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Abstract

Stereotaxic radiosurgery is a procedure which uses a beam of radiation as an
ablative surgical instrument to destroy brain tumors. The beam is produced
by a linear accelerator which is moved by a jointed mechanism. Radiation
is concentrated by crossfiring at the tumor from multiple directions and the
amount of energy deposited in normal brain tissues is reduced. Because ac-
cess to the tumor is obstructed along some directions by critical regions (e.g.,
brainstem, optic nerves) and most tumors are not shaped like spheres, plan-
ning the path of the beam is often difficult and time-consuming. This paper
describes a computer-based planner developed to assist the surgeon generate
a satisfactory path, given the spatial distribution of the brain tissues obtained
with medical imaging. Experimental results with the implemented planner are
presented, including a comparison with manually generated paths. According
to these results, automatic planning significantly improves energy deposition.
It can also shorten the overall treatment, hence reducing the patient’s pain and
allowing the radiosurgery equipment to be used for more patients. Stereot axic
radiosurgery is an example of so-called “bloodless surgery”. Computer-based
planning techniques are expected to facilitate further development of this safer,
less painful, and more cost effective type of surgery.
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1. INTRODUCTION

The term stereotaxic radiosurgery refers to a procedure which uses an intense fo-
cused beam of radiation as an ablative surgical instrument. The treatment makes use
of the spatial information provided by Computed Tomography (CT) and Magnetic
Resonance Imaging (MRI). Several leading medical schools worldwide have recently
reported dramatic success with such techniques mainly in the outpatient treatment
of both operable and inoperable brain tumors. In addition to being safer than con-
ventional operations, this procedure is much less expensive.

In brain surgery, there are three types of radiosurgical techniques which are dis-
tinguished by radiation source:

e Radiation by a static beam of heavy particles (protons or helium ions) generated
by a synchrocyclotron.

e Radiation by an array of static Co®® sources (Gamma-knife).

¢ Radiation by a photon beam produced by a linear accelerator moved by a jointed
mechanism.

Due to its greater flexibility and relatively low cost, the third technique is most
frequently used. A standard system using this technique is the modified Brown-
Roberts-Wells-System (LINAC System) [8, 11]. This system consists of a jointed
mechanism with 5 degrees of freedom which moves a 6 MeV photon source generat-
ing a cylindrical beam of adjustable radius. During treatment, the accelerator moves
around the patients head along a predefined path, so that the radiation is concen-
trated by crossfiring at the tumor from multiple directions and the amount of energy
deposited in normal tissues is relatively small. However, the beam access to the tu-
mor is often obstructed along some directions by particularly critical and/or sensitive
brain structures, e.g., brainstem, carotid artery, optic nerves and optic chiasm, whose
over-radiation may result in severe side effects such as paralysis or blindness. As a
consequence, the path of the beam should be generated so as to minimally irradiate
these regions. The fact that most tumors are not shaped like spheres complicates
further the problem of finding an appropriate motion for the beam. Currently, path
planning is done manually, although the complexity of the geometric reasoning in-
volved suggests that it might be done better and quicker by a computer.

The overall treatment consists of the following steps:

1. A metal frame, called stereotaxic frame, is attached to the patients skull using
screws placed under local anaesthesia. The position of the frame relative to the
jointed mechanism is fixed and known with high precision.



2. CT and MR images are obtained and analyzed with the frame attached. The
locations of both the tumor and the critical regions are determined with respect
to the frame.

3. A path of the radiation beam is planned based on this spatial information. The
dose distribution corresponding to this path is computed by a dosimetry pro-
gram. If the surgeon finds the distribution acceptable, the treatment proceeds
to step 4, otherwise another path is generated.

4. The jointed mechanism moves the beam along the path accepted by the surgeon.

This procedure is quite long; it takes of the order of 30 minutes, I-2 hours, 2-3
hours, and 1-2 hours for steps 1, 2, 3, and 4, respectively. The patient is conscious
throughout all steps, and the stereotaxic frame, which remains attached to his/her
head (since the correspondence between the images and the jointed mechanism must
be maintained), is very painful. Shortening the procedure is thus important to reduce
the patient> pain. It would also allow the treatment of more patients with the
same equipment. In this context, various computer techniques can be applied. In
particular, in step 2, image interpretation software can be used to automatically
locate the tumor and the critical regions. In step 3, motion planning techniques can
be used to generate appropriate beam paths.

