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A b s t r a c t

Intelligent agents that operate in real-world real-time environm
have limited resources. An agent must take these limitations into ac
when deciding which of two control modes - planning versus reaction - 
control its behavior in a given situation. The main goal of this thesis 
develop a framework that allows a resource-bounded agent to decid
planning time which control mode to adopt for anticipated possible ru
contingencies. Using our framework, the agent: (a) analyzes a com
(conditional) plan for achieving a particular goal; (b) decides which o
anticipated contingencies require and allow for preparation of re
responses at planning time; and (c) enhances the plan with pre
reactions for critical contingencies, while maintaining the size of the 
the planning and response times, and the use of all other critical resou
the agent within task-specific limits. For a given contingency, the decisi
plan or react is based on the characteristics of the contingency, the ass
reactive response, and the situation itself. Contingencies that may occur 
same situation compete for reactive response preparation because o
agent's limited resources. The thesis also proposes a knowledge represe
formalism to facilitate the acquisition and maintenance of knowledge in
in this decision process. We also show how the proposed framework ca
adapted for the problem of deciding, for a given contingency, wheth
prepare a special branch in the conditional plan under development 
leave the contingency for opportunistic treatment at execution time. We
a theoretical analysis of the properties of our framework and 
demonstrate them experimentally. We also show experimentally that
framework can simulate several different styles of human reactive beh
described in the literature and, therefore, can be useful as a basi
describing and contrasting such behaviors. Finally we demonstrate th
framework can be applied in a challenging real domain. That is: (a
knowledge and data needed for the decision making within our fram
exist and can be acquired from experts, and (b) the behavior of an age
uses our framework improves according to response time, reliability
resource utilization criteria.
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Chapter 1
In t roduc t i on

How should an intelligent agent prepare to satisfy a goal, while b
able to respond to the great variety of contingencies that might impe
achievement of goals? Short answer: through planning. For a m
comprehensive answer, you may want to read this thesis. It may provid
with a partial answer to this question, but it may also raise many 
questions.

Many AI research resources have already been devoted to find
solutions to the problem of planning, usually defined as choosing the ne
or steps for the execution of a system, based on knowledge of the p
situation, the system's goals, and the operators available. The essen
planning in AI is the ability to reason about actions and their effects
equally important, this reasoning process can take place before the 
execution starts. Therefore, it must deal with all the uncertainties due 
fact that the actual situation at execution time can only be assum
planning time, when many characteristics of the environment either 
be taken into account, or simply cannot be known. Many activitie
Computer Science can be regarded as instances of planning. One exam
programming, which requires making decisions (at planning - 
programming - time) about actions to be performed later, at pro
execution time, based on expectations about the environment in which
will be executed. A computer program is a formal specification of how
resources of the computer will be applied to solve a given problem. Alt
conventional plans are not synonymous with programs, as also argu
[Drummond, 1989], we briefly use the analogy here for explanatory pu
The more complex and unpredictable the execution environment is, the
contingencies can occur during a program execution. The programmer
therefore prepare the computer to properly respond to as many of
contingencies as possible, while still keeping the program within 
computer resources, that is, it must still be small enough to fit in memo
must still be fast enough to give an answer in a required amount of tim
same situation occurs in all other domains in which planning is require

A special kind of planning is reactive planning, i.e. building a se
specific perception-action rules stored in a computationally efficient 
[Brooks, 1986; Agre & Chapman, 1987]. From now on, we will call this typ
planning reaction , as opposed to the conventional type of planning which
will call simply planning  or sometimes, to clearly distinguish it from react
conditional planning. To continue our parallel with computer program
interruptions, traps, exceptions, and error treatment routines in a p
can be regarded as reactions. They are executed as response to a large 
of specific situations, and are not necessarily intended to ensure the su
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normal continuation of the program towards completing its final 
Sometimes, they are just intended to allow the program to interact gra
with the environment or to help the program recover from a critical
and allow the user to intervene to facilitate the continuation of the pr
or maybe to start the execution of another program, or even to write 
program (to replan) .

All the characteristics discussed so far for computer programm
apply to most domains where planning is needed as a means of ens
proper behavior of the system, before starting the actual execution o
system to achieve a given goal. Such domains range from "high-le
cognitive, symbolic domains like medical fields (e.g. anesthesiology, int
care monitoring), to "low-level" manipulation domains like robot manip
control. The common characteristics of all such domains is that their p
tasks can be (at least conceptually) translated into computer program
therefore conform to our previous discussion.

The same planning problem can be of very different levels of diffi
depending on the assumptions made about the environment in which th
is to be executed. For a well structured, "well behaved" environment 
will not present "surprises" to the executing agent, the planning prob
much easier than for a more natural environment. In the latter case,
contingencies are possible during plan execution. We will call a contin
any state of the world entered by the executing agent while following a
that should not have occurred as a result of executing the plan up to tha
Contingencies are the effect of interactions between the agent and
environment; they occur because of: (i) predictable actions of 
environment, or (ii) the unpredictability of the environment, or (iii
unpredictability of the execution subsystems of the agent. In the real 
the number and variety of contingencies that can occur during the ex
of a plan is unlimited. An ideal planner should take care of all t
contingencies and build a "universal" plan [Schoppers, 1987] for the age
has already been shown [Ginsberg, 1989], building such a plan is not f
for interesting application domains, due to practical limitations of the 
resources. However, many of these contingencies can be ignored, e
because they do not seriously affect the execution of the plan or becaus
have an extremely low likelihood of occurrence. Some of the remai
contingencies may have a very high likelihood of occurrence while 
requiring elaborate subplans to treat them. Therefore, these subplans 
be included as conditional branches in the original plan. Other signif
less likely contingencies may allow for a very short time of response, 
having disastrous consequences if the response does not occur in time
contingencies probably should be treated reactively. These reactions ne
lead the agent to the final goal of the initial plan; it is enough if the
stabilize the situation, avoid the consequences of the contingency, and
the planner to replan a comprehensive solution from the current situa
the final goal. Yet other contingencies, not extremely likely and without
term dramatic consequences, can be ignored at planning time and left
possible replanning phase at execution time: when they appear, the 
(which is not under very high time pressure) can suspend execution an
its time to replan a solution from that situation to the final goal. Thi
involve either a complete solution or, more frequently, a patch to bri
agent back to one of the states in its original plan from which it can co
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execution (one such mechanism was implemented by the triangle table
in STRIPS [Nilsson, 1984]).

From the above discussion we can derive the two basic control mode
an agent that must deal with such contingencies: planning and reactio
planning we will understand here both building a course of action before
starting its execution and dynamic replanning, i.e. interleaving pla
with execution. Each of these two modes has its advantages in ce
circumstances, and we shall summarize them here. [Hayes-Roth, 1993] p
a complete discussion of these characteristics.

Among the strengths of the planning model is the fact that plans c
built to have a set of desirable global properties regarding the goals 
attained and the resources of the agent. The side effects of the actions
executed as part of the plan can be carefully taken into account and a
before execution begins. These properties are achieved by taking into a
complete descriptions of the states of the world as they are predicted 
planner. Of course, these states will conform to reality only if 
environment behaves according to the model that the planner has ab
The more incomplete this model is, the more uncertainty in the behav
the environment, and the more uncertainty about the actual states that 
encountered by the agent during plan execution. The final plan has 
degree of coherence and is easily comprehensible by a human user (th
point is very important in domains where the entire credibility of the 
depends on how much a user can understand from the reasoning o
system, such as medical domains). The plan generated by a conditional 
usually makes a close approximation of the optimal usage of the ag
resources. Finally, the planned actions can be executed promptly at ru
(since the agent simply follows a completely specified plan, in which the
action is taken according to the plan, maybe after evaluating the resu
some tests in the case of conditional plans). However, the planning mod
its weaknesses with respect to the real world. The two main disadvantage
(i) the high computational cost of planning (which makes it necessa
carefully consider which contingencies should be exhaustively treated i
way - otherwise the time to build the plan may become prohibitive); an
the inflexibility of the planned behavior - the agent can only act in sta
the world which are specified in the plan, and its performance will d
very abruptly with any variations to such states.

The reactive model constructs a set of goal-specific perception-a
rules and stores them in a computationally efficient form. The 
advantages of the reactive model are its flexibility of response to a larger
run-time conditions (since each response is less carefully analyzed th
the previous case, and the response does not need to embody a com
solution to the final goal but can merely be an action to stabilize the si
and allow the time for replanning) and its short time of response (dete
by the efficient way of storing the reactive plan). On the other hand, r
still cannot anticipate, distinguish and store all runtime contingencies. 
therefore still exhibit precipitous failure in unanticipated conditions. B
main disadvantage of reaction is that it is taken after a superficial eva
of the current state, and does not benefit from an in depth analysis of th
and the related action consequences. Therefore, while a reaction ma
locally appropriate, its global effectiveness is uncertain.
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The planning and reactive control modes are near the end-points 
theoretical continuum of control modes. Together with two other c
modes (reflex and dead-reckoning), they form a two-dimensional 
described in [Hayes-Roth, 1993]. Also analyzed there is the correspon
between the space of control modes and a two-dimensional space of c
situations, as well as the effect of combining the control modes in dif
degrees on the quality of run-time behaviors in the corresponding sp
control situations.

We believe that planning and reacting complement each other, 
therefore we envision agents that: (a) plan courses of action designe
achieve goals under certain anticipated contingencies - conditional br
are built in the plan for the very likely contingencies that also re
significant planning to reach the goal; (b) augment these plans 
context-dependent reactions for noticing and responding to less likely
important exogenous events; (c) control their behavior by following 
plans, while simultaneously monitoring for and, when appropriate, exe
reactions associated with particular phases of their plans; and (d) revis
plans when local reactions do not adequately address unanticipated eve

However, this complementarity of the planning and reaction co
modes in intelligent agents is overlooked by many researchers today.
planning research to date has been concentrated either towards just one
two control modes, or when it attempts to combine them, the main purpo
increase the reactive capabilities of the agent and to unload the conve
planner's responsibilities. In this latter case, the general assumption i
reaction comes for free, that is, either the agent's resources are unlimi
the reaction process does not use any significant amount of the a
resources. Unfortunately, this is not the case in reality: any real agen
limited resources, and the reaction process may use significant amounts 
agent's resources. This fact has a couple of consequences: (i) a decrease 
reactive responsiveness of the agent (or equivalently an increase i
response time to a given contingency), which may make some reac
useless if they come too late, and (ii) a limitation in the number of re
for which the agent can prepare in a given situation. This means tha
agent must be more selective in the types of reaction it prepares for
situation, preparing the most important reactions and ignoring the oth
the following chapters we define and characterize the value of reaction
identify those characteristics of the agent and its working environmen
influence the response capabilities of the agent to different situations 
may encounter in its working environment. Based on this analysis,
formulate a framework to decide, at planning time, which control mo
choose for contingencies that may appear during plan execution, that
framework to decide, at planning time, whether a certain situation re
special preparation for a possible reactive response, or whether it can 
for dynamic replanning at execution time. The problem is particu
important for planning the activity of an intelligent agent which must
in a dynamic, complex, unpredictable real-time environment.

The approach begins with a plan designed to achieve a goal 
enhances it to cope reactively with critical contingencies, while maint
the size of the plan and the planning and response times within reas
limits. The framework can also be modified for the problem of deciding,
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given contingency, whether to prepare a special branch in the (condi
plan or to leave the contingency for opportunistic treatment at executio

As an example, consider driving a car between two given locati
Before starting, the driving agent plans its route in some detail, incl
turns at intersections and expectations of achieving milestones along th
in order to minimize travel time. It also prepares a conditional branch 
plan as an alternative route in case the original route is blocked at a 
intersection where blockage is highly probable. This conditional b
requires extensive planning resources but produces a complete solutio
leads all the way to the final goal. Along the way, the agent in fact enco
unexpected heavy traffic and revises the remainder of its plan to ta
alternate route. As it follows the revised plan, the agent passes a school,
it watches carefully for children who might suddenly run into the street. As
leaves the neighborhood of the school and enters an industrial area, th
forge t s  about children and watches for other contingencies (e.g., railway
crossings, trucks coming out of driveways). Note that the agent, w
executing the plan, is prepared to react to certain contingencies at di
stages of the plan, while using dynamic replanning to solve o
cont ingencies .

Given certain conditions (like the time of day, the weather, the typ
roads to be used) the agent prepares in advance for possible conting
that may appear on certain portions of the trip. However, it does not 
expectations for and responses to these contingencies as steps of the
since they are not essential for the plan to be executed successfully. O
other hand, if they happen and are not responded to properly, the
preclude the successful completion of the plan. Examples of s
contingencies are: sliding on a slippery road in cold weather, an unsig
object in the street during night time, a child running in front of the c
a nearby school, or a traffic jam at rush hours. Note that these contin
were qualified by the characteristics of the situation in which they are
to appear. For some such contingencies, a reactive response must alread
since the situation does not allow enough time for the agent to rep
solution. There exists an infinite set of such contingencies, so the 
cannot prepare to always react to all of them. Moreover, due to li
computational and non-computational resources, if the agent prepares 
large a set of contingencies in a situation, selecting the correct respon
the one that actually occurs may become a too long process, thus ren
the response ineffective. However, the responses to such contingencies d
need to include an entire solution to the main plan's ultimate goal; if th
responds to them fast enough to avoid unwanted consequences, then 
take the time to replan the entire solution from there on. Since 
contingencies are too many and not very likely, they do not warra
complete conditional branch in the initial plan to lead to the final goal.

