
October 1992 Report No. STAN-CS-92-1452

Deadline Assignment in a Distributed
Soft Real-Time System

Ben Kao and Hector Garcia-Molha

Department of Computer Science

Stanford University
Stanford, California 94305

Deadline Assignment in a Distributed Soft Real-Time System

Ben Kao* Hector Garcia-Molinat

October 14, 1992

Abstract

In a distributed environment, tasks often have processing demands on multiple different
sites. A distributed task is usually divided up into several subtasks, each one to be executed
at some site in order. In a real-time system, an overall deadline is usually specified by
an application designer indicating when a distributed task is to be finished. However,
the problem of how a global deadline is automatically translated to the deadline of each
individual subtask has not been well studied. This paper examines (through simulations)
four strategies for subtask deadline assignment in a distributed soft real-time environment.

Keywords: soft real-time, distributed systems, deadline assignment, scheduling.

1 Introduction

Consider a radar surveillance system whose task is to track flying objects, decide whether an
object is friendly or hostile, and in the latter case, come up with a combat strategy. This system
requires the cooperation of several different components: a radar sensor component gathering
radar images, a vision system extracting the features of objects, a database component matching
those features with those of known objects, an expert system selecting the best defense plan,
and so on. Each component may run on a separate device or computer, using its own scheduling
policy. For instance, the database lookup may be done on a backend database server that uses
an earliest (local) deadline first scheduler.

*Princeton University Department of Computer Science. Current address: Department of Computer Science,

Stanford University, Stanford, CA 94305. e-mail: kaoQcs.stanford.edu

‘Stanford University Department of Computer Science. e-mail: hector@cs.stanford.edu

1

In this example, several components of the system are involved between the fist sighting
of an object and a defensive action like launching a missile. The system specification indicates
how much time the system as a whole is allowed to respond to the threat of an intruder. In
other words, a deadline of the complete task (from sighting to action) is specified. However,
the system is faced with the problem of assigning deadlines or priorities to each of the subtasks.
For example, the subtask that is doing a database lookup for a particular object will be running
on the database server, competing against other database tasks. What local deadline is to be
assigned to the lookup subtask in this case.7 Answering this question is the main goal of this
paper.

Our focus is on soft real-time systems. In such systems, it is very difficult to guarantee that
all deadlines will be met, and hence one tries to minimize the number of deadlines that are
missed. Guaranteeing all deadlines may be hard because it is impossible to impractical to place
an upper bound on the load. In our radar example, for instance, one may guess the maximum
number of objects that may suddenly appear, but there is no way of knowing for sure that
this maximum will never be exceeded. Another reason why soft real-time systems may miss
deadlines is because the tasks they run are complex and it is hard to predict exactly how long
they will run or what resources they may need. For instance, it is hard to know in advance
how many rules the expert system in our example will trigger. In the database component, the
running time of a search will depend on what other transactions are concurrently running and
holding locks. Furthermore, disk access times will depend on where the previous request left
the disk arm, again hard to determine in advance.

In this paper we study the subtask deadline assignment problem, or SDA for short. A given
task is to be executed and completed by a specified deadline. The task executes several subtasks,
each at possibly different system components. As each subtask is submitted to its component,
a local deadline must be assigned to it. At each component, there may also be local tasks that
just run at that component and that compete for resources with the subtasks assigned there.

To study the SDA problem, we make three assumptions:

l The subtask deadlines are to be assigned on-line, as opposed to a-priori when the global
task is defined or first submitted. On-line assignment is superior in soft real-time systems,
where the types of subtasks or their durations may be unknown in advance. We assume a
subtask receives its deadline just before it is submit ted for execution at its corresponding
component.

2

l The scheduler at each component is independent of the others. There is no global scheduler
that instructs each component scheduler what to do. Each scheduler makes decisions
based solely on the subtasks (and their deadlines) that have been presented to it for
execution, without consulting other schedulers. We believe that large systems are built
out of preexisting components. Each component will have its own scheduling policy and
will be unable or unwilling to coordinate or subordinate its scheduling decisions with (or
to) others.

l Each system component is unique. If a subtask must be executed at a particular compo-
nent, it must run there. There is no load balancing, i.e., an overloaded component cannot
ship subtasks to other components.

To illustrate how the choice of a SDA strategy affects a real-time system, let us consider
the following example. Suppose we have a real-time task 2’ that consists of two subtasks 2’1
and T2 to be executed in series at components Cr and Cz respectively. Before a subtask is
submitted for execution, a deadline has to be assigned to it so that the component real-time
scheduler knows about the relative priority of the subtask compared to other tasks. Since T2 is
the last subtask of T, its deadline should just be the (ultimate) deadline of T. If Tl also adopts
the same ultimate deadline, there will be a problem when the system load is high: In a tight
situation, when tasks are being finished close to their deadlines, this scheme would leave little
or no slack for the execution of T2. Task T would thus have a high probability of missing its
deadline. This discussion suggests that an earlier deadline should be assigned to Tl instead.
The question is: how early? If the deadline is not early enough, we have the same problem; on
the other hand, if the deadline is too early, then the Cr scheduler will be fooled regarding the
urgency of subt ask Tl . Other “more urgent” tasks will have to give way to this “false urgent”
subt ask and priority inversion result sl.

