hope for in the case of an NP-complete problem. Not surprisingly,

there are very few NP-complete problems which permit of an FPAS.

One problem for which we can demonstrate such a scheme is KNAP-
SACK. The basic idea behind the FPAS for KNAPSACK is prototypical

of most FPAS that are known.

Let PP be an algorithm for the exact solution of KNAPSACK which

runs in time O(n3P logSB), where P = maxi pi and S = maxi si. From This does not

imply that

P = NP even

though the running

time appears to be

polynomial. Do

you see why not?

this we construct an approximation algorithm AK for KNAPSACK as

follows.

Algorithm AK:

CHAPTER 2. APPROXIMATION SCHEMES Page 42

Input: Knapsack instance I with the pro�ts pi, sizes si, and

knapsack capacity B.

Output: Subset of items of total size at most B.

1. Construct an input instance IK with new pro�ts p0i = bpi=Kc,
while leaving everything else unchanged.

2. Run algorithm PP on the instance IK to obtain a subset of the
items S which has total size not exceeding B.

3. return S.

Let V =
P

i pi. We derive an algorithm A� from AK by setting
K = V

(1�+1)n
. This gives us an FPAS for KNAPSACK as proved in the

following theorem [28]. The running time is polynomial in both the
length of the input and the inverse of �.

Theorem 2.5: The algorithm A� runs in time O
�
n3 logSB

�

�
and has

RA� � 1 + �.

Proof: The running time is easily obtained from the above de�ni-
tions. As for the performance ratio, �rst observe that

OPT (I)�K �OPT (IK) � Kn

which implies that
OPT (I)�AK(I) � Kn

Note also that OPT (I) � V . We can now derive the desired bound as

follows,

RA�(I) �
A�(I) +Kn

A�(I)

= 1 +
Kn

A�(I)

� 1 +
Kn

OPT (I)�Kn

2.4. PSEUDO-POLYNOMIAL ALGORITHMS Page 43

� 1 +
Kn

V �Kn

� 1 + �

2

Basically, this FPAS starts o� with a slow but exact algorithm for

KNAPSACK, and then trades accuracy for speed by means of a \scal-

ing" technique. Of course, we have yet to specify the algorithm PP ;
this is dealt with in the next section.

2.4. Pseudo-Polynomial Algorithms

The algorithm PP that we promised in the last section is an example
of a pseudo-polynomial algorithm. This is a class of algorithms which

runs in time that is polynomial in the size of the numbers involved in an
input instance. Note that the usual de�nition of the length of an input
depends logarithmically in the size of the numbers used. Thus, such
algorithms are not really polynomially bounded in the length of the
input. In this section we present a brief introduction to these notions.

Refer to the book by Garey and Johnson [15] for a more thorough
treatment of these concepts. We will also point out the connections
between such algorithms and the construction of FPAS.

We start o� by de�ning the notion of a number problem. A com-
binatorial optimization problem consists of two components { a com-

binatorial component and a numerical component. The former refers

to structures which are purely combinatorial in nature, such as graphs
and set systems. This component can be thought of as structures which

are made up of atoms drawn from some bounded domains; these can
be encoded as vectors over a �nite domain. The latter can be thought

of as numbers which are drawn from some unbounded domain such as
integers or rationals. We now de�ne the following two functions which

measure the size of the encoding of an input instance assuming some

\reasonable" encoding scheme.z

zWe are presenting only an intuitive development here and the reader should

refer to [15] for a more formal treatment.

CHAPTER 2. APPROXIMATION SCHEMES Page 44

De�nition 2.4: Given any optimization problem � and a reasonable

encoding of the input instance for �, we de�ne LENGTH(I) and

MAX#(I) as functions which map the input instances into positive

integers. The LENGTH function measures the combinatorial size of

the input, and the MAX# function measures the size of the largest

number used in the encoding.

For example, in the case of the KNAPSACK problem, we have
LENGTH(I) = n and MAX#(I) = maxfP; Sg. We can now present

a more formal de�nition of polynomial time and pseudo-polynomial
time algorithms.

De�nition 2.5: A polynomial time algorithm A for � runs in time
which is polynomially bounded in LENGTH(I) and logMAX#(I) for

each input instance I.

De�nition 2.6: A pseudo-polynomial time algorithm A for � runs
in time which is polynomially bounded in LENGTH(I) and MAX#(I)
for each input instance I.

Thus, our usual de�nition of an e�cient algorithm refers to the
former class of algorithms, while the algorithm PP for KNAPSACK
belongs to the latter class of algorithms. Let us illustrate the latter

de�nition by providing a pseudo-polynomial algorithm for the PARTI-
TION problem. This problem isNP-complete and is de�ned as follows.
An input instance consists of n positive integers, s1, . . ., sn, and a bag
size B. A feasible solution solution consists of a subset X � [1; . . . ; n]

such that
P

i2X si = B. The decision version of this problem is closely

related to the BIN PACKING, SCHEDULING and KNAPSACK prob-

lems.

Consider the algorithm DP [14] for PARTITION which is based on

the paradigm of Dynamic Programming. The basic idea behind DP is

to construct the table Ti;j, for 1 � i � n and 0 � j � B. The entries in
the table are boolean values such that Ti;j = TRUE if and only if there
exists Y � [1; . . . ; i] such that

P
l2Y sl = j. This table T is constructed

in a row-by-row fashion as follows.

2.4. PSEUDO-POLYNOMIAL ALGORITHMS Page 45

Algorithm DP:

Input: Bag size B and item sizes fs1; . . . ; sng.

Output: Table T .

1. for all 1 � i � n do Ti;0 TRUE;

2. for all 0 � j � B do T1;j (j = s1);

3. for j = 1 to B do Ti+1;j Ti;j _ Ti;j�si+1 ;

A simple induction proof establishes that this algorithm will cor-
rectly compute the table T . To decide the problem of PARTITION,
it su�ces to check the entry T (n;B). Actually, the algorithm can
be easily modi�ed to solve the search problem of computing a set X.

This can be done by storing the set Xi;j at the position Ti;j such that
Xi;j � [1; . . . ; i] and

P
l2Xi;j

sl = j. Note that there may not be a unique Do you see how to

do this?Xi;j but it su�ces to store any one set at each position in T . We obtain
the following theorem which implies that DP is a pseudo-polynomial
time algorithm for PARTITION.

Theorem 2.6: The algorithm DP solves the search version of the
PARTITION problem in time O(n2B).

We now show how to devise the pseudo-polynomial time algorithm

PP for KNAPSACK using some of the ideas from DP . Our goal is

now to �nd a subset U 0 � U of total size at most B so as to maximize
the profit(U 0). The obvious modi�cation to DP would be to store a Observe the close

relation between

PARTITION and

KNAPSACK.

set Xi;j at each each table entry Ti;j as before, just ensuring that we

pick the set of maximum possible pro�t out of all the sets which are
candidates for being Xi;j. Unfortunately, this does not work and there

are two problems which crop up.

The �rst problem is that we get a running time that depends expo-
nentially on the length of B, while the scaling argument of the previous

section works only permits the running time of the algorithm PP to

depend exponentially on the length of P . Secondly, it is not clear that

CHAPTER 2. APPROXIMATION SCHEMES Page 46

picking the set Xi;j of the largest pro�t is the right choice of a partial

solution. It may be the case that only a lower pro�t subset of [1 . . . i]

can be extended to an optimal solution.

The way to �x the �rst problem is to have the columns of T as being

in correspondence with the pro�ts of the sets rather than their sizes.

Note that the maximum pro�t of any set is nP , and in particular we

have that OPT (I) � nP .

De�nition 2.7: The boolean table T consists of entries Ti;j, for 1 �
i � n and 0 � j � nP , such that Ti;j = TRUE if and only if there

exists a set Xi;j � [1; . . . ; i] with size(Xi;j) � B and profit(Xi;j) = j.

In this de�nition, the entry Ti;j tells us if there is a subset of the �rst i

items which is a feasible solution to KNAPSACK and has value j.

The second problem that we had mentioned can be easily handled
once we have the following fact. The proof is obvious.

Lemma 2.1: Let X, Y � [1; . . . ; i] be such that profit(X) =
profit(Y) = j and size(X) � size(Y). Then, for all Z � [i+1; . . . ; n],

it is the case that size(X [Z) � size(Y [Z).

This means that if any candidate setXi;j can be extended to an optimal

solution, then a candidate set of the smallest size can be so extended.
Thus, we can now de�ne the sets Xi;j as follows.

De�nition 2.8: Consider any entry Ti;j in the table T . If Ti;j =

FALSE then Xi;j = �, where � denotes that Xi;j is unde�ned. If

Ti;j = TRUE, then Xi;j is de�ned as the subset X � [1; . . . ; i] of the
smallest size which has size at most B and pro�t exactly j; when no

such set exists the value of Xi;j is unde�ned.

It is now fairly easy to come up with a strategy for computing the
T and X values inductively in a row-by-row fashion.

Algorithm PP:

2.4. PSEUDO-POLYNOMIAL ALGORITHMS Page 47

Input: Knapsack capacity B, item sizes si and pro�ts pi.

Output: The tables T and X.

1. for all 1 � i � n do begin

Ti;0 TRUE;

Xi;0 ;;

end ;

2. for all j 6= p1 do begin

T1;j FALSE;
X1;j �;

end ;

3. T1;p1 TRUE;

4. X1;v1 f1g;

5. for i = 2 to n do begin

for all 1 � j � nP do begin

Ti+1;j Ti;j _ Ti;j�pi+1;
Xi+1;j is assigned the set of smallest size among Xi;j

and Xi;j�pi+1 [fi+ 1g. If only one of these is
de�ned then the choice is forced; when both are
unde�ned or infeasible, then Xi+1;j = �.

end ;

end .

Once we have computed the tables X and T , the optimal solution

to KNAPSACK can be read o� from the column with highest index

which has a TRUE entry. The proof of correctness is by means of a
simple induction on i and is omitted. The following theorem results.

Theorem 2.7: Algorithm PP solves KNAPSACK exactly in time
O(n3P log SB).

This result is due to Ibarra and Kim [28], and a more e�cient FPAS

has been presented by Lawler [39].

CHAPTER 2. APPROXIMATION SCHEMES Page 48

2.5. Strong NP-completeness and FPAS

Let us try to better understand the implications of a pseudo-polynomial

algorithms for NP-complete problems. Does the existence of such an

algorithm imply that P = NP? The answer is no, because the running

time is exponential in logMAX#(I) and the length of the input is as-

sumed to be polynomial in both LENGTH(I) and logMAX#(I) when

we de�ne the notion of NP-completeness. Given this, it seems possible
that every NP-complete problem has a pseudo-polynomial time algo-
rithm, even if P 6= NP. But it is not very hard to see that ifMAX#(I)

is polynomially bounded in LENGTH(I), for every instance I of �,
then the existence of a pseudo-polynomial algorithm implies the exis-
tence of a polynomial time algorithm. This bound is valid for every
\non-number" problem such as CLIQUE or HAM. We conclude that it
is impossible to �nd pseudo-polynomial algorithms for such problems

unless P = NP. This can be formalized as follows [14, 15].

De�nition 2.9: Given any optimization problem �, we de�ne the
problem �poly as the problem � restricted to only those instances I

where MAX#(I) is polynomially bounded in LENGTH(I).

De�nition 2.10: An optimization problem � is said to be strongly
NP-complete if �poly is NP-complete.

It is clear that all non-number problems are strongly NP-complete.
Moreover, it is fairly easy to see that the existence of pseudo-polynomial
algorithms is quite unlikely for any number problem which is strongly

NP-complete.

Theorem 2.8: Unless P = NP, a strongly NP-complete problem
cannot have a pseudo-polynomial algorithm.

Some examples of strongly NP-complete number problems are
BIN PACKING, TSP and SCHEDULING. The standard NP-hardness
proof of KNAPSACK uses really large numbers so that does not es-

tablish strong NP-completeness for this problem. (Of course, if we

2.5. STRONG NP-COMPLETENESS AND FPAS Page 49

believe that P 6= NP then KNAPSACK cannot be strongly NP-
complete since we have already seen a pseudo-polynomial algorithm

for it.) It is not obvious how one may go about establishing strong

NP-completeness results. Most reductions for number problems in-

volve really large numbers and thus say nothing about the hardness of

�poly. The following theorem [14, 15] proves to be very helpful in this

regard.

Theorem 2.9: If �1 is strongly NP-hard, �2 is in NP, and there is
a pseudo-polynomial reduction from �1 to �2, then �2 is strongly

NP-complete.

Here a pseudo-polynomial reduction is a generalization of the usual
notion of polynomial reduction, where it is required that the length of
the produced instance is not much smaller than the original instance.
The proof of the above theorem is fairly obvious. The only problem

is that to apply this theorem we must know of some strongly NP-
complete number problem to start with. (Non-number problems are
trivially strongly NP-complete, but they are not very useful in the
application of this theorem to number problems since reductions from
them always seem to involve large numbers.) Luckily, there is a num-

ber problem called 3-PARTITION which is known to be strongly NP-
complete and this usually plays the role of the satis�ability problem
when proving strong NP-completeness results. Once again we urge
the reader to refer to the book of Garey and Johnson [15] for a more
comprehensive treatment of these ideas.

What does all this have to do with the approximation issue? It

turns out that all known FPAS have been derived by the application of
a scaling-like technique to a pseudo-polynomial algorithm, just as in the

case of KNAPSACK. It seems plausible then to argue that we can �nd
an FPAS for a problem only if it is not strongly NP-complete. This

idea is formalized in the following result due to Garey and Johnson [14].

Theorem 2.10: Let � be an optimization problem which has the prop-
erty that for all instances I, OPT (I) is polynomially bounded in the

LENGTH(I) and MAX#(I). If � has a FPAS, then � has a pseudo-

polynomial algorithm.

CHAPTER 2. APPROXIMATION SCHEMES Page 50

Proof: We will only deal with problems where all the numbers

involved are positive integers, although the following proof can be gen-

eralized to the case of rationals too. Let � = 1=MAXOPT , where

MAXOPT is the bound on the value of OPT that is guaranteed in

the theorem. Then 1=� is polynomially bounded in LENGTH(I) and

MAX#(I).

Suppose we have a FPAS for �, and assume without loss of gener-

ality that � is a minimization problem. Then we have an algorithm A�

which �nds a solution to any instance of � such that

A�(I) � (1 + �)OPT (I)
) A�(I)�OPT (I) � � �OPT (I) < 1

The last inequality follows from the choice of �. Since the numbers

involved are all integers, this means that A� �nds an optimal solution.
Moreover, A� is a pseudo-polynomial algorithm given our choice of �.
2

Corollary 2.2: Let � be an integer optimization problem such that
OPT (I) is polynomially bounded in the LENGTH(I) and MAX#(I).
If � is strongly NP-complete , then � does not have a FPAS.

Notice that this accounts for the two technical conditions we had
imposed on the class of optimization problems we are dealing with in
this book. It is possible to �nd optimization problems which violate
the conditions of the corollary, but such problems do not arise naturally

in practice. At this point we have a fairly complete characterization

of problems which have a FPAS. Since most interesting problems are

strongly NP-complete, we may as well forget about constructing FPAS

for them. It is still possible to construct PAS for such problems, e.g. the
one we saw for SCHEDULING. However, we do not even know how to

construct a PAS for a large class of strongly NP-complete problems. It
is therefore quite natural to look for negative results about the existence

of PAS. The following theorem of Garey and Johnson proves to be quite
useful for this purpose; the proof is trivial.

2.5. STRONG NP-COMPLETENESS AND FPAS Page 51

De�nition 2.11: Let � be an optimization problem. The decision

problem �K is the problem of deciding, for a given instance I, whether

OPT (I) � K.

Theorem 2.11: Let � be an integer optimization problem. Suppose

that the decision problem �K is NP-hard for some constant K. Then,

unless P = NP, there is no PAS for � and, in particular, there does

not exist any approximation algorithm A for � with RA < 1 + 1=K.

Let us see how this theorem applies to speci�c problems. Consider
the COLORING problem of �nding a vertex coloring of a graph with
the minimum number of colors. It is well known that checking that a
graph is 3-colorable is NP-hard. This implies that there is no PAS for

coloring, and that no algorithm can guarantee a ratio better than 4=3.
Similarly, the problem of deciding if an instance of BIN PACKING has
a solution with 2 bins is NP-hard { this is exactly the PARTITION
problem. This implies that BIN PACKING does not have a PAS and
that no algorithm can guarantee a ratio better than 3=2.

At this point a discerning reader may start to protest at what seems
like a contradiction in that we have already seen an algorithm for BIN
PACKING which has a ratio much better than 3=2. But note that

we are talking only about absolute performance ratios in this section,
whereas the approximation algorithms for BIN PACKING seen earlier
(such as FFD or BFD) guaranteed a good asymptotic performance ratio.
In fact, most people had assumed that strong NP-completeness even

implied that no Asymptotic PAS/FPAS could be be devised for the

problem, unless P = NP. It was therefore a big shock when Vega and
Lueker [59] presented an Asymptotic PAS for Bin Packing in 1981. This

shock was compounded when Karmakar and Karp [34] transformed this
result into an Asymptotic FPAS for BIN PACKING. These two results

will be our next topic of discussion.

In conclusion, we would like to o�er some observations about the
above development. Consider the SCHEDULING problem. It is a scal-

able problem, which implies that for every approximation algorithm

it must be the case that RA = R1A . We know of a PAS, and there-

fore an Asymptotic PAS, for this problem, but it is clear that there

CHAPTER 2. APPROXIMATION SCHEMES Page 52

cannot be even an Asymptotic FPAS (without leading to a FPAS and

therefore a pseudo-polynomial algorithm) for SCHEDULING. This is

in contrast to BIN PACKING which does not have a PAS, but does

have an Asymptotic FPAS!