Therefore, we need a decision framework to guide the selection
contingencies for which a reactive response should be prepared at pl
time. This need arises in many domains besides car driving (for examp
intensive care monitoring, anesthesiology [DeAnda & Gaba, 1991; Fish 
1991; Gaba & al, 1991; Gaba 1991], nuclear power plant operation [Woods
1987]). Formulating this framework is an important step toward buildi
control engine of real-time intelligent agents with limited resources for
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domains. The formulation and evaluation (theoretical and experiment
such a framework is the topic of this research.

In the following chapter, we outline the problem in more precise t
We define the notion of contingency and classify contingencies into 
according to their importance and the way they should be treated by th
(with conditional plans, with reactions, or simply ignored at planning
and left for dynamic replanning if necessary). We also characterize
domains where the framework developed here will be most applicable. 
a review of related work points out similarities with other paradigms.

Chapter 3 presents the basic approach. After giving an intui
solution for a simple problem in the driving domain and analyzing
solution, we present the details of the framework for the reaction prep
decision. We show how it can be used to establish the value of reacting
contingency in a given situation and to make the decision of whether t
to react to that contingency. The chapter closes with a discussion of ho
framework may be modified and applied to decide whether a ce
contingency, in a given situation, requires preparation of a complete 
in the initial conditional plan.

Chapter 4 discusses a proposal for a knowledge representat
formalism for contingencies, reactions and situations, to facilitate
structuring of the planner's knowledge and its manipulation.

Chapter 5 presents a theoretical analysis of the framework present
chapter 3 for deciding whether to plan to react to a given contingency
given situation. A few formal properties are stated and justified, to su
claims of generality and optimality (in terms of using the agent's reso
for the proposed formalism.

Experimental demonstrations are then presented and briefly ana
in chapter 6. Three domains were used for this purpose: an everyday 
where everyone is an "expert" (car driving) and two highly specia
medical domains of expertise (anesthesiology and intensive care monit
Results include simulations of several models of human reactive beh
discussed in the literature. A demonstration in a complex, real-w
application domain shows: (1) that the knowledge and data needed fo
decision making process exists and can be acquired from experts in
domain; and (2) that the behavior of the agent improves (accordin
response time, reliability and resource use criteria) as a result
incorporating our decision framework in the agent's planning mechani

After summarizing our work, we make in chapter 7 a few suggestion
natural continuations of this research, including applications of case 
reasoning techniques for managing a library of reactive plans and a 
of contingencies and reactions, and several applications of lear
mechanisms to different parts of our framework.

Appendix 1 briefly presents the architecture of the reaction dec
module and the interface for integrating the module in an intelligent a

Appendix 2 completes the vocabulary example started in chapter 
the driving domain. It presents a large enough grammar to represent m
the situations, contingencies and reactions used as examples from this 
throughout the thesis.

In appendix 3 we present the results of a number of experiment
have conducted in the anesthesiology domain, in order to provide f
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evidence regarding the generality and applicability of our framewor
real-world domains.

Finally, appendix 4 complements the presentation of intensive 
monitoring domain experiments in chapter 6, by presenting a few co
sets of contingencies as they were ranked by our framework.
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Chapter 2
The Problem

In this chapter, we outline the problem in more precise terms.
define the notion of contingency and classify contingencies into three
according to their importance and the way they should be treated by th
(with conditional plans, with reactions, or simply ignored at planning
and left for dynamic replanning if necessary). We also give a character
of the domains where the framework developed here will be best app
and what its limitations are. Finally a review of related work points
similarities with other planning paradigms.

2.1. Contingencies
Let us consider first a more detailed version of the example present

the previous chapter. Suppose the agent commutes each morning by ca
home (starting  point S) to the office (final goal G), as shown in figure 2
will limit ourselves to the study of a small segment of the car's route b
points A and E. Suppose the route comes to an intersection with a traffi
(point B). The fastest route between B and E is through C, which is the 
the agent normally takes if the traffic light at point B is green. Howeve
driving agent knows that, if this traffic light is red, then many other 
lights between B and E through C will be red when the car will reach 
thus making the journey very slow. In the same time, the agent knows t
at point B, it will take a right turn and go through point D, then it can
point E (and therefore the goal G) much faster.

S A B C E G

D
Figure 2.1. Conditional plan

The fact (and its associated state of the world) that the traffic light 
when the agent reaches the intersection at point B is a contingency, sinc
not a result of the execution of the plan. In this case, the agent prep
complete branch in the conditional plan to treat this contingency.

Suppose now that the point A in the plan built by the agent is a s
in front of which the agent passes with its car. If the commute takes plac
time when children are at school, or go to school, the agent prepares to
carefully for children who might suddenly run into the street. It also 
that in front of a school, a ball may suddenly pop up in front of the car
and many other contingencies (some more of which will be considered 
demonstrations described later on) may appear during the time when 
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is in the school zone A. As it leaves the neighborhood of the school and 
another area (e.g. an industrial area), the agent forgets about childre
balls and prepares for other contingencies (e.g. railway crossings, t
coming out of driveways, etc.).

Let us consider for a moment the following three contingencies w
appeared in the previous example: the traffic light at point B, the 
running into the street in front of the car, and the ball popping up in 
the car1 . The common characteristic of these three contingencies is that
are not generated as a result of the execution of the plan. We defi
contingency  to be any state of the world entered by the executing agen
following a plan, which is not: (i) a direct consequence of executing
actions of the plan up to that point, or (ii) an exogenously generated s
the world assumed in the design of the plan. Therefore, a contingency do
necessarily affect the agent or the plan execution, and when a contin
does affect the plan, it is not necessary that it will negatively affect i
example, a contingency may be a state which is not the current expecte
according to the plan execution, but is a state which should have been 
along the way, after executing some more steps of the plan. The agent
detect it and use it to skip the unnecessary steps in the plan, for example
same way as it was done with triangle tables in [Nilsson, 1984]. To simpli
exposition, from here on we will use the term cont ingency  to also mean any
fact or sign that was not expected as a result of the plan execution, and
may indicate that a state is a contingency according to the previous def

The three contingencies presented above are very different in n
and will be treated differently by our agent. The traffic light contingenc
happen very often (the actual probability to encounter a red signal is
by the length of time the signal is green divided by the length of time i
the signal to complete an entire cycle, provided that the signal is
correlated with another signal previously encountered by the car and t
signal behaves independently of the amount of traffic that passes thro
for a two-way signal equally divided between the two directions of traffi
probability is almost 0.5, though somewhat less because of the color yello
likelihood of occurrence is significantly (one or more orders of magn
higher than that of the other two contingencies. The treatment of
contingency (by following an alternate route through point D to reach p
and then the goal G) also needs an elaborate plan which must be prepa
advance (otherwise, after turning right at the traffic light, the agent
stop and replan its route by possibly using maps, which may take a
enough time to wipe out any savings obtained by avoiding the traffic lig
the path through C). Therefore, the agent must prepare a conditional 
in the main plan for this contingency. This will use significant plan
resources, but will have all the advantages associated with the pla
control model discussed in the previous chapter.

The contingency defined by the child running in front of the c
much less likely to happen than encountering a red traffic light, even
driving in front of the school. This contingency has also a much h
uncertainty about when and where it can occur. Thirdly, the plan to tre
contingency is much simpler (it is usually enough to brake and maybe t
to the right, depending on the distance to the child); after taking
corrective action and avoiding the collision, the situation does not prese
more dangers, so the agent can take its time to replan a course of actio



3

will get it from the new state to the goal (this may be as simple as res
the car, or as elaborate as finding an alternative means of transporta
the car was damaged by hitting a pole on the side of the road while av
the child). While the critical situation was avoided by a simple plan, th
obtained after its execution is unknown and may belong to a large set o
different states. Therefore, a comprehensive conditional plan to exhau
treat all these states and preplan the agent's execution from them to th
goal G may be prohibitive. The practical alternative is to treat 
contingencies in a reactive manner, by attaching simple reactive pla
those points in the main plan where such contingencies may occur. Aft
reaction will yield a non-dangerous state for the agent, it can take its t
dynamically replan for a complete solution.

The third contingency stated before - the ball popping up in fro
the car when driving along a school - is a little more probable than the
running in front of the car, but the likelihoods of the two contingenci
roughly of the same order of magnitude. However, in this third case
consequences of hitting a ball with a car (especially with a relatively 
moving car in the vicinity of a known school) are significantly smaller
in the child case. Moreover, the side effects of making a dangerous ma
to avoid the ball may outweigh by far the consequences of hitting the
Therefore, for such a contingency, the agent is much better off if it ign
at planning time, thus conserving its limited resources for other 
important contingencies.

To summarize the discussion in this section, we have identified t
types of contingencies that may appear during the execution of a plan
are classified according to the action taken by the agent at planning t
prepare for their occurrence at execution time. These types of conting
are :

( i ) contingencies for which the planner builds complete conditio
branches, from the contingency state to the goal state, in the main

( i i )contingencies for which the agent prepares reactive responses; 
are combined into reactive plans by a reactive planner, and 
attached to appropriate segments of the complete plan provided b
conditional planner;

(iii) contingencies ignored by the agent at planning time, either be
their treatments can be left for dynamic replanning when they
encountered at execution time, or because they are considered 
important than the contingencies included in the previous 
categories, and the agent simply does not have the resources to p
a reaction (much less a complete branch in the plan) for them.
The justification for this classification is mainly related to the lim

resources that a real agent can use. For a few contingencies, the agen
generate complete plans and combine them in a conditional plan. Ho
the agent's limited planning and execution resources do not allow for to
contingencies to be treated this way. Still, the agent can prepare at pl
time reactive responses for a larger set of contingencies; these response
not ensure full solutions to the goal state, but they will give the agen
possibility to dynamically replan its actions at execution time. But in n
can a real agent with limited resources prepare for all possible conting
in a real world application domain. Many of these contingencies mu
ignored at planning time. The problem addressed in this thesis is how to
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which contingencies to select for preparation of reactive responses,
which to ignore at planning time.

2.2. Summary of the Problem
The example problem outlined in the previous section highlights 

aspects of the general problem with which we are concerned. We shall 
here this problem more precisely, and then we will propose a solution fo
the next chapter.

In all our previous discussion we have referred to reaction planni as
a conscious form of preparing condition-action behavior. That is, the 
consciously prepares, before starting the actual execution, a set
perception-action rules for a certain segment of the plan. They are 
executed by high level execution mechanisms of the agent similar to tho
execute the main plan, and are not intended for execution by a "lower 
higher priority execution mechanism which may be part of the a
architecture (like the one proposed by [Brooks, 1986; Kaelbling, 19
Actually, the agent will resort to a reaction to a contingency only if it h
conditional branch in the plan at that stage during the execution, an
consciously take the decision to try to use reaction in that situation. Th
not mean that we specifically prohibit in our agent architectures any 
level execution mechanisms which have the ability to react  faster and
higher priority to certain contingencies. It only means that we are
concerned with such precognitive types of reaction (e.g. locomotion 
reactions like avoiding obstacles by a moving robot). We are only conc
here with contingencies to which such reaction mechanisms cannot re
On the other hand, if the agent architecture does not include such low
reaction mechanisms, then the contingencies to be treated by them ma
the set of contingencies which are analyzed by the higher level cog
mechanisms of the agent using the framework proposed in this work.

Since we will talk more in the following section about th
characteristics of the domains in which this work is best applicable, We
simply say here that we are particularly interested in planning the acti
an intelligent agent with limited resources and multiple goals working
dynamic, unpredictable, real-time environment. The agent must itself 
real-time, i.e. be Òpredictably fast enough for use by the process b
servicedÓ [Marsh & Greenwood, 1986]. In order to behave properly, the
must plan its actions ahead of time, and then monitor the plan executi
be prepared to respond to contingencies that may appear during
execution. This emphasizes two orthogonal qualities that the agent 
exhibit: sensitivity to run-time contingencies and commitment to sp
goal-oriented actions. Such behavior can be accomplished by combinin
two fundamental control modes mentioned before: planning and reactin

As will be shown in section 2.4, most research to date is concer
either with employing only one of these control modes, or simply attem
turn a system to become increasingly reactive and rely as little as possi
planning. These works concentrate mainly on how to prepare rea
responses and tend to use them in such a way as to substitute re
planning. Our approach differs from these others in its recognition o
complementary strengths and weaknesses of the two modes, and in it
integration of planning and reacting within a single agent.
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Our premise is that, whenever time and other resources allow
dynamically planned response is never worse (and usually better
responding to a contingency than a reactive response2  previously prepared
for it. There are several reasons for this assumption: (i) the repla
response is generated at execution time when more information is availa
opposed to planning time, when the reaction is prepared; (ii) w
replanning, an agent has time to analyze all the relevant information 
search for the best available solution by planning a complete solution p
the goal, while in order to react, the agent may have only a few altern
(in the reactive plan) to choose from and only a few tests to decide o
response, which must therefore be taken based on incomplete inform
obtained from an incomplete analysis of the current situation; (iii) if tim
limited that it cannot even perform all these tests, the agent may have to
more general action hoping to improve the situation at least temporar
to buy more time to look for a better solution. The reason we need t
reaction is that the replanned solution may be found too late and there
of no more use at the time it can be taken. Thus, we assume that the imp
of regular planning makes it irreplaceable (due to the vast diversi
situations in real-world environments), but the agent's real-time perfo
can be significantly improved by preparing reactive responses for a l
number of critical contingencies that may be foreseen to appear d
execution of the plan already built to achieve the main goal.