We believe that the SDA problem is a central one in distributed soft real-time systems.
Notice that it even encompasses the communication subsystem. That is, sending messages can
be viewed as another type of subtask. For instance, let us return to our two task example:
T = Tl, Ts. Say that after Tl completes, it is necessary to send a message from Cr to Cz
containing the inputs for T2. Then after Tz finishes it is necessary to ship the final result to
some other site. The two transmissions can be seen as two additional subtasks, Ta, Tb, so that
the global task is really T = Tl, To, Tz, Tb. The communications subsystem needs to be given

‘Priority inversion occurs when a high priority task (or a more urgent task in our context) is blocked by a
lower priority one.

3

a deadline when Ta (and Tb) is submitted, so again we see a need for SDA. Also note that the
SDA problem may arise within a single site that contains multiple subsystems such as the CPU,
the disk, and memory. For example, even within a single database system, sub-deadlines may
have to be used when requesting a disk block read, a buffer page allocation, or a processor for
computation.

As we proceed, we will address the following questions:

1. What are the options in choosing a SDA strategy?

2. How does a given SDA strategy affect a task’s chances of meeting its deadline?

3. What are the underlying reasons for the observed effects of a SDA strategy?

4. Given a set of system parameters (e.g. load, slack of tasks), and performance goals (e.g.
to minimize the number of tardy tasks, to treat tasks fairly), how would one choose a
SDA strategy?

5. For those strategies that use a prediction of task execution times, how accurate must the
prediction be to maintain a low level of missed deadlines?

The rest of this paper is organized as follows. In Section 2, we mention some related work.
Section 3 describes the logical base model for our study. Different SDA strategies are introduced
in Section 4. A brief description of our simulation experiments is contained in Section 5. In
Section 6 we display and analyze the results of our experiments, while Section 7 discusses other
variations of our base model. In Section 8 we present conclusions.

2 Related Work

A lot of research has been done on real-time scheduling in various environments, be it I/O
scheduling, processor scheduling, or transaction scheduling [3, 1, 2, 81. However, most of this
work either:

l Focuses on the characteristics of a specific system component and evaluates the perfor-
mance of various scheduling policies when applied to that component. For example, there
have been studies on real-time database systems [6], or communication systems [7, 121.

4

These studies make the tacit assumption that the deadlines of tasks when they arrive at
the component are known. They do not concern themselves on whether these tasks are
really subt asks of a global task that involves multiple components.

l Assumes a global scheduling strategy that controls in some way all component schedulers.
For example, in [ll], schedulers interact with each other to decide the best place to
execute a subtask. As we have stated, here we look instead at an environment where local
schedulers are autonomous and subtasks cannot move.

There are however at least two studies that are closely related to our approach and the SDA
problem. Bettati and Liu [4,5] discussed the problem of scheduling subtasks in a hard real-time
distributed environment. Their work focuses on those systems for which global tasks can be
characterized as “flow shops.” In thier model, global tasks consist of the same set of subtasks
to be executed on nodes in the same order. The goal is to devise efficient off-line algorithms
(assuming all the information about global tasks is known ahead) for computing a schedule of
the subtasks such that all deadlines are met (if such a schedule exists). In their work, different
variations of the model are studied, based on different assumptions on subtask execution time
(e.g., whether all subtasks have the same execution time). Other variations, like periodic tasks,
are also discussed.

Another interesting paper [lo] by Pang, Livny, and Carey investigates the problem of
“bias” against longer transactions under “earliest-deadline-based” scheduling policies in real-

time database systems. The study shows that long transactions miss more deadlines compared
to short ones. This is not because of tighter timing constraints (the phenomenon occurs even
when long transactions have larger amount of slack), but because of their bigger size, which
causes them to have “further-in-the-future” deadlines. Long transactions thus compete unfa-
vorably with short transactions in accessing system resources.

Their approach to the problem is to assign virtual deadlines to all transactions. A transaction
with an earlier virtual deadline is served before one with a later virtual deadline. The virtual
deadline of a transaction is adjusted dynamically as the transaction progresses, and is computed
as a function related to the size of the transaction. In some sense, their approach is to introduce
another bias factor counter-attacking the intrinsic bias behaviour of earliest-deadline-based
scheduling policies. By monitoring the system and gathering nmtime statistics, a parameter
in computing virtual deadlines is carefully adjusted in such a way that the linear correlation
between miss ratio and transaction size is minimized.

5

global task generator

a global task

subtasks of a
global task

nodes

I 1 local scheduler

Figure 1: Model.

Our work is similar to [lo] in that we both try to assign earlier deadlines to transactions
(or tasks). However, in their case there is a single scheduler for a single database system. For
our problem, there are multiple “resources” handled by independent schedulers. Furthermore,
distributed tasks have natural breaks (subtasks) that make the assignment of deadline more
natural.

3 Base Model

To study the SDA problem we postulate a simple model of the system and tasks. A distributed
real-time system consists of several nodes representing system components (see Figure 1). Each
node manages one or more resources, for example, a database, a cycle server, or a communication
channel. At each node, there is a real-time scheduler prioritizing tasks according to some real-
time queueing discipline, e.g., earliest deadline first.

We consider two categories of tasks: local and global. A task that visits only one node and
is submitted to a scheduler only once is termed a local task. On the other hand, a global task
is a set of several related subtasks (or stages) to be executed in series.2 The deadline of a global
task is the time by which the last subtask must complete. Each subtask is associated with an
ezecution node to which it is submitted for execution.

2Subtasks could also be executed in parallel, but this is not considered here due to space limitations.

6

We further assume that a global task is controlled and monitored by a process manager.
The manager runs at any node, and may be different for each global task. When a global task
is generated, its process manager will submit the first subtask to the corresponding execution
node. When a subtask, X, finishes, its manager is notified and immediately submits the next
subtask (if there is any) of X’s global task. We assume that the process manager of a global
task does not consume any resources.

