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Abstract

With the ever increasing volumes of information generation, users of information systems are

facing an information overload. It is desirable to support information �ltering as a complement

to traditional retrieval mechanism. The number of users, and thus pro�les (representing users'

long-term interests), handled by an information �ltering system is potentially huge, and the

system has to process a constant stream of incoming information in a timely fashion. The

e�ciency of the �ltering process is thus an important issue.

In this paper, we study what data structures and algorithms can be used to e�ciently perform

large-scale information �ltering under the vector space model, a retrieval model established as

being e�ective. We apply the idea of the standard inverted index to index user pro�les. We

devise an alternative to the standard inverted index, in which we, instead of indexing every term

in a pro�le, select only the signi�cant ones to index. We evaluate their performance and show

that the indexing methods require orders of magnitude fewer I/Os to process a document than

when no index is used. We also show that the proposed alternative performs better in terms of

I/O and CPU processing time in many cases.

1 Introduction

Information is increasingly available in electronic form. The number and size of full text document

databases are rapidly increasing. Users of such database systems are facing an information over-

�This research was sponsored by the Advanced Research Projects Agency (ARPA) of the Department of Defense
under Grant No.MDA972-92-J-1029 with the Corporation for National Research Initiatives (CNRI). The views and
conclusions contained in this document are those of the authors and should not be interpreted as necessarily repre-
senting the o�cial policies or endorsement, either expressed or implied, of ARPA, the U.S. Government or CNRI.
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load; it is becoming di�cult for users to rely solely on traditional retrospective search and retrieval

mechanisms to keep themselves apprised of new documents that are relevant to their interest. As

a complement to conventional search mechanism, information systems can provide an information

�ltering mechanism, through which a user subscribes pro�les, or queries that are continuously eval-

uated, to represent his long-term interests, and then passively receives information �ltered by the

system according to the pro�les.

Research in information �ltering has received a lot of attention lately. However, previous work

has focused on the e�ectiveness (precision and recall) of the �ltering, and little has been done to

address the e�ciency (performance) aspect of the problem. We believe that information �ltering is

going to be used on a large scale and hence the e�ciency issue must be addressed. In this paper,

we present data structure and algorithms to support information �ltering.

Wide area information retrieval is now a reality; large-scale world-wide information �ltering is

also foreseeable. Consider a population of users and a number of information sources in a networked

information �ltering environment. The �ltering can be done either at the information sources, at

the user sites, or at an intermediate information �ltering server (Figure 1). Relying solely on user

�ltering is expensive since network bandwidth is wasted to transmit irrelevant information and a lot

of wasteful local processing is done. Relying on �ltering at the sources themselves is also expensive

since users need to replicate their pro�les at all possible sources. The information �ltering server is

a good compromise. It collects information from a set of sources and routes it to interested users. Of

course, there can be multiple information �ltering servers on the network, each servicing a di�erent

set (maybe overlapping) of users and information sources.

In this paper, we focus on one information �ltering server and consider what data structure

and algorithms it can employ to speed up the �ltering process. This is important because, �rstly,

the number of users and pro�les a server has to handle is potentially huge. Secondly, as the rate

of information generation is high, a �ltering server will have to process a large number of new

documents everyday, especially if the server collects information from a number of sources. Thirdly,
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it is important to deliver relevant information to users in a timely fashion for such a service to

be useful. In summary, information �ltering servers will have to handle huge number of pro�les

and process a constant stream of incoming documents in a timely fashion. Thus, to develop e�cient

processing methods for a single �ltering server can be seen as the �rst but important step in achieving

e�cient �ltering on a global scale.

To further motivate the need for e�cient information �ltering methods, let us look at a popular

information source today { Netnews. The study [11] reports that, as of January 1993, the total

Netnews readership worldwide is estimated to be 1.9 million. The estimates for the average tra�c

are 49.5 MB and 19,210 messages per day (counting cross-posted messages only once). If we consider

a Netnews �ltering server that serves a small fraction (say 5%) of this user population, and each

user has say �ve pro�les, the server will have to handle hundreds of thousands of pro�les. To match

this large number of pro�les against a daily inux of tens of thousands of documents in a timely

fashion, it is apparent that e�cient data structures and algorithms are needed. Furthermore, keep

in mind that these Netnews numbers are for a single information source today. In the future, one

would expect many more sources with even higher volumes.

Netnews does support a rudimentary �ltering mechanism by categorizing articles into newsgroups

and allowing users to subscribe to newsgroups of interest. However, a �ner granularity of information

need matching, by means of information retrieval techniques, will cater much better to individual

interests. Research in information retrieval has given rise to many retrieval models, notably the

boolean model, the vector space model, and the probabilistic model, that are applicable to infor-

mation �ltering [1]. Reference [18] presents data structures and algorithms for information �ltering

under the boolean model. In this paper, we consider the vector space model (VSM), which is widely

recognized as an e�ective retrieval model. It uses a natural language interface, which makes it easy

to use. A well-known technique, called relevance feedback, provides an easy way to improve retrieval

e�ectiveness. Some of the ideas in the VSM have been implemented in the WAIS system [8]. The

popularity of WAIS demonstrates the appeal of the VSM. Our methods are thus for documents and

pro�les represented in the VSM.

Our algorithms make use of an inverted index to speed up the �ltering process. Inverted indexes

have been used by information retrieval systems to facilitate traditional retrospective search, namely

by building an index of documents. In this paper, we investigate how the idea of an inverted index

can be used to speed up pro�le processing. Speci�cally, we propose to use an inverted index of

pro�les. 1 In the information retrieval scenario, a user query is matched against a document index.

1Other retrieval methods (e.g., signature �les [4]) can also be used to speed up �ltering (e.g., building a signature
�le of pro�les). In this paper, we focus on inversion-based methods. Further work would need to be done to compare
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Here, an incoming document is matched against a pro�le index. We investigate what modi�cations

need to be made, and what alternatives are feasible.