By not including enough contingencies for reactive treatment, 
performance of the agent will be suboptimal. On the other hand, by in
too many such contingencies, the reactive response time becomes too 
thus degrading the system performance once again.

Unless otherwise stated, we assume that, given a contingency, the 
knows of an action (maybe a small sequence of elementary actions) whi
applied reactively, either solves the problem generated by the contingen
at least postpones its deadline long enough to allow for replanning o
entire solution.

The main issue for us then is to enable the agent, for each phase o
main plan, to select the right set of contingencies for which to pr
reactions. That is, our problem  is to specify a decision framework which:

m  given:
l an intelligent agent with:

G  capabilities:
F  planning and dynamically replanning
F  monitoring
F  reactive behavior

G  constraints:
F  limited resources
F  real-time performance

l a (possibly conditional) plan by which the agent can achieve
current goal

l a set of contingencies known to possibly appear at certain ti
during the plan execution, each with:
G  reactive responses associated with them
G  known characteristics associated with each such contingency 

gravity of consequences, time deadlines) and with their react
(e.g. resource requirements)
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m enable  the agent to decide at planning time on how to select a "rational"
subset  of these contingencies (according to a desired behavior pa
for which the reactive responses should be attached to the main 
(while preserving the real-time responsiveness of the agent to all 
contingencies, given its limited resources).
We have used the word "rational" in the previous definition, an

needs some disambiguation. A behavior of the agent in a given situati
defined by the order in which the agent classifies the set of contingenc
that situation, according to the value of reacting to them. For the 
situation and set of contingencies, there are different behaviors that th
may exhibit. Some of these behaviors may either not be suitable for
situation, or may even be considered abnormal, hazardous or 
pathological. But there is at least one such behavior which is consi
appropriate or normal for that situation, by the experts in the domain
even possible that there are several different behaviors that may
considered appropriate in a given situation. Each behavior is appro
according to a behavior model, and in the literature there have been de
number of such reactive behavior types for domains in which critica
stressful situations are common and very dangerous like aircraft flying 
1991], nuclear power plant management [Woods & al., 1987] or anesthesia
& al., 1991]. In most of the thesis we will refer to what is considered to b
"normal" behavior by experts in each domain from which we draw
examples. However, in section 6.3, we will discuss some other types
behaviors and how they can be translated and simulated with our frame

One problem related to the one we stated before is conditional pla
As discussed before, there are three courses of action that an agent can 
prepare a response to a possible contingency: plan a conditional branch
a reactive behavior, or ignore the contingency at planning time. Our a
will focus on how to decide whether to prepare a reactive response 
contingency, but the general framework which will be developed for
purpose is also applicable (with certain modifications) to the proble
deciding whether to prepare an entire conditional branch in the mai
for a possible contingency. In section 3.5 we will briefly discuss what ar
changes that must be made to our formalism so that it can also be used to
which is the set of contingencies for which conditional branches shou
planned. However, in the rest of the thesis, we will assume that the age
already built the complete conditional plan, and is only trying to augm
with reactive responses to as many contingencies as possible being limit
its finite resources.

The selection criteria which we are looking for are much more com
than any utility measures (e.g., [Minton, 1990]) proposed so far. For ex
in our approach, some of the contingencies associated with a situation
appear in practice with a very low probability, but they may be very cri
they occur, and thus are worth preparing for reactively and are also 
being remembered. This is in contrast with most of the research to date,
is mainly concerned with improving the systems' performance by ca
into reactive plans the responses to the most frequently occur
cont ingencies .

But before reviewing the previous research in this domain, let
attempt to characterize first the domains in which the problem stated 
significant and where our solution framework is applicable.
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2.3. Application Domains
Much of the planning work to date has concentrated on applicatio

artificial domains. Such domains are well-structured and well-defined b
system designer, which usually means that the entire set of pos
contingencies is known in advance, and that this set is of a manageable
The main implication of this is that the resource limitations of the age
be ignored (particularly at execution time) with respect to the size of th
whether the main control mode employed is conditional planning or r
planning, that is, we can always assume that we have a powerful enough
to be able to respond in time to any of the contingencies that it knows
This is clearly an artificial assumption which drastically simplifies 
planning problem and limits the applicability of the solutions proposed.

By contrast, we are interested here in applying the planning para
to real-world domains and to allow the agent to operate in real-world 
closed and limited for practical purposes) domains. The main characteri
such a domain and the agents operating in them is r ea l - t ime  define
[Marsh and Greenwood, 1986] as Òpredictably fast enough for use by
process being servicedÓ. This means that the agent must be guarante
respond, at execution time, in a prespecified time limit to any contingen
which it has prepared a response at planning time. However, if an agen
limited resources prepares to respond to too many contingencies in a 
situation, than it may not be able to guarantee a timely response to th
time-pressured of these contingencies: e.g. it make take too long for the
to discriminate among the possible contingencies for which it is prepa
react, from the time it detects a contingency and until it has to tak
corrective action. An example of an interesting domain for our framew
the car driving domain, which will be used for exemplification throu
most of the thesis. If a child appears in front of the car at small distance
is very little time for the agent to discriminate among the contingenci
which it is prepared to react in that situation and to decide what ki
contingency this is and how to react to it. For an agent with lim
computational resources it may be therefore better not to prepare to r
the same situation for a much less critical contingency like a ball comi
front of the car, or a sudden loss in the radio signal, and so on.

These observations are valid in real-life domains because anothe
their characteristics: they are very large, both in the number and var
contingencies that may appear (which has been noticed a long time a
[McCarthy, 1977] when describing the qualification problem), and in
variety of corrective actions that may apply. Each corrective action app
to a certain contingency may be better suited in some situation th
another one. Therefore, we will always consider pairs contingency-situ
associated with each situation in which that contingency may arise a
which that response is the best to this contingency. For well-struc
(usually artificial) or very limited domains where the number
contingencies and responses is limited, the framework described in this
is not necessary, since it is conceptually possible to use a more powerful
which can take care of all the contingencies in each situation. 

As seen before, real-world environments are usually unpredictable ,
that is contingencies may occur at any time, or at least uncer ta in  in that the
effects of actions and the actual state of the world after the execution of 
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step cannot be foreseen with utmost precision. Such domains are also 
d y n a m i c  in the sense that the state of the world may change withou
participation of our agent, for example, as a result of actions of oth
cooperative or antagonistic - independent agents working in the 
environment (e.g. there are other agents driving cars on the same stre
our agent and their paths may intersect3). In real domains some contin
tend to appear associated with certain plan steps or situations an
likelihood of their appearance may be different for different situations,
others can appear at any time with the same likelihood. For example,
always possible for a child to run into the street, or for a meteor to fall i
street or for the car to fall to pieces, but it is impractical for the agent to
the lookout for all of these possible events all the time. Real-world do
also present a huge variety of situations. In each situation different
contingencies can happen, and the same contingency may be vi
differently in different situations. In certain situations, some conting
are more likely or more important than others. If the agent has to dri
car on a mountain road in winter, it should expect bumps or damaged p
of the road, or slippery roads, instead of, say, traffic lights. The agent 
prepare for yet another set of possible contingencies in the case of driv
freeways. Also, the most effective responses associated with a conting
which may appear in different situations may be situation dependent
agent should therefore be able to selectively prepare itself for the 
critical contingencies in each possible situation along a prepared plan.

We should also note that some of the contingencies associated wi
situation may appear with a very low probability, but they may be
critical if they occur, and thus are worth preparing for. This is in co
with most of the literature to date, since most authors are mainly con
with improving their systems' performance by caching the most freq
used plans.

We also assume that short plans (a single action or a small sequen
actions), if applied reactively, are usually enough to either solve the p
generated by the contingency, or at least to postpone its deadline long 
to give the planner the time needed to dynamically replan the entire s
under the new circumstances.

Most real domains which have the features described above are us
characterized as high level, knowledge intensive domains. Examples of 
domains are some medical domains (e.g. intensive care monitor
anesthesia), nuclear power plant operation, aircraft flying, car driving 
on. These are contingency-intensive domains, in which many conting
can appear and in which some of these contingencies are very time-c
and / or with very high consequences, even if they do not appear wit
high frequency. Although these domains also require (some more 
others) significant skill development (by skill we mean here autom
low-level, unconscious reflexes to certain contingencies), their m
characteristic is that the process of planning and responding to contin
is knowledge-intensive and thus uses significant high-level cogni
resources of the agent. Our framework can be in principle applied to
domain, but its value and effectiveness can be questioned for very
structured, artificial domains (like the blocks world) and for low-level,
intensive domains (or such tasks in higher-level domains), like locom
tasks (e.g. reflex obstacle avoidance) or fine-motion robot manipulation
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(e.g. the peg-in-the-hole insertion problem), in which the number
diversity of contingencies is limited and well-known in advance. 

Even for such limited but real domains, we can argue that 
framework can be applicable as long as the resources of the agent inv
are not powerful enough to completely remove the uncertainty in the d
An example of such a domain is robot motion planning. The main pr
here is the uncertainty, at execution time, in the position and orientat
the parts and of the robot (e.g., a manipulator) in the workspace. A cl
planning methods developed for this problem deal with such uncertaint
second phase of planning; in the first phase, plan skeletons and 
strategies are produced, using path planning methods which assume
uncertainty (i.e. no contingencies) [Latombe & al., 1991]. Then diff
methods are used to deal with contingencies generated by the aforeme
uncertainties. For example, SPAR [Hutchinson and Kak, 1990] adds verifi
and local recovery plans to reduce uncertainty and to prepare for p
failures. Similarly to the reactions used in our framework, these 
recovery plans are only single, special-purpose actions (which may
entered by the user) and are associated with uncertainty-reduction ga
priori . An inductive learning technique is used by [Dufay and Latombe, 
a trainer module generates patches to be inserted in the ground plan.
are local strategies refining the ground plan, similar to our reactive 
attached to the main plan (e.g. rotate a card to insert it into a slot). The
further provides for the graceful degradation of its performance by al
for entering rules on line if everything else fails. However, the most co
technique for dealing with uncertainty-generated contingencies in
domain is skeleton refining [Lozano-Perez, 1976; Taylor, 1976]. A skeleton
(or assembly description) appropriate to the task at hand is retrieved a
plan and then iteratively modified by inserting complements (e.g. s
readings) during a feedback planning or plan checking phase. 
modification of assembly strategies to fit particular geometric environ
results in building conditional plans. Then strategies are examined for 
failures and the planner generates tests (monitoring actions) and i
corrective actions (which are either conditional branches, or reactive p
e.g. if the robot manipulator is on the verge of overturning a workpie
pushing it with a peg, then retract the hand a little to stabilize the si
and then replan the action). If the plan contains many such reactions 
many contingencies for the same situation, the agent may become too s
respond to some of the most time-critical of these contingencies. The so
is to use the framework developed here to choose among these conting
Further refinements of the plan-skeleton paradigm include symbo
computations of the effects of uncertainties [Brooks, 1982] to identify an
the most significant ones by making inferences about uncertainties and
them in computations, as well as using formal program proving techniq
deal with these uncertainties [Pertin-Troccaz and Puget, 1987]. All 
discussion shows that, even if the robot manipulator programming dom
not, as a whole, a high-level knowledge intensive domain (in the sense d
before), the formalism presented here can still be applied if the s
uncertainty-related contingencies becomes too large and if their tre
requires conscious actions (as opposed to just locomotive reflexes).

Besides the domain characteristics, the agent's capabilities are 
important in this discussion. If we have an ideal agent with unlim
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resources and unlimited speed of computation, then the entire formalis
become useless, even in the real-world, high-level domains presented b
However, if we are again interested in the real world, then it is only nat
assume that the agent has limited resources and that the number of
contingencies for which it has to prepare exceed both its conditional p
capabilities, and its real-time execution capabilities. In such cases, the d
exerts time pressure on the agent's limited resources. Therefore, the 
needs to be able to decide which contingencies to prepare treatment f
which to ignore at planning time. These are the types of agents and d
for which the framework developed here is useful.

2.4. Related Work
We make here a brief review of other work that is relevant to 

problem of how to combine planning and reaction to achieve the 
performance of the agent in a particular environment. The purpose o
section is to place our work in the global context of related research a
outline its original contributions.