Associated with each task X (whether it is local, global, or a subtask) are five attributes
denoted by the following functions:

ar(X) = arrival (or submission) time of X,

d(X) = slack of X,

dl(X) = deadline of X.

e x (X) = real execution time of X,

pex(X) = predicted execution time of X,

The fist four attributes are related by the following equation:

dZ(X) = ar(X) + ex(X) + sl(X).

When a global task X is fist processed by its manager, we assume its deadline dZ(X) is
known. Since its arrival time is also known, the slack can be computed using the above equation.
The execution time ex(X) is not known in advance; we only define it here to help us in the
discussion.

In some scenarios, an estimate of the execution time, pex(X), may be available and can be
used by the manager for making subtask deadline assignments. Furthermore, in some cases, the
manager may know an estimate or prediction on the number of subtasks involved in X, plus
an estimate of their duration. Most of the subtask deadline assignment policies to be discussed
in the next section will utilize this information.

We also define flexibility (denoted by fZ(.)) of a task X to be the ratio of the amount of
X’s slack to the execution time of X. That is,

fZ(X) = sZ(X)/ex(X).

Intuitively, the more flexible a task is (higher fZ(.)), the 1ess stringent is its timing constraint.

7

An additional attribute for a subtask is its stage, which is defined by:

stage(X) = i if X is the ith subtask of its global task.

We say that a subtask X is an earlier-stage compared to another subtask Y if they are of the
same global task and stage(X) < stage(Y).

Finally, there is the issue of tardy tasks, or overload management policy. Say a task X has
already missed its deadline, but has not completed execution. One option is to abort X as
soon as it misses its deadline, under the assumption that whatever it was doing is now useless.
(Example: after analyzing the current state of the stock market, a decision is made to sell
certain stock. A task X is issued to sell by a given time. If the time is exceeded, it is best
to abort X, as the market conditions may have changed.) A second option is to continue to
process X, under the assumption “better late than never.” (Example: at a bank, customers
are “guaranteed” a two second response time. However, if the guarantee is not met, it is still
desirable to complete the task.) Due to space limitations, in this paper, we focus on the no
abortion case (no specific action is taken when a deadline expires). However, as is briefly
mentioned in Section 7, the results for the abortion case do not significantly change the relative
performance of the SDA strategies.

4 S D A strategies

In this section, we propose four SDA strategies and give their formal definition. We consider a
global task T that consists of m subtasks Tl, T, to be executed in series. An SDA strategy
is one that determines the values of dI(T;) (1 5 i 5 m) at the time when T; is submitted.

We demonstrate the various SDA strategies by an example shown in Figure 2. In the
example, the global task T has 4 subtasks T;, T;+l, T;+2, Ti+s remaining. These subtasks have
execution times of 3, 1, 1, and 1 units respectively. Moreover, T; arrives at time 0 (i.e., T;-1

finished at time 0) and the ultimate deadline of T is time 12. The amount of slack remaining
for T is 6 tits.

Without any knowledge on the execution times of the subtasks, the only available measure
of their timing requirement is the deadline of their global task T. A simple SDA strategy would
be to set the deadline of a subtask to be equal to the deadline of its global task (12 in Figure
2). We call this strategy Ultimate Deadline (UD).

8

E Q S (4 . 5) E Q F (6) E E D (9) UD(12)_ _c 1 I I
T: Z A 4 A

I I I I I I I I Time
0
t

1 2 3 4 5 6 7 8 9 10 11 12
t

ar(Z) T.t+l T.5+3
T* W)

z+2

key: X(y) e dl(Ti) = y
under SDA strategy X.

Figure 2: Example on the various SDA strategies.

(1) Ultimate Deadline (UD):

dZ(Ti) = dl(T).

A problem with UD is that the time for the execution of a later-stage subtask (e.g. T;+1

in Figure 2) is considered slack to an earlier stage (Ti). This gives the schedulers incorrect
information about how much time a subtask can be delayed in its execution without causing a
missed deadline.

If an estimate of the subtask execution time is available, we can compute the effective
deadline of a subtask. The effective deadline of a subtask Ti is equal to the deadline of its
global task T (time 12 in the example) minus the total expected execution time of the subtasks
of T following Ti (3 unit~)~. Formally, we have,

(2) Effective Deadline (ED):

dZ(Ti) = dI(T) - 2 pex(Tj).
j=i+l

A problem common to both UD and ED is that all the remaining slack of T (6 units in
the example) is allocated to the currently active subtask (Ti). This subtask thus has a low
priority compared to other tasks of the system. A big portion of this slack may be consumed
while the subtask is waiting for its turn in the scheduler queue. Subtasks that represent early
stages of global tasks thus consume most of the slack of their global tasks. This leaves little
slack for the subtasks to follow. Global tasks may therefore have a low probability of meeting
their deadlines.

3We assume the estimates are perfect in our example.

9

The problem of “little slack for final-stage subtasks” gets worse when there are many local
tasks in the system. This is because local tasks have only one, probably short stage. If local
tasks have similar flexibility (sZ(.)/ez(.)) as compared to global tasks, then on average they
have smaller total amount of slack than global ones do. When competing for system resources,
early-stage subtasks of global tasks will be discriminated against (i.e., scheduled later than
other tasks), because of their much larger slack. The scheduler is therefore biased in favor of
local tasks at the expense of global ones.