Image interpretation techniques to locate regions of interest in the brain have
been reported in the literature (e.g., see [1, 6]). In this paper we investigate motion
planning methods for generating beam paths. We describe an implemented planner
developed to assist surgeons generate satisfactory paths. We present preliminary
experimental results obtained with this planner. These results show that motion
planning software can both significantly reduce energy deposition in critical tissues
and dramatically shorten the duration of step 3.

Other image-guided systems which do not use radiosurgery have been introduced
in [5, 9]. The system in [5] is used for inserting electrodes or radioactive seeds into
a patients brain with high accuracy; the electrode or seed is moved to an appro-
priate entry position by a six degree-of-freedom robot and then moved into its final
placement in the brain by the surgeon. A robotic system designed to create femoral
cavities that are precisely shaped and positioned for inserting uncemented prostheses
is described in [9]. Motion planning techniques could also be beneficial to the devel-
opment of these systems. However, the planning issues they raise are different from
those of radiosurgery.

The path planning problem considered in this paper also departs significantly from
more classical robot motion planning [4], where the goal is to move an object (the
robot) to a goal configuration among obstacles.



Figure 1: Schematic of LINAC system [11]

Section 2 presents the kinematics of the LINAC system and the standard treat-
ment with this equipment. Sections 3 through 5 describe the geometric methods
used in our planner. Sections 6 and 7 discuss the implementation of the planner and
experimental results.

2. LINAC SYSTEM

The radiosurgery equipment used in our work is the LINAC system (8, 11) shown
in Fig. 1. It consists of a floor stand (couch) with four joints and a gantry with a
revolute joint. The position of the floor stand can be adjusted with three prismatic
joints. Its orientation in the horizontal plane is set by a revolute joint about the axis
designated by T in Fig. 1. The linear accelerator can be moved by rotating the gantry
about the axis denoted by G. The beam central axis is denoted by C. The three axes
T, G, and C always intersect in one point. While the accelerator is rotated, the floor
stand joints remain fixed, so that the beam can only span vertical angular sectors.
The radius of the beam generated by the accelerator can be adjusted by inserting a
lead collimator into the accelerator. The beam can be turned on and off during the



motion.

The standard treatment using this equipment is the following. Assume first that
the tumor is a ball 7. The prismatic joints in the floor stand are adjusted such that
the intersection point of T, G and C coincides with the center of 7. The beam
radius is set to the radius of 7. The revolute joint of the floor stand (axis T) is
set to a fixed angular position a;. In this position the gantry is moved around G
between two orientations 8; and B;, while the beam is activated. In this way, the
beam spans a vertical angular sector whose apex is the center of 7. Furthermore,
throughout the motion, 7 is inside the beam. The floor stand revolute joint is then
set to a new angular position a; and a second arc (2, 83) is generated by moving the
gantry, and so on. The standard motion procedure described in [8] consists of four
such arcs. The angle between any two planes containing these arcs should be large
enough so that the volumes swept by the beam when it moves along the various arcs
have small intersection outside the tumor. It is thus ensured that the dose inside 7
largely exceeds the dose absorbed by surrounding tissues. Energy deposition can be
computed by a standard dosimetry program which is currently in clinical use. If this
computation shows too large a dose to critical regions, the 4-arc path is modified by
changing the floor stand angles, the gantry motion ranges, and/or the beam intensity
along each arc.

When the tumor is not sphere-shaped, it is approximated as a collection of non-
intersecting spheres. Each sphere is treated independently as described above.

The planner described below directly applies to this LINAC system and generates
standard 4-arc paths. However, it is more general. In particular, with the same system
kinematics, it can generate paths with an arbitrary number of arcs, which potentially
allows a better distribution of energy in the brain, especially when the tumor and
critical regions are adjacent to one another. Simple extensions (not described in this
paper) would also allow the planner to deal with a less constrained mechanical system.