Incidentally, we have implemented two experimental �ltering servers at Stanford to disseminate

Netnews articles and computer science technical reports. The reader is encouraged to try out these

services. For instructions on how to use these services, send an electronic mail message to either

elib@db.stanford.edu (for technical reports) or netnews@db.stanford.edu (for Netnews) with

the word \help" in the message body. Instructions will be returned automatically. The current

version of these servers is not e�cient (it uses the Brute Force method described later on). However,

as more users subscribe to our servers, there is an obvious need for an e�cient implementation, and

this motivated the work reported in this paper.

The rest of the paper is organized as follows. In Section 2, we give a brief summary of the VSM,

as applied to information �ltering. In Section 3, we present three methods to process pro�les. Details

of the analysis and simulations used to evaluate the performance of the methods are described in

Section 4. The results of the evaluation are presented in Section 5. Section 6 is a survey of related

work and Section 7 is for conclusion.

2 VSM Applied to Information Filtering

In this section, we give a brief summary of the VSM as used in information �ltering. The purpose of

this is to explain some terminology and assumptions necessary for the exposition of our algorithms in

Section 3. For an in-depth introduction to the VSM and information �ltering the reader is referred

to [12] and [1] respectively.

2.1 Document and Pro�le Vector

In the VSM, we identify a document by a set of terms. Weights are assigned to terms as statistical

importance indications. If m distinct terms are available for content identi�cation, a document D

can be conceptually represented as an m-dimensional vector, D = (w1; :::; wm), where wi is the

weight assigned to the i-th term and is 0 for terms not present in D. To compute the vector

representation of a document, usually these steps are followed. First the individual words occurring

in the document are identi�ed. Words that belong to the stop list, which is a list of high-frequency

words with low content discriminating power, are deleted. Then a stemming routine is used to

reduce each remaining word to word-stem form. For each remaining word stem (a term), a weight is

assigned in an attempt to represent how \important" that term is. One common way to compute the

the performance of signature-based and inversion-based methods for information �ltering.
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weight of a term is to multiply the term frequency (tf) factor with the inverse document frequency

(idf) factor. The tf factor is proportional to the frequency of the term within the document. The

idf factor corresponds to the content discriminating power of the term: a term that appears rarely in

documents (e.g., \queue") has a high idf , while a term that occurs in a large number of documents

(e.g., \system") has a low idf . 2 (See Section 4.1.1 for examples of formulas used to calculate these

factors.)

As pro�les in the VSM are expressed in natural language, we can represent pro�les just like

documents. A pro�le P appears as P = (u1; :::; um). Sometimes we follow the convention of

writing a document or pro�le vector as a vector of (term, weight) pairs; those terms not listed

have weights equal to 0. Thus, a pro�le P with p non-zero weighted terms can be written as

P = ((y1; u1); :::; (yp; up)): For instance, in the pro�le P = ((\queue"; 0:93); (\system"; 0:37)), term

\queue" has a weight 0.93, \system" has 0.37, and all other terms have a zero weight. The weights

again describe the \importance" of each term.

2.2 Similarity Measure

We can measure the degree of similarity between a document-pro�le pair based on the weights of

the corresponding matching terms. The cosine measure has been used for this purpose; given a

document D = (w1; :::; wm) and a pro�le P = (u1; :::; um), the cosine similarity measure is:

sim(D;P ) =
D � P

kDkkPk
=

Pm

i=1wiuipPm

i=1w
2
i

Pm

i=1 u
2
i

:

In this paper we assume that the document and pro�le vectors are normalized by their lengths; thus

the above simpli�es to:

sim(D;P ) = D � P =

mX

i=1

wiui:

2.3 Relevance Threshold

In an information retrieval setting, a query is run against a database of documents, and the relevant

documents are returned to the user, ranked by their scores, i.e., the similarity between the query

and the documents. In an information �ltering setting, a pro�le is compared with a single document

or a small number of documents. It is undesirable to �lter documents based on the ranks among a

small batch of documents. In [5], a �xed number of top ranked documents is returned over a certain

2In an information �ltering setting, the number of new incoming documents processed at one time is small, so the
inverse document frequencies within the batch may not be the most reliable. Instead, we may extract the idfs from
a pre-existing reference corpus of text, as is done in [5].
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period of time. This is only possible if the period is long enough to allow a signi�cant number

of documents to be collected to make the ranking meaningful; and in doing so, the timeliness of

the documents is sacri�ced. Also, the �ltering e�ectiveness (precision and recall) depends on the

particular set of documents received during a period. If all documents are relevant, then some will be

missed (low recall). If few documents are relevant, then some documents delivered will be irrelevant

(low precision). Reference [5] indeed reports such drawbacks.

An alternative, as suggested in [5], is to allow the user to specify some kind of absolute relevance

threshold { documents above the threshold are considered relevant, and those below are not. With

this strategy, instantaneous processing of documents is possible (i.e., a document can be processed

one at a time, as soon as it is received). Also, the precision and recall of the �ltering are independent

of when it is performed. Interestingly, such relevance threshold can also be used in conventional in-

formation retrieval; [13] describes such an experiment. We sum up this discussion with the following

de�nition.

De�nition 1: Given a pro�le P and a relevance threshold �, a document D is relevant to P if

sim(D;P ) > �. 2

2.4 Relevance Feedback

A well-known technique used to improve the e�ectiveness of retrieval is relevance feedback. This

technique can be applied to information �ltering as well. In essence, a pro�le vector can be au-

tomatically reformulated by adding to it relevant document vectors (as judged by the user) and

subtracting from it irrelevant document vectors. A variety of adjustment formulas have been stud-

ied; for example, one variety, called Ide Regular [14], can be applied to information �ltering as

P (i+1) = P (i) +
X

D relevant

D �
X

D irrelevant

D; (1)

where P (i) is the pro�le vector after the i-th feedback iteration. In this paper, we are not concerned

with which exact adjustment formula is used. Our methods do not depend on which formula is used

(or if relevance feedback is used at all). In one of our simulation experiments, we investigate the

impact on the performance of our pro�le processing methods when relevance feedback is used.