To avoid discrimination and to allow enough slack for final-stage subtasks, each subtask
should have its fair share of its global task’s slack. One way of doing it is to divide the total
remaining slack (6 units in Figure 2) equally among the remaining subtasks (4 of them). This
gives us the Equal Slack (EQS) strategy:

(3) Equal Slack (EQS):

dZ(Ti) = ar(Ti) + pex(T;) + [d(T) - UT(Z) - f&x(Tj)]/(m - i + 1).
j=i

The term in brackets represents the remaining slack. In our example, EQS would assign
dZ(T;) as 0 + 3 + 6/4 or 4.5. This is shown at the top of Figure 2.

A fourth strategy is to divide the total remaining slack among the subtasks in proportion
to their execution times. In this way, subtasks of the same global task do not have equal slack,
but equal flexibility. We call this strategy Equal Flexibility (EQF).

(4) Equal Flexibility (EQF):

dZ(T;) = ar(T;) + pex(Ti) + [(dl(T) - UT(Z) - gpex(Tj))] * Ipex(Z)/ gpex(Tj)I-
j=i j=i

For our example, under EQF, dZ(Ti) is 0 + 3 + 6 t (3/6) or 6.

5 Simulation Model

In order to study and contrast system behavior under these SDA strategies, we developed a
simulation model and performed extensive experiments. In this section we describe the model;
our results are presented in Section 6.

10

In practice, the soft real-time systems we are trying to study can be very complex. For
instance, each node may have a different scheduler type, and different execution characteristics.
For example, the communications subsystem may schedule outgoing messages using a simple
earliest deadline first strategy, and its subtasks may take on the order of microseconds to
execute. A database server node, on the other hand, may take into account lock contention in
its scheduling decisions and subt asks may take on the order of seconds. Similarly, global tasks
can be extremely varied, ranging from ones with a few short subtasks, to ones lasting days and
spanning many nodes.

If we model all this diversity and complexity, our results on SDA would be obscured by
many irrelevant parameters. Instead, we use a very simple model that captures the essential
features that impact SDA. To pick a particular example, in a given experiment we assume
that aU global tasks have a fixed number of subtasks, m. Clearly this is not “realistic;” as we
have stated, tasks will have a variety of subtasks. If we were trying to predict performance of
a particular distributed application, this assumption would not be acceptable. But if we are
trying to understand how the number of subtasks affects the choice of SDA algorithm, this
is the best assumption. By running different experiments with different values of m, we may
be able to see that for short global transactions maybe algorithm X is better than Y. For
long tasks, the reverse may be true. The same argument can be made for all the modeling
assumptions we are about to make. Our point is that only by selecting a small number of
simple, key parameters will we be able to understand the fundamental interactions.

Our simulator is written in the simulation language DeNet [9]. Each simulation experiment
(generating one data point) consists of two simulation runs each lasts one million time units
(at least 100,000 tasks are generated per run, many more for high load experiments). The 95%
confidence interval is f 0.35 percent age point (much smaller for high load experiments) for the
missed deadlines figures shown in later sections.

The structure of our simulation model follows the conceptual model described in Section 3
with the following characteristics.

Nodes
There are k (homogeneous) nodes in the system. Each node services their tasks according to
some real-time scheduling algorithm with no preemption. In this paper, we use earliest-deadline-

firsti as the scheduling algorithm for most of our experiments, mainly due to its popularity. We
*Tasks in a scheduler queue are ordered in increasing deadlines; The task with the earliest deadline is served

11

will also discuss briefly the case when minimum-laxity-fir& is used as the scheduler algorithm
in Section 7.

Local Tasks
Local tasks are being generated at each node according to a Poisson distribution with mean
interarrival time l/Xl,,l time units. Since there are k nodes, the total average arrival rate is
kXlml per unit time. Execution times of local tasks are exponentially distributed with mean
1/j.410cal time units. The rate of work due to local tasks is thus kXIOcal/plocal. In this paper, we
set ~z~d = 1, other time measures are thus relativized to the average execution time of a local
task. Slack of local tasks is uniformly distributed in the range [Smin,Smar].

Global Tasks
Similar to local tasks, global tasks are being generated as a single stream of Poisson process
with mean interarrival time l/&l&l. In order to simplify our discussion, we hold a simple view
of the world that global tasks are homogeneous. In particular, we assume that all global tasks
consist of m subtasks and the execution times of the subtasks all follow the same exponential
distribution with mean equal to l/psdtash time units. The total execution times of global
tasks thus follow an m-stage Erlang distribution with mean rn/psdtcrsk. The rate of work due
to global tasks is therefore rnX,ld,l /pMbtcrsk. We assume that nodes are equally likely to be
chosen as the execution node of a subtask.

We define the term reZ,flex to be the relative flexibility of global tasks with respect to local
task@. So if the distribution of slacks of global tasks is uniform in the range [a,b], we cafz

determine a and b by the following equations7:

(m/pfust.,J ’ (&) = Tez-fzex7

Or,
p1oca1a = m - Tel-flex. Smin . -> b = m . Tel-flex . Smoz . XEfL.

h&ask /hddask

A Tel-flex of 1 means that global tasks and local tasks have the same flexibility distribution.
A greater (smaller) than 1 rel-flex means in general, global tasks are more (less) flexible than
local ones.
first.

5Tasks in a scheduler queue are ordered in increasing slack; The task with the least slack is served first.

‘Recall that the flexibility of a task is defined to be the ratio of its slack over its execution time.

‘Recall that the slack distribution of local tasks in uniform in the range [Smih, S,,,].

12

System Load
We define the normalized load (or load for short) to be the
to the total processing capacity of the system. That is,

ratio of the rate of work generated

m’&lobczZ + k-Xlod

load = C(subiask Plocal

k -

For a stable system, we have 0 5 load < 1.