2.6. Discussion

Sahni [54] gives general techniques for constructing PAS and FPAS. For
constructing a PAS, the technique is k-enumeration whose applications

have been demonstrated above. The techniques for FPAS are round-
ing/scaling and interval partitioning, some aspects of which were seen
above and are further demonstrated in the algorithms for BIN PACK-
ING that follow. An interesting result of Korte and Schrader [36] shows
that essentially the only way to construct PAS/FPAS is by means of

these techniques. This result is proved in the context of independence
systems but appear to be reasonably powerful in their application.

Problems

2{1 Consider the KNAPSACK problem de�ned in class. (Find a sub-
set of n items, with total size at most K, which maximizes the
total value.)

a). Consider the Greedy Algorithm (GA). It �rst sorts the items

in decreasing order of their density di =
vi
si
. Then it considers

the items in this order and greedily adds an item to the current

knapsack if the resulting size is at most K. Finally, it compares
the solution so obtained with the one in which only the maximum

value item is placed in the knapsack { choosing the better of these

two possible solutions. Show that RGA = 2.

b). Construct (and analyze) a PAS (polynomial time approxima-

tion scheme) for the KNAPSACK problem using GA.

Chapter 3

Bin Packing

Summary: Approximation schemes are presented for BIN PACKING,
including a PAS due to Vega and Lueker, and an FPAS due to Kar-
makar and Karp. It is shown that the latter can be modi�ed into an

approximation algorithm whose absolute error is bounded by a poly-
logarithmic function in the value of the optimal solution.

It is clear from the preceding discussion that we cannot expect to

�nd any approximation schemes for BIN PACKING, unless P = NP.
However, we had said that the hardness result for BIN PACKING does
not preclude the existence of asymptotic approximation schemes. For
the sake of completeness, we give a formal de�nition of such schemes.

De�nition 3.1: An Asymptotic PAS (APAS) is a family of algo-
rithms fA� j � > 0g such that each A� runs in time polynomial in the

length of the input and R1A� � 1 + �.

De�nition 3.2: An Asymptotic FPAS (AFPAS) is a family of
algorithms fA� j � > 0g such that each A� runs in time polynomial in

the length of the input and 1=�, while R1A� � 1 + �.

The �rst result that we present is due to Vega and Lueker [59].
They provide an APAS for BIN PACKING which runs in linear time

and has A�(I) � (1 + �) � OPT (I) + 1. The running time is linear in

53

CHAPTER 3. BIN PACKING Page 54

the LENGTH(I) but turns out to be severely exponential in �. Note

that the reason this is an APAS, and not a PAS, is the additive error

term of 1 in this bound. The basic techniques used in this result were

similar to those used earlier for other problems such as Knapsack [54].

These may be summarized as follows:

� Elimination of \small" items.

� Interval Partitioning or Linear Grouping.

� Rounding of \Fractional" Solutions.

We then present the modi�cation of this result due to Karmakar
and Karp [34] which led to an AFPAS for BIN PACKING. They gave
an approximation scheme with a performance guarantee similar to the
one described above; the running time was improved to O

�
n logn
�8

�
. In

fact, a variation of their ideas leads to a stronger result. This was the
construction of an approximation algorithmA which is fully polynomial
and has the performance guarantee

A(I) � OPT (I) + O(log2OPT (I))

At this point there is no reason to believe that we cannot devise an

(asymptotic) approximation algorithm which runs in polynomial time
and guarantees that A(I) � OPT (I) + O(1). This is a major open
problem!

We now derive the results described above. Our presentation com-

bines the ideas of both Vega and Lueker, and Karmakar and Karp, as
there is a considerable overlap in the basic tools used by them. The
basic approach used in both results is as follows. We �rst de�ne a re-

stricted version of the problem where all items are reasonably large in

size, and the item sizes can only take on a few distinct values. This
version of the BIN PACKING problem turns out to reasonably easy

to solve. We then provide a reduction from the original problem in-
stance to a restricted problem instance in two steps. The �rst step is

to eliminate \small" items { it is shown that given any packing of the

remaining items, the small items can be added in without increasing
the number of bins used signi�cantly. The second step is to divide the

3.1. ASYMPTOTIC APPROXIMATION SCHEME Page 55

item sizes into m intervals, and replace all items in the same interval

by items of the same size. It turns out that this a�ects the value of the

optimal solution only marginally. In the next few sections, we consider

each of these ingredients in turn and �nally show how they can all be

tied together to give the APAS/AFPAS.

3.1. Asymptotic Approximation Scheme

The input to the BIN PACKING problem consists of a set of n items,

where the size of the ith item is si. We will assume that each item size
is a rational number in the interval (0; 1].

De�nition 3.3: For any instance I = fs1; . . . ; sng, let SIZE(I) =Pn
i=1 si denote the total size of the n items, and let OPT (I) denote the

minimum number of unit size bins needed to pack the items.

We now give two inequalities relating these quantities. The proof

of the �rst lemma is obvious. The second lemma follows from a re-
sult given in Chapter 1 which showed that the First Fit algorithm will
always �nd a solution that uses at most 2 � SIZE(I) + 1 bins. This
is a constructive result in that there is a linear time algorithm which
guarantees the bound of Lemma 3.2.

Lemma 3.1: SIZE(I) � OPT (I) � jIj = n.

Lemma 3.2: OPT (I) � 2 � SIZE(I) + 1.

We will represent an instance I as an ordered list of items, writing

I = s1s2 . . . sn such that 1 � s1 � s2 � � � � � sn > 0.

De�nition 3.4: Let I1 = x1x2 . . .xn and I2 = y1y2 . . .yn be two in-

stances of equal cardinality. The instance I1 is said to dominate the

instance I2, or I1 � I2, if it is the case that xi � yi, for all i.

CHAPTER 3. BIN PACKING Page 56

The following lemma is easily proved by noting that any feasible

packing of I1 gives a feasible packing of I2, using the same number of

bins.

Lemma 3.3: Let I1 and I2 be two instances of equal cardinality such

that I1 � I2. Then, SIZE(I1) � SIZE(I2) and OPT (I1) � OPT (I2).

We de�ne a restricted version of the BIN PACKING problem as

follows. Suppose that the item sizes in I take on only m distinct values.
Now the instance I can be represented as a multi-set of items which
are drawn from these m types of items.

De�nition 3.5: Suppose that we are given m distinct item sizes V =
fv1; . . . ; vmg, such that 1 � v1 > v2 > � � � > vm > 0, and an instance
I of items whose sizes are drawn only from V . Then, we can represent

I as multi-set MI = fn1 : v1; n2 : v2; . . . ; nm : vmg, where ni is a
non-negative integer denoting the number of items in I which have size
vi.

It follows that jMI j =
Pm

i=1 ni = n, SIZE(MI) =
Pm

i=1 nivi =
SIZE(I) and OPT (MI) = OPT (I). We now de�ne the restricted
version of the BIN PACKING problem called RBP.

De�nition 3.6: For all 0 < � < 1 and positive integers m, the prob-
lem RBP [�;m] is de�ned as the BIN PACKING problem restricted to

instances where the item sizes take on at most m distinct values and

each item size is at least as large as �.

In the next section we show how to approximately solve RBP via

a linear programming formulation.

3.1.1. Restricted Bin Packing

Assume that � and m are �xed independently of the input size n.
The input instance for RBP [�;m] is a multiset M = fn1 : v1; n2 :

3.1. ASYMPTOTIC APPROXIMATION SCHEME Page 57

v2; . . . ; nm : vmg such that 1 � v1 > v2 > � � � > vm � �. Let

n = jM j =
Pn

i=1 ni. In the following discussion we will assume that

the underlying set V for M is �xed. Note that, givenM , it is trivial to

determine V and verify that M is a valid instance of RBP [�;m].

Consider a packing of some subset of the items inM into a unit size

bin B. We can denote this by a multiset B = fb1 : v1; b2 : v2; . . . ; bm :

vmg such that bi is the number of items of size vi that are packed into

B. More concisely, having �xed V , we can denote the packing in B

by the m-vector B = (b1; . . . ; bm) of non-negative integers. We will say
that two bins packed with items from M are of the same type if the
corresponding packing vectors are identical.

De�nition 3.7: A bin type T is an m-vector (T1; . . . ; Tm) of non-

negative integers such that
Pm

i=1 Tivi � 1.

Having �xed the set V , the collection of possible bin types is fully
determined and is �nite. Let T 1, . . ., T q denote the set of all legal bin Do you see why?

types with respect to V . Here q, the number of distinct types, is a
function of � and m. We bound the value of q as follows.

Lemma 3.4: Let k = b1
�
c. Then,

q(�;m) �

m+ k

k

!

Proof: Notice that each type vector T t = (T t
1; . . . ; T

t
m) has the

property that, for all i, T t
i � 0 and

Pm
i=1 T

t
i vi � 1. It follows thatPm

i=1 T
t
i � k, since we have a lower bound of � on the values in V .

Thus, each type vector corresponds to a way of choosingm non-negative
integers whose sum is at most k. This is the same as choosingm+1 non-

negative integers whose sum is exactly k. The number of such choices
is an upper bound on the value of q. A standard counting argument

now gives the desired bound.
2

Consider any feasible solution x to an instance M of RBP [�;m].
Each packed bin in this solution can be classi�ed as belonging to one of

CHAPTER 3. BIN PACKING Page 58

the q(�;m) possible types of packed bins. The solution x can therefore

be speci�ed completely by providing the number of bins of each of the

q types.

De�nition 3.8: A feasible solution x to an instance M of RBP [�;m]

is a q-vector of non-negative integers, say x = (x1; . . . ; xq), where xt
denotes the number of bins of type T t used in x.

Notice that not all q-vectors correspond to a feasible solution. A
feasible solution must guarantee, for each i, that exactly ni items of
size vi are packed in the various copies of the bin types. The feasibility
condition can be phrased as a series of linear equations as follows.

8i 2 f1; . . . ;mg;
qX
t=1

xtT
t
i = ni

Let the matrix A be a q �m matrix whose tth row is the type vector

T t, and ~n = (n1; . . . ; nm) denote the multiplicities of the various item
sizes in the input instance M . Then the above set of equations can
be concisely expressed as ~x:A = ~n. The number of bins used in the
solution x is simply ~x:~1 =

Pq
t=1 xt, where ~1 denotes all-ones vector. In

fact, we have proved the following lemma.

Lemma 3.5: The optimal solution to an instance M of RBP [�;m] is
exactly the solution to the following integer linear program ILP(M)

minimize ~x:~1

subject to

~x � 0

~x:A � ~n

Notice that we have replaced the equations by inequalities, but that

does not a�ect the validity of the lemma since a packing of a superset of

M can always be converted into a packing ofM using the same number

of bins. It is also worth noting that the matrix A is not determined a

priori but depends on the instance M .

3.1. ASYMPTOTIC APPROXIMATION SCHEME Page 59

How easy is it to obtain this integer program? Note that the number

of constraints in ILP(M) is exponentially large in terms of � and m.

However, we are going to assume that both � and m are constants

which are �xed independently of the length of the input, which is n.

Thus, obtaining ILP(M) requires time linear in n, given any instance

M of cardinality n.

How about solving ILP? Recall that the integer programming prob-

lem isNP-complete in general [15]. However, there is an algorithm due
to Lenstra [41, 20, 56] which solves any integer linear program in time
linear in the number of constraints, provided the number of variables
is �xed. This is exactly the situation in ILP: the number of variables
q is �xed independent of n, as is the number of constraints which is

q + m. Thus, we can solve ILP exactly in time which is independent
of n. (A more e�cient algorithm for approximately solving ILP will
be described in a later section.) The following theorem results. Here
f(�;m) is some constant which depends only on � and m.

Theorem 3.1: Any instance of RBP [�;m] can be solved in time O(n+
f(�;m)).

3.1.2. Eliminating Small Items

In this section we present the second ingredient of the APAS devised
by Vega and Lueker. It is shown that if we have a packing of all

items except those whose sizes are bounded from above by �, then it

is possible to obtain a packing of all items which is not much worse in
its use of bins. This is summarized in the following lemma; the rest of

this section is devoted to the proof of this lemma.

Lemma 3.6: Fix some constant � 2 (0; 1
2
]. Let I be an instance of

BIN PACKING and suppose that all items of size greater than � have

been packed into � bins. Then it is possible to �nd in linear time a

packing for I which uses at most maxf�; (1 + 2�) �OPT (I) + 1g bins.

Proof: The basic idea is to start with the packing of the \large"
items and to use the greedy algorithm First Fit to pack the \small"

CHAPTER 3. BIN PACKING Page 60

items into the empty space in the � bins. The implementation of this

scheme is not very important. For example, we could start by number-

ing the � bins in an arbitrary fashion. Then the FF algorithm can be

run as usual using this ordering to decide where each small item will

be placed. If at some point the small items do not �t into any of the

currently available bins, then a new bin is initiated.

The best case is where the small items can all be greedily packed

into the � bins which were open initially. Clearly, the lemma is valid in
that case. Suppose now that some new bins were required for the small
items. We claim that at the end of the entire process each of the bins
used for packing I has at most � empty space in it, with the possible
exception of at most one bin.

To see this, consider the case where there are two bins with more
than � wasted space. Let these bins be Bi and Bj, with i < j under the
ordering de�ned by FF. It cannot be the case that either of these two

bins is from the set of � bins which were available initially. Otherwise,
we would have packed some small item into that bin before opening any
new bin, contradicting the assumption that new bins were required by
FF. On the other hand, if both bins are new bins then we would have
packed at least one of the items from Bj into Bi before the bin Bj was

opened.

Let �0 > � be the total number of bins used by FF. We are guaran-
teed that all the bins, except one, are at least 1�� full. This implies that

SIZE(I) � (1 � �)(�0 � 1). But we know that SIZE(I) � OPT (I),
implying that

�0 �
1

1 � �
OPT (I) + 1 � (1 + 2�) �OPT (I) + 1

and we have the desired result.

2

3.1.3. Linear Grouping

The �nal ingredient needed for the APAS is called Interval Partitioning

or Linear Grouping. This is a technique for converting an instance I of

3.1. ASYMPTOTIC APPROXIMATION SCHEME Page 61

BIN PACKING into an instance M of RBP [�;m], for an appropriate

choice of � and m, without changing the value of the optimal solution

too much. Let us assume for now that all the items in I are of size

at least �, for some choice of � 2 (0; 1
2
]. All that remains is to show

how to obtain an instance where the item sizes take on only m di�erent

values. First, let us �x some parameter k, a non-negative integer to be

speci�ed later. We now show how to convert an instance of RBP [�; n]

into an instance of RBP [�;m], for m = bn=kc.

De�nition 3.9: Given an instance I of RBP [�; n] and a parameter k,
let m = bn=kc. De�ne the groups of items Gi = s(i�1)k+1 . . . sik, for
i = 1; . . . ;m, and let Gm+1 = smk+1 . . . sn.

Here the group G1 contains the k largest items in I, G2 contains

the next k largest items and so on. The following fact is an easy con-
sequence of these de�nitions.

Fact 3.1: G1 � G2 � � � � � Gm.

From each group Gi we can obtain a new group of items Hi by
increasing the size of each item in Gi to that of the largest item in that
group. The following fact is also obvious.

De�nition 3.10: Let vi = s(i�1)k+1 be the largest item in group Gi.

Then the group Hi is a group of jGij items, each of size vi. In other

words, Hi = vivi . . . vi and jHij = jGij.

Fact 3.2: H1 � G1 � H2 � G2 � � � � � Hm � Gm.

The entire point of these de�nitions is to obtain two instances of
RBP [�;m] such that their optimal solutions bracket the optimal solu-

tion for I. These instances are de�ned as follows.

De�nition 3.11: Let the instance ILO = H2H3 . . .Hm+1 and IHI =
H1H2H3 . . .Hm+1.

CHAPTER 3. BIN PACKING Page 62

Note that ILO is an instance of RBP [�;m]. Moreover, it is easy

to see that I � IHI. We now present some properties of these three

instances.

Lemma 3.7:

OPT (ILO) � OPT (I) � OPT (IHI) � OPT (ILO) + k

SIZE(ILO) � SIZE(I) � SIZE(IHI) � SIZE(ILO) + k

Proof: First, observe that

ILO = H2H3 . . .HmHm+1 � G1G2 . . .Gm�1X;

where X is the any set of jHm+1j items from Gm. The right hand side

of this inequality is a subset of I, and this gives us that OPT (ILO) �
OPT (I) and SIZE(ILO) � SIZE(I), using Lemma 3.3.

Observe now that IHI = H1ILO. Given any packing of ILO, we can

obtain a packing of IHI which uses at most k extra bins. (Just pack
each item in H1 in a separate bin.) This implies that OPT (IHI) �
OPT (ILO) + k and SIZE(IHI) � SIZE(ILO) + k. Since I � IHI, by
using Lemma 3.3 we get the remaining part of the desired result.
2

It is worth noting that the result presented in this lemma is con-
structive. There is an O(n log n) time algorithm which constructs the

instances ILO and IHI, and given an optimal packing of ILO it is possi-Do you see how to

actually �nd ILO
and IHI , as well

as convert their

packing into a

packing of I,

within the stated

time bound?

ble to construct a packing of I which meets the guarantee of the above

lemma.

3.1.4. APAS for Bin Packing

We now put together all these ingredients and obtain the APAS. The

algorithm A�, for any � 2 (0; 1], takes as input an instance I of BIN
PACKING consisting of n items.

3.1. ASYMPTOTIC APPROXIMATION SCHEME Page 63

Algorithm A�:

Input: Instance I consisting of n item sizes fs1; . . . ; sng.

Output: A packing into unit-sized bins.