Planning (describing a set of actions expected to allow the agen
achieve a given goal) has been a central problem in AI since its 
beginnings [McCarthy, 1958]. The techniques proposed have evo
considerably, and so have the application domains. We classify t
techniques into several classes, according to the ways they combine th
fundamental control modes described before: conditional planning (also called
here classical planning or simply p l a n n i n g ) and reactive planning (also
simply called reaction). These classes are:

( i ) purely conditional planning techniques
( i i ) purely reactive techniques
( i i i )static combinations of planning and reaction
( i v ) techniques to shift from planning to reaction
( v ) techniques to decide at execution time whether to (re)act or

continue the replanning process
(v i ) techniques to decide at planning time which contingencies

prepare reactions for
A lot of early planning work has been conducted towards specif

robust techniques for conditional planning. The systems produced (e.g. S
[Fikes and Nilsson, 1971], NOAH [Sacerdoti, 1975], MOLGEN [Stefik, 1981], TWE
[Chapman, 1987] to almost randomly name just a very tiny subset sin
exhaustive summary would be well beyond the scope of this section) wer
to solve increasingly complex problems. Although some of them had fac
for monitoring their plans execution and responding to some conting
(e.g. PLANEX for STRIPS [Fikes & al., 1972]), these facilities were very limi
and worked only in well-structured domains, based on the existence of 
matching the contingency in the original conditional plan. More flex
and higher response speed was needed to build systems for real-world ta

The need for reactivity to the dynamic aspects of the environment
addressed by building systems which operate on a perception-action 
without relying on an abstract representation of the environment [B
1991]. Horizontal layer decomposed systems [Brooks, 1986; Kaelbling, 
included such reactions while still being able to pursue high-level goal
their reactions were limited to the types of locomotive, low-level precog
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reactions which we described earlier and which do not make the object 
work .

Realizing full reactive behavior (reaction plan planning) has b
proposed through universal plans [Schoppers, 1987] which are exha
conditional plans, and therefore are prohibitively expensive to produ
any reasonably complex domain [Ginsberg, 1989]. Situated Control 
[Drummond, 1989] are used for situation-based plan indexing, to redu
non-deterministic choice in the case of plan nets. They may be used 
incomplete alternative to universal plans, in those cases when there 
enough time to build the entire universal plan. An incomplete universa
may not contain any answer to a problem, while missing situated contro
do not necessary preclude a solution (which may be fou
nondeterministically); they only ensure a solution when they are spe
This approach maximizes the use of planning time and takes into ac
planning resource limitations, but without taking into account any exe
time limitations of the agent.

Pengi [Agre and Chapman, 1987] is a purely reactive planning sy
which uses sensory input to index structures for possible subsequent a
However, Pengi cannot completely represent most real situations due to
uncertainty and the limited information available about other agent
processes.

Due to the shortcomings of pure reactive systems, researchers 
subsequently concentrated on integrating planning with high-level re
[Firby, 1987] uses Reactive Action Packages like stored reactive plan
integrate planning and reactive responses. However, reactive planni
used without time considerations, while we allow the agent to try
dynamically replan its course of action if there is enough time to do i
only prepare to react to critical events. [Hendler & Agrawala, 1990] imp
reactive planning systems on a guaranteed scheduling, real-time ope
system using the Dynamic Reaction model: an agent performs an activity
either its goals lead it to select some new action, or some event in the 
forces it to react, thus integrating planning and reaction in a com
environment. [Georgeff &  Lanski, 1987; Georgeff, 1989] propose 
architecture (the Procedural Reasoning System) that is both highly re
and goal directed. They store (reactive) plans, called Knowledge Area
procedural form, supplied in advance. [Cohen & al., 1989] monitor
execution of the Phoenix agents' plans and use three mechanisms
handling unexpected events: low level reflexes to stabilize the situation,
recovery and replanning implemented as high level cognitive actions
envelopes as a general monitoring mechanism. The agent always prepar
the same fixed set of reactions, without considering the characteristics 
plan or of the situations that might be encountered during its execution
systems have limited flexibility since the set of reactions is limited, alway
same, and always available in its entirety to the execution components.

Hardware implementations of reactive plans into agents whose ac
are guided by overall goals have been proposed in [Nilsson, 1988; 1
Continuous actions are modeled using T-R trees (teleo-reactive, i.e. 
goal-directed and ever-responsive) to build a reactive program w
execution produces circuits to control the agent's actions. Selective rea
would be very important here because of the various costs associated
hardware implementations.



12

The next step on the research path towards agents with better res
performance was to devise techniques which shift some of the sys
activities from planning to reaction, with the aim of producing increa
reactive agents. [Mitchell, 1990] combines reactive (stimulus-response)
search-based architectures to control autonomous agents. Explanation
learning techniques [Mitchell & al., 1986] are used to extract r
(condition-action pairs) from plans to make the Theo-Agent increas
reactive by learning plans into reactions: the agent first tries to react, t
plan. Scaling issues for the approach are briefly mentioned, and a solu
proposed based on selective learning invocation using a utility fun
similar to the one suggested in [Minton, 1990]. However, as we ment
before, there are too many characteristics of the situations and contin
as well as of the agent (planning and execution modules) which are not
into account by this utility function. This fact is even more important
rules are tested in sequence for reaction, which yields a high cost of re
at execution. [Martin &  Allen, 1990] propose a two-level architec
consisting of a strategic planner (generating high-level goal descrip
which sends commands to a reactive system which must fill in the details
use statistics to constrain the probability that the execution modul
accomplish a particular task. Reactive behaviors are learned selectively,
statistical estimates on the utility of these actions versus the utility of
components. But once learned, the reactions are always available to
execution system. Soar [Laird & Rosenbloom, 1990] also provides a combi
of reactive execution and planning seen as essential behaviors of
autonomous intelligent agent. Plans are learned into reactions u
chunking, and afterwards all reactive plans learned are always availab
the executor. The authors express their concern that after learning too
such reactions, the responsiveness of the system may be significantly re
but do not attempt to address this problem.

These works concentrate mainly on how to prepare reactive resp
and tend to use them in such a way as to substitute regular planning
approach differs from these others in its recognition of the complem
strengths and weaknesses of the two modes, and in its full integratio
planning and reacting within a single agent. A recurring, unaddr
problem in these works is the value (utility) of reaction. While we believ
learning such reactions is very useful in real domains, we also believe
this utility problem should be addressed at planning time, and not (o
learning time. The work described in this thesis is aimed precisely towar
goal. In the next chapter, we will define a framework to select only
relevant events associated with a given situation. Reactions to them
incorporated into stored reactive plans, depending on several factors s
event criticality, reaction time allowed and exhibited, load of the ag
reasoning capabilities and other resources, and reactive plan size, as w
on the desired behavior pattern for the agent. Our main problem is to 
which contingencies to prepare reactive responses for, in each situation
is in contrast with most of the research cited above, where the autho
concerned mainly with improving their systems' performance by tryi
react (and maybe cache) the most frequently used plans. Our selection 
will necessarily be much more complex than the utility measures propo
fa r .



13

However, the utility of reacting versus planning can also be, and
lately already been, addressed at execution time. [Horvitz, 1989] devel
decision theoretic framework to reason about the value of continuin
reflect about a problem vs. taking an action to try to solve it, at executio
using the expected value of computation (EVC) as fundamental measur
attempts to optimize behavior under resource constraints by integ
reaction with deliberative reasoning (replanning). However, he ignore
overhead of retrieval of a reaction and the computation time while taki
account only limited other resource constraints (e.g. memory cost) whic
not be the most relevant ones for real-world agents. He also assume
reactions are always available and only attempts to decide, at execution
whether to react or to replan, and is not concerned with such decisio
planning time (clearly, some contingencies do not allow time for 
metalevel deliberations at run-time, before taking an action to respo
them). [Yamada, 1992] uses the notion of success probability to determi
best time until which dynamic replanning may continue and when exe
of the action should actually start. Again, the computation is done at ex
time.

The sixth category of techniques which we have identified at 
beginning of this section involves methods to decide, at planning tim
which contingencies to select for preparation of reactive responses i
plan, and which to ignore and leave for dynamic replanning at executio
if such a contingency will arise. The problem is occasionally mentioned 
literature, but without being analyzed in detail and especially wi
proposing any solutions to it. While discussing the CIRCA system, [Muslin
al., 1994] make the most comprehensive presentation of the problem t
were able to find. They recognize the limitations that exist in the 
execution resources, and attempt to divide the main plan into smaller 
and create reactive plans that guarantee the achievement of critical 
However, there is no analysis of how to partition the set of goals 
guaranteed and unguaranteed ones (when the system cannot gua
responses to all of them). CIRCA only tries to build guaranteed plans by 
into account only the time allowed to respond to a contingency. 
contingency characteristics relevant for the decision process (like crit
and probability) are mentioned as necessary to be considered in future
but they are not actually used here. Control level goals are linked t
system's safety, which is not always necessary (in our work, any chan
the environment that was not expected as a result of executing the mai
is considered a contingency). CIRCA also partitions the goals into just
subsets according to a system designer specified priority: critical or not.

We are unaware of any previous research towards a solution to
general problem of deciding whether to prepare a reactive response 
contingency or not; therefore, it is here where the work described in
thesis has been concentrated.

As shown before most research to date is concerned either w
employing only one of the planning or reacting control modes, or s
attempts to turn a system to become increasingly reactive and rely as l
possible on planning. All the reactive responses are always available t
agent executing a plan, and they usually tend to take precedence ov
(re)planning alternative. This approach can only work in either very 
task environments, or for idealized, unlimited resource agents. In our 
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we take into account the real-world constraint of limited resources for 
that have to act in stressful, resource-demanding, real-time situation
which reaction does not come for free. Therefore, we assume that
importance of regular planning makes it irreplaceable, but the ag
performance can be significantly improved by selectively preparing re
responses only for those contingencies that are critically enough to 
them. We work towards integrating planning with reaction, instead o
enabling the agents to shift from planning to reaction. [Hayes-Roth, 
proposes a paradigm for integrating planning and reaction u
opportunistic control of action: run-time control conditions trigger a su
possible actions, strategic plans constrain intended actions, and the 
between possible actions and strategic plans controls action execution.

Other work, directly related to various subsections of the thesis,
briefly surveyed when relevant.
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Chapter 3
The Approach

In this chapter we describe our framework for deciding, at plan
time, whether to prepare a reaction for a given contingency in a c
situation. We first define a few terms which we will frequently use:

m  a p l a n  (conditional plan, or main plan, or conventional plan) is a
(possibly conditional) time dependent, partially ordered set of a
and expectations (figures 2.1 and 3.1.a).

m  an action   is the application of an operator to the current state. It y
new state, which may be identical or not to an expected state.

m  a cont ingency  is any state of the world entered by the executing 
while following a plan, which is not: (i) a direct consequence 
executing the actions of the plan up to that point, or (ii) an exogen
generated state of the world assumed in the design of the p
Therefore, a contingency does not necessarily affect the agent or
plan execution, and when a contingency does affect the plan, it is
necessary that it will negatively affect it. For example, a continge
may be a state which is not the current expected state according t
plan execution, but is a state which should have been reached alon
way, after executing some more steps of the plan. The agent may d
it and use it to skip the unnecessary steps in the plan, for examp
the same way as it was done with triangle tables in [Nilsson, 1984]
simplify the exposition, we also use the term cont ingency  to mean
event, fact or sign that was not expected as a result of the p
execution, and which triggers an (undesired) change in the state o
world, not expected at that time in the plan, i.e. which characteri
state as a contingency according to the previous definition.
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Figure 3.1. Types of plans

(a) Conditional plan (b) Reactive plan

test

contingencies & reactions

(c) Context-specific plan

(1)                     (2)          (3)          (4)           (5)            (6)main plan

Reactive plans

monitoring actions

(7)           (8)          (9)

(10)    (11)

(12)

m  a react ion  is a perception-action rule of behavior, usually stored 
computationally efficient form. The action part may be a short seq
of actions which are enough to either solve the problem generated 
contingency, or at least to extend its deadline long enough to allow
replanning of the entire solution under the new circumstances.

m  a condit ion  is a pair contingency-reaction; there may be more than
reaction which can solve the same contingency, and there may be 
than one contingency which can be solved by the same reaction.

m  a reactive plan is a set of tests and reactions (possibly arranged
hierarchically for efficiency reasons [Ash & Hayes-Roth, 1993] 
therefore represented as triangles in figure 3.1.b) able to solve any
of a set of contingencies.

m  a context-specif ic plan is obtained from a conditional plan by
augmenting it with monitoring actions and reactive plans for ce
contingencies (figure 3.1.c). It deals with these contingencies in a 
and usually incomplete way, as opposed to the conditional plan w
prepares in advance for a full treatment of the possible situations
were taken into account.
The basic approach to obtain a final context-specific plan for a g

problem starts with a conditional plan (produced by a conventional p



3

to achieve the main goal of the problem. The agent has a knowledge b
contingencies that may appear during the execution of plans, togethe
proper reactions to them. After developing a plan, this knowledge is u
analyze it and to identify situations of interest, that is, those points in t
for which the agent knows of possible contingencies and how to respo
them.