We also define f rat-local to be the fraction of load that is contributed by local tasks. That
IS,

f rat-local = k-k2
m- bobal + k i;;b;: ’

pmbtask

If the system does not have any local tasks, frac-local = 0; a fracJoca2 of 1 means no global
tasks. As another example, if subtasks and local tasks have similar execution time, then a
frac-local of l/2 means that there are the same number of local tasks and global subtasks.

However, since it takes m subtasks to make a global task, when fraclocal is l/2, there are m
times more local tasks generated than global tasks.

Table 1 shows the parameter setting of our baseline experiment. In particular, we assume
that the prediction on execution time is perfect, i.e., pex(.) = ex(.) (In Section 7 we return
to this issue and show the impact of error in the predictions.) To study the effect of these
parameters on system performance, we will vary the parameters from their base settings. This
is discussed in the following section.

6 Analysis

In this section, we summarize the results of our simulation experiments. As performance mea-
sure we use the percentage of missed deadlines (or miss ratio).8 In particular, we look at the
probability of a task missing its deadline conditional on its task class (i.e. global or local). We
adopt the notation MD: where MD stands for fraction of missed deadlines, and A E {local,
global}, B E (UD, ED, EQS, EQF) are optional modifiers describing the task class and SDA
strategy used. For example, MD~~,, denotes the probability that a global task misses its
deadline under the UD strategy.

‘A secondary measure could be tardiness, i.e., by how much time do tasks miss their deadlines.

to space limitations, we do not consider this

However, due

measure.

13

11 Overload Management Policy 1 No Abortion II
Local Scheduling Algorithm I Earliest Deadline First II

/1subtask

II 1.0 u

Table 1: Baseline setting

6.1 Baseline Experiment

As a starting point, let us look at how the various strategies do relative to each other in our
baseline experiment. Figures 3(a) and 3(b) hs ow MDl,,i and M Dglobal of the various SDA
strategies as load varies from 0.1 to 0.5’.

Comparing Figures 3(a) and 3(b), we see that even though global tasks and local tasks
have the same average flexibility (Tel-flex = 1 for the baseline setting), there is a significant
difference in their ability to meet deadlines. For example, at load = 0.5, MD::=, = 40% (point
A), while M DEgl = 24% (point B). However, for local tasks (Figure 3(a)) and for light loads,
there is little difference.

We should point out that traditionally soft real-time systems are studied under high load
situations. Most of the time, the system will hopefully operate under low load; no deadlines
will be missed regardless of what scheduling policy is used. However, once in a while the system
will be overloaded, and it is precisely at those times when we need a scheduling policy that can
miss the fewest deadlines. For this reason, the big differences in missed deadlines under high
load in Figure 3(b) are important.

In order to understand these differences, let us consider the types of resource competition
‘We use dotted lines for MDlocal and solid lines for MDglobal- We also associate symbols like o and + to

different SDA strategies.

14

0.35

0.3

0.25
MOocal

0.2

0.1 0.15 0.2 0.25 0.3 0.35 0 . 4 0.45 0.5 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
load load

(a) local tasks

- UD 0
E D .I3

-E&S .x.
EQF -+. 0.25

MDglobnz
0.2

(b) global tasks
I I I I I I I 1

- UD +
ED -B--

-EQS +e
EQF t

Figure 3: Performance of various SDA strategies in the baseline experiment.

among tasks. Since there are 2 task classes, there are 3 types of contention: local-local, local-
global and global-global. A local scheduler resolves contention by comparing the deadlines of
tasks. Since a SDA strategy only affects subtask deadlines, it only impacts local-global and
global-global contention. The reason why local tasks are not affected by the SDA strategy
(Figure 3(a)) is tha in our baseline experiment, 7570 of the load is contributed by local tasks.t
Thus, much of the contention faced by local tasks is locaLlocal, and unaffected by the SDA
strategy. On the other hand, global tasks face local-global and global-global contention, so the
choice of a SDA strategy affects them significantly (Figure 3(b)).

Through extensive simulation experiments (not shown here), we observe (and this is con-
firmed in Figure 3) that the performance of ED lies between that of UD and EQF. We also
observe that EQS’s performance is very close to that of EQF over a wide range of parameter
settings. In cases when they differ, EQF usually is superior. Thus, in order to simplify our
presentation, we will exclusively focus on UD and EQF in the rest of this paper.

6 .2 UD Vs EQF: Their different treatment of global tasks

To further compare UD and EQF, we overlap Figures 3(a) with 3(b), and remove the curves
for ED and EQS. The result is plotted in Figure 4. From this figure, we make the following
two observations:

15

0.45 I I I I I I I

0.4

0.35 MDlocol,UD .e -

0.3 MDglobel,UD +

MDloeal,EQF +-. -

0.25 MDglobal,EQF +

M D
0.2

0.15

0.1

0.05

0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
load

Figure 4: Comparing UD and EQF in baseline experiment.

(I) Under U D and high loads, global tasks miss many more deadlines than local tasks.

(II) Strategy EQF significantly improves the performance of global tasks (high load), but still
local tasks have a better chance of meeting their deadlines.

Observation (I) is not surprising. In Section 4 we had hypothesized that UD would assign
too much slack to early subtasks, resulting in a scheduling discrimination when they com-
peted against local tasks. However, observation (II) is surprising because by assigning global
tasks flexibility that was comparable to that of local tasks, we expected a “fair playing field.”
Unfortunately, in spite of our efforts, global tasks somehow are still hurt.