3 Data Structures and Algorithms

In this section we describe three methods that match a document against a number of pro�les and

determine the pro�les to which the document is relevant. We assume that a document is processed
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one at time, as soon as it arrives. Our methods can easily be extended to handle the case when a

number of documents is batched together for processing, but we do not address this here.

In two of the methods, we make use of an inverted index. In an index, for each term x, we

collect pro�les that contain it to form an inverted list. 3 The mapping from terms to the location

of their inverted lists on disk is implemented as a hash table, called the directory. We assume that

the inverted lists are stored on disk while the directory �ts in main memory.

Our focus in this paper is on e�cient VSM �ltering algorithms. The issue of how to e�ciently

update pro�les in the data structures is not addressed. We assume that such updates are batched and

are periodically installed. However, in the evaluation of our indexing methods, we do consider two

options of storing inverted lists on disk. One option is to pack all the lists into contiguous blocks, and

the other is to store each list individually in an integral number of blocks. While handling updates

in the �rst option requires reading and writing all the lists, it is much easier in the second option.

On the other hand, the storage space requirement for the �rst option is higher. In our evaluation

we examine the trade-o� involved.

3.1 Brute Force (BF) Method

If we store pro�les sequentially on disk without any index structures, then all pro�les must be

evaluated when a new document is received. This is the Brute Force (BF) method.

When a document arrives, we �rst compute its vector representation as described in Section 2.

Then we examine each pro�le in turn. For each (term, weight) pair (x; u) in a pro�le, we �nd x's

weight w in the document vector, and calculate the product w � u. The sum of such products is

the cosine similarity measure. The document is relevant to a pro�le if the cosine measure is greater

than the relevance threshold associated with the pro�le.

We store a pro�le on disk as a variable-length record with these �elds: the pro�le identi�er, the

length { i.e., the number of terms in the pro�le, the (term, weight) pairs, and �nally the relevance

threshold.

3.2 Pro�le Indexing (PI) Method

To reduce the number of pro�les that must be examined, we build an inverted index of pro�les. We

call this the Pro�le Indexing (PI) method. For each term x, we collect all the pro�les that contain

it to form its inverted list. The list is made up of posting; each contains the identi�er of a pro�le

involving x and the weight of x in it. Thus, an pro�le with p terms will be found in p postings; each

3As detailed later, we may collect all or some of the pro�les that contain a term to form it inverted list.
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posting in a di�erent list. When processing a document D, we only need to examine those pro�les

in the inverted lists of the terms that are in D.

To match a document against these pro�les, we need two (main memory) arrays, THRESHOLD

and SCORE. (This method and the next use more main memory than the BF method.) The number

of entries in each array is equal to the number of pro�les the system handles. Each pro�le has an

entry in each array: the THRESHOLD entry stores the relevance threshold, and the SCORE entry

is used to keep the score of the pro�le.

When a document D arrives, we initialize the SCORE array to all 0's. For each term x with

weight w in the document, we use the directory to retrieve x's inverted list. Then we process each

pro�le P in the list. That is, if the weight of x in P is u, we increment SCORE[P ] by the product

of w� u. After all document terms are processed, a pro�le whose SCORE entry is greater than the

THRESHOLD entry matches the document.

To illustrate, consider three pro�les:

P1 = ((a; 0:46); (b; 0:14); (c;0:17); (d; 0:62); (e; 0:59)) �1 = 0.25

P2 = ((a; 0:95); (b; 0:30)) �2 = 0.20

P3 = ((c; 0:14); (e; 0:49); (f; 0:17); (g; 0:42); (h; 0:11); (i; 0:10); (j; 0:72)) �3 = 0.25

The inverted index for these pro�les is shown in the right-hand side of Figure 2. For example,

the a list contains the postings for P1 and P2. The 0.46 value in the �rst entry in this list is the

weight of a in P1. Now suppose this document arrives:

D = ((b; 0:15); (d; 0:32); (f; 0:21); (h;0:14); (j;0:90)):

To process this document, �rst we read the b list, and increment the SCORE entries of P1 and P2

by 0:15� 0:14 = 0.021 and 0:15� 0:30 = 0.045 respectively. The lists of d, f , h, and j are processed

similarly. The �nal values of the SCORE array are as shown in the �gure. This document is relevant

to P3.

Notice the PI method is almost symmetrical to the method used in information retrieval to match

a query against a database of documents with an index of documents, with the roles of documents

and queries (pro�les) reversed. The di�erence is that the THRESHOLD array is not used; instead,

after the computation of similarities, the SCORE array is sorted to �nd the rank of the documents.
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Figure 2: Data Structures for Pro�le Indexing

3.3 Selective Pro�le Indexing (SPI) Method

In the PI method, we index a pro�le by all its terms. In this subsection we investigate an alternative

in which we only select a number of terms for indexing.

Consider the term b in P1 in our running example. Suppose a document arrives and it does

not contain the terms a, c, d, or e. The maximum score P1 could have against this document is

0.14 (if b's weight in the document is the highest possible, 1.0), which is less than the threshold

speci�ed. At a threshold of 0.25, the term b is insigni�cant in that it alone cannot produce enough

score for a document to be relevant. Thus, we may choose not to index the pro�le with the term

b { a document that contains only b and no other terms in the pro�le will not be relevant anyway.

However, a document that contains b and another term in the pro�le may be relevant; so we need

to duplicate (b; 0:14) in the postings of the other terms in their respective lists. (Since we assume

that the inverted lists are stored on disk, it is better to duplicate the pair than to store it elsewhere

and keep a pointer in the postings to reference it (extra I/Os will be needed to look it up). If the

entire index �ts in main memory, it is better to use the pointer option. See comments in Section 7.)