1. � �

2

2. Set aside all items of size smaller than �, obtaining an instance J
of RBP [�; n0] with n0 = jJ j.

3. k
l
�2

2
n0
m

4. Perform linear grouping on J with parameter k. Let JLO be the
resulting instance of RBP [�;m] and JHI = H1 [JLO, with

jH1j = k and m =
j
n0

k

k
.

5. Pack JLO optimally using Lenstra's algorithm on ILP (JLO).

6. Pack the k items in H1 into at most k bins.

7. Obtain a packing of J using the same number of bins as in steps 6
and 7, by replacing each item in JHI by the corresponding
(smaller) item in J .

8. Using FF , pack all the small items set aside in step 2, using new
bins only if necessary.

How many bins does A� use in the worst case? Observe that we have

packed the items in JHI , hence the items in J , into at mostOPT (JLO)+
k bins. Consider the now the value of k in terms of the optimal solution.

Since all items have size at least �=2 in J , it must be the case that
SIZE(J) � �n0=2. This implies that

k �
�2n0

2
+ 1 � � � SIZE(J) + 1 � � �OPT (J) + 1

Using Lemma 3.7, we obtain that J is packed into a number of bins

not exceeding

OPT (JLO) + k � OPT (J) + � �OPT (J) + 1 � (1 + �) �OPT (J) + 1

CHAPTER 3. BIN PACKING Page 64

Finally, Lemma 3.6 implies that, while packing the small items at the

last step, we use a number of bins not exceeding

maxf(1+ �) �OPT (J)+ 1; (1+ �) �OPT (I)+ 1g � (1+ �) �OPT (I)+ 1

since OPT (J) � OPT (I). We have obtained the following theorem.

Theorem 3.2: The algorithm A� �nds a packing of I into at most

(1 + �) � OPT (I) + 1 bins in time c(�)n log n, where c(�) is a constant

depending only on �.

For the running time, note that the only really expensive step in the
algorithm is the one where we solve ILP using Lenstra's algorithm. As
we observed earlier, that this requires time linear in n, although it may
be severely exponential in � and m which are functions of �.

3.2. Asymtotic Fully Polynomial Scheme

Our next goal is to convert the preceding APAS into an AFPAS. The

reason that the above scheme is not fully polynomial is the use of the
algorithm for integer linear programming which requires time exponen-
tial in 1=�. We now a describe a technique for getting rid of this step via
the construction of a \fractional" solution to the restricted bin packing
problem, and a \rounding" of this to a feasible solution which is not

very far from optimal. This is based on the ideas due to Karmakar and
Karp.

3.2.1. Fractional Bin Packing and Rounding

Consider again the problem RBP [�;m]. By the preceding discussion,

any instance I of this problem can be formulated as the integer linear
program ILP (I).

minimize ~x:~1

subject to

3.2. ASYMTOTIC FULLY POLYNOMIAL SCHEME Page 65

~x � 0

~x:A = ~n

Notice that we are now using equality in the last constraint. Recall

that A is a q�m matrix, ~x is a q-vector and ~n is an m-vector. The bin

types matrix A, as well as ~n, are determined by the instance I.

Consider now the linear programming relaxation of ILP (I). This

system LP (I) is exactly the same as ILP (I), except that we now relax
the requirement that ~x be an integer vector. Recall that SIZE(I) is
the total size of the items in I, and that OPT (I) is the value of the
optimal solution to ILP (I) as well as the smallest number of bins into
which the items of I can be packed.

De�nition 3.12: LIN(I) is the value of the optimal solution to
LP (I), the linear programming relaxation of ILP (I).

What does a non-integer solution to LP (I) mean? The value of xi
is a real number which denotes the number of bins of type T i which
are used in the optimal packing. One may interpret this as saying that
items can be \broken up" into fractional parts, and these fractional
parts can then be packed into fractional bins. This in general would

give us a solution of value SIZE(I), but keep in mind that the con-
straints in LP (I) do not allow any arbitrary \fractionalization". The
constraints require that in any fractional bin, the items packed therein

must be the same fraction of the original items. Thus, this solution
does capture some of the features of the original problem. We will refer

to the solution of LP (I) as a fractional bin packing.

To analyze the relationship between the fractional and integral so-
lutions to any instance we will have to use some basic facts from the

theory of linear programming. The uninitiated reader is referred to any
standard text-book for a more complete treatment, e.g. see the book

by Papadimitriou and Steiglitz [48].

Consider the system of linear equations implicit in the constraint�

~x:A = ~n. Here we have m linear equations in q variables, where q is

�We will ignore the non-negativity constraints for now as they do not bear upon

the following discussion.

CHAPTER 3. BIN PACKING Page 66

much larger than m. This is an overconstrained system of equations.

Let us assume that rank(A) = m; it is easy to modify the following

analysis when rank(A) < m. Assume, without loss of generality, thatMake sure you see

how to handle the

case where the

rank is smaller.

the �rst m rows of A form a basis, i.e. they are linearly independent.

The following are standard observations from linear programming the-

ory.

De�nition 3.13: A basic feasible solution to LP is a solution ~x�

such that only the entries corresponding to the basis of A are non-zero.
In other words, x�i = 0 for all i > m.

Fact 3.3: Every LP has an optimal solution which is a basic feasible
solution.

We can now derive the following lemma which relates LIN(I) to

both SIZE(I) and OPT (I).

Lemma 3.8: For all instances I of RBP [�;m],

SIZE(I) � LIN(I) � OPT (I) � LIN(I) +
m+ 1

2

Proof: The value of any solution ~x to LP (I) is
Pq

i=1 xi. It is easy to

see that the total number of times the item j is packed in any fractional
solution is exactly nj , given the constraint of A. This implies the �rst

inequality. The second inequality follows from the observation that an

optimal solution to ILP (I) is also a feasible solution to LP (I).

To see the last inequality, �x I and let ~y be some basic feasible

solution to LP (I). Since ~y has at most m non-zero entries, it uses only

m di�erent types of bins. Rounding up the value of each component
of ~y will increase the number of bins by at most m, and will yield a

solution to ILP . The bound promised in the lemma is slightly stronger
and may be observed as follows. De�ne the vectors ~w and ~z as below.

8i; wi = byic

8i; zi = yi � wi

3.2. ASYMTOTIC FULLY POLYNOMIAL SCHEME Page 67

The vector ~w is the integer part of the solution and ~z is the fractional

part. Let J denote the instance of RBP [�;m] which consists of the

items not packed in the (integral) solution speci�ed by ~w. The vector

~z gives a fractional packing of the items in J , such that each of the m

bin types is used a number of times which is a fraction less than 1. It

is easy to see that ~z is an optimal fractional packing for J . It follows Prove that ~z is

indeed an optimal

fractional packing

of J.

that

SIZE(J) � LIN(J) �
mX
i=1

zi � m

By Lemma 3.2 we know that

OPT (J) � 2 � SIZE(J) + 1

It is also obvious that OPT (J) � m, since rounding each non-zero zi
up to 1 gives a feasible packing of J . Thus, we have that

OPT (J) � minfm; 2 � SIZE(J) + 1g

� SIZE(J) + minfm� SIZE(J); SIZE(J) + 1g

� SIZE(J) +
m+ 1

2

We needed to bound OPT (I) in terms of LIN(I) and m, and this may

be done as follows

OPT (I) � OPT (I � J) +OPT (J)

�
mX
i=1

wi +

�
SIZE(J) +

m+ 1

2

�

�
mX
i=1

wi + LIN(I) +
m+ 1

2

=
mX
i=1

wi +
mX
i=1

zi +
m+ 1

2

= LIN(I) +
m+ 1

2

This completes the proof.

2

CHAPTER 3. BIN PACKING Page 68

It is not very hard to see that all of the above is constructive. More

precisely, given the solution to LP (I), we can construct in linear time

a solution to I such that the bound from the above theorem is met.

The only problem is that it is not obvious that we can solve the linear

program in fully polynomial time, even though there exist polynomial

time algorithms for linear programming [33], unlike the general problem

of integer programming. The reason is that the number of variables is

still exponential in 1=�. All we have achieved is that we no longer need
to solve an integer program.

Karmakar and Karp showed how to get around this problem by
resorting to the Ellipsoid method of Gr�otschel, Lov�asz and Schri-
jver [19, 20, 56]. In this method, it is possible to solve a linear program

with an exponential number of constraints in time which is polynomial
in the number of variables and the number sizes, given a separation ora-
cle. A separation oracle takes any proposed solution vector ~x and either
guarantees that it is a feasible solution, or provides any one constraint
which is violated by it. Karmakar and Karp gave an e�cient construc-

tion of a separation oracle for LP (I). This would result in a polynomial
time algorithm for LP (I) if it had a small number of variables, even if it
has an exponential number of constraints. Unfortunately, our situation
is exactly the reverse: we have a small number of constraints and an
exponential number of variables. However, it is possible to get around
this problem by considering the dual linear program for LP (I). This

has the desired features of a small number of variables, and its optimal

solution corresponds exactly to the optimal solution of LP (I).

One important detail is that that it is impossible to solve LP (I)

exactly in fully polynomial time. However, it can be solved within an

additive error of 1 in fully polynomial time. Moreover, the implemen-
tation of the separation oracle is in itself an approximation algorithm.

The idea behind this is due to Gilmore and Gomory [17] who observed
that, in the case of an infeasible proposed solution, a violated constraint

can be computed via the solution of a knapsack problem. Since this is

NP-complete, one must resort to the use of an approximation scheme
for KNAPSACK. Due to all this the solution of the dual is not exact

but a close approximation. This was used by Karmakar and Karp to
obtain an approximate lower bound to the original problem's optimal

3.2. ASYMTOTIC FULLY POLYNOMIAL SCHEME Page 69

value. Having devised the procedure for e�ciently computing an ap-

proximate lower bound, they then used this to actually construct an

approximate solution.

This algorithm is rather formidable and the details are omitted as

it is outside the scope of this book. The following theorem results.

Theorem 3.3: There is a fully polynomial time algorithm A for solving

an instance I of RBP [�;m] such that A(I) � LIN(I) + m+1
2

+ 1.

3.2.2. AFPAS for Bin Packing

We are now ready to present the AFPAS for BIN PACKING. We will
need the following variant of Lemma 3.7. The proof is almost the same

and is left as an exercise.

Lemma 3.9: Using the linear grouping scheme on an instance I of
RBP [�; n], we obtain an instance ILO of RBP [�;m] and a group H1

such that, for IHI = H1ILO,

LIN(ILO) � LIN(I) � LIN(IHI) � LIN(ILO) + k

The basic idea behind the AFPAS of Karmakar and Karp is very
similar to that used in the APAS. We �rst eliminate all the small items,

and then apply linear grouping to the remaining items. The resulting
instance of RBP [�;m] is then formulated as an ILP , and the solution
to the corresponding relaxation LP is computed using the Ellipsoid

method. The fractional solution is then rounded to an integer solution.

The small items are then added into the resulting packing exactly as
before.

Algorithm A�:

Input: Instance I consisting of n item sizes fs1; . . . ; sng.

Output: A packing into unit-sized bins.

CHAPTER 3. BIN PACKING Page 70

1. � �

2
.

2. Set aside all items of size smaller than �, obtaining an instance J

of RBP [�; n0] with n0 = jJ j.

3. k
l
�2n0

2

m
4. Perform linear grouping on J with parameter k. Let JLO be the

resulting instance of RBP [�;m] and JHI = H1 [JLO, with

jH1j = k and m =
j
n0

k

k
.

5. Pack the k items in H1 into at most k bins.

6. Pack JLO using the Ellipsoid method and rounding the resulting

fractional solution.

7. Obtain a packing of J using the same number of bins as used for
JHI, by replacing each item in JHI by the corresponding
(smaller) item in J .

8. Using FF , pack all the small items set aside in step 2, using new
bins only if necessary.

Theorem 3.4: The approximation scheme fA� : � > 0g is an AFPAS

for BIN PACKING such that

A�(I) � (1 + �) �OPT (I) +
1

�2
+ 3

Proof: The running time is dominated by the time required to solve

the linear program, and we are guaranteed that this is fully polynomial.

The number of bins used to pack the items in JLO is easily seen to

be at most

(LIN(JLO) + 1) +
m+ 1

2
� OPT (I) +

1

�2
+ 2

given the preceding lemmas and the choice of m. The number of bins
used to pack the items inH1 is at most k, which in turn can be bounded

as follows using the observation that OPT (J) � SIZE(J) � �n0=2.

k �

&
n0�2

2

'
� � �OPT (J) + 1 � � �OPT (I) + 1

3.3. NEAR-ABSOLUTE APPROXIMATION Page 71

Thus, the total number of bins used to pack the items in J cannot

exceed

(1 + �) �OPT (I) +
1

�2
+ 3

The number of bins used after the addition of the small items can be

bounded using Lemma 3.6. This gives the desired result.

2

3.3. Near-Absolute Approximation

We conclude by presenting a technique of Karmakar and Karp which
gives an approximation algorithm with an error that is bounded by a
slowly increasing function of OPT (I). This result is a step towards

devising an absolute approximation algorithm for BIN PACKING. In
fact, Johnson [29] had observed that the Vega-Lueker scheme could be
modi�ed to construct an approximation algorithm with a performance
bounded by OPT (I) + O

�
OPT (I)1��

�
, for some positive constant �,

by letting the value of � depend on the instance I. Here we will present

a new technique which leads to a performance bounded by OPT (I) +

O
�
log2OPT (I)

�
.

The new technique is a variant of linear grouping called geometric
grouping. To motivate this, let us �rst try to pinpoint the exact sources
of sub-optimality in the preceding AFPAS. This scheme depends on
the grouping parameter k, which leads to an instance with m di�erent

item sizes, where m � n=k. There are two main sources of error in

this scheme. The �rst is in the solution of the restricted bin packing

problem, where the rounding error depends on the number of item
sizes m. Then there is an error due to the replacement of the original

instance by a discretized instance consisting of at mostm di�erent item
sizes. This last error is roughly the value of k. Since the small items

are easily handled, we can assume that the value of SIZE(I) is at least
�n. Thus, we cannot choose the value of k to be greater than ��n. It

is then clear that choosing � close to � and k � �2n, we will get the

desired approximation.

The way to improve this error is to reduce the value of k closer to

CHAPTER 3. BIN PACKING Page 72

a constant. But then the value of m will increase correspondingly and

we would not have gained anything. The key insight of Karmakar and

Karp was that it is not really necessary to pay the penalty of an error

of m in rounding the fractional solution. Recall that the solution to

LP (I) was broken up into an integral part ~w and a fractional part ~z.

After packing some of the items as speci�ed by ~w, the remaining items

were thought of as an instance J whose optimal fractional solution was

exactly the solution speci�ed by ~z. The error of m came from the
brute force solution of the instance J . The new idea was to iterate the

approximation algorithm on this instance J . This seems like a very
natural idea but the problem with implementing it is that we are not
guaranteed that the iterated process will terminate. Consider the linear
program de�ned by J , one of its optimal solutions is exactly the vector
~z. Thus, iterating the process could keep giving us the same solution ~z
for J , whose integral part is zero.

It is for this reason that Karmakar and Karp introduced the tech-
nique of geometric grouping. Their approach is to use a di�erent group-

ing, even a di�erent parameter k, at each stage of the iteration. More-
over, the exact form of the grouping is heavily dependent on the distri-
bution of the item sizes in the instance. Thus, a new grouping would
be used for J , guaranteeing that the value of m decreases by a constant
fraction. This would imply a speedy termination. We give a more
formal, and less intuitive, description of these ideas below.

Fix some instance I of BIN PACKING and consider the following
de�nitions.

De�nition 3.14: Let � = xn be the size of the smallest item in I, and

de�ne � =
j
log2

1
�

k
.

De�nition 3.15: Denote by Ir the instance of BIN PACKING which

consists of the items in I whose sizes lie in the interval
�

1
2r+1

; 1
2r

i
, for

r = 0; 1; . . . ;�.

This a geometric partitioning of the items in I into sets of items of

roughly the same size, i.e. within a factor of two. The formal de�nition

of geometric grouping is as follows.

3.3. NEAR-ABSOLUTE APPROXIMATION Page 73

De�nition 3.16: The geometric grouping of I, with parameter k, is

obtained by applying linear grouping to each instance Ir using the pa-

rameter kr, where kr = k2r. Let IrLO and IrHI = Gr
1[I

r
LO be the outcome

of the linear groupings, with jGr
1j = kr. Then the outcome of the ge-

ometric grouping consists of the instances ILO and IHI = G1 [ILO,
which are de�ned as follows.

ILO = [rI
r
LO

IHI = [rI
r
HI

G1 = [rG
r
1

Notice that we are now de�ning IHI = G1 [ILO, instead of IHI =
H1 [ILO as before. This could well have been done in the earlier

arguments without a�ecting the analysis in any way. The following
lemma corresponds to Lemmas 3.7 and 3.9 that were proved for linear
grouping.

Lemma 3.10:

OPT (ILO) � OPT (I) � OPT (IHI) � OPT (ILO) + k�

LIN(ILO) � LIN(I) � LIN(IHI) � LIN(ILO) + k�

SIZE(ILO) � SIZE(I) � SIZE(IHI) � SIZE(ILO) + k�

Proof: The proof is very similar to the proof of Lemma 3.7. It is

easy to show that the following inequalities hold.

OPT (ILO) � OPT (I) � OPT (IHI) � OPT (ILO) +OPT (G1)

We can easily show a similar series of inequalities for LIN and SIZE.

Now notice that G1 = [rGr
1 and that each G

r
1 consists of kr items of

size at most 1=2r each. Clearly, the items in each Gr
1 can be packed into

k bins. Thus, we obtain that SIZE(Gr
1) � LIN(Gr

1) � OPT (Gr
1) � k.