 The general agent architecture to do this is briefly discussed
appendix 1. In the rest of the thesis, we assume that the agent has a
decided upon such a situation and has identified the set of conting
which may be associated with it together with their appropriate re
responses. Now the task of the agent is to decide for which of t
contingencies to actually include responses in a reactive plan which
subsequently be attached to the main plan at the appropriate place (s
by the particular situation isolated before). The context-specific plan i
completed by augmenting the initial main plan with monitoring action
reactive plans for the critical contingencies (figure 3.1.c). Monitoring a
can be attached to the plan even if reactions to their contingencies a
(e.g. when the contingency is important enough to be watched for, but
its likelihood of occurrence is low enough, or the time allowed to respond
is long enough for replanning).

In the next section, we first analyze a simple problem and try
formulate an intuitive solution. We then formalize this intuitive soluti
the rest of the chapter.

3.1. Intuitive Solution
Let us revisit the driving problem presented in the previous cha

and attempt to analyze it in more detail.
In section 2.1 we formulated the problem of an agent which comm

every morning by car from home to work, and at some point A along the 
passes in front of a school while driving straight, at 25 mph. The com
takes place at a time when children are at school, or go to school. The
knows its route well enough to know about a few contingencies that may
while on this portion of its route. Table 3.1 lists a partial set of 
contingencies, and the best reaction for each of them known to the 
Notice that the contingencies are dependent on the characteristics o
actual situation described. Here are some of these dependencies:
contingencies depend on the type of plan used (e.g. if the agent uses 
transportation, than it need not be concerned with hitting a child, sinc
not in control of the car), on the action involved (if the current action
be driving on a freeway, then the likelihood of having children runn
front of the car would be much smaller), on the context of solving the p
(if the same action takes place during vacation time, when that scho
closed, then again the likelihood of having a child run in front of th
decreases a lot), and so on. In the next section, we rigorously define the 
of a situation, and then precisely characterize this particular situation 
example of our definition.

In order to be useful for our purpose, the notion of a situation (a
associated characteristics) must be much more rigorously specified. Als
contingencies must be expressed in some structured language in order to
a better representation and usage (e.g. it is important whether the car
slowly or fast, whether the child runs from left to right or from right t
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and so on). We detail these specification requirements and present form
to facilitate their expression in the next three sections of this chapter 
the next chapter.

                 Contingency
              Reaction

  1
Child runs from right, 20 m in front of car
Brake hard and steer right

  2
Car crosses w/o priority 20 m in front, from right to left
Brake and gently steer right

  3
Car in front stops suddenly
Brake hard

  4
Cat runs across street, 20 m in front
Brake hard and steer right gently

  5
Traffic light changes red 40 m in front
Brake hard

  6
Tire explosion
Brake gently and do not steer

  7
A deep and medium width hole detected 30 m in front
Brake hard and steer right gently

  8
Airplane lands in front of car
Brake moderately hard

  9
Brake malfunction light turns on
Brake gently

10
Engine overheat light turns on
Brake gently to stop the car

11
Loud radio turns on suddenly
Adjust radio volume

12
Meteor falls on the trunk of the car
Accelerate hard
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13
A ball pops in the street, from the right, at 20 m in front
Brake hard and steer right

Table 3.1. Set of contingencies for the car driving domain
Our problem is to decide which of these contingencies are crit

enough to require the agent to prepare in advance reactive respons
them and which should be ignored at planning time. The solution ha
phases. In the first phase, the agent must order the contingencies accor
the value of reacting to them; then taking into account the characteris
the planner and the limitations of the agent's run-time resources, it mu
out how many (and actually which) of the contingencies can be taken
account for reactive treatment. In order to be able to define the val
reaction to a contingency and to be then able to order the conting
according to this value, we have to identify the characteristics
contingencies which influence this reaction value. These characteristic
defined not for a contingency alone, but for a condition (p
contingency-response) in a given situation (as seen above, th
characteristics can vary from one situation to another).

One characteristic which has been recognized by earlier research
remarked in section 2.4) is the likelihood of appearance of the continge
that situation. We have already discussed how the same contingency may
different likelihood in different situations. Also, different contingencie
have different likelihood in the same situation. For example, in our c
child running into the street is less likely than encountering a red 
light, but more likely than having a plane land on the street in front 
car .

Since reactive response is geared especially towards satisfyi
real-time deadlines, of special concern is the time pressure exerted b
contingency upon the agent. This time pressure (or urgency) is inv
proportional to the actual real time allowed for the agent to act in resp
the contingency. Clearly, responding to the child contingency is more 
than taking care of the radio which has just turned on by itself. On the
hand, the child running into the street and the ball popping up in front
car at the same distance, allow for the same time of response, i.e. exe
same time pressure onto the agent.

But the value of reacting to a contingency is also determined by
gravity of the consequences presented by the contingency if no acti
taken in the allowed response time. Obviously, the consequences are 
more dramatic in the case of hitting a child, than if the car hits a ball.

And finally, there is one more characteristic of the conditions tha
to be taken into account. This characteristic is more closely related t
response associated to the contingency, and it takes into account the p
side-effects that may be incurred if the reaction to the contingency is ta
time. For example, the side-effects of avoiding the child by braking har
possibility to be hit by the car following our agent's car) and steering
(the agent's car may hit the sidewalk, or a pole on the sidewalk) are th
as for avoiding the ball through the same maneuver, and can be signif
higher than the side-effects of adjusting the radio.

We assume that the agent's knowledge base contains, along with 
contingency and reaction, a set of values for these characteristics (the
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be obtained from experts in the domain - as we have done it, or th
automatic learning methods). These characteristics have different weig
deciding upon the value of reacting to a given contingency. As we shal
these weights are not fixed, but they are dependent on the application 
and also on the behavior model according to which the agent acts. We sh
now restrict our discussion to a generally accepted (by the experts i
domain) "normal" behavior, and will briefly discuss other types of beh
in section 6.3.  Under this behavior model, the highest weight is associa
the time pressure characteristic, followed by consequences and 
likelihood. However, if the side-effects are much higher than 
consequences, then the agent is probably better off by ignoring
contingency at planning time.

Therefore, a driving agent will give highest priority to the ch
running into the street contingency (since the time pressure is very
and the consequences are also very high), and will give a very low prio
the ball contingency, since the side-effects of doing a dangerous man
outweigh by far the consequences of hitting the ball. The traffic light t
red contingency will follow the child one, followed in turn by the air
landing and the loud radio turning on (since both have low likelihood, 
airplane has much higher consequences and time pressure). 
contingencies listed in table 3.1 are actually ordered according to the 
behavior model described by a panel of experts whom we have interv
(section 6.1 presents more details about our knowledge acquisition proc
this domain). At first glance it may be surprising, for example, that th
contingency was placed after the radio contingency; remember howeve
we are only interested here in preparing reactions for these conting
Therefore, this ordering says that, if the agent has enough resources, 
try to prepare a reaction to the radio contingency (although the va
reacting to it will be pretty low), but should avoid as much as possib
prepare a reaction to the ball contingency, since the side-effects of reac
it may be much higher than the consequences of not reacting 
equivalently, the benefits of reacting).

The second phase of our solution involves deciding which of th
contingencies will actually be included in the reactive plan, by taking
account the characteristics of the reactive planner and the limitations 
agent's resources. The characteristics of the reactive planner (specified
reactive planner model) allow the agent to estimate the complexity of is
the contingency and its reaction from the reactive plan prepared fo
entire set of selected contingencies associated with that situation. 
complexity is direct proportional to the time needed by the agent fro
moment it detects the existence of a contingency and until it can st
reaction to it. However, this time is further influenced (i.e. increased) b
availability and limitations of the agent's resources, specified by an 
model (e.g. computational overhead). For each contingency included i
reactive plan, this response time has to be smaller than the time allow
the contingency before the (re)action has to be taken (otherwise the r
to that contingency becomes useless). Therefore, given the reactive p
model and the agent model, we have to analyze each contingency asso
with the situation, in the order specified by the first phase of our analy
our example, we will always include in our reactive plan a response t
child contingency, since it has the top priority. We will also include i
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plan a response to the car crossing contingency, if we estimate that the
will have the resources to react to both contingencies in time, and so on.
reach a contingency which cannot be responded to in the allowed time 
while still being able to respond to all the contingencies included in
reactive plan before it, then this contingency will be left out. However
process continues until all contingencies have been examined, since 
contingency further down the list may allow a longer response time, 
still allowing time to respond to all the already included contingencie
example, assume we have time to respond to only two contingencies with
high time pressure, and to some other contingency with much lower
pressure. Then we will want to include the child and car cros
contingencies (which are the first two on our ordered list), ignore th
stopping and cat crossing contingencies for which we do not have tim
respond, and include the red traffic light contingency which follows i
list, because it allows for a much longer response time. Such a policy (wh
rigorously defined in section 3.4) makes optimal use of the agent's exe
time resources, as justified in chapter 5).

In the following three sections we define our framework, along 
lines of the intuitive analysis presented here, and in chapter 5 we m
brief analysis of some of the theoretical properties of this framewor
chapter 6 subsequently then present a few more examples of applyin
framework in other domains like anesthesia and intensive care monitor

3.2. Framework for Reaction Decision
In the following sections we define our framework, along the line

the intuitive analysis presented above. We specify a consistent framewo
help decide whether the agent should prepare in advance to react to 
possible contingencies, or whether it can ignore them at planning tim
can replan at execution time to deal with them. As seen before, the inclu
monitoring actions and/or reactive responses for a particular continge
a plan may depend on a large number of characteristics of the enviro
the contingency and its response, and on the relations between them, a
as on the models of the different factors involved in this process: the 
the agent and the reactive planner. They also depend on the set of 
contingencies possible in the same situation (how many, how critical, an
complex their reactions are) vs. the agent's capabilities. To help visuali
heuristic rules that take these decisions, we define a few multi-dimen
spaces and the relationships among them. The position of a contingen
these spaces determines whether or not the agent reacts to the event.

3.2.1. Overview of the Framework
We begin with a general presentation of the interactions among

components of our framework, and in the subsequent sections we pres
detail each of these components.

Figure 3.2 presents a schematic overview of the framework descr
here. The entire framework is used to decide, for a given condition 
contingency-reaction), whether the agent should include the reaction t
contingency in the reactive plan which is prepared for the situation 
consideration. Therefore, given the condition and the situation,
framework has to provide the means to associate a criticality value t
contingency. This criticality reflects the value of reacting to the contin
(using its associated reaction, if it appears in this situation), as oppos
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leaving the agent unprepared to respond to this contingency and hopi
it will be able to solve it by dynamic replanning if the need will arise. 
reaction value is high enough, the agent will at least monitor for
occurrence of this contingency during execution of this phase of the
However, the agent may not be able to prepare for all contingencies
criticality high enough to be monitored for.

Reactive Planner Model Agent Model

Agent's
Knowledge

Behavior Model: fc

Situation

             Condition
(Contingency + Response)
      & its characteristics

    Criticality
(reaction value)

Inclusion
(yes / no)

Monitor
(yes / no)

fc

Figure 3.2. Overview of the Framework
The decision of whether to include the reaction to this contingenc

the reactive plan is taken based on the characteristics of the situatio
time pressure exerted by the contingency upon the agent (or equivalen
time allowed for response by the contingency), and of course the critica
the contingency, compared with the criticalities of the other conting
known to the agent to possibly appear in the current situation. The cr
values induce an order relation on the set of contingencies associated 
situation, and the agent first attempts to include the most critical of
contingencies for reactive response. All the contingencies (taken from
agent's knowledge base) associated with the current situation are cons
in turn for inclusion, in the order of their criticality value. When re
the stage where the current contingency is analyzed, all the conting
applicable in the current situation, with higher criticality, have been 
analyzed, and for some of them (not necessarily all) the agent has deci
include reactive responses in the reactive plan. The current contingenc
be included in the reactive plan only if the agent using this new reactiv
will be able, at execution time, to respond to this contingency in its a
time, while still being able to respond in their allowed times to all
contingencies already included in the reactive plan. In order to tak
decision, our framework needs a model of the characteristics of the re
plan built by the agent, as well as a model of the execution time charact
of the agent resources and their limitations.

Figure 3.3 presents in more detail the source and flow of inform
through our framework. Each situation has a number of characteristics, 
therefore represented as a point in a situation space. This represen
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allows for flexible generalizations and for the representation of sets of 
situations as regions in the situation space. Similarly, the characteristic
contingency will define the dimensions of a criticality space, in which
point represents the value of reacting to that type of contingency. The
space used represents the reactive plan characteristics, in terms o
resources required by the execution of the reactive plan (given by
reactive planner model) and the resources available for execution b
agent. The agent model gives indications on how these resources are m
by the agent and how they are used by other modules of the agent, as 
the limitations on the agent resources, and is therefore used in the fina
of the decision process. The expert model is used by the framework to in
the values suggested by the expert for the characteristics of 
contingencies, and specifies a set of threshold values for these characte
Finally, the behavior model defines the function which computes 
criticality value for each contingency. Different behavior models ass
different values for the same reaction to the same contingency, accord
the individual values of its criticality space characteristics. The two c
stages of the framework are establishing the criticality or reaction val
the contingency, and making the decision of whether to include its re
into the reactive plan built for the current situation.