Similarly, consider the subvector ((h; 0:11); (i; 0:10)) in P3. Suppose a document arrives that

does not have the other terms in P3. Then an upper bound to the similarity between P3 and this

document is 0:11 + 0:10 = 0:21 (we can actually �nd a tighter upper bound, by a theorem proved

below). Again, with a threshold of 0.25, the subvector is insigni�cant. In this case, we may choose
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not to post the pro�le in the inverted lists of h and i and duplicate the pairs in the postings of the

other terms in the pro�le. These observations lead us to this de�nition.

De�nition 2: Given a pro�le vector P = ((y1; u1); :::; (yp; up)), a subvector Ps = ((yi1 ; ui1); :::;

(yis ; uis)), 1 � i1 < ::: < is � p, is insigni�cant at a threshold of � if for any document D,

sim(D;Ps) � �. 2

Given a pro�le like P3, there may be several insigni�cant subvectors (e.g., ((h, 0.11), (i, 0.10)) is

one, ((c, 0.14), (i, 0.10)) is another). Which subvector should we use to reduce the number of index

postings? One idea is to use the subvector that contains the most low-idf terms. Low-idf terms

occur more frequently in documents; thus, by not posting these terms we expect to save the most

lookup work.

De�nition 3: Given a pro�le vector P = ((y1; u1); :::; (yp; up)), a subvector Ps = ((yi1 ; ui1); :::;

(yis ; uis)), 1 � i1 < ::: < is � p, is most insigni�cant at a threshold of � if it has the largest number

of lowest idf terms among the insigni�cant subvectors at a threshold of �. 2

Assuming idfs are distinct, a pro�le vector has a unique most insigni�cant subvector at a given

threshold. We need a way of checking whether a subvector is the most insigni�cant subvector and

this requires the ability to compute the maximum possible similarity between a pro�le subvector

and any document vector. Intuitively, we can see that the similarity between a pro�le subvector

and any unit document vector is highest when the document vector is \in the same direction" as

the pro�le subvector. And if that happens, the similarity is given by the magnitude of the pro�le

subvector. This is formally stated and proved as follows.

Theorem 1: For any P and any D, kDk � 1, sim(D;P ) � kPk.

Proof: This follows easily from the Cauchy-Schwarz Inequality [6]:

sim(D;P ) = D � P � jD � P j � kDkkPk � kPk:

To �nd the most insigni�cant subvector of a pro�le vector, we can sort the terms by idf and

include as many terms as possible. For example, consider P3 again. We assume that the term

weights are directly proportional to the idfs (which is true if the tf components are the same). As

k((c; 0:14); (h; 0:11); (i; 0:10))k= 0:2042 � 0:25; and

k((f; 0:17); (c; 0:14); (h;0:11); (i;0:10))k= 0:2657> 0:25;

((c; 0:14); (h; 0:11); (i; 0:10)) is the most insigni�cant subvector of P3 at a threshold of 0.25. This also

shows that Theorem 1 is stronger than the naive way of �nding an upper bound by simply adding

10



0.62 0.14 0.172 b c

0.49 0.14 0.11 0.10c h3 i

0.14 0.11 i 0.100.42 3 c h

0.14 0.11 i 0.100.72 3 c h

P1

P2

P3

P1

P2

P3

MAIN MEMORY DISK

P3

P3

P3

P1

THRESHOLD
P1

Inverted Lists

0.25

0.20

0.25

SCORE

0.2194

0.0450

0.6991

j

i

h

g

e

c

d

b

a

Directory

P1

f

P2

0.46 0.14 0.17b2 P2c 0.95

0.30 0

0

0.59 0.14 0.172 b c P3

0.14 0.11 i 0.100.17 3 c h

Figure 3: Data Structures for the SPI Method

the weights, as we have done earlier.

With this knowledge, we can indeed index the pro�les selectively. For each pro�le, we �nd the

most insigni�cant subvector at the threshold speci�ed. The pro�le is then posted in the inverted lists

of the signi�cant (relative to the most insigni�cant subvector) terms. In each posting, we include

the insigni�cant terms and their weights; i.e., they are duplicated in the lists of all the signi�cant

terms. This is called the Selective Pro�le Indexing (SPI) method.

Each posting contains the pro�le identi�er, the weight of the term indexed, the number of

insigni�cant pairs, and the pairs of insigni�cant terms and weights. Postings in the same list are

stored sequentially in blocks.

We also require the THRESHOLD and SCORE arrays as in the PI method. When a document

comes along, we construct its vector representation. Next we initialize the SCORE array to all 0's.

Then we index the directory to retrieve the inverted lists of each term. Suppose we are processing

the term x with weight w in the document. For each pro�le P in the x list, suppose the weight of x in

P is u, and the insigni�cant pairs are (yi1 ; ui1), ..., (yis ; uis). We examine P 's SCORE entry. There

are two cases: if the SCORE entry is zero, we �rst add the product w � u. Then we look up each

term yij in the document vector. Suppose its weight in the document is wij . We add the product

wij � uij to the SCORE entry. In the second case, the SCORE entry is not zero, meaning that we

have already added the contribution of the insigni�cant terms in some earlier computation. Thus
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we only add the product w � u. After all document terms have been processed, a pro�le matches

the document if its SCORE entry is greater than the THRESHOLD entry.