Summing over all r, this implies that

SIZE(G1) � LIN(G1) � OPT (G1) � k�

CHAPTER 3. BIN PACKING Page 74

Plugging in these bounds gives the desired result.

2

The next lemma is the crucial one { it shows that the number of

distinct item sizes after the geometric grouping is much less than the

size of the original input. Here we denote the number of distinct item

sizes in any instance X by m(X).

Lemma 3.11: m(ILO) �
2
k
� SIZE(I) + �

Proof: Observe that

SIZE(Ir) � jIrj:
1

2r+1
� (m(IrLO)� 1) � (k2r) �

1

2r+1

Upon rearranging, we obtain that

m(IrLO) �
2

k
� SIZE(Ir) + 1

Summed over all r, this gives the desired result.

2

We are now ready to describe the overall algorithm. This algorithm
is parametrized by the two values � and k, these will be speci�ed later.

Algorithm A(�; k):

Input: Instance I consisting of n item sizes fs1; . . . ; sng.

Output: A packing into unit-sized bins.

1. Discard all items of size smaller than �, obtaining an instance J of

RBP [�; n0] with n0 = jJ j.

2. while SIZE(J) > 1 + k

k�1 ln
1
�
do begin

Perform geometric grouping with parameter k to get JLO
and JHI = G1 [JLO.
Pack G1 into k� bins, by putting each item into a
separate bin.

3.3. NEAR-ABSOLUTE APPROXIMATION Page 75

Solve JLO via the LP formulation and let ~y be the

optimal basic feasible solution obtained.

De�ne ~w and ~z as the integral and fractional parts,

respectively, of the solution ~y. Pack a subset of the items

in JLO as per the vector ~w, and from this obtain a

packing of the corresponding items in J .

Rede�ne J to be the items left over, i.e. those items

whose packing is speci�ed by the fractional part ~z.

end ;

3. Pack the remaining items into at most 1 + k

k�1 ln
1
�
bins.

4. Using FF , pack all the small items set aside in step 1, using new
bins only if necessary.

How much time will this algorithm take? Assume that we will
choose k to be a large constant. Let the tth iteration start with
the instance Jt and end with an instance Jt+1. By Lemma 3.11

we know that m(Jt+1) = O(SIZE(Jt)=k). Moreover, we know that
SIZE(Jt+1) � m(Jt) since the fractional solution ~z uses each of the
m basic bin types at most once. From this it is easy to see that
m(Jt) �

SIZE(J1)

kt�1
. We conclude that the number of iterations is

bounded by O(log SIZE(J)) or O(log n). Since each iteration and

every other step runs in fully polynomial time, we have that the entire

algorithm runs in fully polynomial time.

We present only an overview of the analysis of the number of bins

used; the reader is referred to the original paper for complete details.

Note that the main source of error is the brute force packing of G1

into k� bins in each iteration. Since the number of iterations has

been bounded above, we obtain that the total error in the packing
is O(k�logSIZE(I)). Suppose we choose � = 1=SIZE(I). Then

we have that the total error is O(log2 SIZE(I)). This gives us the

following theorem.

Theorem 3.5: The algorithm A(�; k), for k > 2 and � = 1=SIZE(I),

will take an instance I of BIN PACKING and in fully polynomial time

CHAPTER 3. BIN PACKING Page 76

produce a solution such that

A(I) � OPT (I) + O
�
log2OPT (I)

�

3.4. Discussion

There are several variants of the bin packing problem, all of which are
NP-complete. In most of these cases, it is reasonably easy to come up
with bounded ratio approximations. These variants can be classi�ed
under four di�erent headings.

� packings in which the number of items per bin is bounded

� packings in which certain items cannot be packed into the same
bin

� packings in which there are constraints (e.g. partial orders) on
the way in which the items are packed

� dynamic packings in which items may be added and deleted

There are also some generalizations of the basic packing problem. Some
examples are variable-sized bins and multi-dimensional bin packing. We
refer the reader to the survey article by Co�man, Garey and John-

son [12] for further details. It is possible to devise approximation

schemes for some of these cases, generally based on the ideas described
here. An example is the approximation scheme for the case of variable-
sized bins due to Murgolo [45]. Several open problems remain, most

notably in the case of on-line bin packing and multi-dimensional bin

packing. There is a big gap between the upper and lower bound on the
achievable ratios for multi-dimensional bin packing { it is exponential

in the dimension.

Problems

3.4. DISCUSSION Page 77

3{1 Consider the VECTOR PACKING problem which is a multi-

dimensional version of the BIN PACKING problem.

Instance: A list of d-dimensional vectors I = f~x1; . . . ; ~xng such
that each component of each vector belongs to the interval

(0; 1].

Feasible Solution: A packing of these vectors into bins, where

a bin can hold a collection of vectors if and only if the sum of
these vectors is dominated by the all-ones vectors, i.e. each

component of the sum is at most 1.

Goal: Minimize the number of bins used.

Using the techniques of Vega-Lueker (or, Karmakar-Karp), pro-
vide a polynomial time algorithm with a performance ratio of

d + �. Notice that in the case of d = 1 this will reduce to the
result of Vega-Lueker.

CHAPTER 3. BIN PACKING Page 78

Chapter 4

Vertex Cover and Set Cover

Summary: Some problems are considered for which it is possible to at-
tain a bounded ratio, without being able to have RMIN = 1 in either the
absolute or the asymptotic sense. These are a class of covering problems

{ vertex cover for graphs and hypergraphs. For the unweighted vertex
cover problem in graphs, several algorithms are described which achieve
a ratio of 2. Similar bounds are then obtained for the weighted version
of this problem. The set cover problem turns out to be much harder to
approximate and only a logarithmic performance ratio is obtained for

it.

We have seen several problems which can approximated to any de-

gree, i.e. have RMIN = 1 in either the absolute or the asymptotic sense.

Now we turn our attention to problems for which we can attain some
bounded ratio, without being able to push this ratio all the way down

to 1. In most such cases the exact value of RMIN is hard to pin down

precisely, all we can say is that it is bounded from above by some con-
stant. It would be great to �nd matching lower bounds on the value of

RMIN , but such bounds are hard to obtain.

A vertex cover of a graph is a set of vertices which contains at least
one end-point of each edge. As we have seen earlier, this is closely

related to cliques and independent sets. It will be convenient to view

an edge in a graph as subset of the vertex set. This is justi�ed since
the graph is undirected. It enables us to unify the treatment of graphs

79

CHAPTER 4. VERTEX COVER AND SET COVER Page 80

and hypergraphs.

VERTEX COVER (VC)

� [Instance] Graph G(V;E).

� [Feasible Solutions] A subset C � V such that for all e =

fu; vg 2 E, e \ C 6= ;.

� [Value] The value of a solution is the size of the cover jCj, and
the goal is to minimize it.

This problem is one of the standard NP-complete problems [15].
As a matter of fact, the problem remains NP-complete even when the

graph is planar [16]. There are more general versions of this problem
where we allow G to be a hypergraph, or associate weights with vertices.

WEIGHTED VERTEX COVER (WVC)

� [Instance] Graph G(V;E) and a positive integer weight function
w : V ! Z+ on the vertices.

� [Feasible Solutions] A subset C � V such that for all e =
fu; vg 2 E, e \ C 6= ;.

� [Value] The value of a solution is the weight of the cover w(C)�,
and the goal is to minimize it.

SET COVER (SC)

� [Instance] Set V = fv1; v2; . . . ; vng and a family of sets E =

fe1; e2; . . . ; emg, such that each ei � V .

� [Feasible Solutions] A subset C � V such that for all ei 2 E,

ei \ C 6= ;.

�We will use the natural generalization of the weight function to a subset of its

domain, i.e. w(C)
�
=
P

v2C
w(v).

Page 81

� [Value] The value of a solution is the size of the cover jCj, and
the goal is to minimize it.

Notice that the last problem is exactly the vertex covering problem

for a hypergraph. There is a natural generalization of the SET COVER

problem to WEIGHTED SET COVER, but we will not deal with that

problem in this book. It is obvious that all these generalizations of VC

are also NP-complete.

We present some observations about a vertex cover of a graph. The
�rst of these was posed as an exercise in Chapter 2. The second follows
from the observation that each edge in a matching has to be covered
by a distinct vertex in C.

Fact 4.1: A set C � V is a vertex cover for the graph G(V;E) if and
only if the complement set �C = V �C is an independent set of vertices
in the graph G. Moreover, C is a minimum vertex cover for G if and
only if �C is a maximum independent set of vertices in G.

Fact 4.2: Let M � E be a matching, or an independent set of edges,
in G. Then G cannot contain a vertex cover of size smaller than jM j.

We will use the following notation with regard to any input graph
G(V;E).

� n = jV j and m = jEj.

� �(v)
�
= fu 2 V j fu; vg 2 E g will denote the set of neighbors of

a vertex v 2 V .

� dv
�
= j�(v)j will denote the degree of the vertex v.

� �(G) will denote the maximum degree in the graph G.

� For any set U � V , the induced graph G[U] = (U;E[U]) will
consist of the vertices U and the edges in E which are incident

only on vertices in U .

CHAPTER 4. VERTEX COVER AND SET COVER Page 82

We will refer to any instance of the WVC problem as (G;w), where

w denotes the weight function. This will be referred to as the instance

G if choice of the weight function is clear from the context, e.g. if the

graph is unweighted.

De�nition 4.1: Given any instance (G;w) of WVC, C�(G;w) will de-

note an optimal solution to the problem. This will be abbreviated to C�
G

if weight function w is known from the context, and to C� if the graph

G is also �xed by the context. The value of the optimal solution will be
denoted by c� = w(C�).

In the following sections we will present several approximation al-

gorithms for the above problems. We will be considering nearly a half-
dozen algorithms each of which is based on a distinct idea. One reason
for this overly extensive coverage of the various algorithms is that some
of the ideas appear to be extremely novel and may be exportable to
other problems. Moreover, as we will see later, even a small improve-

ment in the best-known approximation ratio for VC will have profound
implications. It is curious, therefore, that we have several di�erent al-
gorithms which all achieve the same ratio (asymptotically 2) but there
appears to be no way of improving this ratio at the present time.

4.1. Approximating Vertex Cover

We suggest that the uninitiated reader spend some time on trying to

devise heuristic algorithms for the vertex cover problem before reading

any further. It is probable that you will come up with most of the
simple and natural heuristics described below.

The most natural heuristic is a greedy algorithm which repeatedly

picks an edge that has not yet been covered, and places one of its end-

points in the current covering set { call this Algorithm G1. Let G(V;E)Did you think of

this? Does it

achieve a bounded

ratio?

be any instance of the unweighted vertex cover problem.

Algorithm G1:

4.1. APPROXIMATING VERTEX COVER Page 83

Input: Unweighted graph G(V;E).

Output: Vertex cover C.

1. C ;;

2. while E 6= ; do begin

Pick any edge e 2 E and choose an end-point v of e;

C C + v;
E E n fe 2 E j v 2 eg;

end ;

3. return C.

We leave it as an exercise to show that this algorithm always outputs

a vertex cover. We claim that algorithm does not achieve any bounded
ratio. To see this, consider the bipartite graph B(L;R;E) depicted in
Fig. 4.1. The vertex set L consists of r vertices. The vertex set R is
further sub-divided into r sets called R1, . . ., Rr. Each vertex in Ri

has an edge to i vertices in L and no two vertices in Ri have a common

neighbor in L; thus, jRij = br=ic. (It is possible that not all vertices
of L have a neighbor in a particular Ri.) It follows that each vertex in
L has degree at most r and each vertex in Ri has degree i. The total
number of vertices n is �(r log r).

Consider now the behavior of the greedy algorithm on the graph B.
Suppose that (out of sheer bad luck) the algorithm considers all the
edges out of Rr �rst, choosing their end-point in R as the vertex to be

placed in the cover. Then it picks all the edges out of Rr�1, choosing

their end-points in R for the cover C; and, so on. Therefore the vertex
cover chosen is C = R. But L is itself a vertex cover since the graph

is bipartite. It follows that the ratio achieved by this algorithm is no Is the vertex cover

problem any easier

on a bipartite

graph?

better than jRj=jLj =
(log n).

How do we achieve a better ratio than this? Let us try the obvious
strategy of modifying the AlgorithmG1 to be less arbitrary in its choice

of vertices to be included in the cover. A natural modi�cation is to

CHAPTER 4. VERTEX COVER AND SET COVER Page 84

R

R R R

1

2 3 4

L

Figure 4.1: The graph B(L;R;E) with r = 8. Only the sets R1, R2,
R3 and R4 are shown; the remaining sets R5, R6, R7 and R8 consist of

one vertex each.

repeatedly choose vertices which are incident to the largest number of

currently uncovered edges { call this Algorithm G2.

Algorithm G2:

Input: Unweighted graph G(V;E).

Output: Vertex cover C.

1. C ;;

2. while E 6= ; do begin

Pick a vertex v 2 V of maximum degree in the current

graph;

C C + v;

E E n fe j v 2 eg;

end ;

4.1. APPROXIMATING VERTEX COVER Page 85

3. return C.

Let us consider the behavior of this algorithm on the graph

B(L;R;E). It should be easy to see that G2 could also output R

as a vertex cover. It could choose vertices from Rr at the very �rst

stage. After this, it could choose vertices from Rr�1. In general, it

would choose the highest degree vertices from R at each stage. It is

very surprising that a seemingly much more intelligent heuristic does

no better than the rather simple-minded heuristic G1. However, as we
will see later, this algorithm is not totally useless. It will be shown
that it always achieves the ratio O(log n) for the much more general
problem of set cover [30, 43], and hence also for vertex cover.

We now describe a di�erent heuristic which achieves a bounded ra-
tio for the vertex cover problem. The basic idea is to modify G1 by
placing both end-points of some uncovered edge into C. Most people
�nd the fact that this algorithm performs better than G1 and G2 to

be very counter-intuitive at �rst. The surprisingly good performance of It may help to

consider the

behavior of this

algorithm on the

graph B(L;R;E).

this algorithm can be better understood by considering an alternate de-
scription. Pick any maximal matching M in the graph G(V;E). Place
both end-points of each edge in M into the cover. We call this Algo-
rithm MM . Note that a matching is maximal if it is not contained in
any larger matching. It can be computed greedily { repeatedly choose

an edge not incident on any currently matched vertex.

Algorithm MM:

Input: Unweighted graph G(V;E).

Output: Vertex cover C.

1. Pick any maximal matching M � E in G;

2. C f v j v is matched in M g;

3. return C.

CHAPTER 4. VERTEX COVER AND SET COVER Page 86

Now let us try to see why this algorithm does well, contrary to our

\intuition". Recall Fact 4.2 which gives a lower bound on the size of

the optimal vertex cover in terms of the size of any matching. Algo-

rithmMM can be viewed as �rst �nding a lower bound on the optimal

solution, and then constructing a solution which is provably within a

small constant factor of this lower bound. Really, the goal of every

approximation algorithm is exactly this { �nd a solution and a lower

bound proof simultaneously. The \counter-intuitive" behavior of most
approximation algorithms can be explained via the observation that it

is trying to prove near-optimality. We now analyze the performance of
MM ; this result is due to Gavril [16].

Theorem 4.1: Algorithm MM always computes a vertex cover in the

input graph G. Moreover, RMM = 2.

Proof: The fact that M is a maximal matching implies that all
edges in E nM are such that at least one of their end-points is matched

in M . Otherwise, that edge could be added to M to provide a larger
matching, contradicting the assumption that M is maximal. This im-
plies that every edge in E has at least one end-point that is matched
and hence that C is a vertex cover.

To see that the ratio is 2, consider the edges in M . To cover these
edges we need at least jM j vertices, since no two of them share a vertex.
This implies that the optimal vertex cover has size at least jM j. The
cover C contains exactly 2 � jM j vertices.
2

Exercise 4.1: Show that there exist input graphs for which the perfor-

mance of MM is no better than a ratio of 2.

Exercise 4.2: Show that using a maximum matching instead of a max-
imal matching does not improve the worst-case performance of MM .

Another algorithm which achieves a ratio of 2 for this problem is
due to Savage [52]. This algorithm, which we call DFS, is as simple as

4.1. APPROXIMATING VERTEX COVER Page 87

the one outlined above. The basic idea is to �nd a depth-�rst search

tree in the graph G. The cover C is then the set of non-leaf nodes in

the tree. We leave the analysis of this algorithm as an exercise.

Exercise 4.3: Show that the DFS algorithm always �nds a vertex

cover, and that its performance ratio is 2.

This is asymptotically the best upper bound we have for

RMIN(V C). Of course, it is entirely possible that one can �nd an
approximation scheme for VC, but this is considered unlikely. We will
provide some evidence for this later on. We conclude by describing a
simple randomized algorithm due to Pitt [50] which also achieves the
ratio 2 for VC, albeit in the expected sense.y One good reason for

studying this algorithm is that it can be easily generalized to the case
of weighted vertex cover to yield a simple approximation algorithm with
an expected performance ratio of 2.

Once again, we suggest that the reader spend some time trying
to think of randomized heuristics for the vertex cover problem. The
most natural such heuristic is to consider the vertices in a random
order, placing each vertex into the cover if it is incident on a currently
uncovered edge. Unfortunately, this performs very poorly. To see this,

consider the performance of this heuristic on the star graph, viz. a
graph with one vertex of degree n � 1 connected to n � 1 vertices of
degree 1 each. A more reasonable heuristic is a randomized version of
G2. The idea is that instead of choosing the maximumdegree vertex in

the residual graph, pick a vertex at random such that the probability

that any particular vertex is chosen is proportional to the number of
uncovered edges incident on it. We leave it as an exercise to show

that even this heuristic will not guarantee an expected ratio which is
bounded. (Hint: Consider its performance on our old friend, the graph

B(L;R;E).)

yWe generalize the notion of a performance ratio to randomized algorithms in the

obvious manner. The expected ratio of a randomized approximation algorithm RA

on a �xed input I is de�ned as RRA(I)
�
=

Exp[RA(I)]

OPT (I) , where Exp[RA(I)] denotes

the expected value of RA's output. The expected performance ratio RRA(�) is

de�ned exactly as in the case of deterministic algorithms.