The constrained kinematics of the LINAC system and the additional restrictions
brought by the standard 4-arc treatment have two main motivations: (1) protect the
patient against collision with the moving gantry, and (2) facilitate manual path plan-
ning, without significantly impairing the overall quality of the treatment. However,
better energy deposition could be achieved by using a more versatile kinematic sys-
tem. Then the combined use of classical robot path planning techniques to prevent
collisions and sensory equipment to anticipate them could ensure satisfactory protec-
tion of the patient. Automatic path planning techniques such as the ones described
in this paper could address the increased difficulty of treatment planning.



3. GEOMETRY oF THE BEAM CONFI GURATI ON SPACE

3.1. BEAM CONFIGURATION SPACE

Let us assume that the tumor is modeled as a spherical ball 7 of radius r centered
at the coordinate origin 0. A configuration of the radiation beam is defined as the
orientation of its central axis C when this axis goes through 0. In the following,
we assume that the energy distribution along the beam is constant; hence, any two
opposite orientations of the beam are equivalent. We can then represent a beam con-
figuration by the two antipodal points where its central axis intersects the unit sphere
S?% centered at 0. The set of all beam configurations, i.e., the beam? configuration
space, is thus represented as the sphere S$? with antipodal points identified.

The kinematics of the LINAC system constrains the beam configuration to move
along arcs of great circles of S? contained in vertical planes. A path of the accelerator
is thus defined as a series of such arcs.

Our planning techniques treat critical regions as obstacles that should not be
intersected by the beam. This leads to precomputing the map of each critical region
into S% as a set of forbiden configurations called C-obstacle. The complement of the
C-obstacles in S? is called the free space.

3.2. C-OBSTACLES

Let C;, i =1,...,m, denote the critical regions of the brain. Each region C; maps
into S? as follows:

We grow C; isotropically by the radius r of 7 (i.e., the radius of the beam); this
yields a grown region Cj. Intuitively, C! is obtained by moving a ball of diameter r
to all placements where it is in contact with C;, without overlapping it; C} is equal
to C; enlarged by the volume swept out by the ball. More formally, we have:

C!=C;®B,={c+b|ceCibe B},

where B, is the ball of radius r centered at the coordinate origin 0 and @ denotes
the Minkowski set sum.

Hence, if the beam central axis does not cross the enlarged region C!, then the
beam does not intersect C;. The central projection of C! from 0 into S? gives the
C-obstacle corresponding to C;. Note that each C-obstacle consists of two antipodal
regions.



Figure 2: Construction of free space

3.3. COMPUTATION OF FREE SPACE

The following simple technique can be used to compute an approximation of free
space: Let C;, i = 1,. .., m, be polyhedra approximating the critical regions, and D,
be a cube of edge length 2r, centered at 0, bounding the spherical tumor 7. We
construct each C! as C; @ D,, rather than C; & B,. C! is then a polyhedron whose
computation is studied in [7, 3]. This approximation yields a particularly simple
projection of C! into S2. Indeed, each edge E of C! maps to an arc of great circle
which is the intersection of the plane containing 0 and E with S%. The set of edges
of all grown regions C! thus determines a collection of great circles which partition
S? into an arrangement of regions (Fig. 2). The free space is the union of a subset of
these regions.

Let n be the total number of vertices of the polyhedra Ci,. . ., Cn. The grown
regions C} can be computed in O(n) time using the algorithm described in [3]. They
have a total of 0(n)vertices and thus yield O(n) great circles in S? forming an
arrangement of O(n%egions. This arrangement can be computed in O(n?) time [2].

Example: The computation of free space is illustrated in Fig. 3 with a simple
two-dimensional example. (The beam configuration space is then the unit circle Sl.)
In (a), C; and C are polygons approximating critical regions, C is the beam central
axis at some arbitrary free configuration of the beam, and D, is the bounding square
containing the tumor disc 7. In (b), C] and C} are the grown regions corresponding
to C; and C,. Each grown region is projected into S! as two antipodal arcs (the
C-obstacles). The complement of these arcs, i.e., the two antipodal arcs shown in
bold lines, represents free space.