Figure 3 shows the index for our running example. For instance, suppose we are processing the

�rst pair (b, 0.15) from the document vector. The list of b has only one posting, that of P2. We add

the product 0.15 � 0.30 = 0.045 to P2's SCORE entry. As there is no insigni�cant subvector, we

are done with this posting and also with the b list. Next we process the pair (d, 0.32). Only P1's

posting is in the d list. First we add the product 0.32 � 0.62 = 0.1984 to SCORE[P1]. Then we

process the insigni�cant subvector ((b, 0.14), (c, 0.17)). To do this, we look up the term b in the

document vector, getting a weight of 0.15. Thus we increment SCORE[P1] by the product 0.15 �

0.14 = 0.021. Next, we look up c, which is not in the document vector. We are now done with this

list. The other pairs are processed similarly. The �nal values for SCORE are as shown in the �gure.

4 Performance Evaluation

4.1 Models

We use analysis and simulations to evaluate the performance of the methods. To allow exibility

in our performance evaluation, we use synthetic document and pro�le models. To make them

realistic, we base our models on properties of a database of Netnews (text) articles received by our

Department's Netnews host during the period of April 22 to April 29, 1993. A total of 212,972

articles were collected, making up a 550MB database. Below we describe our models.

4.1.1 Document Model

The following steps were carried out to study the occurrence frequency of terms in the database.

First, a lexical analysis screened out all non-alphabetical characters from the documents (i.e., arti-

cles). Then a stemming routine (Porter's algorithm [10]) was run to reduce the remaining words to

word-stem form. Each stem thus obtained is a term. Next we measured the occurrency frequency

of each term in the database, obtaining the plot shown in Figure 4 (note the log/log scale). The

x-intercept (i.e. size of the term vocabulary, which we denote by v) is found to be 521,915. The

straight line in the graph was derived by curve �tting using [17]. We can see the database does

demonstrate Zip�an characteristics [19]. Also, the average number of words per document (denoted

by d) is found to be 323.

Hence, we come up with the following probabilistic document model. The terms in a document

come from a vocabulary V of size v. Each term is uniquely represented by an integer x, 1 � x � v.

The probability that any term appears is described by the probability distribution Z. We rank the
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Figure 4: Term Rank vs Term Frequency Graph for Netnews Database

terms in non-increasing order of frequencies, i.e., 8x; y; 1 � x < y � v, we have Z(x) � Z(y); for

convenience, we use the rank to identify the terms. We assume the frequency distribution follows

Zipf's Law; i.e.,

Z(x) =
1

x
Pv

y=1 1=y
:

A document has d term occurrences and is generated by a sequence of d independent and identically

distributed trials; each trial produces one term from V according to the distribution Z. The most

frequent s terms form the stop list; stop-listed terms are deleted from a document before its vector

representation is computed. We choose s to be 100 in the evaluation.

Finally, the vector representations of the documents are computed as described in Section 2. The

exact formulas used to compute the weight of a term xi are from [13], which have been empirically

found to be e�ective:

tfi = 0:5 + 0:5�
fi

max
j

fj
; and

idfi = log(1=fraction of documents with xi);

where fi is the frequency of the term xi in the document. We analytically compute the fraction in

idf as the probability that xi appears in a document.
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4.1.2 Pro�le Model

Looking at our database, we �nd that a large fraction of the terms in the vocabulary occur very

infrequently. Those terms are mostly from misspellings, typos, or self-invented words. We do not

expect these terms to appear in pro�les, which represent long term interests. We model this by

assuming that pro�le terms are chosen from the set Q = fs+1; :::; qg, called the queried vocabulary,

out of the vocabulary V = f1; :::; vg; q < v. (Recall that we are identifying terms by their ranks.) A

base value of 50000 is chosen for q, covering more than 97% of the total occurrences of terms in the

Netnews database.

We assume that each term in Q is equally likely to be chosen for a pro�le. This uniform distri-

bution is justi�ed as queries tend to use a mix of frequent and relatively infrequent words [16]. Also,

terms rarely occur more than once in a pro�le [12]; thus we assume that a pro�le is a set of p terms

chosen randomly without replacement from the queried vocabulary Q.

The number of pro�les in the system is n. To simplify the study of the e�ect of pro�le size on

performance, we assume all pro�les have the same length, i.e., p is �xed for all pro�les.

Some of these assumptions may not be valid when relevance feedback is used. In the evaluation of

the methods under relevance feedback, we modify our pro�le model in the evaluation of the methods

under relevance feedback.

4.1.3 Choice of Relevance Threshold

It is hard to model the relevance threshold distribution. For a user, a suitable relevance threshold

for his pro�le depends on the individual pro�le terms (their idfs), the degree of correlation among

the terms, the amount of relevant, as well as irrelevant, information in the incoming stream, and his

desired level of precision and recall (is it crucial to receive all possibly relevant documents, or is it

more desirable to receive those that are likely to be relevant?)

Instead of deriving a complicated model of relevance threshold, we assume the relevance threshold

is �xed for all pro�les. This allows us to study clearly its impact on the methods. A reasonable base

case value was found by the following procedure. First a random document was generated. Then a

pro�le was created to contain a number of overlapping terms, randomly selected from the document.

The similarity between the document and the pro�le was computed. The procedure was repeated a

large number of times. For a base case pro�le length of 5, we found that a pro�le with 4 or more

matching terms has an average similarity of about 0.2. Thus we use this as the base value of the

relevance threshold for our evaluation. Of course, this is not saying that the relevance threshold

simply translates to the number of matching terms. We are merely settling with a reasonable starting

point in our evaluation. In Section 5.6, we vary the threshold over the entire range of possible values

14



from 0 to 1 and examine its e�ect on the performance.

Parameter Base Value Description

v 521915 size of vocabulary

d 323 # term occurrences per document

s 100 end of stop list

q 50000 end of queried vocabulary

n 300000 # pro�les

p 5 # terms per pro�le

� 0.2 relevance threshold

i 4 # bytes for pro�le identi�er

l 2 # bytes to represent length of pro�le

t 4 # bytes to represent a term

f 4 # bytes to represent a oating point number

b 512 # bytes in a disk block

Table 1: Summary of Parameters Used in Performance Evaluation

Table 1 summarizes the parameters used in the models, together with some parameters that

specify the sizes of various �elds in the data structures, and the disk block size. Keep in mind that

the base values shown are simply starting points for our evaluation. We explore di�erent sets of

values in our experiments { Section 5 shows some of the results.