CHAPTER 4. VERTEX COVER AND SET COVER Page 88

Quite surprisingly, a simple modi�cation of G1 turns out to be the

right algorithm. The idea is to consider the edges in some arbitrary (but

�xed) order. If the edge currently under consideration is not already

covered, pick one of its end-points uniformly at random and add it to

the cover. We will refer to this new randomized algorithm as Algorithm

RA.

Algorithm RA:

Input: Unweighted graph G(V;E).

Output: Vertex cover C.

1. Order the edges in E arbitrarily;

2. while E 6= ; do begin

Pick the next edge e = fu; vg 2 E;
Flip a fair coin to choose x uniformly from fu; vg;
C C + x;
E E n fe 2 E j x 2 eg;

end ;

3. return C.

Before we formally analyze this algorithm, it is worthwhile to try

to understand at an intuitive level why this algorithm should perform

well. Observe that Algorithm G1 added an arbitrary end-point to the
cover, while Algorithm MM added both end-points to the cover. One
would expect that this randomized algorithm would have an intermedi-

ate performance, but it turns out to do as well as MM in the expected

sense. One reason is that it avoids making the wrong choice of an end-
point for an uncovered edge, unlike Algorithm G1. Moreover, a higherCompare the

behavior of RA

and G1 on

B(L;R;E).

degree vertex has more chances of being chosen by a random coin
ip.

Theorem 4.2: Algorithm RA always outputs a vertex cover and
RRA = 2.

4.2. APPROXIMATING WEIGHTED VERTEX COVER Page 89

Proof: It is easy to verify that this algorithm will always output a

vertex cover.Prove this for

yourself !

Let us �x an input graph G(V;E), the order in which the edges are

to be examined and some optimal cover C� � V . Suppose that this

algorithm outputs a coverC with t vertices in it. Clearly, this algorithm

examines exactly t edges and
ips as many coins in the course of its

execution. Let us de�ne the outcome of a coin
ip as being good if

it causes some vertex v 2 C� to enter the cover C. Note that every
edge has at least one end-point in C� and so each coin
ip is good with
probability at least a half.

But the number of good coin
ips cannot exceed c� = jC�j, since by
then all the vertices of C� are in C and every edge in G must be covered
by C. Thus, the total number of coin
ips t is stochastically dominated
by the number of unbiased coin
ips needed to obtain c� good coin

ips. It follows that the expected number of coin
ips needed is no

more than 2 � c�. This implies the desired bound on the expected value
of the performance ratio.
2

4.2. Approximating Weighted Vertex

Cover

We now turn our attention to the weighted version of the vertex cover
problem. Let us start by considering all the obvious heuristics for this
problem; as usual readers are urged to try and think of their own heuris-

tics before proceeding any further.

Consider �rst the simple greedy heuristic which considers the ver-

tices in increasing order of their weights, placing each vertex in the cover

if it is incident on an edge which is currently uncovered. This heuristic

becomes identical to Algorithm G1 when restricted to the case of un-

weighted graphs. Therefore it is not very surprising that it has a very
poor performance ratio. In fact, its performance is much worse than

that of G1, as illustrated by the following example. Consider the star

graph where the vertex of degree n�1 has weight 2 and the degree one

CHAPTER 4. VERTEX COVER AND SET COVER Page 90

vertices all have weight 1 each. It is easy to see that the cover chosen

by our heuristic will have weight n�1, as opposed to the optimal cover

which has weight 2.

Another obvious heuristic is a simple generalization of Algorithm

G2 which was presented in the previous section. The basic idea here is

to choose at each stage a vertex for with the smallest possible ratio of

weight to current degree. We will refer to this as Algorithm WG2.

Algorithm WG2:

Input: Graph G(V;E) and weight function w on V .

Output: Vertex cover C.

1. C ;;

2. while E 6= ; do begin

Pick any v 2 V which minimizes w(v)

dv
with respect to the

current graph;
C C + v;
E E n fe j v 2 eg;

end ;

3. return C.

It is easy to see that this is a generalization to the weighted case of

the heuristic G2 from the previous section. As such, it cannot be ex-
pected to have a performance ratio better than that of G2, i.e. O(log n).
However, this is still a very natural heuristic and not without any merit.

In fact, Chvatal [10] has shown that it achieves this ratio, and no better,

for the much more general problem of weighted hypergraph covering or

weighted set covering.

In the following sections we present several di�erent approximation

algorithms for WVC, all of these achieve the ratio 2. The �rst is a sim-

ple randomized algorithm due to Pitt [50]. In the subsequent sections

4.2. APPROXIMATING WEIGHTED VERTEX COVER Page 91

we describe two deterministic approximation algorithms for WVC. One

is a simple intuitive algorithm which is not very e�cient, while the other

achieves e�ciency at the cost of being more mystifying. Some amount

of history is in order at this point. The very �rst approximation algo-

rithm for WVC was implicit in the work of Nemhauser and Trotter [46].

This algorithm was made explicit by Hochbaum [25]. Hochbaum [24]

had devised an approximation algorithm for the set cover problem with

a performance ratio equal to the size of the largest set. This implied
a factor of 2 approximation for vertex cover. Both these results made

extensive use of a linear programming formulation. The �rst purely
combinatorial analysis was due to Bar-Yehuda and Even [4] and this
was followed by the algorithm of Clarkson [11]. All of these algorithms
have essentially the same performance ratio, i.e. asymptotically equal to
2. Some of these algorithms, e.g. the one due to Hochbaum [25], achieve
a performance ratio of 2 � f(n), where f(n) is a decreasing function

of n. The best such algorithm is due to Bar-Yehuda and Even [6],
as well as Monien and Speckenmeyer [44], and it achieves a ratio of

2�O
�
log logn
logn

�
. This marginal improvement turns out to be quite cru-

cial as it leads to some strong results for graph coloring which will be

presented later. The �rst deterministic algorithm we present is derived
from the work of Nemhauser and Trotter, and the second is the one due
to Clarkson. Finally, we will describe the algorithm of Bar-Yehuda and
Even, and show how it encompasses most of the algorithms mentioned
above.

4.2.1. A Randomized Approximation Algorithm

In this section we generalize the randomized algorithm RA described
earlier to the weighted case. The basic idea remains the same, the only

di�erence is in the bias of the coin
ip made at each stage. We choose

an end-point of the edge in consideration with probability inversely pro-
portional to its weight. Notice that Algorithm WRA becomes exactly
the Algorithm RA when restricted to unweighted graphs.

Algorithm WRA:

CHAPTER 4. VERTEX COVER AND SET COVER Page 92

Input: Graph G(V;E) and weight function w on V .

Output: Vertex cover C.

1. Order the edges in E arbitrarily;

2. while E 6= ; do begin

Pick the next edge e = fu; vg 2 E;
Choose x randomly from fu; vg such that

Prob[x = u] = w(v)

w(u)+w(v)
;

C C + x;
E E � e;

end ;

3. return C.

Notice that this algorithm captures the advantages of Algorithm

WG2 without allowing the possibility of consistently choosing the
wrong end-point at each stage. In particular, high degree vertices have
a higher chance of being chosen and at each stage the coin
ip is biased
in favor of the lower weight vertex. Thus, it is the ratio of the weight
to the current degree which determines the chances of a vertex being

selected at each stage. The following theorem is due to Pitt [50].

Theorem 4.3: Exp[WRA(G;w)] � 2 � c�(G;w), and this bound is
tight.

The rest of this section is devoted to the proof of this theorem. Let

us �x the input instance (G;w), the order in which the edges are to be

examined and some optimal weighted vertex cover C� � V . Suppose

that we now execute Algorithm WRA and obtain the cover C � V .
Here C is a random subset of V and its distribution is totally deter-
mined prior to the execution of the algorithm.

De�nition 4.2: For each vertex v, de�ne the random variable Xv as
follows.

Xv =

(
w(v) if v 2 C
0 otherwise

4.2. APPROXIMATING WEIGHTED VERTEX COVER Page 93

Let ev = Exp[Xv] denote its expected value.

These denote the actual and expected contributions of the vertex

v to the cover C. Again, the distribution of Xv and the value of ev is

totally determined prior to the execution of the algorithm. The value of

WRA's output and its expected value can then be expressed as follows.

w(C) =
X
v2V

Xv

Exp[w(C)] =
X
v2V

ev

Our goal is to appropriately generalize the analysis of Algorithm
RA. There the idea was to consider vertices in C which were from
C�, and to show that these vertices formed a signi�cant fraction of the
vertices in C. We make use of a similar argument here.

De�nition 4.3: Let bC = C� \ C denote the vertices from the optimal
cover which were also chosen by WRA.

SinceC� was �xed prior to the execution of the algorithm, it is clear that
w(bC) = P

v2C� Xv, and hence that Exp[w(bC)] = P
v2C� ev. Moreover,

since bC � C�, it follows that

Exp[w(bC)] � w(C�)

In the following lemma we show that the expected weight of the output

C is at most twice the expected weight of bC, and this combined with
the above inequality implies the result in the theorem.

Lemma 4.1: Exp[w(C)] � 2 � Exp[w(bC)]
Proof: The proof is best described in terms of a game played on

the input graph. Suppose that each vertex v 2 V has ev dollars as

its initial capital. This capital is �xed prior to the execution of the

algorithm. The total money supply in the graph initially is exactly the

expected weight of the algorithm's output.

CHAPTER 4. VERTEX COVER AND SET COVER Page 94

We assume for now that there exists a global strategy under which

each vertex can distribute its capital to the incident edges such that

each edge gets exactly the same amount of money from both its end-

points. Having collected this money from its end-points, each edge

returns partitions it equally among its end-points which actually belong

to the optimal cover C�. Thus, if both end-points belong to C� then the

edge just returns the amount it had received from each; on the other

hand, if only one end-point belonged to C� then it gets back twice the
amount of money it had initially handed over to this edge.

It is not very hard to see that at the end of these transactions each
vertex in C� has at most doubled its fortune, while each vertex not in
C� has become bankrupt. From this it follows that the total money

supply in G is at most twice the initial money supply in the control of
the vertices from C�. Recalling that each vertex v started o� with a
sum of money equal to ev, we can interpret this asX

v2V

ev � 2 �
X
v2C�

ev

and this is equivalent to the statement of the lemma.

The only thing left to show is that the global strategy for distribut-
ing the capital to the edges exists. Why should such a strategy exist?

Consider any vertex v 2 V . This will be in the vertex cover if one of
its incident edges chooses to place it there. Thus, the expected contri-
bution of v to the vertex cover's weight is made up of the contributions
due its incident edges selecting it to be in the cover. Moreover, each

edge contributes an equal amount for both its end-point, given the

choice of bias of the coin
ips. (The preceding argument merely uses
this \distribution strategy" to relate the weight of the cover C to that

of the optimal cover in an obvious manner.)

We formalize the distribution strategy as follows. Call an edge crit-

ical if it is not yet covered by the time Algorithm WRA considers it.
It is the critical edges which will cause a coin
ip and the addition of
a vertex to C. We say that a vertex u is chosen by a coin
ip for the

(critical) edge fu; vg if the coin
ip causes v to be added to C.

De�nition 4.4: For each vertex u, and each v 2 �(u), de�ne the ran-

4.2. APPROXIMATING WEIGHTED VERTEX COVER Page 95

dom variable

Xu;v =

(
w(u) if u is chosen for C due to the critical edge fu; vg
0 otherwise

Notice that for each edge fu; vg, exactly one of Xu;v and Xv;u is

non-zero. Further, for each vertex u at most one of its incident edges

can \choose" it and so we have the following.

Xu =
X

v2�(u)

Xu;v

From this we conclude that

eu = Exp[Xu] =
X

v2�(u)

Exp[Xu;v]

While at most one of the Xu;v 's can be non-zero for each u, every one

of the expectations of these could be non-zero since the expectation is
taken over all possible random choices made byWRA. Finally, we claim
that Exp[Xu;v] = Exp[Xv;u] for all edges fu; vg. This claim implies the
existence of the desired distribution strategy. This is because each
vertex u give can give a sum of money equal to Exp[Xu;v] to the edge

fu; vg, and then each edge will receive the same amount of money from
both its end-points.

To validate the claim we observe that the choice of the bias in each

coin
ip ensures symmetry between the expected contribution of the

critical edges' two end-points. More formally,

Exp[Xu;v] = w(u)� Prob[fu; vg is critical and chooses u]

= w(u)� Prob[fu; vg is critical]�
w(v)

w(u) + w(v)

= w(v)� Prob[fu; vg is critical]�
w(u)

w(u) + w(v)

= w(u)� Prob[fu; vg is critical and chooses v]

= Exp[Xv;u]

2

CHAPTER 4. VERTEX COVER AND SET COVER Page 96

4.2.2. The Nemhauser Trotter Algorithm

Nemhauser and Trotter considered an integer programming formulation

of the WVC problem. There is a variable for each vertex which takes

on values in f0; 1g; each edge creates a constraint that the variables

associated with its end-points have sum at least 1. Any feasible solu-

tion to this set of constraints corresponds naturally to a vertex cover

of the graph G(V;E). The objective function is simply the weighted
sum of the variables, where the weights are exactly the weights of the
corresponding vertices. They showed that the optimal solution to the
LP-relaxation of this problem has the semi-integral property. In other
words, the basic feasible optimal solution to the corresponding lin-

ear programming relaxation would assign values to the variables which
would be drawn from the set f0; 1

2
; 1g. The linear program's optimal

solution could be interpreted as a fractional vertex cover { the value
of a variable denoted the fraction of the corresponding vertex which
should be placed in the cover. The constraints require that, for each
edge, the total fraction of its end-points in a fractional cover should

exceed 1. It then follows that the semi-integral solution can be used
to obtain an approximation to the optimal integral cover by placing a
vertex in the cover if the corresponding variable was non-zero. It is not
very hard to see that the linear program can be solved via a maximum

ow computation, and in the unweighted case it can be solved via a

maximum matching algorithm.

We now present a combinatorial interpretation of this process and
obtain an approximation algorithm which does not refer to the linear

programming formulation. (Actually, the results of Nemhauser and

Trotter were much more general but this has no bearing on the approx-
imation of the WVC problem.)

De�nition 4.5: A 2-cover of a graph G(V;E) is a multiset S � V

such that for every edge e 2 E, je \ Sj � 2.

Essentially, a 2-cover is a multiset of vertices such that each edge

has either both its end-points or at least two copies of one end-point
in the multiset. We may assume, without loss of generality, that each

4.2. APPROXIMATING WEIGHTED VERTEX COVER Page 97

vertex occurs at most twice in a 2-cover since we can throw away any

further copies of a vertex without destroying the property of being a

2-cover. Observe that doubling the value of each variable in a semi-

integral solution to the above linear program will yield a 2-cover. The

relation between 2-covers and vertex covers is made explicit by the

following fact; its proof is left as an exercise.

De�nition 4.6: Let �S denote the set underlying the multiset S, i.e. the

set obtained by retaining exactly one copy of each element of S.

Fact 4.3: If S is a 2-cover for G then �S is a vertex cover for G.

We de�ne the weight of a 2-cover in the obvious way { it is the sum
of the weights of the vertices in the 2-cover, with each weight being
multiplied by the multiplicity of the corresponding vertex. An optimal
2-cover is a 2-cover of minimumweight. Notice that an optimal 2-cover

will never have more than two copies of any vertex. Therefore, the set
underlying a 2-cover will have total weight at least half that of the 2-
cover itself. Moreover, taking a vertex cover and making two copies of
each vertex in the cover will yield a 2-cover of at most twice the weight.
We have proved the following lemma.

Lemma 4.2: The weight of an optimal 2-cover is at most twice the
weight of an optimal vertex cover.

Therefore, to �nd a 2-approximation to the optimal weighted vertex

cover in G, it su�ces to �nd an optimal weighted 2-cover in G. It turns
out that an optimal 2-cover can be found in polynomial time. The basic

idea behind this is to consider a bipartite version of the input graph
G(V;E). In the bipartite graph there are two copies of each vertex in

V of the same weight. one on each side of the bipartition. Each edge

of E creates two edges in the bipartite graph.

De�nition 4.7: Let G(V;E) be a graph and w a weight function on

its vertices. De�ne the bipartite graph BG(L;R;F) such that

CHAPTER 4. VERTEX COVER AND SET COVER Page 98

� L = fvLi j vi 2 V g

� R = fvRi j vi 2 V g

� F = ffvLi ; v
R
j g; fv

L
j ; v

R
i g j fvi; vjg 2 Eg

� w(vLi) = w(vRi) = w(vi)

Given any set of vertices U � V in G, we will denote the copies of
these vertices in L as UL and the copies in R as UR; thus, L = V L and
R = V R. Further, the vertices in G corresponding to a set of vertices

S � L[R from B will be denoted by SG; thus, LG = RG = (L[R)G =
V .

Lemma 4.3: Any vertex cover of BG can be converted into a 2-cover

of G of equal weight.

Proof: Let C � L [R be a vertex cover of BG. We can construct
a multiset C 0 � V from C by replacing each vertex from L [R by a

copy of the corresponding vertex in V . Note that the underlying set
for C 0 is exactly CG. For each edge e 2 E we had placed two edges in
F and both these edges must have at least one end-point each in C.
This implies that e has either both end-points or two copies of one of
its end-points in C 0. It follows that C 0 is a 2-cover of G; its weight is

trivially equal to the weight of C.
2

The next lemma proves the converse of Lemma 4.3.