In the following, we assume that C-obstacles and free space have been computed
using the above approximation. They are therefore bounded by arcs of great circles.
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Figure 3. Computation of free configurations in a two-dimensional example

4. COMPUTATION OF VERTICAL FREE ARCS

4.1. CHARACTERIZATION OF GREAT CIRCLES

Let g be any great circle of S2. We can represent g by two antipodal points of a
sphere DS?, the dual sphere of S?, defined as the extremities of the two opposite unit
vectors erected at 0 and normal to the plane containing g.

Let e be an edge (arc of great circle) of a C-obstacle, and v and v be its endpoints.
Let G(u) be the set of all great circles of S? containing u. This set maps into DS?
as a great circle n(u). In the same way the great circles of S? containing v map to
a great circle n(v) of DS% The two circles n(u) and n(v) partition DS? into four
regions. Two of these regions represent the set of great circles in S? that intersect
the arc e.

Consider the C-obstacle edges in S2. The set of great circles corresponding to the
endpoints of these edges partition DS? into an arrangement A of regions. Let R be
any such region and p be any point in R. The great circle of S? corresponding to p
intersects a possibly empty set a(R) of C-obstacle edges. The region R is regular in
the following sense: The set a(R) is independent of the choice of p in R. We call it



the characteristic set of R.

The arrangement A is created by O(n) great circles. It contains O(nz) regions
and can be computed in O(n?) time (as above, n is the total number of vertices of
the critical regions). The characteristic set of any region in A can be computed in
O(n) time. By noticing that the characteristic set undergoes minor changes between
two adjacent regular regions, which can be computed in constant time, it is possible
to generate all characteristic sets in O(n?) time.

However, the LINAC system can only move the beam source along arcs of vertical
great circles. Although the computation of A and the characteristic sets can be useful
for a more versatile mechanical system, it is too general here.

4.2. FREE VERTICAL GREAT CIRCLES

Vertical great circles of S? are represented by points of the horizontal circle H of DS?.
The intersection points of H with the circles of the arrangement A decompose H into
arcs. Let L = (sq, Sz, .. .) be the sorted list of these arcs. All vertical great circles
represented by points in the same arc s; intersect the same C-obstacle edges (possibly
none). Let r(s;) denote the number of C-obstacle edges intersected by the great circle
of S? represented by any point of s;; r(s,-) is equal to the size of the characteristic
set of the region of A containing s; (although it can be computed more directly). If
r(s;) = 0 then all points in s; represent free great circles of S2. By scanning the list
L of arcs of H, we can identify all arcs s where r(s) reaches 0 and report the sublist
of these arcs, which represents all free vertical great circles of S2.

As mentioned above, this computation does not require the precomputation of
the characteristic sets of the regions of A. The intersections of H with the circles
generating A can be computed in O(n) time. The sorted list L is thus produced
in O(nlog n) time. The number r(s;) can be computed directly in O(n) time. The
arcs s; and s, are separated by a point where H intersects a great circle of A. By
analyzing this intersection, one can compute r(s;) from r(s1) in constant time. In
the same way, each new number r(s;) can be computed in constant time from r(s;—1).
Hence, the list of arcs s verifying r(s) = 0 is generated in O(n log n) time.

4.3. FREE VERTICAL ARCS OF GIVEN LENGTH

In many cases, however, there exist no free vertical great circles or the existing ones
do not have sufficient angular distance between them. Therefore, it may be more
interesting to compute vertical great circles in which free arcs have a cumulated
length greater than some specified value K. When the accelerator is moved along



such a circle, the beam must alternatively be turned on and off.

The vertices of the free space in S map to a collection of great circles of DS?.
These circles partition H into a list L” = (s}, s5, . . .) of arcs (L € L?). Consider
any arc s; in this list. All vertical great circles of S? represented by the points of s}
intersect the same C-obstacle edges in the same order. We decompose every arc s.
into subarcs such that when a point p varies from one extremity of any subarc to the
other, the total length of free arcs in the great circle of S? represented by p increases
or decreases monotonically. Each subarc of H thus contains at most one connected
segment representing great circles containing free arcs with total length greater than
the given threshold K.