Before studying the causes of observation (II), let us confirm the hypothesis behind obser-
vation (I). Let us call this hypothesis the discrimination hypothesis: by giving early subtasks
of global tasks too much slack, UD makes global tasks “second class citizens” as they compete
with local tasks. To confum the hypothesis, in Figure 5 we vary the relative proportion of the
two task classes, i.e., we vary fTac_ZocaZ from 0.1 to 0.951°.

In the figure we see that as fraclocal increases (fewer global tasks), indeed MD::=,

increases. This is because global tasks face more and more conflicts with local tasks, and are

l°Fl.ecall that fmc~ZocaZ is the fraction of load contributed by local tasks (see definition on page 13).

16

0.25
M D

0.2

0 . 1 5 - MDlocal,UD -0. -

0 . 1 -
MDglobal,UD +

MDloeal,EQF + -
0 . 0 5 - MDglobal,EQF +

0 I I I I I I I I

0.1 0.2 0.3 0 . 4 0.5 0.6 0.7 0.8 0.9 1
f radocal

Figure 5: Effect of varying the fraction of local tasks.

discriminated against more and more. Notice that MDlocaluD also increases (although to a smaller
extent): this is because local tasks are also facing more and more conflicts with “fist class”
tasks. On the other hand, observe that the MD::; and MD::, values hardly change as
frac-local varies. This is because EQF does not discriminate against global tasks.

As a last observation on Figure 5, notice that when fradocal is close to zero (almost all
tasks are global), UD and EQF perform similarly. Strategy UD is still assigning too much
slack to global tasks, but since everybody is a “second class citizen,” it does not really matter.
Hence, in an application where most tasks are global, UD may be an adequate (and simpler)
strategy.

If there is no discrimination under EQF, then why are global tasks still performing poorly
(observation (II))? The reason is that global tasks consist of a series of subt asks and there
are two phenomena affecting the series. One phenomenon is beneficial to global tasks: if one
subtask finishes early, its leftover slack is inherited by the subtasks that follow. Thus, later
subtasks will tend to have even more slack. The second phenomenon is detrimental to tight
tasks. If a global task has little slack to begin with, it may miss an early sub-deadline, robbing

17

30 r I I I I I I I 1

Slack

25

20

15

10

5

0

-5

-10 1 l-i
-15 ’ I I I I I I I

0 2 4 6 8 10 12 14
Stage of subtasks

Figure 6: Average and the mid-95 percentile range of slack of subtasks versus stage of subtasks.

slack from the following subtasks, and making things even worse for them. Essentially, “the
poor get poorer while the rich get richer.”

To observe these phenomena, we ran an experiment with the same parameter values as our
baseline experiment except that the number of subtasks of a global task (m) is now 14 instead
of 4. In Figure 6, we plot the average slack of a subtask versus the stage of the subtask (the ‘0’
line). For example, point A shows that the average slack of a 10th stage subtask is 2.3 units in
our experiment. Also shown in the figure is the range of the slack data points with the largest
.2.5 percentiles and the smallest 2.5 percentiles removed. The graph thus shows, for example,
that the “middle” 95% of all 13th-stage subtasks have slacks in the range [-5.7, 19.71.

We can see that the average slack of a subtask increases as it advances. This is due to
the beneficial phenomenon. However, the variability in slack increases, due to the detrimental
phenomenon. Even though there is more slack on the average, there is a group of tasks that are
suffering (the “poor”) and are more likely to miss their ultimate deadlines. This is suggested
by the fact that part of the 95% range bars he below the x-axis. (As an analogy, even if the
standard of living is increasing, more people may be under the poverty line.)

Depending on the system parameters, the beneficial and detrimental phenomena may have
more or less force. Jn Figure 4, as the load increases, there are more global tasks that are
“poor” to begin with (do not have much slack to spare). Thus, the detrimental effect causes

18

(a) tight slack (b) loose slack
0.6 I I I I I I I

MDloc.d,UD + - MDlocal,UD -0 - _
0.5 - MDglobol,UD + MDglobal,UD +

MDlocal,EQF + - MDloccal,EQF + - -

0.4 - MDglobol,EQF -j-

0.2 -

0 1 I I I I I I 0 I I I I I I I I I I

1 1.5 2 2.5 3 3.5 4 4.5 5 6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11 11.5
Sma2 Smax

Figure 7: Effect of varying Sm,,+.

more global tasks to miss their deadlines. As the load decreases, however, there are fewer poor
tasks, and global tasks miss roughly the same number of deadlines as local tasks. As the load
decreases further, the beneficial effect may actually cause global tasks to do better than local
tasks. This effect can barely be seen in Figure 4, but will be seen clearly later in other graphs.

6 . 4 The effect of slack and the number of subtasks of a global task (m)

To evaluate the gains of EQF over UD, we varied over wide ranges all of our model parameters
(Table 1). Here we report on two of the more interesting experiments, involving the slack and
the number of subtasks of a global task (m).

Figure 7 shows the result of varying Smaz from 1.25 to 11.25 for the baseline setting. To
improve legibility, we divide the graph into two parts: 7(a) and 7(b), showing tight and loose
slack conditions respectively. Note that these subfigures use a different MD scale.

As expected, Figure 7 shows that as slack (Sm,,) increases, tasks of all types enjoy a lower
miss ratio. As in Figure 4, MDi-1 is not affected by the SDA policy (75% of the load is local
tasks, and their local-local conflicts are not affected by SDA).