Lemma 4.4: Any 2-cover C of G can be converted into a vertex cover

of BG of equal weight.

Proof: Recall that we are only considering 2-covers which have at

most two copies of each vertex. Let C1 = �C denote the set underlying

the multiset C, and de�ne C2 = C nC1 as the set of vertices in C which
occur twice. Let C 0 = CL

1 [C
R
2 consist of the vertices from L which

correspond to the vertices in C1, as well as the vertices from R which

4.2. APPROXIMATING WEIGHTED VERTEX COVER Page 99

correspond to the vertices in C2. Clearly, the sets C and C 0 have equal

weights.

We now show that C 0 is a vertex cover of BG. Consider any edge

e = fu; vg 2 E. If both u and v are in C, then both edges corresponding
to e in F are covered as both uL and vL are in C 0. Otherwise assume,

without loss of generality, that u occurs twice in C. This means that

both uL and uR are in C 0 and once again both edges corresponding to

e in F are covered.
2

These two lemmas have shown that �nding an optimal 2-cover of G

is equivalent to �nding an optimal vertex cover of BG. Before we show
how the latter can be done in polynomial time, let us summarize the
Nemhauser-Trotter algorithm as follows.

Algorithm NT:

Input: Graph G(V;E) and weight function w on V .

Output: Vertex cover C.

1. Compute the graph B(L;R;F) from the input G(V;E);

2. Compute an optimal weighted vertex cover C�
B for B;

3. return C = (C�
B)G = fv 2 V j vL 2 C�

B or vR 2 C�
Bg.

The preceding lemmas imply that C is a vertex cover for the graph

G and its weight is at most twice that of the optimal weighted vertex
cover for G. We have the following theorem. Can you show that

the bound given in

the theorem is

tight?Theorem 4.4: RNT = 2

We now brie
y sketch an algorithm for �nding an optimal weighted

vertex cover in a bipartite graph. The WVC problem restricted to bi-
partite graphs is polynomially solvable via a reduction to the maximum

CHAPTER 4. VERTEX COVER AND SET COVER Page 100

ow problem [38]. This works by constructing a directed network from

BG. Introduce a source s into BG with an edge going to each vertex in

L of capacity equal to the weight of that vertex. Similarly, introduce a

sink t with an edge coming in from each vertex of R of capacity equal

to the weight of that vertex. Direct each edge in F from L to R and

make its capacity in�nite.

The minimum (s; t)-cut in the resulting network can be computed

via a maximum
ow computation. Moreover, the minimum cut must
be �nite since the net
ow out of the source is �nite. Thus, no edge
of F can cross that cut. In other words, it cannot be the case for any
edge (vLi ; v

R
j) that v

L
i lies on the side of s and vRi on the side of t. Thus

the set of vertices from L lying on the side of t, together with set of

vertices from R lying on the side of s, forms a vertex cover for BG.
Further, the capacity of the cut is exactly equal to the weight of this
vertex cover. Similarly, it is also fairly easy to see that any vertex cover
implies a cut of capacity equal to the weight of the vertex cover. Thus,
the vertex cover determined by the min-cut must be a minimumweight

vertex cover.

4.2.3. Clarkson's Algorithm

Consider once again the greedy algorithm WG2 proposed earlier for
the WVC problem. The basic idea in this algorithm was to keep track
of the ratio between the weight and the current degree of a vertex,

and at each stage it selected the vertex with smallest value of this

ratio. This seemed like the right thing to do at an intuitive level as
we would like to minimize the average increase in weight of the vertex
cover per edge being covered. Unfortunately, this algorithm does not

achieve any bounded ratio. But can anything be salvaged from this

intuitively attractive heuristic? The answer is yes, and this is exactly
the algorithm proposed by Clarkson [11]. His modi�ed greedy algorithm

(MGA) follows basically the same approach, except that the weights
of the vertices are also modi�ed as the algorithm progresses. (Recall

that Algorithm WG2 was only modifying the degrees of the vertices

to account for the edges which were already covered.) In the following
description of Algorithm MGA ignore for now the edge cost function

4.2. APPROXIMATING WEIGHTED VERTEX COVER Page 101

EC, this is merely an artifact of the algorithm's analysis. We will use

W (v) and D(v) to denote the current weight and degree of the vertex

v at each point in the execution.

Algorithm MGA:

Input: Graph G(V;E) and weight function w on V .

Output: Vertex cover C.

1. for all v 2 V do W (v) w(v);

2. for all v 2 V do D(v) dv;

3. for all e 2 E do EC(e) 0;

4. C ;;

5. while E 6= ; do begin

Pick a vertex v 2 V for which W (v)
D(v)

is minimized;
C C + v; V V � v;
W (v) 0;

for all edges e = fu; vg 2 E do begin

E E � e;
W (u) W (u)� W (v)

D(v)
; D(u) D(u)� 1;

EC(e) W (v)
D(v)

;

end ;

end ;

6. return C.

This algorithm di�ers from WG2 only in that each time a vertex is
placed in the cover, each of its neighbors has its weight reduced by an

amount equal to the ratio of the selected vertex's current weight and

degree. This is exactly the cost of covering the edge between the two

vertices and the value of EC re
ects this cost. (Note that the value of

CHAPTER 4. VERTEX COVER AND SET COVER Page 102

EC is never used by the algorithm.) This may seem counter-intuitive in

that we are actually increasing the likelihood of picking a vertex whose

neighbor has just been included in the cover. But an approximation

algorithm is not trying to pick an optimal solution. Instead it tries to

pick a solution which is provably not very far from the optimum, The

reduction in the weights of the neighbors can be viewed as an attempt

to ensure that the \error" made by this algorithm is small. In fact, this

reduction in the weights is exactly what will enable us to argue that
the algorithm's output is not too far from the optimal.

The argument presented below proceeds as follows. The edge cost
EC(e) is viewed as the cost of covering the edge e. The algorithm
assigns costs to the edges in a manner which guarantees that each

vertex in the cover partitions its weight amongst the incident edges,
and each edge gets assigned the same weight from both its end-points.
Thus, the weight of the cover being produced is at most twice the net
cost of the edges. Under any such choice of the edge cost function,
it can be easily seen that an optimal cover must have weight at least

as large as the total of the edge costs. It should now be clear that
the \counter-intuitive" part of the algorithm is actually a device for
ensuring that the cover being produced does not stray too far from the
optimal cover. For a further discussion on this point, refer to the article
by Gus�eld and Pitt [22].

Fact 4.4: For all vertices v 2 V and edges e 2 E

W (v) � 0

EC(e) � 0

at all times during the execution of the algorithm.

Proof: The second inequality is obvious since the only modi�cation

to the edge costs is the addition of a positive value. As for the �rst

inequality, notice that the current weight of a vertex is reduced only
when some other vertex (in fact, its neighbor) is selected. But this
implies that the selected vertex has a smaller weight to degree ratio,

and the result of subtraction must be non-negative.

2

4.2. APPROXIMATING WEIGHTED VERTEX COVER Page 103

The next fact is easy to verify from the description of the algorithm.

Fact 4.5: For all vertices v 2 V

w(v) = W (v) +
X

u2�(v)

EC(u; v)

at all times during the execution of the algorithm.

The next fact follows from the description of the algorithm and
Fact 4.5.

Fact 4.6: At the end of the algorithm's execution

8v 2 C; w(v) =
X

u2�(v)

EC(u; v) (4.1)

8v 62 C; w(v) �
X

u2�(v)

EC(u; v) (4.2)

From the above facts we conclude the following lemma which relates
the weight ofMGA's output to the book-keeping variables of edge costs.

Lemma 4.5: w(C) � 2 �
P

e2E EC(e)

Proof: Observe that by the equation (4.1)

w(C) =
X
v2C

w(v) =
X
v2C

X
u2�(v)

EC(u; v)

Each edge in E is counted at most twice in the last expression, implying
the desired result.
2

The next step is to relate the edge costs to the value of the optimal
solution.

Lemma 4.6:
P

e2E EC(e) � c� = w(C�)

CHAPTER 4. VERTEX COVER AND SET COVER Page 104

Proof: First, observe thatX
e2E

EC(e) �
X
v2C�

X
u2�(v)

EC(u; v)

since the second expression must count each edge at least once, as C�

is a vertex cover. Using Fact 4.6, we now have the desired result. 2

Putting together these two lemmas, we have the result that the

weight of C is at most twice optimal. It is fairly easy to see that the
entire algorithm can be e�ciently implemented using standard data
structures. We have the following theorem; showing that the bound of
2 on the performance ratio is the best possible is left as an exercise.

Theorem 4.5: Algorithm MGA runs in time O(m log n) time and has
RMGA = 2.

4.3. Improved Vertex Cover Approxima-

tions

In this section we present some algorithms which marginally improve
the approximation ratio for WVC (and VC). These algorithms do not
achieve a ratio which is better than 2 in the asymptotic sense. Their
performance ratios are of the type 2�f(n), where f(n) is some decreas-

ing function of n. The function f(n) could be 1=
q
(n) or 1=�, where

� is the maximum degree in the input graph. The best such result is

due to Bar-Yehuda and Even [6], and Monien and Speckenmeyer [44];

they achieve a ratio of 2 � log logn
2 logn

. (This improvement may seem very

minor but it leads to a signi�cant improvement in the approximation
ratio for the graph coloring problem which will be considered in a sub-

sequent chapter.) For example, on graphs with at most 1012 vertices
the ratio achieved is 1.9. We will present the version of this result due

to Bar-Yehuda and Even.

In the following sections we will develop the main ideas behind

the this result in three parts. First we will return to the Nemhauser-

Trotter algorithm and show that it allows us to restrict ourselves to

4.3. IMPROVED VERTEX COVER APPROXIMATIONS Page 105

approximating WVC on graphs where the optimal solution has a large

weight. Then we will present a \Local-Ratio Theorem" which allows us

to strip o� a certain kind of subgraph H from the input graph without

adversely a�ecting the approximability of the remaining graph. Finally,

we will show that in a graph without small odd cycles, the vertex cover

can be well approximated provided the optimum solution is of large

weight. The removal of odd cycles is performed by using the Local-

Ratio Theorem.

4.3.1. The Nemhauser-Trotter Algorithm Revis-

ited

We take a fresh look at the Nemhauser-Trotter algorithm presented in
Section 4.2.2 and conclude that it su�ces to be able to approximate
WVC on instances where the value of the optimal solution is at most

w(V)=2.

Recall that the optimal weighted vertex cover inB(L;R;F) was C�
B,

and that this could be computed in polynomial time. Let C0 contain

the vertices v 2 V such that both vL and vR are in this optimal cover,
and let V0 be the vertices v 2 V such that only one of vL and vR is in
the optimal cover.

C0
�
=
n
v 2 V j fvL; vRg � C�

B

o

V0
�
=
n
v 62 C0 j fv

L; vRg \ C�
B 6= ;

o
The following theorem is a re-statement of the results of Nemhauser

and Trotter, and we provide a di�erent proof from theirs. The �rst two
parts of the theorem are referred to as the local optimality conditions.

Theorem 4.6: The sets C0 and V0 produced by Algorithm NT have
the following properties.

1. If D � V0 is a vertex cover for G[V0], then C = D[C0 is a vertex

cover for G.

2. There exists some optimal cover C� for G such that C0 � C�.

CHAPTER 4. VERTEX COVER AND SET COVER Page 106

3. The optimal solution for G[V0] has weight at least half as much

as the total weight of the vertices in V0, i.e. c
� (G[V0]; w) �

w(V0)

2
.

Proof:

1. We already know that C0[V0 is a vertex cover for G. In fact, this
is exactly the vertex cover which is produced by Algorithm NT .

The set V0 only covers the edges in G which have at least one
end-point in V0. Therefore, C0 is a vertex cover for G[V nV0] and
it is clear that C = C0 [D covers all edges in E[V n V0] [E[V0].

Consider any edge fx; yg in E such that x 2 V0 and y 62 V0. This
is the only type of edge which could create a problem. Our choice
of x and y implies that only one of xL and xR is contained in C�

B.

Assume, without loss of generality, that xL is the one contained
in C�

B. Then the edge fy
L; xRg in B could only have been covered

by C�
B by having yL 2 C�

B. Since y 62 V0, it must be the case that
y 2 C0. But this implies that C = C0 [D covers the edge fx; yg
and we are done.

2. Let S be some optimal cover for G. We claim that C� = C0[(S\
V0) is also an optimal cover for G; this will validate the second
part of the theorem since C0 � C�. Observe that S \ V0 is a

vertex cover of G[V0] and so, by the previous part of the theorem,
we have that C� is a vertex cover of G.

To see the optimality of C�, �rst observe that CB = (V0 [C0 [
S)L[(S\C0)

R is a vertex cover for B. Consider any edge fxL; yRg
in B. It is covered by CB if x 2 C0 [V0 [S or if y 2 S \ C0.
Assume then that neither of these two conditions is met. Since

x 62 C0 [V0, the cover C
�
B must have covered the edges fxL; yRg

and fyL; xRg by containing both yL and yR. Then it must be the

case that y 2 C0. Since y
R 62 C0 \ S, we then have that y 62 S.

But this gives a contradiction, since we now have both x; y 62 S

and the edge fx; yg is not covered by the vertex cover S of G.

Given that CB is a vertex cover of B, it follows that its weight

4.3. IMPROVED VERTEX COVER APPROXIMATIONS Page 107

cannot be less then that of the optimal cover C�
B.

w(C�
B) � w(CB)

) w(V0) + 2 � w(C0) � w(V0) + w(C0) + w(S)� w(S \ V0)
) w(C0) � w(S)� w(S \ V0)
) w(C0) + w(S \ V0) � w(S)

This implies that the w(C�) � w(S), and thus that C� is an

optimal cover for G which contains C0.

3. Let D� be an optimal cover for G[V0]. Then, by the �rst part
of the theorem, C0 [D� is a vertex cover for G. It follows then
that (C0 [D�)L [(C0 [D�)R is a vertex cover for B. But this

must have weight at least as large as that of the optimal cover
C�
B, which is exactly w(V0) + 2 � w(C0). Therefore,

2 � (w(C0) + w(D�)) � w(V0) + 2 � w(C0)

which implies that 2 � w(D�) � w(V0).

2

Let us try to understand the implications of this theorem. It shows
us how to compute, using a single max-
ow computation, a subset V0
of the vertices such that if we can compute an optimal vertex cover D�

in G[V0], then we can compute an optimal vertex cover in the graph G.
In fact, this optimal vertex cover of G is nothing but C0[D�, where the

set C0 is also provided by Algorithm NT . Of course, if we merely get Make sure you see

why the �rst two

parts of theorem

imply these claims.

an approximation within a ratio r of the optimal cover of G[V0], then
that combined with C0 also gives us an approximation within the ratio

r for the entire graph G. We have established the following corollary.

Corollary 4.1: Let (G;w) be an instance of WVC. Algorithm NT

computes subsets C0; V0 � V such that if D � V0 is an r-approximation

to the optimal weighted vertex cover in G[V0], then C0 [V0 is an r-
approximation to the optimal weighted vertex cover in G. Moreover,

the optimal solution for G[V0] has value at least half as large as w(V0).

CHAPTER 4. VERTEX COVER AND SET COVER Page 108

By this corollary, we only need to worry about �nding an approxi-

mation algorithm for instances of WVC where the value of the optimal

solution is at least half of the total weight of the vertices. Notice that

a trivial 2-approximation for G[V0] is simply the set of all vertices in

that graph, which is V0. This gives us an approximation algorithm A

for WVC with ratio 2. The algorithm A is exactly the algorithm of

Nemhauser and Trotter!

4.3.2. A Local Ratio Theorem

We are now going to describe a new technique for obtaining an approx-
imation algorithm for WVC, this is due to Bar-Yehuda and Even [4, 6].

We �rst show that any partition of the weight function gives two in-
stances of WVC whose optimal solutions yield an optimal solution for
original instance.

Lemma 4.7: Let G(V;E) be a graph and w, w0 and w1 be any three
weight functions on the vertex set of G, such that for all v 2 V

w(v) � w0(v) + w1(v)

If C�, C�
0 and C�

1 are optimal weighted vertex covers for the instances
(G;w), (G;w0) and (G;w1), then

w(C�) � w0(C
�
0) + w1(C

�
1)

Proof:

w(C�) =
X
v2C�

w(v)

�
X
v2C�

(w0(v) + w1(v))

= w0(C
�) + w1(C

�)

� w0(C
�
0) + w1(C

�
1)

The last inequality follows from the observation that C� is a vertex cover
for G and so its weight with respect to any weight function cannot be

4.3. IMPROVED VERTEX COVER APPROXIMATIONS Page 109

smaller than the weight of the optimal cover with respect to that weight

function.

2

We apply this lemma as follows. Let H(VH ; EH) be any �xed graph.

Suppose we �nd an induced subgraph of G isomorphic to H. We can

determine the weight function w1 such that it is non-zero only on the

vertices in that subgraph, and the weight function w0 is obtained by

subtracting w1 from w. By the lemma, �nding optimal solutions with
respect to the new instances gives us an optimal solution for the original
instance. In fact, we will show that for a suitable choice of H we
can make strong claims about the approximative behavior also. Let
Algorithm A be any approximation algorithm for WVC. Our approach

will be to run Algorithm A on the instance (G;w0), and handle the
instance (G;w1) separately. Let us formalize the decomposition as the
following algorithm which is parametrized by the choice of H.

Algorithm LOCAL(H):

Input: Graph G(V;E) with weights w. It is assumed that H and A

have been �xed in advance.

Output: Vertex cover C.

1. Find a set of vertices U � V such that the induced subgraph G[U]

is isomorphic to H;

2. � minv2U w(v);

3. Choose the weight function w0 as follows:

8v 2 V; w0(v) =

(
w(v)� � if v 2 U
w(v) otherwise

4. Run Algorithm A on instance (G;w0) to obtain a vertex cover C
for G;

5. return C.