The number of segments thus extracted from H is polynomial in n. The com-
putation also requires polynomial time. It involves finding the zeros of polynomial
equations. We will not discuss this issue here. The implemented planner makes use
of an approximate technique based on discretizing H (see Section 5).

One may alternatively consider great circles containing a connected free arc whose
length is greater than some value. The computation of such great circles can be done
with a technique similar to the above.

5. PATH PLANNI NG

A path of the LINAC system consists of a series of arcs (connected or not) contained
in different vertical great circles. We consider the path planning problem defined by
three parameters: the number k of great circles, the minimal cumulative length K of
the free arcs in each great circle, and the minimal angle w between the planes of any
two great circles. The planner generates a path as follows:

We give an arbitrary orientation to the horizontal great circle H of DS?. Let
(s'l‘,sg,. ..) be the sorted list of the arcs of H representing the vertical great circles
of S? whose free arcs have a total length greater than K. We must find a series of k
points p1,. .., px in these arcs such that the angle w(p;i, p;) between the vertical planes
containing the great circles represented by any two points p; and p; is smaller than
w. (Note that w(pi,p;) is equal to the angular distance between p; and p; in H.)

Assume that the points p; have been computed. If none coincides with an endpoint
of an arc s;-“, then we can move all the points p; simultaneously, in the direction
opposite to that of H, until one reaches an endpoint of an arc sf. Therefore, to
compute the points p;, we can assume that one point coincides with the first endpoint

of an arc s} (the arc being oriented as H).
We begin by placing the point p; at the first endpoint of an arbitrarily selected
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arc s> . We then move in the direction of D and place p, within an arc s%, (possibly,
equal to 33‘1), such that the angular distance between p; and p, is minimal, but larger
than w. After placing p; and p;, the remaining points are positioned in the same way.
Whenever a new point is positioned, it is also verified that its angular distance to p;
is greater than or equal to w. If no appropriate placement is found for any point p,
through pg, p; is selected at the first endpoint of another arc and the construction is
repeated.

If the planner terminates successfully, it provides a set of k great circles satisfying
the input constraints, along with the free arcs in each great circle. If it fails to find a
path, one can modify the constraints, i.e., the values of k, K, and w.

Assume that the arcs s} in H have already been computed. Let q be the number
of these arcs. For a given position of p1, the placement of every point p; takes 0( log q)
time. The placement of all points, if possible, thus takes O(k log q) time. In case of
successive failures, the process is repeated up to q times, yielding a total planning
time of O(kq log q). If K = 27 (i.e., if we are only interested in great circles), then

g € O(n). If K < 2, then q has a higher-degree polynomial dependence on n.

Alternatively, a problem can be defined so that each great circle contains a con-
nected free arc of length greater than or equal to K. The selection of the points p; is
done in the same way as above.

6. IMPLEMENTATION

An interactive planner based on the techniques described above has been implemented
to compute appropriate multi-arc paths for a LINAC-based radiosurgical system. The
software is written in C and runs on a Silicon Graphics workstation. The planner
has been connected with dosimetry and imaging software already in use with the
stereotaxic system at Stanford Medical Center.

CT and MR images give the anatomy of the brain in parallel axial cross-sections
separated by 3 to 5 mm. The critical regions in each cross-section are delineated
by polygons. These polygons are then “thickened” by the distance between cross-
sections, thus yielding a polyhedral approximation of every critical region. Currently,
the delineation operation in each cross-section is done manually.

The planner operates as described above with the difference that the horizontal
great circle H in DS? is discretized into 128 equidistant points. For every point p in
the discretization of H, the planner computes the set of free arcs in the great circle
of S? represented by p and the total length (or maximal length) of these arcs. This
leads the planner to compute each arc s7 as a list of points, instead of a continuous
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Figure 4: Axial cross-section of the brain in Case 1

segment. The rest of the planner operates in the same way as above.