The choice of a SDA strategy, however, strongly affects global tasks (solid lines). When

19

(4 UD
0.5

0.45

0.4

0.35

0.3

MD 0.25 *

f

.o. .Q. . 0 . .Q. . 0 . .Q. . 0 . .Q. . 0 . .Q* .o -
0.2

2 4 6 8 10 12 14 2 4 6 8 10 12 14
m m

0.2
M D

0.15

0.1

0.05

0

Figure 8: Effect of varying m.

slack is large (Figure 7(b)) , U D consistently misses about 50% more global task deadlines than
EQF does. As slack tightens (Figure 7(a)), global tasks miss more deadlines, and the gap
between EQF and UD narrows, eventually closing when there is effectively no slack and all
deadlines are missed.

Comparing the MD~~‘ and M Dzzfl curves, we observe the same effect of Section 6.3.
With tight slack, there are more “poor” tasks that end up missing their deadlines because of the
detrimental effect of serial subtasks. However, with more slack, the beneficial effect is stronger
and we see that global tasks actually miss fewer deadlines as compared to local tasks. The
crossover point occurs when Smaz 21 5 units.

Keeping all other baseline parameters tied, Figures 8(a) and 8(b) show the results of varying
the number of subtasks, m, from 2 to 14 for UD and EQF respectively. From Figure 8(a),
we see that M D$& increases as m increases while MDlocoluD decreases. This shows that the
discrimination problem is intensified by the length (number of subtasks) of global tasks. As a
global task grows, U D incorrectly assigns more and more slack to early subtasks.

For EQF (Figure 8(b)), increasing m increases both the beneficial and the detrimental
phenomena. For our parameter settings, the effects cancel each other and the result is a rather
flat curve of MDsEl.

20

To sum up, EQF always performs better than, or at least as well as, UD. The EQF gains
are more significant when there is “moderate” slack and load. That is, if slack is too tight or
the load too high, no matter what SDA policy we use, many deadlines will be missed. If slack is
too loose or load too light, then all tasks will make their deadlines, no matter how we schedule.
But in the intermediate range a smart SDA policy can make a difference and this is where EQF

wins big. The EQ F strategy is also superior when global tasks have many subtasks.

7 Other System Properties

In our simulation model, several assumptions are made, such as tardy tasks are not aborted, the
local scheduling algorithm is earliest deadline first, and perfect execution time information is
available. In this section we relax these assumptions and describe the performance implications.

Among the three assumptions listed above, the most crucial is perfect prediction of execution
time. In order to study the performance sensitivity to estimate errors, we introduce “random
noise” to the estimates. Specifically, for a task X we have:

pex(X)ll =
ex(x) * Uniform([l - ErrorFactor, l+ ETrorFactor]), ETrorFactor < 1,
ex(x) t Uniform([O, l-f- ErrorFactor]), ETToTFactoT > 1,

where Uni f oTm([xl, x2]) returns a random number uniformly distributed in the range [xl, x2],
and ETTorFaCtoT gives the maximum relative error in the estimation. Notice that an estimate
pex(X) can be either larger or smaller than the true execution time. For i%wrFactor > 1,
the average estimates are biased towards overestimating the true values.

Figure 9 shows MDzEl and MD:=? as ErrorFactor changes from 0 (no error) to 2.0.
Other parameter values are kept the same as our baseline experiment. Since UD does not
require the knowledge on execution time, its performance is not affected by ETToTFiZCtOT and
is omitted in the graph. (The value of MD::,, is a constant 0.4, significantly above MDz$,fl

for the entire experiment.)

Surprisingly, the performance of EQF is not very sensitive to errors in the execution time
estimate. This is illustrated by the rather flat curves shown in Figure 9. Even if estimates are
off by up to a factor of two, EQF continues to perform well. Further experimentation shows

“Recall that pez() is the predicted execution time, and ez() is the reaI execution time.

21

0 . 3 2 I I I I I I I I I I I

0.3 - local + - -
global +-

0 . 2 9 -

M D 0.28 -

0 . 2 7 -

0 . 2 6 -

0 . 2 5 -

0,24T.~.~.I.C.~..~.+.+.+.+.+..t.+.$'+'t..+'t.$ 8 I 1 0 + .
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

ErrorFactor

Figure 9: Sensitivity of EQF performance to ErrorFactor.

that this sensitivity is increased by a small amount in a high load, tight slack environment, and
when minimum-laxity-first (see below) is used as the local scheduling algorithm.

The low sensitivity to errors may appear counter-intuitive at first, but it can be explained
by two observations: (1) ErrorFactor gives the maximum error, but in many cases the errors
are not that far off from the true values. In all these cases, EQ F makes correct deadline
assignments. (2) In the cases where the estimates are significantly off, it is still beneficial to
split up the available slack among subtasks, even if the split is rough. Incidentally, in a study of
soft real-time database scheduling and concurrency control algorithms [2], it was also observed
that errors in execution time estimates do not significantly affect performance.

Another assumption we made in the base model is that all tardy tasks are valuable and
no particular action is taken when a task misses its deadline. (See Section 3.) Although not
reported here in detail, we modified our simulator to abort tardy tasks. The results show that
abortion helps lower the percentage of missed deadlines in general (for both local and global
tasks, and regardless of the SDA policy). This is because by aborting tasks that have already
missed their deadlines, we effectively reduce the workload of the system. More processing power
is allocated to non-tardy tasks and this results in fewer missed deadlines.