CHAPTER 4. VERTEX COVER AND SET COVER Page 110

At this point there are several questions which may arise in the

readers mind. How do we choose H and what is this Algorithm A? We

defer the answers to these questions. We �rst show that for any choice

of H and A, the quality of the approximation produced by Algorithm

LOCAL(H) can be well characterized. Notice that we are not worrying

about the instance corresponding to (H; �) which is subtracted o� from

(G;w). We are merely studying the ratio to the optimal of the cover

C which is produced by the invocation of Algorithm A on the instance
(G;w0). Observe also that (H; �) is really an instance of VC since all

the vertex weights are identically �.

De�nition 4.8: Given any �xed graph H, let jVH j = nH and c�H be
the size of an optimal (unweighted) vertex cover of H. De�ne the local
ratio for H as rH = nH

c�
H

.

For example, if the graph H is a cycle on 2k + 1 vertices then

nH = 2k + 1, c�H = k + 1 and rH = 2 � 1
k+1

. The following theorem
bounds the approximative ratio of the cover C produced by Algorithm
LOCAL(H).

Theorem 4.7: RLOCAL(H)(G;w) � maxfrH ; RA(G;w0)g

Proof: Let r be the larger of rH and RA(G;w0). Also, let c
�
0 denote

the value of the optimal solution for the instance (G;w0). Since jC \
V 0j � jV 0j = nH , we have that

w(C) � w0(C) + �nH

� RA(G;w0) � c
�
0 + �rHc

�
H

� r � (c�0 + �c�H)

� r � c�(G;w)

The last inequality can be obtained from the preceding lemma as fol-
lows. Observe that the value of the optimal solution for (H; �) is simply

� times the size of the optimal unweighted vertex cover for H, i.e. �c�H.

We claim that this is also the weight of the optimal solution for the

4.3. IMPROVED VERTEX COVER APPROXIMATIONS Page 111

instance (G;w1), where w1 = w � w0 is non-zero only on vertices in

U . This is because the optimal cover for (G;w1) can be obtained by

augmenting the optimal unweighted cover of G[U] by all the vertices in

V n U , which are of weight 0. It follows that w, w0 and w1 satisfy the

premise of the lemma.

2

The last theorem is also referred to as the Local Ratio Theorem. It

is not very hard to see that this idea can be generalized to any class of
graphs, rather than just one graph H. Let H denote a family of graphs.
We de�ne rH = maxfrH jH 2 Hg. We now present a new algorithm
called MLOCAL(H). The basic idea is to enumerate all induced sub-
graphs of G which are isomorphic to some graph in H, and apply the

operation of reducing the weights exactly as in Algorithm LOCAL(H).
Finally, all vertices of weight 0 are set aside, and AlgorithmA is applied
to the remaining graph.

Algorithm MLOCAL(H):

Input: Graph G(V;E) with weights w. It is assumed that H and A

have been �xed in advance.

Output: Vertex cover C.

1. for all v 2 V do w0(v) w(v);

2. for all U � V such that G[U] is isomorphic to some H 2 H do

begin

� minfw0(v) j v 2 Ug;
for all vertices v 2 U do w0(v) w0(v)� �;

end ;

3. C1 fv 2 V jw0(v) = 0g;

4. V1 V n C1;

5. Run Algorithm A on instance (G[V1]; w0) to obtain a vertex cover
C2 for G[V1];

CHAPTER 4. VERTEX COVER AND SET COVER Page 112

6. return C = C1 [C2.

The exact implementation of the Step 2 is deliberately left unspec-

i�ed. The intent is that the iterations be applied by using some enu-

meration of all induced subgraphs of G isomorphic to graphs in H. The
exact ordering in the enumeration is irrelevant and can be chosen to

make the algorithm more e�cient. One way to do this is to enumerate

all sets U � V such that jU j � maxfnH jH 2 Hg, and then to check if
G[U] is isomorphic to some graph in H. This can be done in polyno-

mial time provided the number of vertices in the graphs in H is �xed
independent of jV j. We will see later that for a well-structured class of
graphs H we can relax this requirement.

At the end of Step 2, it will be the case that in every induced
subgraph isomorphic to a graph in H, at least one vertex will have the
w0-weight equal to 0. This means that every such subgraph will have
at least one vertex in C1. We conclude that the remaining graph G[V1]
cannot have any subgraph isomorphic to a graph in H. It is now clear

why this algorithm is useful: for an appropriate choice of H it will be
easier to guarantee that a near-optimal cover can be easily found in
G[V1]. In other words, Algorithm A has to perform well only on inputs
which do not have any subgraphs isomorphic to graphs in H. Notice
that there are two ways in which we are constrained in the choice of H:
it must have rH � 2 and the enumeration in the Step 2 should be easy

to perform.

As for the quality of the approximation produced by this algorithm,

we present the following result called the Local Ratio Corollary. The

proof is by a simple induction on the number of iterations in the Step

2, using the Local Ratio Theorem on each iteration. We leave the proof
as an exercise.

Corollary 4.2: Using any family H and any approximation algorithm

A

� RMLOCAL(H)(G;w) � maxfrH; RA(G[V1]; w0)g.

� G[V1] does not have any subgraphs isomorphic to graphs in H.

4.3. IMPROVED VERTEX COVER APPROXIMATIONS Page 113

We now present several applications of this result. Consider �rst the

case where the family H contains only the graph H, and H is simply

an edge. It is then the case that rH = 2. Applying the above corollary,

we can show that RLOCAL(H) = 2. Moreover, the graph G[V1] must be

empty since it cannot have any induced subgraphs isomorphic to an

edge. There is no need for an Algorithm A in this case. The following

is an equivalent description of the resulting algorithm. This is exactly

the linear time approximation algorithm with ratio 2 that was devised
by Bar-Yehuda and Even [4].

Algorithm MLOCAL(EDGE):

Input: Graph G(V;E) and weight function w on V .

Output: Vertex cover C.

1. while 9e 2 E with both end-points of non-zero weight do begin

Pick an edge fu; vg 2 E with both end-points of non-zero
weight;
� minfw(u); w(v)g;
w(u) w(u)� �;

w(v) w(v)� �;

end ;

2. return C = fv 2 V jw(v) = 0g.

Amazingly enough, almost every approximation algorithm (except

Algorithm NT) can be viewed as some version of MLOCAL(H).
For another example, consider Algorithm MGA described in the

previous section. This can be thought of as a generalization of
MLOCAL(EDGE) which picks several copies of the graph H (which

is an edge) simultaneously, all sharing a common vertex. The choice

of this common vertex is such that it is possible to subtract an equal
amount of weight from all other edges without making their new weights

negative. Clearly, this is merely an implementation detail and has no
bearing on the ratio achieved.

CHAPTER 4. VERTEX COVER AND SET COVER Page 114

Another application of the Local Ratio Theorem is in improving

the performance ratio of the algorithm devised by Hochbaum [24]. Her

algorithm was based on the following novel idea. First, run Algorithm

NT to obtain an instance G[V0] with an optimal solution of weight at

least half of w(V0). Suppose now that we can color the input graph

G with k colors. Let I � V0 be the color class which has the largest

weight. Output C = V0 � I as the vertex cover. It is clear that C

is a vertex cover since each color class is an independent set, and the
complement of any independent set is a vertex cover. Moreover, by our

choice of I, w(I) � w(V0)=k and this implies that

w(C)

w(C�)
�
w(V0)� w(I)

w(V0)=2
� 2�

2

k

Since any graph can be colored with � colors, it follows that we haveProve that any

graph is

�-colorable.
obtained an approximation algorithm with a performance ratio of 2� 2

�
.

In the special case of planar graphs, we can improve the ratio to 1:5 by
noting that every planar graph can be 4-colored [2, 3].

We now observe that the approximate graph coloring algorithm of

Wigderson [60] (which we will see in a later chapter) will color a graph
using at most 2

p
n colors provided it is triangle-free. This helps in

improving the algorithm of Hochbaum, in conjunction with the use of
the Local Ratio Corollary. The idea is to choose H containing only one
graph, viz. the triangle graph. Now we run MLOCAL on the input

graph G to obtain a triangle-free graph. Next we run Algorithm NT to

obtain a graph which is both triangle-free and has an optimal solution
of value at least half of the total weight of the graph. At this point
we can run Wigderson's algorithm to obtain a coloring using k = 2

p
n

colors. This implies an approximation ratio of 2 � 1p
n
. The details of

the analysis are fairly straightforward.

4.3.3. An Algorithm for Graphs Without Small

Odd Cycles

We have seen how Algorithm NT and MLOCAL(H) can be used to
obtain several approximation algorithms with performance ratios of 2

4.3. IMPROVED VERTEX COVER APPROXIMATIONS Page 115

or 2 � f(n). Bar-Yehuda and Even improved on all previously known

performance ratios by combining these two algorithms in a particular

fashion. The basic idea is to use MLOCAL(H) to eliminate all odd

cycles of small length. Then, by the use of Algorithm NT we guarantee

that the graph has a large optimal vertex cover. Finally, a simple

algorithm is used to obtain a good approximation in the resulting graph.

We now present the latter algorithm.

De�nition 4.9: An instance (G;w) of WVC is said to be k-proper if
the following conditions are satis�ed.

� (2k � 1)k � n.

� G has no odd cycles of length smaller than 2k � 1.

� c�(G;w) � w(V)

2
.

For u; v 2 V , let d(u; v) denote the distance from u to v in G(V;E).
The sets Di represent the collection of vertices in V which are at a
distance i from v. These can be determined in linear time by performing
a breadth-�rst search starting at v.

Algorithm Ck �nds an approximation to WVC in an instance (G;w)
which is k-proper. The basic idea is to �x a vertex v and �nd sets Bt

which contain all vertices at distance at most t from v, such that vertices
in Bt are at an even distance from v if and only if t is even. For t < k, it

is clear that each pair of vertices in Bt have an even length path joining

them and they cannot be adjacent without creating an odd cycle of
length at most 2k � 1. Since this is not possible for G, we obtain that
Bt must be an independent set. Note that Xt = Bt�1 [Bt contains all

the vertices at distance at most t from v. We now claim that for t � k,

Bt covers all the edges which have at least one end-point in Xt. The
algorithm chooses a value of t for which it can be guaranteed that the

weight of w(Bt) is a small fraction of w(Xt). This is done by choosing
the smallest value of t for which w(Bt) � (2k � 1)w(Bt�1). The only

problem is that t is required to be at most k. But if the weight of v

is large, and the weight of each subsequent Bt keeps increasing by a
factor of at least 2k � 1, it follows that we will exhaust all the vertices

CHAPTER 4. VERTEX COVER AND SET COVER Page 116

in the graph by the time t = k. Now the set Xt can be removed from

the graph if we ensure that Bt is placed in the cover. The whole process

is repeated till all the vertices have been removed.

Algorithm Ck:

Input: Graph G(V;E) and weight function w on V , such that (G;w)
is k-proper.

Output: Vertex cover C.

1. U V ;

2. C ;;

3. while U 6= ; do begin

Pick a vertex v 2 U such that w(v) = maxu2U w(u);
for 0 � i � k do Di fw 2 V j d(v;w) = ig;
for 0 � t � bk

2
c do B2t [ti=0D2i;

for 0 � t � bk�1
2
c do B2t+1 [ti=0D2i+1;

f minft jw(Bt) � (2k � 1)w(Bt�1)g;
C C [Bf ;
U U n (Bf [Bf�1);

end ;

4. return C.

It is obvious that this algorithm can be implemented to run in time

polynomial in the size of the input (G;w). We obtain the following

result about the output of this algorithm.

Theorem 4.8: The set C produced by Algorithm Ck is a vertex cover

for G and RCk � 2 � 1
k
.

4.3. IMPROVED VERTEX COVER APPROXIMATIONS Page 117

Proof: We �rst claim that f � k. To see this, note that for t � f ,

w(Bt) > (2k � 1)w(Bt�1) which implies that

w(Bt) > (2k � 1)tw(B0) = (2k � 1)tw(v)

Now, if f > k then we have that w(Bk) > (2k� 1)kw(v) > jV j �w(v) �
w(V), implying a contradiction.

Next, we claim that Bf�1 is an independent set. Otherwise, there
would be two vertices x; y 2 Bf�1 which are adjacent. But the distance
from v to x and y is either both even or both odd, given the de�nition
of Bt. This implies the existence of an odd cycle containing v of length

at most 2k � 1, which is not possible given that G is k-proper.

Consider any edge e with at least one end-point incident on Bf�1 [
Bf . If both end-points of e are in Bf�1 [Bf , then Bf covers this edge

since Bf�1 is an independent set. On the other hand, if only one end-
point of e lies in Bf�1 [Bf , then it must lie in Df since otherwise the
other end-point would be at distance at most f from v and also lie in
Bf�1 [Bf . It follows that every edge incident on Bf�1 [Bf is covered
by Bf . We now conclude that C must be a vertex cover for G.

It remains to bound the weight of this vertex cover. By de�nition,
w(Bf) � (2k � 1)w(Bf�1) or

w(Bf) �
�
1 �

1

2k

�
(w(Bf) + w(Bf�1))

Moreover, at each iteration the set Bf is added to the cover while both
sets Bf and Bf�1 are deleted from the graph. It is now clear that

w(C) �
�
1� 1

2k

�
w(V).

2

4.3.4. The Overall Algorithm

The overall vertex cover algorithm can now be speci�ed in terms of
the algorithms MLOCAL(H), NT and Ck. The following Algorithm

A takes as input any instance (G;w) of WVC. It can be thought of as
the algorithm A used by MLOCAL, although we present the overall

CHAPTER 4. VERTEX COVER AND SET COVER Page 118

algorithm in a slightly di�erent manner. Let Cr denote the graph which

consists of a cycle on r vertices.

Algorithm BE:

Input: Graph G(V;E) and weight function w on V .

Output: Vertex cover C.

1. Let k be the smallest integer such that (2k � 1)k � n;

2. H fC2i+1 j 1 � i � k � 1g;

3. Run AlgorithmMLOCAL(H) on (G;w) to obtain the C1 � V and
a residual instance (G[V1]; w0);

4. Run Algorithm NT on (G[V1]; w0) to obtain the sets C0; V0 � V ;

5. Run Algorithm Ck on the (G[V0]; w0) to obtain the cover C;

6. return C [C0 [C1.

It is fairly easy to see that the entire algorithm runs in polynomial
time, provided that MLOCAL(H) can be implemented in polynomial
time. If we were to try and compute all possible odd cycles of length
upto 2k�1, the running time ofMLOCAL would be super-polynomial.
Instead, we present a strategy for enumerating a small number of odd

cycles such that, if at least one vertex in each such cycle has its weight

reduced to 0, then there will not be any odd cycles of length at most
2k � 1 which contains only vertices of positive weight. Clearly, this is

a valid implementation of MLOCAL(H).

To enumerate these odd cycles, pick any node v of non-zero weight

and construct a breadth-�rst tree rooted at that node. Any odd cycle of
length 2r+ 1 containing v must have two adjacent vertices at distance
r from v. This implies that there must be a pair of nodes at level r of

the tree which are adjacent. Moreover, any adjacent pair of nodes at

level r determine an odd cycle containing v of length 2r + 1. If there

4.4. APPROXIMATING SET COVER Page 119

exists any such pair of adjacent vertices at any level l � k�1, compute

the nuique odd cycle of length 2l+ 1 determined by the tree and these

two vertices. Reduce the weights as speci�ed by MLOCAL. If there

is no such odd cycle containing v, then eliminate v from contention in

any future iteration. Now repeat the whole process outlined above.

The claim is that at each iteration at least one vertex is eliminated

from consideration as the root of a breadth-�rst tree, or at least one

vertex has its weight reduced to 0 and is also eliminated. It follows that
the number of iterations is at most n. Moreover, at the end of these
iterations, the graph does not contain any odd cycles of length at most
2k � 1 which do not have vertices of weight 0.

Thus, the running time of the entire algorithm is polynomial in the
size of the input. In fact, the running time is dominated by Algorithm
NT which uses one max-
ow computation.

It is also clear that this algorithm has a performance ratio of 2� 1
k
.

This can be formally veri�ed by using the results proved in the previous
sections for the algorithms NT , MLOCAL and Ck. Note that our
choice of k is such that k = O

�
logn

log logn

�
. We have the following result.

Theorem 4.9: The algorithm BE computes a vertex cover in polyno-
mial time such that RA = 2 � log logn

2 logn
.

4.4. Approximating Set Cover

Let H(V;E) be a hypergraph representing an instance of the (un-

weighted) set covering problem. We generalize the notion of the degree
of a vertex to a hypergraph.

De�nition 4.10: For all v 2 V , dv is the number of edges in E which

contain v. Also, let d = d(H) be the maximum degree in the hypergraph

H.

As usual, a cover C � V is a collection of vertices of the hypergraph

such that each edge in E contains at least one vertex from C.

CHAPTER 4. VERTEX COVER AND SET COVER Page 120

De�nition 4.11: � (H) is the size of a minimum cover of the hyper-

graph H.

There is no known constant factor approximation for the minimum

cover of a hypergraph. In fact, there is some evidence to the e�ect

that such an approximation is impossible to �nd in polynomial time.

The best known approximation algorithm has a performance ratio of

O(log d), and this was independently discovered by Johnson [30] and
Lovasz [43]. A similar result was achieved for the case of weighted
hypergraphs by Chvatal [10]. We will present only the result for un-
weighted hypergraphs. The algorithm is essentially the greedy algo-
rithm G2, as generalized to hypergraphs. We will also refer to this

generalized algorithm as G2.

Algorithm G2:

Input: Hypergraph H(V;E).

Output: Set cover C.