When the tumor cannot be well represented by a single sphere, it is approximated
by several non-intersecting spheres. A distinct path is generated for each such sphere.
To simplify the use of the planner and potentially improve the subsequent treatment,
a geometric method for approximating tumors by a given number of spheres was
implemented. This method is based on an algorithm described in [10] for finding the
smallest sphere containing a set of points in space.

The current planner either returns a path or indicates failure. If it returns a
path, the dosimetry program is run and computes the energy deposition in the brain
tissues that will result from the execution of this path. If the surgeon does not find
this distribution acceptable, the planner is called back with different parameters (k,
K, and w). If the planner fails to return a path, it can also be called back with
different parameters.

The planner incorporates several straightforward improvements. For example,
when it finds a path, it can iteratively rotate the k vertical planes containing the
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Figure 5. Dose distribution for the manually generated path in Case 1

planned arcs to maximize the minimal length of free arcs in each one. When it fails
to find a path satisfying the constraints, it can find, by bisection, the maximal w for
which there is a path.

Currently, we assume that the beam intensity is the same for the k arcs and tuned
proportional to the inverse of the total length of these arcs. A potential improvement
of the planner, which we have not explored yet, is to allow for a different beam
intensity along each arc.
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Figure 6: Dose distribution for the automatically planned path in Case 1

7. EXPERIMENTS

In order to carry out a preliminary evaluation of the planner, we ran it on 11 cases
which had previously been treated with the stereotaxic system at the Stanford Medical
Center. In each case, the dose distribution for the path computed by the planner was
compared to the distribution for the original path which had been generated manually.
We report two representative cases below.

To make comparison with manual planning realistic, the planner was run with
k = 4 and an initial value of w equal to the standard 45 degrees. We also requested
the planner to find great circles containing a connected free arc of length greater than
some K. When the planner found a path, this path was automatically optimized as
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explained above. When the planner failed, w was determined by bisection. In all
cases, the planner took on the order of I-2 minutes to generate a path.

The planner was also used to generate paths with more than 4 vertical arcs. Inter-
estingly, this usually led to relatively small improvements. On the other hand, limited
additional experiments have shown that in some cases the restriction to vertical arcs
impairs the dose distribution (see Conclusion).

7.1. CASE 1

Fig. 4 shows the CT image of an axial cross-section of the brain. A single critical
region (brain stem) is delineated by a polygon B. The tumor is designated by T. Both
the manually generated path and the computed path consist of 4 connected arcs in
different planes. They were generated for a tumor approximated by one sphere of
radius 10 mm.

Fig. 5 shows the energy deposition computed by the dosimetry program in four
cross-sections distant by 3 mm for the manually generated path. Fig. 6 shows the
deposition computed for the path generated by the planner. In both figures, doses
are shown as gray levels in steps of 200 centiGray (1 Gray = 1 joule/kg).

The quantitative dose values at the vertices of the brain stem B in 5 cross-sections,
for both paths, are given in Table 1. The first column contains point labels. The sec-
ond and fourth columns show the dose values for the manually planned path and the
computed path, respectively, in centiGray (cGy). The third and fifth columns show
these values in percent of the dose deposited at the center of the sphere approximating
the tumor. A non-zero dose is computed in some vertices of B for the automatically
planned path, despite the fact that nowhere along this path the beam intersects B.
The radiation dose close to the theoretical cylinder modeling the beam is not exactly
null. The dosimetry program makes use of a model of the beam that takes this into
account. Our planner could use a similar model, but would then regularly fail to find
a path when the tumor is too close to a critical region.

An elevated relative dose is obtained for vertices close to the tumor, mainly at
points BrStem.5.1, BrStem.4.2, and BrStem.3.1. Table 1 shows that the dose at these
points is reduced in the computed path by 46%, 55% and 76%, respectively, relatively
to the manually planned path. The table shows a substantial dose reduction ratio at
all other vertices, but these reductions are less critical since the doses in c¢Gy for the
manually generated paths are significantly lower.
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manually planned motion computedmotion