In the remaining subsections of this section we discuss in detail eac
the three spaces mentioned above, and then we present a complete summ
the entire framework. The following two sections will then describe the
critical points of the framework mentioned above. 
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Figure 3.3. The General Framework
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3.2.2. The Situation Space
The situation space is the set of all possible situations. Its dimension

the aforementioned characteristics of a situation. A point in this 
characterizes a general, contingency-independent environment situati
state. Situations will be used to index contingency-response pairs in
agent's knowledge base, according to the relevant situation characteris
which they may apply. We will elaborate more on the same driving ex
used before, and will try to specify it more accurately from the perspec
our problem. The seven dimensions of this situation space are:

m  problem  - is the main problem to be solved by the agent. It is a syn
of the problem characteristics and how they can determine the g
situation. An example of problem is to carry a small package of b
from home to work. We shall use this example throughout this sectio
small change in the problem statement can have important influ
on the set of contingencies that can be expected. For example, if
problem is instead: carry a small package of radioactive material 
home to work, then an entire subset of contingencies generated b
fact that the package contains radioactive materials has to be taken
account.

m plan  - is a synthesis of the characteristics of the type of main plan
to solve the problem. The type of plan chosen by the conventi
planner is obviously dependent on the problem to be solved. 
example, the plan may differ depending on the size of the package 
carried, on its weight or on its content, as well as on the distance 
traveled. However, even for the same given problem there may b
large number of solutions (plans to solve it), and each of them 
create different conditions with which contingencies may be assoc
For example, for our problem, one can choose to walk or to use a m
of transportation, and further, to drive or to use public transpor
and further to drive a car or a bike, or any combination of these, a
on. Let us assume the planner's choice was to drive a car.

m  con tex t  - is a synthesis of the characteristics of the environmen
which the plan is to be executed to solve the problem. It covers al
general aspects of the domain which are not covered by the pre
two dimensions. For the driving example, it includes the time of the
(it may make a considerable difference for the types of contingenci
be expected, whether it is day or night), the time of the year (in w
the road is usually more slippery, but the engine is less likely
overheat), weather conditions, the abilities of the driver, and so
Suppose in our example the context is a working day morning du
the month of May. This means that children are going to school,
therefore children and balls can be very well expected into the 
around the school.

m action  - is the action to be currently executed by the agent accord
the plan. Since the contingency preparation process is an off-
analysis of the main plan, "current" here means the currently an
time point of the plan. Non-execution of planned actions (mis
actions) may also be represented on this dimension, since conting
may occur both associated with the execution of actions in the 
plan (e.g. steering to the right may cause the car to slip sideways
well as with non-execution of an action (e.g. not steering to the 
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when the road turns right may have obvious consequences...). In
example the action is just to drive straight ahead on street S at a sp
25 mph.

m  expectat ions  - are descriptions of situations (changes in the state o
environment) along the plan path. In order to monitor the executi
the plan, the agent looks for some important such states which
prespecified at planning time. We call these states mi le s tones . 
achievement (or not) of a milestone may determine the agent to c
the conditional plan branch which it is following, and therefor
change the set of contingencies for which it is on the looko
According to the way they may be generated, there are two kind
expectations which must be taken into account when defining
situation:
l  internal expectations - due to actions performed by our agent while

executing the plan (e.g.: an attained milestone may be entering 
freeway, as expected, while to the contrary, an unattained mile
may be a situation in which the agent did not enter the free
although this was expected as a result of executing a set of p
steps). Such an occurring state change can be foreseen, and if
change does not occur, it becomes a contingency: it may signal 
something went wrong with the plan execution, and therefore 
agent should try to find out what and replan, but in the meanti
should be on the lookout for a certain set of contingencies that
also appear in this situation. For example, due to driving on stre
the agent expects (as milestone) to arrive in front of a school. 
does not, then maybe the plan was not entirely correct and the 
is somewhere else than it should be at that time. It should ther
react (attempt to stop) and replan: attempt first to find out where
(e.g. by reading the street signs), and then replan its route 
there on.

l external expectations - due to other independent agents which wo
the same environment (e.g. changes in traffic lights). These ag
may generate contingencies by themselves, since they activ
change the environment; their actions may have a certain non
degree of correlation with the actions of our agent, or may be t
uncorrelated. For example, the traffic light is an agent whose ac
may be somewhat correlated with our agent's actions if our a
approaches the traffic light from some direction where there 
street sensors or other traffic lights synchronized with this 
otherwise, the traffic light's actions are totally uncorrelated 
the actions of our agent. Two kinds of events may be distingui
here too: (i) something may happen (like the signal change) or
something expected may not happen (e.g. a malfunctioning 
signal which does not change after a long waiting time period)
the example situation we have been building in this section
possible external expectation might be to notice children in the 
(since it is a working day morning in May and we are in front 
school). However, this is not a milestone: it is possible that 
children may be in class at that time, and this fact does not alt
any way the execution of our main plan.
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m  t ime  - this basic characteristic of planning problems will appear in
of the abstract spaces we consider, although with different mean
(when the possibility of confusion arises, we will denote the t
dimension for the situation space with t imes ). Here it represents the
amount of time elapsed since some action was taken or since a situ
change was noticed, or the amount of time allowed until a situa
change must appear. It is therefore strongly coupled with 
expectations dimensions (expectations become more or less stro
with time passage). For example, if we allow for 3 minutes from 
moment we start driving on street S until reaching the school and
expectation is not met, then something wrong may be going on (e
traffic jam, or a deviation from the route) and the agent should t
replan (or maybe first to react and then to replan) for an alte
route .

Problem
Plan

Context

Action

    Internal
 Expectations

Times

fs
Situation

   External
Expectations

Situation = fs (Problem, Plan, Context, Action,
   Internal_Expectations,
   External_Expectations, Times)

Figure 3.4. The Situation Space
The values along each dimension of the situation space are descrip

of those dimensions, as given in the example built during this section
summarized in section 3.2.5. A point (called s i tuat ion ) of this space, fully
defines (for our purposes) the agent's situation, that is: the action execu
the current expectations in the course of executing a certain type of p
solve a given problem in a specific general context or environment.  W
use it further to determine whether the agent should prepare or not a 
for a contingency "in the current situation". In chapter 4 we prese
representation formalism for the values of the situation space dimen
which allows us to group situations into classes to facilitate the stora
knowledge and the reasoning and knowledge acquisition processes fo
agent using our framework. Figure 3.4 summarizes the functi
dependencies described here.

With each point in the situation space, there is a (possibly null) s
contingencies (and responses) associated (known to the agent throug
knowledge base) for which the agent has to further decide whether to 
for and to prepare reactions for. Let us suppose that the contingencies 
by our agent to be associated with the situation described in this secti
the ones listed in table 3.1. However, we shall mainly discuss and compa
characteristics of only two of these contingencies, which have essential
same reaction: (i) children running in the street in front of the car, and
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ball appearing in front of the car. As the need will arise, we will refer to
contingencies in the set for comparisons too.

3.2.3. The Criticality Space
The criticality space describes the characteristics of a contingency

its associated reaction in a specific situation, and helps in establishin
value of performing the reaction when the contingency appears in
situation. In the previous subsection we used the situation space to eva
situation, independently of the contingencies that might appear in it. H
evaluate the criticality of a contingency, dependent on the situation in
it occurs, but independent of the set of other possible contingencies f
same situation, and independent of the characteristics of the reactive 
and those of the agent. Resuming our driving example, we continu
exemplify our presentation by analyzing the two contingencies asso
with the situation described during subsection 3.2.2. The four dimension
situation-dependent values) defining the criticality space are (figure 3.5

m t ime  - is the time deadline, or the urgency to correct the problem 
by the contingency. This is in contrast with the time dimension fo
situation space introduced in the previous subsection, wh
represented the time allowed to pass until a contingency is declared
actually use two strongly correlated values here:
l  T i m e rc  - is the actual real-time interval allowed to pass (with

consequences) between the time a contingency is detected and 
the corrective action is taken.

l Timep -  is the corresponding time pressure acting upon the agent
inversely proportional to the real time (the proportionality fact
a parameter of the expert model).

In our example, in both the child and the ball case, this is the dy
planning time available before the action must be taken in orde
avoid collision, from the moment the contingency is detected. This
is shorter than, for example, the time allowed to respond to the 
turning itself suddenly loud. Therefore, the time pressure is m
higher in the first two cases than in the radio contingency.

m  consequences  - is a summary of the gravity of the consequences
may appear if no action is taken (before the time deadline) in res
to the contingency. This value can (but need not) be situa
dependent. In our example, hitting a child can be fatal, and this 
will be very high. But hitting a ball  is usually no big deal, so its v
will be small.

m side-effects  - is a summary of the gravity of the consequences that
occur as a result of reacting, and therefore this characteristic is m
dependent on the reaction and the situation, and less dependent 
actual contingency. Alternatively, it is a measure of the risk of 
being able to reach the final goal anymore, once the reaction
executed. In our case, in order to avoid hitting the child or the
when driving a car, the same reaction is indicated. It is a dange
maneuver (braking hard implies the possibility to be hit by the
following our agent's car, and steering right implies the possibility
the agent's car may hit the sidewalk or a pole on the sidewalk) and
yields a high value for the side-effects characteristic in this case,
significantly higher than, say, the side-effects of adjusting the rad
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m l ikelihood  - this dimension summarizes the probability of occurren
a given contingency in a given situation. However, it is importan
note that it need not be the actual probability, or not even per
correlated to it. It can simply be a value that is approximately corr
to the actual probability, in that the relative values of the probab
of different contingencies are reflected in their relative likelih
values.  Initially, this value can be determined from previously k
cases in the literature describing the domain, from the estimates 
expert, or from a theoretical analysis when a sufficiently strong do
theory exists. Later on during its lifetime, the agent may adjus
according to its own experience. Assuming the agent has no p
experience in our example, we initialize the likelihood as medium
both a child and a ball appearing in front of the car passing in fro
a school, with the likelihood for the ball contingency a little hi
than for the child one. They are both higher than the likelihood to
an airplane land on the street, but lower than the likelihood
encounter a red traffic sign.
The values along the consequences, side-effects and likeliho

dimensions of the criticality space are reals in the interval [0,10]. The 
for the time pressure dimension are real numbers greater than 0; the
limit for the time pressure depends on the threshold values imposed 
expert model, which will be discussed in section 3.3.1. All the values for a
criticality space dimensions may be specified qualitatively (e.g. for
consequences dimension using {very small, small, medium, high, very h
and are then translated into numeric values. These values are situ
dependent; they may be different for the same contingency associated
different points in the situation space. For example, the side-effects o
proposed dangerous maneuver to avoid a collision with a child or a ba
much smaller if driving in an empty, large parking lot, than when driv
a busy street. The values for the criticality space dimensions for 
condition and situation must be specified in the agent's knowledge base
important to note here that these values need not be very precise in a
values. It is enough if they are in the correct order and approximate
correct relative values. This is because the method for computing
criticality value (section 3.3.2) and the way this value is used further 
framework are robust (i.e. noise tolerant), making the entire frame
robust. We shall substantiate these remarks in chapter 6, when we 
discuss the experiments we have conducted. Given these relaxed pre
requirements, the experts with whom we have worked on the know
acquisition part of our experiments were able to specify quickly and with
effort suitable values for the characteristics of the contingencies in
experiments .

 A point in the criticality space presented here defines an expe
value for the reaction to a contingency, versus a dynamically repl
response, as shown in section 3.3.2. The agent attaches to the plan s
reaction only if the contingency is critical enough with respect to the
contingencies possible in this situation, and only if it will have en
resources at execution time to respond in time to this contingency as wel
all the previously accepted contingencies. That is, as we shall see in s
3.4, not all such reactions c a n  be included, but monitoring actions for al
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contingencies found to be critical enough (according to an expert d
threshold) after this analysis will be included in the plan.

Timep
Consequences
Side-effects

Likelihood

Expert Model

Situation

         Condition
(Contingency + Response)

Timerc
ftc

Criticality Space

fc
    Criticality
(reaction value)

Timerc = f1 (Situation, Condition)               Consequences = f2 (Situation, Condition)
Side-effects = f3 (Situation, Condition)       Likelihood = f4 (Situation, Condition)
Timep = ftc (Timerc) = k / Timerc               Monitor = fm (Criticality)
Criticality = fc (Timep, Consequences, Side-effects, Likelihood)

Figure 3.5 The Criticality Space
Figure 3.5 summarizes the characteristics of the criticality sp

defined above, and their relationships (functions) to other elements o
framework. Functions f1  to f4  are implicitly contained in the expert m

they are not explicitly used in the framework, since the values for the
dimensions of the criticality space are acquired directly form the ex
However, for well-structured domains, it is possible that a strong do
theory might exist which can explicitly specify these functions.