Aborting tardy tasks does not significantly change our conclusions regarding the UD and
EQF policies. However, abortion does help UD (in reducing the number of local and global

22

No abortion, frachcal = 0.75, Tel-flex = 1 . 0 , Snzin = 0 . 2 5 , S,,, = 5 . 0
0.25

0.2 MDlocal,UD -0 -

MDglobal,UD ++-

MDlocol,EQF + -
0.15 MDglobal,EQF +

M D ’
0.1

OT I I I I I I I I

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
load

Figure 10: Performance comparison between UD and EQF with minimum-laxity-fist sched-
ulers.

task missed deadlines) more than it helps EQF. The reason is, for EQF, early-stage subtasks
have less slack than later-stage subtasks (due to slack accumulation, see Figure 6). Early-stage
subtasks are thus served more promptly than later-stage subtasks. A global task therefore
spends relatively more time in its later stages (due to longer wait in the scheduler queues). The
converse is true for UD, i.e., a global task spends more time in its early stages. Consequently,
under EQF, abortion of global tasks usually happens at a later stage as compared to UD. The
effective reduction of workload due to abortion is thus more significant in UD than in EQF.

Finally, we repeat the set of experiments presented in Section 6 with the earliest-deadline-
fist schedulers replaced by minimum-laxity-first schedulers. The results of such experiments
show similar trends and relative performance between UD and EQF. As an example, Figure
10 compares the performance of UD and EQF with minimum-laxity-first schedulers and the
following parameter setting: No abortion, fradocal = 0.75, rel-flez = 1.0, Sm;n = 0.25, and
Smax = 5.0.

From Figure 10, we observe similar results as for the case of earliest-deadline-first schedulers.
For example, at high (low) load, global tasks miss many more (fewer) deadlines than local tasks.
Also, EQ F significantly reduces the gap between MDloca1 and MD,lhi when the load is high.

23

8 Conclusions

This paper considered the problem of subtask deadline assignment in a distributed soft real-
time environment. By means of extensive simulations, we compared the performance of several
SDA strategies.

The main advantage of the UD (Ultimate Deadline) strategy is that only the final deadline
of a global task is required for scheduling. However, our study showed that with UD global
tasks miss significantly more deadlines than local tasks. An exception occurs when the system is
in a low stress situation or when most tasks are global. With an estimate on subtask execution
times, EQF (Equal Flexibility), on the other hand, ensures that substantially fewer global tasks
miss their deadlines. This is a result of distributing the slack of a global task more “fairly”
among its subasks.

We also considered other policies that give intermediate performance but require less infor-
mation than EQF does. EQS (Equal Slack), for example, is useful when only the number of
subtasks and the total remaining execution time (instead of individual subtask execution time)
are known. ED (Effective Deadline), as another example, does not need to know the number
of pending subtasks.

Our performance study revealed that even though EQF significantly reduces the difference
between the miss ratios of local and global tasks, global tasks still miss (in many cases) more
deadlines than local ones. As we pointed out, this phenomenon is due to the “multiple stages”
of global tasks which induces variation in the slack distribution. An interesting modification to
EQF would control the extent of slack variability, perhaps by giving subtasks of tight global
tasks less slack than EQF would give. We intend to study this option in future research.

Finally, we would like to remark that the SDA problem is an important one in the design
of opeot systems. An open system is usually built with existing standard components, often
developed by different vendors. It is thus hard (or impossible) to orchestrate the independent
schedulers, that are built into each individual component, to carry out a global scheduling
policy. A good way of automatically assigning deadlines to subtasks which truly reflects the
urgency of each unit of work is thus vital in an open system environment.

24

References

[l] R. Abbott and H. Garcia-Molina. Scheduling real-time transactions. In ACM SIGMOD

Record, pages 1-12, 1988.

[2] R. Abbott and H. Garcia-Molina. Scheduling real-time transactions: a performance eval-
uation. In Procceedings of the 14th VLDB Conference, 1988.

[3] R. Abbott and H. Garcia-Molina. Scheduling I/O requests with deadlines: a performance
evaluation. In Proceedings of IEEE Real-Time Systems Symposium, pages 113-124, 1990.

[4] R. Bettati and J. W. S. Liu. Algorithms for end-to-end scheduling to meet deadlines. In
Proceedings of the 2nd IEEE Conference on Parallel and Distributed Systems, 1990.

[5] R. Bettati and J. W. S. Liu. End-to-end scheduling to meet deadlines in distributed
systems. Zn Proceedings of IEEE Real-Time Systems Symposium, pages 452-459,1992.

[6] M. Carey, R. Jauhari, and M. Livny. Priority in DBMS resource scheduling. In Proceedings

of the 15th VLDB Conference, pages 397-410, 1989.

[7] J. F. Kurose, M. Schwartz, and Y. Yemini. Multiple-access protocols and time-constrained
communication. Computing Survey, 16(1):43-70,1984.

[8] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogramming in a hard
real-time environment. Journal of the ACM, 20(1):46-61,1973.

[9] M. Livny. De e user’s guide. Technical report, University of Wisconsin-Madison, 1990.N t

[lo] H. Pang, M. Livny, and M. J. Carey. Transaction scheduling in multiclass real-time
database systems. In Proceedings of IEEE Real- Time Systems Symposiuim (to appear),

1992.

[ll] J. Stankovic, K. Ramamritham, and S. Cheng. Evaluation of a flexible task schedul-
ing algorithm for distributed hard real-time systems. IEEE Transactions on Computers,

34(12):1130-1143,1985.

[12] W. Zhao and K. Ramamritham. Virtual time CSMA protocols for hard real-time commu-
nication. IEEE Transactions on Software Engineering, 13(8):938-952,1987.

25