BrStem.1.1 | 177.8 8.9 80.9 4.1
BrSteml.2 | 76.7 3.8 10.8 0.5
BrStem!.3 | 13.7 0.7 0.0 0.0
BrSteml.4 | 14.5 0.7 0.0 0.0
BrStem!.5 | 42.5 2.1 | 1.4 0.1
BrStem 2.1 | 161.0 8.0 | 23.9 1.2
BrStem 2.2 | 121.7 6.1 | 25.8 1.3
BrStem2.3 | 60.7 3.0 | 1.6 0.1
BrStem 2.4 | 33.2 1.7 | 0.0 0.0
BrStem 2.5 | 32.6 1.6 | 0.0 0.0
BrStem3.1 | 239.5 12.0 55.0 2.8
BrStem 3.2 | 60.3 3.0 0.5 0.0
BrStem 3.3 | 68.5 3.4 1.7 0.1
BrStem 3.4 | 37.0 1.9 0.0 0.0
BrStem 3.5 1 144.2 7.2 18.6 0.9
BrStem 3.6 | 90.9 4.5 6.0 0.3
BrStem3.7 1 38.7 1.9 0.0 0.0
BrStem 3.8 | 38.5 1.9 0.0 0.0
BrStem4.1 | 163.2 8.2 19.4 1.0
BrStem 4.2 | 242.6 12.1 106. 6 5.4
BrStem 4.3 | 43.8 2.2 1.2 0.0
BrStem 4.4 | 30.6 1.5 0.0 0.0
BrStem 4.5 | 30.0 1.5 | 0.0 0.0
BrStem 4.6 | 40.6 2.0 \ 0.3 0.0
BrStem 5.1 | 313. 4 15.7 \ 165. 6 8.4
BrStem5.2 | 88.2 4.4 | 50. 2 2.5
BrStem 5.3 | 8.0 0.4 | 0.0 0.0
BrStem5.4 | 11.1 0.6 \ 0.0 0.0
BrStemb5.5 | 89.9 4.5 | 30.1 1.5

(@ (b) (c) ()

Table 1. Comparison of energy doses in the brain stem (Case 1)

7.2. CASE 2

Fig. 7 shows the CT image of an axial cross-section of the brain for Case 2. Two
critical regions B (brain stem) and OC (optic nerve and chiasm) are delineated by
polygons. The tumor is designated by T. Again both the manually generated path
and the automatically computed path consist of 4 connected arcs in different planes.
The tumor was approximated by a single sphere.

Fig. 8 and 9 show the energy distribution computed by the dosimetry program in
the cross-section shown in Fig. 7. Table 2 compares dose values at the vertices of the
critical regions.

8. CONCLUSION

This paper describes a planner developed to help a surgeon generate satisfactory
paths for a radiation beam used with radiosurgery. Using geometric techniques, this
planner avoids irradiating critical regions of the brain. Experiments demonstrate
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Figure 7. Axial cross-sect ion of the brain in Case 2

that it reduces the path planning time involved in radiosurgery and improves energy
deposition.

Beyond the immediate improvements brought by this automatic planner, we en-
vision that significant future progress can be done along the following two directions:

e For some locations of a tumor (relative to critical regions), the constraints of the
LINAC system seriously reduce the quality of the radiosurgery treatment. Bet-
ter treatment could be achieved by using a system allowing arcs in both vertical
and non-vertical planes. Such a system would make manual planning harder,
but this difficulty can be eliminated by an automatic planner. Automatic plan-
ning might motivate the development of new more flexible radiosurgical systems.

e In the longer term, faster and more reliable image interpretation techniques
will make it possible to directly connect image acquisition to beam control
with limited surgeon intervention. This could make it possible to eliminate the
painful stereotaxic frame attached to the patient® head. It could also allow the
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Figure 8: Energy deposition for the manually generated path (Case 2)

application of radiosurgery to the destruction of tumors in parts of the human
body which are more difficult to localize in space, e.g., liver and pancreas.

Stereotaxic radiosurgery of brain tumors is one instance of so-called ““bloodless
surgery”, for which there is markedly growing interest. We expect that computer-
based motion planning techniques such as those described above, together with image

interpretation techniques, will facilitate further development of this safer, less painful,
and more cost effective type of surgery.
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