3.2.4. Reactive Plan Space
The reactive plan characteristics represent one more set of featur

consider in deciding whether to prepare a reaction to a contingency o
We define a reactive plan characteristics space to help us study
relationships between replanning a response, versus reacting to the 
contingency in the same situation. The factors to be taken into accoun
are the availability of computational and non-computational resources 
agent, expressed through the reactive planner model and the agent 
(subsections 3.4.1 and 3.4.2). Here, the values of the dimensions in this
will be based on all the elements of our framework: situation, contin
criticality, and reactive planner and agent models. Thus, we have bui
framework hierarchically, the coordinates of each space of the fram
being defined in terms of the values of elements in (and the dimensio
the previous spaces.
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Reactive Planner Model
Agent Model

Agent's
Knowledge

Reactive Plan
Characteristics

Situation

Criticality

ft

fti

Timer
Resource1
Resource2. . . . .
Resourcen

Inclusion
(yes / no)

fr

Timer = ft (Situation, Criticality, Agent's_knowledge, Reactive_planner_model)
Resourcei = fti (Situation, Criticality, Agent's_knowledge, RP_model)

Inclusion = fr (Timer,Resource1,...,Resourcen,Agent_model,Situation,Criticality)

Figure 3.6. Reactive Plan Characteristics Space
The dimensions of the reactive plan space, which also represent

characteristics of reactive plans, are (figure 3.6):
m  t i m e r  - is the time needed by the agent between the momen

contingency is detected, and until the proper reaction to it can
started; it depends on both the computational and non-computa
resources of the agent, their capabilities and their load in that situ
The value of this dimension grows with the number of t
contingencies included in the reactive plan  and with the complexi
identifying them and their reactive responses.

m resourcei - is the total requirement imposed on the agent's i-th re

by the reactive plan containing the current contingency analyzed
all the contingencies previously decided to be included for rea
response and associated with this same situation. These dimension
of special concern for real systems. Both computational a
non-computational resources (including memory) are limited, and 
availability may be decisive for the successful completion of 
reaction (e.g., in the limit, a universal plan for a real domain 
require an infinite amount of memory, which is unacceptable in 
systems).
Inclusion of a reaction to a new contingency depends on the size o

resulting reactive plan, which combines it with the set of all the reacti
contingencies already decided to be included in the reactive plan fo
situation. These contingencies were obtained from the agent's knowledg
where they are indexed by their applicable situations, and have 
previously analyzed by this framework (since their criticality must be 
than the criticality of the currently analyzed contingency).

The agent's knowledge base includes all the contingency-reaction 
known to the agent, indexed by the situations in which they may appea
with associated descriptions for the criticality space dimensions. We 
present in chapter 4 a formalism to construct languages for repres
situations, contingencies and reactions in the knowledge base, designed 
advantage of the regularities of the application domain.
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To continue with our example, the more contingencies (selected 
the 13 contingencies given in table 3.1) are included in the reactive pla
more likely it is to decrease the responsiveness of the agent to each o
contingencies included. Since we have no information (yet) on the str
of the reactive plan built by the reactive planner, and also on the a
resource limitations, we cannot actually specify how much each of the 
contingencies will increase the response time (we shall see in section 
that for some structures of reactive plans, adding some new contingency
in some circumstances, not increase the response time at all). In any wa
agent will always try to include at least the reaction to t
child-in-front-of-the-car contingency, and will continue to add to it as 
as possible, in the order given in the table. However, it will not ad
contingency if either (i) its estimated response time would be bigger th
allowed response time, or (ii) if adding it would determine the response 
any previously included contingency to exceed its allowed response 
(given by the T i m e rc  value of the criticality space associated with 

cont ingency) .
Figure 3.6 summarizes the characteristics of the reactive plan s

defined above, and their relationships (functions) to other elements o
framework. Functions ft and all fti are explicitly contained in the reactiv

planner model and are then used in conjunction with the limitations 
agent resources defined by the agent model.

3.2.5. Summary of the Framework
The purpose of our entire framework (and of the thesis for that m

is to keep the reactive response time and other resources for very c
contingencies within acceptable (i.e. useful) bounds, while ensuring re
behavior at least for the most critical contingencies known for e
situation. Given the information contained in the three spaces defined 
the agent has all the data it needs to be able, for every contingency, to t
decision of whether to include it or not in the reactive plan associated 
given situation. The result of processing the contingencies through the
framework is a partition of the set of known contingencies possible in a
situation into two classes: to be included in and to be excluded from
reactive plan.
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Figure 3.7. The Plan-to-React Decision Framework
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Figure 3.7 shows a detailed summary of the framework for selecting
contingencies for which reactions are prepared and those for w
monitoring actions are added to the plan. It details the diagram presen
figure 3.3, and essentially combines figures 3.4, 3.5 and 3.6. At any tim
agent knows of a set of contingencies and reactions to them. Each contin
may be associated with several regions in the situation space, and each
in the situation space may have several contingencies associated (many
relationship). Each contingency is characterized in a situation by a cri
point. While the criticality value alone decides which contingencies wi
monitored in which situations, the decision for including the treatment 
contingency in the reactive plan associated with that situation is made
on both the criticality  value, and the reaction value of the entire r
plan for that situation, in relationship with the reactive planner mod
the agent model.

Situation = fs (Problem, Plan, Context, Action, Internal_expectations,
      External_expectations, Times)

Timerc = f1 (Situation, Condition)
Consequences = f2 (Situation, Condition)
Side-effects = f3 (Situation, Condition)
Likelihood = f4 (Situation, Condition)
Timep = ftc (Timerc)  = k / Timerc
Criticality = fc (Timep, Consequences, Side-effects, Likelihood)
Monitor = fm (Criticality) - Expert Model
Timer = ft (Situation, Criticality, Agent's_knowledge,

      Reactive_planner_model)
Resourcei = fti (Situation, Criticality, Agent's_knowledge,

      Reactive_planner_model)    (i = 1,2,...)
Inclusion = fr (Timer, Resource1, . . . , Resourcen, 

     Agent_model, Situation, Criticality)
Figure 3.8. Functional Relationships for the

Plan-to-React Decision Framework
 The set of functional relationships among the elements of 

framework is summarized in figure 3.8. 
Appendix 1 presents the general agent architecture and the basic

flow during the plan modification process.
Our agent integrates reactive responses with the plan to compensat

the unfeasibility of universal plans. It does not only try to prepare f
most frequent or likely contingencies, but also for some very infrequen
which are very critical. Due to real-world resource limitations, some o
frequent but not very critical contingencies may be excluded from react
favor of less frequent but very critical ones.

Space
Dimensions
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Problem
Deliver package to work

Plan
drive car

Context
school time (May, week)

Situation
Action
drive straight, 25 mph

Intern. Expectations
reaching  school 

External Expectations
children in sight

Time
max. 3 mins.

Contingency

Child / Ball in front of car

Time
to avoid collision (short)
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Consequence
fatal (very high) / small

Criticality
Side_effects
high

Likelihood
medium

React. Plan
Time
N.A. / to be considered

Characts.
Memory
N.A. / to be considered

Figure 3.9. Example for the driving domain
Two advantages of the framework introduced here are: (i) 

specification is general, domain and agent-independent, so we expect it 
applicable to a wide variety of agents working in a variety of environm
and (ii) it is highly parameterized, which ensures a proper adjustment 
framework to a specific agent and to domain-dependent requirem
(domain, expert, reactive planner, and agent characteristics and capabi
as well as to the desired type of behavior. In chapter 5 we claim and 
that the framework, as presented here, is free of redundancies; that is, e
the elements included in our framework are necessary to completely d
the characteristics of a contingency and its reaction in order to allo
agent to decide at planning time whether to prepare for the reaction 
contingency in that situation. While we cannot prove that the framew
also sufficient (i.e. that there are no other elements needed for this d
besides the ones described here), the experiments described in chapter 
successfully conducted using this framework. Should the need to exten
framework arise, we believe that it can be easily done, while preservin
elements and their structure discussed here.

Space
Dimensions
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Problem
inguinal hernia

Plan
surgery procedure H

Context
heart disorder history

Situation
Action
apply anesthetic

Internal Expectations
get patient asleep

External Expectations
surgeon perf. incision

Time
from action to sleep

Contingency

heart failure

Time
to restore heart (short)
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Consequence
fatal (very high)

Criticality
Side_effects
very low

Likelihood
high

React. Plan
Time
N.A. (irrelevant)

Characts.
Memory
N.A. (irrelevant)

Figure 3.10. Example for the anesthesia domain
Figure 3.9 presents a summary of the car driving example u

throughout this section to illustrate our framework. Figure 3.10 prese
example from a different domain - anesthesiology, to show the general
our theoretical framework.

The agent is an anesthesiologist preparing for an operation du
which contingencies that endanger a patient's life may appear. The si
space is defined by the general characteristics of the operation (in
hernia to be treated through a specific surgery procedure performed
patient with heart disorder history). The plan analysis is at the point
anesthetic is applied. This action will give rise to two kinds of expecta
(milestones) to be watched for: as a result of the action, the patient sho
asleep after a certain amount of time, and from the external environme
expectation of an incision being performed by a surgeon. At this poin
anesthesiologist agent analyzes as a possible contingency a heart failu
has a short deadline (the time to restore the patient's heart without 
brain damage) and the consequences of not reacting in time are fatal
high). It also has a high likelihood of occurrence, given the patient's m
history. As we shall see in the following sections, since these character
yield a very high criticality value for this contingency, the agent 
probably decide to add monitoring actions to the plan, and will pro
include its reaction in the reactive plan for this situation, almost regard
the rest of the contingencies relevant to the same situation (analogous 
child contingency in the driving example). In chapter 6 we present a 
set of results which we have obtained from our experiments in this m
domain.
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3.3. Establishing the Value of Reaction
As mentioned in the overview of the framework which we made

section 3.2.1, our framework has two critical phases: establishing 
criticality (or reaction value) of the contingency, and making the decis
whether to include its associated reaction into the reaction plan built 
current situation. In this section we will concentrate on the first of 
phases, and will leave the second one for the next section. But before w
present our method for establishing the reaction value of a contingenc
have to talk briefly about the expert model, since it is according to s
model that the values for the criticality space dimensions are specified.

3.3.1. The Expert Model
The s i tuat ion-dependent  cr i t ica l i ty  space  values  for  

contingency-reaction pair are supplied by an expert, and are thus sub
the personal interpretation of the expert, according to his own expert model.
As our experiments have shown (chapter 6), the experts need not be
precise in the absolute values they provide. It is enough if they are 
correct order and approximately of correct relative values. This is becau
method for computing the criticality value (section 3.3.2) and the wa
value is used further in the framework are robust (i.e. noise tolerant), 
the entire framework very robust. We shall substantiate these remar
chapter 6, when we shall discuss the experiments we have conducted. 
these relaxed precision requirements, the experts with whom we have w
on the knowledge acquisition part of our experiments were able to s
quickly and with very little effort suitable values for the characteristics 
contingencies in these experiments.

The values specified by the expert for each contingency are the 
time interval allowed between the moment a contingency is detected an
its reaction is started, the consequences of not reacting to the contin
the side-effects of executing the reaction associated with the contingenc
the likelihood of occurrence of the contingency in that situation. Th
three values are real numbers in the interval [0,10]. The values for th
pressure dimension are positive reals; the upper limit for the time p
depends on the threshold values imposed by the expert model, whic
presented below. All these values may be specified qualitatively (e.g. fo
consequences dimension using {very small, small, medium, high, very h
and are then translated into numeric values (e.g., corresponding t
previous set of qualitative values, these numeric values will be in
intervals: {(0.2], (2,4], (4,6], (6,8], (8,10]}. As seen in previous chapters, 
values are situation dependent; they may be different for the 
contingency associated with different points in the situation space.

The expert model reflects the expert's interpretation of the domain
the way he or she estimates the values of the contingency character
This model must include the following threshold values, which will be u
the next section in our analysis:

m  T m a x  - is an upper limit on the reasonable values for the time pr
exerted by contingencies on the agent. A time pressure higher 
this value makes the reaction useless since it can only be taken too
(the agent has no way to react before the deadline). In our dr
example, the meteor contingency has a too short deadline to
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responded to realistically, so the agent is better off by not inclu
such a reaction in the reactive plan (and leaving the reactive plan
for contingencies that can be responded to in reasonable time).

m  T min  - is a lower limit on the time pressure values for which the 
should try to respond reactively. If the agent has more time than
threshold, then it can probably dynamically replan its response,
leaving room in the reactive plan for other, more time pressu
contingencies. Therefore, the value of reacting here is significa
lower, although not zero - if the agent has left enough execu
resources, then maybe it is still a good idea to prepare a reac
response for such a contingency. For example, if the agent drivin
car detects a traffic jam, it does not have to react (well, usually...
can take its time to replan an alternate route. However, we can e
imagine traffic jam situations in which the agent is much better o
first reacting (and, say, leave the freeway) and then replanning, 
just by taking its time to dynamically replan (and, say, pass the fr
exit).

m L min  - is a lower limit on the likelihood of occurrence of continge
for which the agent should prepare reactions. A likelihood value l
than this threshold indicates that the contingency is so unlikel
appear in this situation that the overhead of preparing and mana
reactive response is probably unjustified, so the value of reacting 
is significantly lower. An example here can again be the met
contingency, and maybe the airplane landing contingency too. 
treatment can be dangerous in certain domains where 
consequences may still be fatal, but in such cases this threshold ca
lowered to zero. Also, the value of reacting if the likelihood drops b
the threshold is again still positive (though much smaller), so if
agent has left enough execution resources, then it may again be a 
idea to prepare a reactive response for such a contingency.

m  C S min  - if the side-effects of a reaction to a contingency outweigh
consequences of not reacting by more than this value, then i
probably wiser not to take any action. In this case, like in the u
time pressure threshold, Tmax , the value of reacting to the contingency
is considered zero. An example is the contingency of a ball poppin
in front of the agent's car: the side-effects of taking the recomme
dangerous maneuver outweigh by far the consequences of hitting a
at 25 mph, so the agent is better off by ignoring this contingency 
the reactive plan preparations.

m  M O N  - is a criticality threshold beyond which monitoring actions fo
contingency should be included in the main plan (even if reactions
cannot be included); the reason is that the decision to include a re
for a contingency is taken dependent on the agent's run-time res
and performance, which may change over time, but are not taken
account at this stage of the decision process. Also, these monito
actions may detect a contingency for which no reactive response 
prepared, but for which the agent has the resources to dynam
replan its response.
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 The agent model must also specify the function ftc which transf
real-time values into time-pressure values. These pairs of values are inv
proportional, so this function has the form:

Timep = ftc (Timerc) = k / Timerc
where only the constant k has to actually be specified by the expert mod
has to be in some (weak) correlation with the two time pressure thre
presented above.