1. C ;;

2. while E 6= ; do begin

Pick a vertex v 2 V of maximum degree in the current
hypergraph;

C C + v;
E E n fe j v 2 eg;

end ;

3. return C.

The following presentation is based on that of Lovasz. We will need
some further notation in the course of analyzing G2. A fractional cover

of a hypergraph is essentially a feasible solution to the LP-relaxation
of the integer programming formulation of the covering problem. It is

a choice of a fraction of each vertex such that for every edge the total

fraction of all its vertices selected is at least 1.

4.4. APPROXIMATING SET COVER Page 121

De�nition 4.12: A fractional cover of the hypergraph H is a weight

function w : V ! <+ such that for all edges e 2 E

X
v2e

w(v) � 1

De�nition 4.13: Let � �(H) denote the size of the optimal fractional

cover of H, i.e.

� � = min
w

X
v2V

w(v)

A matching in a hypergraph is a natural generalization of a match-
ing in a graph, i.e. it is a collection of independent edges. We can
further generalize this to the notion of a k-matching, as follows.

De�nition 4.14: A k-matching in the hypergraph is a subset M � E

such that each vertex v 2 V is contained in at most k edges from M .
In other words, it is a sub-hypergraph of degree at most k.

De�nition 4.15: Let mk(H) denote the size (number of edges) of a
maximum k-matching in the hypergraph H.

For the sake of brevity, we will omit the dependence of d, � , � �

and mk on the input hypergraph H, assuming that the input H has
been �xed. We �rst present some elementary relations between these
quantities. The �rst of these follows from the observation that every

cover of H is also a fractional cover.

Fact 4.7: � � � �

The next fact follows from linear programming duality, but we pro-

vide an elementary proof.

Fact 4.8: For all k, mk � k� �.

CHAPTER 4. VERTEX COVER AND SET COVER Page 122

Proof: Let M be a maximum cardinality k-matching; then, jM j =
mk. Consider any optimal fractional cover w such that

P
v2V w(v) = � �.

Now we know that each edge in E, and hence each edge inM , has total

weight at least 1 under w. Therefore, for all e 2M ,

P
v2ew(v) � 1

)
P

e2M

P
v2ew(v) � jM j = mk

But, in the left-hand-side of the last inequality each vertex occurs at

most k times. Therefore, we have that

X
v2V

k � w(v) � mk

Noting that � � =
P

v2V w(v), we have the desired result.
2

We are now ready to show that Algorithm G2 has a performance
ratio of O(log d). Suppose that Algorithm G2 chooses the vertices v1,
v2, . . ., vt, in that order, to produce a cover of size t. The following
lemma bounds the value of t in terms of the matching numbers for H.

Pay particular attention to the last term in the series.

Lemma 4.8:

t �
m1

1 � 2
+

m2

2 � 3
+

m3

3 � 4
+ � � �+

md�1

(d� 1) � d
+
md

d

Proof: Note that v1 has maximum degree in H, i.e. degree d, and

that md = jEj. Observe that the number of new edges covered by
each successive vi is a non-increasing function of i. We will refer to the
number of new edges covered by any such vi as its covering degree. Let

tr be the number of times that algorithm selects a vertex of covering

degree r in the course of its execution. Thus, among the vi's, the �rst
td of them have covering degree d each, the next td�1 of them have

covering degree d� 1 each, and so on. We conclude the following

t = td + td�1 + � � �+ t2 + t1

jEj = dtd + (d� 1)td�1 + � � � + 2t2 + t1

4.4. APPROXIMATING SET COVER Page 123

Let Hi(V;Ei) denote the hypergraph de�ned by the collection of un-

covered edges after td + td�1 + � � �+ ti+1 vertices have been selected by

G2. Clearly, the maximum degree of each hypergraph Hi is at most i.

This implies that Ei is an i-matching in H. Therefore,

mi � jEij

Notice that all the edges of Hi were covered during the last ti + ti�1 +

� � �+ t2 + t1 iterations of G2. This gives us the following equation

jmij � jEij = iti + (i� 1)ti�1 + � � �+ 2t2 + t1

or that

mi �
iX

j=1

jtj

Upon suitable algebraic manipulation, this yields the inequality stated

in the lemma.
2

We are now ready to prove the main theorem.

Theorem 4.10: RG2 < 1 + log d

Proof: From Facts 4.7 and 4.8, we have that

mk � k� � � k�

Combining this with the previous lemma, we obtain that

t �
d�1X
i=1

i�

i(i+ 1)
+
d�

d

= �

dX
i=1

1

i

!

< (1 + log d)�

In other words,

G2(H) < (1 + log d)OPT (H)

implying the desired result.

2

CHAPTER 4. VERTEX COVER AND SET COVER Page 124

Exercise 4.4: Show that the above bound on the performance ratio of

G2 is the best possible.

4.5. Discussion

Several of the algorithms described above seem to perform operations

which are counter-intuitive. A good example is MGA which actually
reduces the weights of the neighbors of the vertices already in the cover,

thus increasing the likelihood that these neighbors are also selected to
be in the cover. See the paper by Gus�eld and Pitt [22] for a partial
explanation of why such algorithms actually perform better than more
intuitive algorithms such as G2. This also gives a more uni�ed view of
most of the algorithms considered above.

Hochbaum [25] gives bounded ratio approximation algorithms for
related problems, viz. independent sets and coloring in bounded degree
graphs and planar graphs. A result that we did not cover is the ap-
proximation algorithm for weighted set cover due to Chvatal [10]. The

algorithm is a generalization of the greedy algorithm described above
for set cover. The result in the case of set cover may be viewed as
bounding the ratio of optimal integral cover and fractional cover for
hypergraphs. See the paper by Aharoni, Erd�os and Linial for a more
general version of this result, i.e. a study of the ratio between the opti-

mal fractional and integral solutions to a class of integer programs. A
di�erent version of the set cover was studied by Johnson [30]. Here, as

before, the objective is to �nd a collection of vertices which cover all

the edges but the value of a cover is now de�ned to be the sum of the
degrees of the vertices in the cover, rather than the size of the cover.

The results obtained are very similar to those described above for the
set cover problem.

Problems

4{1 Recall the result proved in an earlier chapter which showed that

4.5. DISCUSSION Page 125

there is no absolute approximation algorithm for CLIQUE, as-

suming that P 6= NP. Prove a similar result for SET COVER.

4{2 Consider the algorithm MGA for WEIGHTED VERTEX COV-

ERING due to Clarkson. Prove the following variation of the

result presented in class. Given an unweighted graph G(V;E)

with maximum degree � such that the optimal vertex cover is of

size at most n=3,

RMGA(G) � 2 �
2

�� 2

4{3 We have seen the greedy algorithm of Lovasz guarantees a 1+log d

factor approximation for the SET COVER problem. Prove that
this is the best bound possible in that there exist instances where
this bound is achieved by the greedy algorithm. Can you prove a
similar result for the greedy algorithm on WEIGHTED VERTEX
COVER?

4{4 Consider the problem called RECTANGLE COVERING or RC.

Instance: A collection of rectangles I = fR1; . . . ; Rng in the
plane such that each rectangle is aligned with the axes { all
sides are horizontal or perpendicular. Note that the rectan-
gles may overlap.

Feasible Solution: A collection of points P = fp1; . . . ; pmg such
that each rectangle in I contains at leas one point from P .

Goal: Minimize jP j.

Provide the best approximation algorithm you can for this prob-

lem. Can you say anything about the hardness of approximating
this problem?

CHAPTER 4. VERTEX COVER AND SET COVER Page 126

Chapter 5

Bibliography

[1] R. Aharoni, P. Erd�os and N. Linial, Optima of dual integer pro-
grams, Combinatorica, 8 (1988), pp. 13{20.

[2] K. Appel and W. Haken, Every planar map is four colorable,
Part I: Discharging, Illinois Journal of Mathematics, 21 (1977),
pp. 429{490.

[3] K. Appel, W. Haken and J. Koch, Every planar map is four col-
orable, Part II: Reducibility, Illinois Journal of Mathematics,
21 (1977), pp. 491{567.

[4] R. Bar-Yehuda and S. Even, A Linear Time Approximation Al-

gorithm for the Weighted Vertex Cover Problem, Journal of
Algorithms, 2 (1981), pp. 198{203.

[5] R. Bar-Yehuda and S. Even, On Approximating a Vertex Cover for
Planar Graphs, Proceedings of 14th Annual ACM Symposium
on Theory of Computing (1982), pp. 303-309.

[6] R. Bar-Yehuda and S. Even, A Local-Ratio Theorem for Approxi-
mating the Weighted Vertex Cover Problem, Annals of Discrete
Mathematics, 25 (1985), pp. 27{45.

[7] M.W. Bern, H.J. Karlo�, P. Raghavan, and B. Schieber, Fast

geometric approximation techniques and geometric embedding

problems, Proceedings of Fifth Annual Symposium on Compu-
tational Geometry (1989), pp. 292{301.

127

CHAPTER 5. BIBLIOGRAPHY Page 128

[8] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications,

North-Holland (1976).

[9] N. Christo�des,Worst-case analysis of a new heuristic for the trav-

elling salesman problem, Technical Report, Graduate School of

Industrial Administration, Carnegie-Mellon University, Pitts-

burgh, PA (1976).

[10] V. Chvatal, A Greedy Heuristic for the Set-Covering Problem,

Mathematics of Operations Research, 4 (1979), pp. 233{235.

[11] K.L. Clarkson, A Modi�cation of the Greedy Algorithm for Vertex
Cover, Information Processing Letters, 16 (1983), pp. 23{25.

[12] E.G. Co�man, M.R. Garey and D.S. Johnson, Approximation al-
gorithms for bin packing { an updated survey, in Algorithm De-
sign for Computer SystemDesign (ed. G. Ausiello, M. Lucertini
and P. Sera�ni), Springer-Verlag (1984).

[13] M.R. Garey and D.S. Johnson, Approximation algorithms for com-
binatorial problems: an annotated bibliography, in Algorithms

and Complexity: New Directions and Recent Results (ed.
J.F. Traub), Academic Press (1976).

[14] M.R. Garey and D.S. Johnson, Strong NP-completeness Results:
Motivations, Examples and Implications, Journal of the ACM,
25 (1978), pp. 499{508.

[15] M.R. Garey and D.S. Johnson, Computers and Intractability: A
Guide to the Theory of NP-Completeness, W. H. Freeman and

Company (1979).

[16] F. Gavril, cited in [15], page 134.

[17] P.C. Gilmore and R.E. Gomory, A linear programming approach

to the cutting-stock problem, Operations Research, 9 (1961),
pp. 849{859.

[18] R.L. Graham, Bounds for certain multiprocessing anomalies, Bell

Systems Technical Journal, 45 (1966), pp. 1563{1581.

[19] M. Gr�otschel, L. Lov�asz and A. Schrijver,The ellipsoid method and

its consequences in combinatorial optimization, Combinatorica,

1 (1981), pp. 169{197.

Page 129

[20] M. Gr�otschel, L. Lov�asz and A. Schrijver, Geometric Algorithms

and Combinatorial Optimization, Springer-Verlag (1987).

[21] L. Guibas, Personal communication, 1992.

[22] D. Gus�eld and L. Pitt, Understanding approximations for node

cover and other subset selection algorithms, Technical Report

YaleU/DCS/TR-308, Department of Computer Science, Yale

University, 1984.

[23] M.D. Hansen, Approximation Algorithms for Geometric Embed-

dings in the Plane with Applications to Parallel Processing
Problems, Proceedings of 30th Annual Symposium on Foun-
dations of Computer Science (1989), pp. 604{611.

[24] D.S. Hochbaum, Approximation Algorithms for Set Covering and
Vertex Cover Problems, SIAM Journal on Computing, 11
(1982), pp. 555-556.

[25] D.S. Hochbaum, E�cient Bounds for the Stable Set, Vertex Cover
and Set Packing Problems, Discrete Applied Mathematics, 6

(1983), pp. 243-254.

[26] I. Holyer, The NP-completeness of edge coloring, SIAM Journal of
Computing, 10 (1981), pp. 718{720.

[27] E. Horowitz and S. Sahni, Fundamentals of Computer Algorithms,
Computer Science Press (1978).

[28] O.H. Ibarra and C.E. Kim, Fast approximation algorithms for the

knapsack and sum of subset problems, Journal of the ACM, 22
(1975), pp. 463{468.

[29] D.S. Johnson, The NP-completeness column: an ongoing guide,

Journal of Algorithms, 3 (1982), pp. 288{300.

[30] D.S. Johnson, Approximation algorithms for combinatorial prob-

lems, Journal of Computer and System Sciences, 9 (1974),

pp. 256{278.

[31] D.S. Johnson, A. Demers, J.D. Ullman, M.R. Garey and
R.L. Graham, Worst-case performance bounds for simple one-

dimensional packing algorithms, SIAM Journal on Computing,

3 (1974), pp. 299{325.

CHAPTER 5. BIBLIOGRAPHY Page 130

[32] R. Kannan and B. Korte, Approximative Combinatorial Algo-

rithms, Mathematical Programming 1984 (ed. R.W. Cottle,

M.L. Kelmanson and B. Korte), pp. 195{248.

[33] N. Karmakar, A new polynomial-time algorithm for linear pro-

gramming, Combinatorica, 4 (1984), pp. 373{395.

[34] N. Karmakar and R.M. Karp, An E�cient Approximation Scheme

For The One-Dimensional Bin Packing Problem, Proceedings

of 23rd Annual Symposium on Foundations of Computer Sci-
ence (1982), pp. 312{320.

[35] R.M. Karp, The fast approximate solution of hard combinatorial
problems, Proceedings of 6th Southeastern Conference on Com-
binatorics, Graph Theory and Computing, Utilitas Mathemat-
ics (1975), pp. 15{31.

[36] B. Korte and R. Schrader, On the existence of fast approximation

schemes, Nonlinear Programming, 4 (1980), pp. 415{437.

[37] L. Kucera, The complexity of clique �nding algorithms, unpub-

lished manuscript.

[38] E.L. Lawler, Combinatorial Optimization: Networks and Matroids,
Holt, Rinehart & Winston (1976).

[39] E.L. Lawler, Fast Approximation Algorithms for Knapsack Prob-
lems, Proceedings of 18th Annual Symposium on Foundations
of Computer Science (1977), pp. 206{213.

[40] E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan and D.B. Shmoys,

Sequencing and Scheduling: Algorithms and Complexity, in

Handbooks in Operations Research and Management Science,

Vol. 4: Logistics of Production and Inventory (1990).

[41] H.W. Lenstra, Integer programming with a �xed number of vari-

ables, Mathematics of Operations Research, 8 (1983), pp. 538{
548.

[42] R.J. Lipton and R.E. Tarjan, Applications of a planar separator

theorem, Proceedings of the 18th Annual Symposium on Foun-
dations of Computer Science (1977), pp. 162{170.

Page 131

[43] L. Lov�asz, On the Ratio of Optimal Integral and Fractional Covers,

Discrete Mathematics, 13 (1975), pp. 383{390.

[44] B. Monien and E. Speckenmeyer, Ramsey Numbers and an Ap-

proximation Algorithm for the Vertex Cover Problem, Acta In-

formatica, 22 (1985), pp. 115{123.

[45] F.D. Murgolo, An e�cient approximation scheme for variable-

sized bin packing, SIAM Journal on Computing, 16 (1987),

pp. 149{161.

[46] G.L. Nemhauser and L.E. Trotter, Jr., Vertex Packing: Struc-
tural Properties and Algorithms, Mathematical Programming,
8 (1975), pp. 232-248.

[47] R.G. Nigmatullin, Complexity of the approximate solution of com-
binatorial problems, Soviet Mathematical Doklady, 16 (1975),
pp. 1199{1203.

[48] C.H. Papadimitriou and K. Steiglitz, Combinatorial Optimization:
Algorithms and Complexity, Prentice Hall (1982).

[49] V.Th. Paschos, A Theorem on the Approximation of Set Cover

and Vertex Cover, to appear in Eleventh Conference on Foun-
dations of Software Technology and Theoretical Computer Sci-
enceai (FSTTCS 11), New Delhi (India), 1991.

[50] L. Pitt, A Simple Probabilistic Approximation Algorithm for Vertex
Cover, Technical Report YaleU/DCS/TR-404, Department of
Computer Science, Yale University, 1985.

[51] D.J. Rosenkrantz, R.E. Stearns and P.M. Lewis, An analysis of
several heuristics for the traveling salesman problem, SIAM

Journal on Computing, 6 (1977), pp. 563{581.

[52] C. Savage, Depth First Search and the Vertex Cover Problem, In-

formation Processing Letters, 14 (1982).

[53] S. Sahni, Approximate algorithms for the 0/1 knapsack problem,
Journal of the ACM, 22 (1975), pp. 115-124.

[54] S. Sahni, General Techniques for Combinatorial Approximation,

Operations Research, 25 (1977), pp. 920{936.

CHAPTER 5. BIBLIOGRAPHY Page 132

[55] S. Sahni and T. Gonzalez, P-complete approximation problems,

Journal of the ACM, 23 (1976), pp. 555-565.

[56] A. Schrijver, Theory of Linear and Integer Programming, John

Wiley & Sons (1986).

[57] P.M. Vaidya, Geometry helps in matching, SIAM Journal on Com-

puting, 18 (1989), pp. 1201{1225.

[58] P.M. Vaidya, Approximate minimum weight matching on points in
k-dimensional space, Algorithmica (1990).

[59] W. Fernandez de la Vega and G.S. Lueker, Bin Packing can be

solved within 1 + � in Linear Time, Combinatorica, 1 (1981),
pp. 349{355.

[60] A. Wigderson, Improving the Performance Guarantee for Approxi-
mate Graph Coloring, Journal of the ACM, 30 (1983), pp. 729{
735.