4.2 Metrics

We compare the methods with respect to their space and time requirements. For space requirement,

we look at how much disk space each structure takes. (Although main memory space requirements

of the methods di�er, we assume they �t in main memory.) We study two ways of storing the

inverted lists in the indexing methods: the �rst is to pack all lists contiguously into sequentially

blocks, leaving no disk space in between lists; the second way is to store each list in an integral

number of blocks, allowing easy list expansions. By comparing the space requirement for these two

options, we can see the amount of internal fragmentation the second option produces.

For time requirement, in an I/O bound system, the critical measure is the number of I/O's to

process a document; in a CPU bound system (including the case when a large portion of the data

structures can be cached in main memory), the amount of computation is the critical component.

Hence, we look at both aspects in our comparison. For the CPU computation, we count the num-

ber of oating-point multiplications each method requires to process a document. The number of

multiplications is one of the major computation costs in processing a document, so we believe it is

a good measure of CPU cost.
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In summary, we look at these metrics:

� the expected total disk space required in number of blocks (with contiguous allocation and

fragmented allocation for indexing methods),

� the expected number of disk reads needed to match a document, and

� the expected number of oating point multiplications performed to process a document.

4.3 Analysis and Simulations

Except those for the SPI method, the results in the Section 5 were obtained by deriving analytical

solutions and then numerically evaluating the expressions. This subsection contains the details of

the analysis.

4.4 Brute Force (BF) Method

The space requirement for the BF method is simply the number of pro�les times the size of each

record; and as all pro�les are read to process a document, the number of blocks read per document

is the same:

TBF = RBF = d
n(i + f + l + p(t + f)

b
e:

Next, we derive an useful expression for later analysis: the number of distinct terms in a document

D that fall in the queried vocabulary. This can be derived as follows. For any term x in the queried

vocabulary, the probability that a term in D is x is equal to Z(x). So the probability that it is not

x is 1� Z(x). The probability that x does not appear in D is (1 � Z(x))d. Finally, the probability

that x does appear in D is 1� (1 � Z(x))d.

The expected number of distinct terms in D that are in the queried vocabulary is

�d =

qX

x=s

Pr(x is in D)

=

qX

x=s

(1� (1� Z(x))d):

The total number of terms examined per document is np. Fraction
�d

q�s
of them are expected to

occur in the document. Thus, the expected number of multiplications performed is:

MBF = np�
�d

q � s
:
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4.5 Pro�le Indexing (PI) Method

Assuming the lists are packed contiguously, the total disk space required for the PI method is:

TC
PI = d

np(i + f)

b
e:

Now if we assume that lists are not packed, we have to calculate the length of each list. We

consider the question: given N postings, each of size R, that are to be placed in a number of lists,

what is the expected number of blocks in a certain list, if the block size is B and the probability

that a posting falls in this list is P? Let us denote this expression by L(N ;P;R;B).

Intuitively, we can compute the expected number of postings in the list as NP and compute the

expected number of blocks as
NPR

B
:

However, this is incorrect as it neglects the internal fragmentation that results when the postings

do not fully occupy an integral number of blocks. The formula

d
NPR

B
e

is incorrect also, as it always overestimates the number of blocks required. (For example, if P is

very very small, the expected number of blocks should be small (less than 1), yet the formula gives

1 no matter how small P is. )

Let us now derive a correct expression for the value. Let random variable H be the number of

postings in the list. H follows the binomial distribution Bin[N ;P ]. Let random variable J be the

number of blocks in the list. H and J are related by

J = d
RH

B
e:

We want to �nd E[J]. First we compute the following probability.

PrfJ = jg = Prfd
RH

B
e = jg

= Prfj � 1 <
RH

B
� jg

= Prf
(j � 1)B

R
<H �

jB

R
g

=
X

(j�1)B

R

<h�
jB

R

Bin[h;N ;P]:
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To e�ciently evaluate the last sum, we use the normal approximation when appropriate, and the

poisson approximation when that is not applicable. Finally, the expression that we are after is thus

L(N ;P;R;B) = E[J]

=
X

j�0

j PrfJ = jg

=
X

j�0

(j
X

(j�1)B

R

<h�
jB

R

Bin[h;N ;P]):

Now we proceed with the analysis of the PI method. For a particular list, the maximum number

of postings that can be placed in it is n. (Although the total number of postings in the index

structure is np, at most only n of them can be on the same list.) The probability that a posting

is in a list is p

q�s
. The pro�le identi�er and term weight is kept in a posting, so the posting size is

i + f . The expected number of blocks in each list is thus L(n; p
q�s

; i+ f; b).

The expected total size is then

TF
PI = L(n;

p

q � s
; i+ f; b)� (q � s):

The expected number of lists read is �d, so the expected number of blocks read per document is

RPI = L(n;
p

q � s
; i+ f; b)� �d:

The number of multiplications is the same as that of the BF method { any multiplication that

must be done in the BF method must still be done in the PI method. Thus, we have

MPI = np�
�d

q � s
:

4.6 Simulations

Simulations were conducted to obtain the results for the SPI method. We also constructed simula-

tions to validate the analysis. The simulation results did match the analytical ones.

We wrote our simulation program in C. The program �rst generates n pro�les according to

the pro�le model, and then computes the size of the index structures needed to store the pro�les.

Next the simulation program generates a document according to the document model and counts the

number of disk reads and multiplications needed to match it against the n pro�les. For each scenario

we have tested, the program is run enough times (with di�erent random number generator seeds)

to make sure that the results are within �5% of the true values, with a 90% level of con�dence.
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5 Results

5.1 Base Case Results

The results for the base case are given in Table 2. In the case when the inverted lists of the

indexing methods are packed contiguously, the total space requirement for the three methods are

roughly comparable. PI is better than the BF method, since the threshold values are stored in

main memory. The SPI method requires more space than PI, because some (term, weight) pairs are

duplicated in a number of lists in the index.

When the inverted lists are not packed, but are stored individually in an integral number of

blocks, internal fragmentation leads to an increase in total space requirement of about 68% for SPI

to 113% for PI. The split-list strategy allows for easier updates, but we have to pay the price of

higher total space requirement.

For the number of disk reads performed per document, we see orders of magnitude improvement

of the indexing methods over the BF method. The SPI method is best, due to the fact that certain

frequent terms in a pro�le are not indexed. For this same reason, the number of multiplications for

SPI is lower than that for BF and PI (the latter two perform the same number of multiplications;

see the analysis).

Contiguous Fragmented Disk

Method Size (Blocks) Size (Blocks) Reads Multiplications

BF 29297 { 29297 4314

PI 23438 49900 144 4314

SPI 29630 49804 127 3434

Table 2: Results for the Base Case

In what follows, we describe several sensitivity studies in which we vary the parameter values.

5.2 Size of Queried Vocabulary

The �rst parameter that we exercise is q, which controls the size of the queried vocabulary. Figures

5 to 7 show the results.

In Figure 5, the total space requirement for the BF method, as well as the indexing methods

when the contiguous-list strategy is used, is insensitive to q. However, when the split-list strategy

is used for the indexing methods, their space requirement does vary with q. The uctuations in the

graph for SPI can be explained as follows. When q is 20000, each inverted list occupies 2 blocks.

As q increases, the number of lists increases, and so the total size increases. At the same time, the
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Figure 5: Total Size vs. q

number of postings in a lists decreases, since they are distributed over a larger number of lists. At

some point (around q = 30000), the lists begin to shrink in size to 1 block, and this explains the

drop in total size. Thereafter, the total space requirement increases linearly with q, as each list �ts

in 1 block. The same reasoning can be applied to the uctuations in the graph of PI.

Figure 6 shows the results for the number of blocks read per document. The number of blocks

read for the BF method is constantly equal to its total space requirement, and thus the graph is

omitted to show the variations in the other methods better. The sharp drop in the number of I/Os

required corresponds to the shrinking of the list length (from 2 blocks to 1 block). Thereafter, the

number of I/Os increases, as the number of lists read per document increases (due to the increase

in the queried vocabulary size). The rise is more prominent in PI than in SPI.

For the number of multiplications per document (Figure 7), SPI is better throughout than the

other methods. The trend is downward for all methods, as more infrequent terms appear in pro�les.

5.3 Pro�le Length

The next parameter that we vary is the pro�le length. Figures 8 to 10 show the results.

For contiguous allocation, we see the total space requirement grows with p for all methods (Figure

8). For fragmented allocation, with a small p, the inverted lists each �t in one block, so the size

remains constant at the queried vocabulary size. With larger p, the lists grow in length, so the total

space requirement grows also. The SPI method grows at a faster rate than the PI method.

The number of disk reads required by the SPI method initially decreases as p is increased from
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1 (Figure 9). This is because it becomes more likely that a pro�le includes infrequent terms and

is thus indexed by those terms. With the longer lists at larger p (greater than 7), its performance

deteriorates and then stabilizes. On the other hand, for the number of multiplications, SPI is always

better than the two other methods (Figure 10).

5.4 Number of Pro�les

We vary the number of pro�les from 100000 to 800000. For the total space requirement (results

shown in Figure 11), we have a similar graph as that for p. For contiguous allocation, the space

requirement grows linearly with n. For fragmented allocation, the space required is at �rst constant

and then increases. Each inverted list �ts in 1 block at the beginning, but as n increases, 2 blocks

are needed to hold a list. The lists grow at a faster rate in the SPI method initially, but PI soon

catches up with it.

Figure 12 shows the results for the number of disk I/Os required per document. Those for the

BF method are omitted. We see there is a range of n values where SPI requires more I/Os per

document; this happens when an SPI inverted list grows faster than a PI list. When the list length

becomes the same in both methods, SPI again becomes better PI.

In terms of number of multiplications per document, all methods scale proportionally to the

number of pro�les, with the SPI method always better than the other two methods. Due to space

considerations, we omit the graphs here.
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5.5 Relevance Threshold

The next parameter that we vary is the relevance threshold. Although it may not make sense to

have threshold value of 0 or 1, we study the entire range of possible values to con�rm our intuition

about the SPI method. The other methods are insensitive to the relevance threshold.

With � increasing, we expect a more substantial portion of a pro�le to be insigni�cant and be

duplicated in the lists of signi�cant terms in SPI. Thus the total index size increases, but as �

increases further, the insigni�cant portion is posted in fewer lists (the number of signi�cant terms

decreases). Thus, a certain maximum would be reached somewhere in the range. This is indeed the

case for our results shown in Figure 13.

Although the total size increases and then decreases with increasing �, the number of I/Os is

always decreasing (Figure 14), because pro�les are indexed in fewer lists of lower frequency terms.

Similarly, the number of multiplications decreases also (Figure 15).

The relative performance of SPI against the other two does not vary much with di�erent values

of �. For the space requirement, it almost always requires more space that the other two, except

when � is close to 1. For the time requirement, it is always no worse than the other methods.

5.6 Document Size

The size of documents only a�ects the two time requirement metrics. The performance of the

methods with respect to both metrics scales proportionally to the document size, with no change in

relative performance.
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5.7 Relevance Feedback

We perform simulations to evaluate the methods when relevance feedback is used. First we describe

the setting of our parameters to model the e�ects of relevance feedback.

As relevant document vectors are added to the pro�le vector, new terms are introduced to

the pro�le vector. Potentially, the number of terms in a pro�le becomes arbitrarily large. This

is expensive in terms of both pro�le storage and document processing time. As shown in [14], a

compromise is to expand the pro�le vector up to a certain maximum number of terms. Terms with

low weights are discarded. This may result in a slight drop in retrieval e�ectiveness, but is important

in keeping down the storage and processing costs [14]. Thus, in our simulations, we assume that the

length of a pro�le (p) is �xed at 40.

Another e�ect from relevance feedback is that, as relevant document vectors are added to and

irrelevant document vectors are subtracted from a pro�le vector, the \interesting" terms in the pro�le

vector will accumulate high weights, while the other not so relevant terms will have lower weights.

To illustrate, consider a user who subscribes a pro�le on say \information �ltering." After receiving

and reviewing �ltered documents, he modi�es his pro�le by relevance feedback. The modi�ed pro�le

is expected to have high weights for words \information" and \�ltering," as well as related words on

the same topic, such as \selective," \dissemination," \alert," and so on. Other words in the pro�le

are somewhat related, but not as important, for example \retrieval" or \document."

Using the feedback formula (1) in Section 2.4, the modi�ed weight of a term xi (before normal-

28



100000

200000

300000

400000

500000

600000

700000

800000

900000

1e+06

1.1e+06

2 4 6 8 10 12 14

B
l
o
c
k
s

r

Figure 19: Total Size vs. Extra Weight Factor r

ization) is

idfi � (
X

Dj relevant

tfj;i �
X

Dk irrelevant

tfk;i); (2)

where tfj;i (or tfk;i) is the term frequency factor of term xi in document Dj (or Dk). Let us call

the expression inside the parentheses in (2) the cumulative term frequency (ctf) of the term xi.

To keep the simulations simple, we make the assumption (based on the discussion above) that the

terms in a modi�ed vector fall into two categories: interesting and non-interesting; in each category,

the ctf 's of the terms are roughly equal. In other words, we assume the non-interesting terms all

have a ctf of say �, and the interesting terms have a ctf of say r� (i.e., they are r times larger).

To form a pro�le in our simulations, we �x the number of \interesting" terms to 5. Then we

randomly select p = 40 terms from the queried vocabulary Q. Out of these terms, we randomly

select �ve of them to be the \interesting" terms. The non-interesting terms are given weights equal

to their idf 's, and the interesting terms are given weights r times their idf 's. Then the vector is

normalized. (We do not need to pick a value for �, as it would be normalized out anyways.) We

vary the extra weight factor (r) from 1 to 30 in the simulations.

The results of the simulations are shown in Figures 19-21. We observe that with a large pro�le

size, the SPI Method takes up a lot more space than the BF and PI Methods. This is because of

the replication of the insigni�cant terms in the lists for the signi�cant terms. This also leads to

more I/Os per document matched. On the other hand, in terms of the number of multiplications
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per document, the SPI Method is a lot better than the other two methods.

Only the SPI Method is sensitive to the extra weight factor r. In Figure 19, we see that the total

size of the SPI index increases with r. As more and more weight is given to the \interesting" terms,

they become more and more signi�cant. Finally, when r is about 10, the only signi�cant terms are

the \interesting" terms. Thus, the size of index becomes constant. The same reasoning explains the

shape of the SPI graphs in Figures 20 and 21.

6 Related Work

References [2, 5, 9] investigate the e�ectiveness of di�erent retrieval models applied to information

�ltering.

In [18], we study what index structures can be used to speed up information �ltering under the

boolean model. The PI and SPI methods presented in this paper can be seen as generalizations of

the Counting and Key methods in [18].

Terry et al. [15] propose the notion of continuous queries in relational databases. Users issue

continuous queries, which are rewritten into incremental queries and run periodically. Their work

concentrates on relational databases, while ours is concerned with the dissemination of unstructured

data (documents) using information retrieval techniques.

Related to the idea of a pro�le index is that of the \segment tree" presented in [3]. There, Danzig

et al. present a distributed indexing scheme as a way to provide e�cient retrospective search of a

large number of retrieval systems. Special sites, called index brokers, maintain indexes of remote

retrieval systems. They subscribe \generator queries" that keep them informed of changes in these

systems. The segment tree is proposed to index numerical generator queries over Library of Congress

numbers (e.g., all new items in the range QA76 to QA77). Index structures for general pro�les are

not addressed.

7 Conclusion

In this paper, we study what data structures and algorithms can be used to facilitate large-scale

information �ltering under the VSM. We apply the idea of the standard inverted index to index

user pro�les (we call this the PI method) and show that only slight modi�cations are needed to use

the index to speed up �ltering. We devise an alternative, called the SPI method, to the standard

inverted index { instead of indexing every term in a pro�le, we select only the signi�cant ones to

index. We evaluate their performance, together with the BF method which uses no pro�le index.
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In summary, we see that the three methods require approximately the same disk space when

inverted lists are packed into contiguous blocks. When lists are stored individually in an integral

number of blocks, the indexing methods require more disk space than the BF method. On the other

hand, when we compare the time requirement, the BF method is the clear loser. The indexing

methods require fewer number of I/Os to match a document by orders of magnitude. Among the PI

and SPI methods, SPI is always better in terms of CPU processing. It can also improve the number

of I/Os required in many cases, depending mainly on the pro�le length and the number of pro�les.

Although in those cases where SPI wins, the di�erence may appear small, we should remember

that the results shown are for processing a single document. An information server will be doing

this matching day in and day out, and the di�erence will be magni�ed. Another observation is that

as SPI is always the best in CPU processing, when main memory is large enough to hold the entire

index, SPI is the clear choice. In that case, instead of duplicating insigni�cant terms in lists of

indexed terms, we can just use a pointer to reference the insigni�cant terms, stored separately.
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