Also implicitly contained in the expert's model are the functions f1,
which associate the values for the criticality space dimensions with eac
condition-situation, as discussed in section 3.2.2.

3.3.2. Value of Reaction
The criticality value for a contingency-reaction pair is a measure o

merit of the reaction to the contingency as opposed to dynamically rep
a response to that contingency, in a particular situation in which
contingency is known to possibly appear. This value induces an order r
on the set of contingencies that can appear in that situation. This order 
to allow the selection of those contingencies that should be reacted to
the limited resources of the agent. Function fc , which computes the cri
value for a contingency given the values of the characteristics of
criticality space for the contingency, implements the evaluation functi
the behavioral model to be exhibited by the agent.

The behavior model  represents the type of behavior which the agen
attempts to simulate. By imposing an order (i.e. a preference of treatme
the set of contingencies associated with a situation, the agent commits it
a pattern of reactive behavior. It involves both which contingencies
preferred over which, and which contingencies are ruled out altogethe
the reaction process. Each behavior model is characterized by an evaluat ion
funct ion  which, given a set of conditions (pairs contingency-reaction) 
situation in which they apply, computes a score with the following pro
the higher this score is, the better (more appropriate) that se
contingencies is (according to the particular reaction philosophy of
behavior model). The evaluation function orders the set of continge
associated with a situation according to their priority for a reactive resp

The behavior model is implemented in our framework through
relative values of the parameters in the function computing the val
reaction (which is presented here), and through the values of the thr
on the criticality space dimensions (presented in the expert model) rela
the values of the parameters of the criticality function. In chapter 5 we
a few properties of the relationship between the evaluation function 
behavior model and the criticality function defined below. The most im
property is that both functions define the same order relation on a 
contingencies associated with a same situation, which implies that
criticality function can be consistently used to implement behavior mod

The criticality function we have used in our experiments has 
following general form:
Criticality = fc (t, c, s, l) =

i f (t > Tmax)
 t h e n fc = 0
elseif (c + CSmin - s < 0)
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t h e n fc = 0
elseif (t < Tmin)

t h e n fc = 
p4

*(c+CSmin-s)
p5

*l
p6

)
elseif (l < Lmin)

t h e n fc = 
p4

*(c+CSmin-s)
p5

*l
p6

)

else fc = t
p1

*c
p2

*s
p3

*(c+s)
p4

*(c+CSmin-s)
p5

*l
p 6

where, for the purpose of stating the criticality function in a more su
form, we made the following notations for the (situation dependent) cri
space dimensions: 

t = Timep (is the time pressure)
c = Consequences (of not reacting)
s = Side-effects (of the reaction)
l = Likelihood  (of encountering the contingency)

Parameters Tmax, Tmin, CSmin, Lmin  are dependent on the domain and
are defined by the expert specifying the domain knowledge. Their me
has already been defined in the previous subsection. They are import
implementing a specific behavior model. For example, if the upper thr
on the time pressure Tmax  is made lower, than more contingencies will be le
out of the reactive plan since the agent estimates that there is not enou
at execution time to give a timely response to these contingencies. 
behavior simulates the resignation behavior model [FAA, 1991] (the 
leaves responses to contingencies to others, since it believes there is no 
try to react to them, i.e. it believes that there is no time to take care o
anyway). On the other hand, taking Tmax = ·   emulates a behavior intended to
avoid legal liabilities by always doing something.

Parameters p1 to p6 are also used to model different (human) behavio
their relative values place the agent in different behavioral models and 
viewed as labels for human reactive behavior. For example, p1  > p5 > p6 > p2
(with p3  and p4  very low) represents what is usually accepted as n

behavior in the car driving domain: most importance is given to the
pressure and then to the difference between consequences and likel
with more emphasis on consequences; lastly, it also considers the likeliho
occurrence. Another behavior model in which consequences and espe
side-effects are almost disregarded with respect to time pressure impl
an attitude of invulnerability - the agent is prone to risk taking and do
believe that anything wrong can happen to him. Again, it is importa
notice the robustness of our model: the only important thing about 
parameters are their relative values, and these can themselves vary 
while still obtaining consistent results. This property makes the life o
domain experts participating in the knowledge acquisition and behavior
specification process much easier. In chapter 6 we shall discuss a numb
experiments we have made and how they justify our claims for the fram
robustness .

As stated before, the value of reaction associated with a conting
induces a total order relation on the set of contingencies associated w
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certain situation. This is only a partial order on the set of all conting
known to the agent, since contingencies in different situations may
(although sometimes can) be comparable according to their criticality 
This order relation is defined as: 

"A  is more_critical_than B  " if and only if:
A  and B  are contingencies applicable in the same situation S, and
A  has higher criticality value than B , or

A  and B  have same criticality, but A  has higher consequences, 
A  and B  have same criticality and same consequences, but A  has

higher likelihood.
This ordering characterizes the behavior model of the agent. It 

subsequently be used to choose the contingencies for which reaction
prepared (section 3.4.3).

Different combinations of these parameters defining the critic
function are used in both the theoretical and experimental evaluatio
prove certain conjectures. In chapter 5 we claim that the paramet
function defined here can implement the human reactive behavior m
described in the literature, and while we cannot formally prove this cla
justify it through the experiments discussed in chapter 6. Therefore
framework can also be used in psychological studies of "hazardous" attitu
certain high-risk domains like nuclear power plant operation and ai
flying. In section 6.3 we present and briefly evaluate a series of exper
we have conducted with our framework to simulate a number of re
behavior models described in the literature.

3.4. The Reaction Decision Making
Making the actual decision of whether to include the contingency

its associated reaction into the reaction plan built for the current situa
the second and last critical phase of our framework. This phase is based 
the elements and the information previously acquired and computed 
framework. As shown in figure 3.7, there are two agent dependent mode
participate in this phase: the reactive planner model and the agent 
They synthesize the agent's properties and the limitations on its resou
planning time and execution time respectively. We first make a 
presentation of these models and the information they are expected to 
and then we give the actual algorithm for deciding whether to plan to r

3.4.1. The Reactive Planner Model
The reactive planner model describes the planning time properti

the agent, and the characteristics of the reactive plans built by the age
their relationships to the agent's execution time resources (computation
as well as other non-computational resources). This model must allow
agent, at planning time, to estimate the variations in execution time re
requirements with respect to the growth of the reactive plan, namely w
number of contingencies and reactions included in the reactive plan. T
accomplished by the functions ft and fti in figure 3.11 which depict

entire decision making process presented in this section.
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Reactive Planner Model:
 ft = ft0  ,  fti  (i = 1,2,...)

Agent Model:
Kt , Ki (i = 1,2,...),
fr0, fri (i = 1,2,...)

Agent's
Knowledge

Reactive Plan
Characteristics

ft

fti

Timer
Resource1
Resource2. . . . .
Resourcen

Inclusion
(yes / no)

fr

Situation

Criticality

Timer = ft (Situation, Criticality, Agent's_knowledge,
    Reactive_planner_model)
Resourcei = fti (Situation, Criticality, Agent's_knowledge,

    Reactive_planner_model)
Inclusion = fr (Timer, Resource1,..., Resourcen, Agent_model,
    Situation, Criticality)

Figure 3.11. The Reaction Decision Making Phase
Function ft estimates the time needed by the agent from the mom

detects the existence of a contingency and until it can react to this pa
contingency, when the reactive plan known to the agent in this situ
contains the response to this contingency as well as responses to al
contingencies with higher criticality which apply in the current situ
The reactive planner model assumes that  the agent can devote a
computational resources to this task (this assumption is then taken care
the agent model, described in the next section, which takes into accou
overhead that the agent may experience in that situation). Functiot
estimates how much does the reactive response time increase, on avera
adding this contingency to the reactive plan.
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C5

(a) Decision List

Figure 3.12. Two reactive plan models
Two commonly encountered examples of reactive planner models

decision lists and decision trees. For a reactive planner based on decisio
(figure 3.12.a), the time to react increases approximately linear with
number of contingencies to be considered, since for each new contin
added to the reactive plan, a new test must be added to discrimina
Therefore, the time needed to react to a contingency according to this 
will be the sum of the times required for each test that has to be done
deciding on the contingency. If we assume the testing time to be ro
constant, then the estimated time to react becomes:

Timer = test_time * rank_in_reactive_plan
i.e. is directly proportional to the number of tests to be performed wh
equal to the number of levels in the decision list before the contingen
question. In figure 3.12, ti (i = 0,...,3) and tij (i = 0,1,2; j = 0,...,4) are tests
performed in order to determine the proper reaction to the contingen
C i (i = 1,...,8) are the contingencies (and their associated reactions) for 
the reactive plan contains responses.

 If the reactive planner uses decision trees to index the reactions i
final reactive plan, then the time to reach a response is closer to the lo
of the number of contingencies (the base of the logarithm is equal t
branching factor (assumed constant) of the decision tree), assuming ag
approximately constant testing time. Figure 3.12.b presents such a co
binary tree, for which the reaction time for each of the contingenci
roughly :

Timer = test_time *  log2 (number_of_contingencies_in_reactive_pl

i.e. is directly proportional to the logarithm of the number of conting
treated by that reactive plan (we assume complete decision trees, in whi

k leaves (contingency-reaction pairs) are all situated at level m if k = 2m, or 2p

of the leaves are at level 2m  and the other  k-2p leaves are placed at levem-1

when  k = 2m-1 + p, (1 < p < 2m-1).
Similar reactive planner models can be built for other method

organizing the reactions in reactive plans.
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Functions ft i  have the same mission for each of the other critic

resources of the agent (e.g. the amount of memory needed by the re
plan, as well as any other non-computational limited resources that the
might need in order to start its reactive response), as ft has for compu
time.

The two formalisms for structuring reactive plans mentioned a
(complete binary decision trees and decision lists) deserve here a 
comparison. At the first glance, a qualitative reasoning seems to imply
decision trees are better (or at least never worse) than decision lists.
running the experiments described in chapter 6, we have found out that
not necessarily the case. We shall show here when this is not necessarily
and analyze and justify it. (A formalism is considered better if it can i
more reactions to more critical contingencies in the reactive plan t
executed by the same agent with the same resource characteristics
limitations, in identical situations). During this discussion we will assum
all the tests require the same amount of time (T), and that there are 
tests available such that any arrangement of reactions in the resp
reactive models is possible. In this case, responding to the n-th continge
the reactive plan will take time T *  n in the decision lists case, and T * log2 (n)

in the case of complete binary decision trees.
We must note two things here: (i) different contingencies may 

significantly different time pressures (i.e. significantly different all
response times), and (ii) a structural difference between decision list
decision trees is that the complete decision tree takes the same amount 
to respond to all the contingencies, while decision lists respond fast
contingencies placed towards the root of the list, and this response
increases with the distance of the condition from the root.

Therefore, once the decision tree reactive planner has decided
include a given contingency (say C) in the reactive plan, it can only a
many contingencies to the plan until the estimated response tim
contingency C becomes larger than its allowed response time. This mean
the decision tree formalism is actually limited by the contingency wit
highest time pressure which the agent decided to include in the reactiv
This is not the case however for reactive planners based on decision 
Here, the contingencies with the highest time pressure can be placed t
the root of the tree, and the response time to them will not be affected 
number of contingencies covered by that reactive plan. There
contingencies with lower time pressure can still be added towards the 
the decision list, since they allow for a longer time of response, and wi
affect the response time for contingencies placed higher on the list. A n
of experimental results which support this analysis (actually, as we 
earlier, they have prompted this analysis) are presented and discuss
section 6.2.

In summary, when the response times allowed by the contingen
under consideration vary within a small relative range, the decision
based reactive planner will be able to include more such contingencies 
all its leaves are reached in roughly the same amount of time). On the
hand, when the time pressures of the contingencies vary widely (which
to be the case in real-world domains), decision lists are better suite
including responses to a larger number of contingencies, since testing
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for contingencies with shorter time of response allows timely reactio
more contingencies with lower time pressure. Naturally, the best so
would be an incomplete decision tree which combines the advantages o
formalisms.

In this thesis, we assume that the agent has enough planning reso
and time to build the most comprehensive reactive plans which do not 
its execution time resource limitations. However, this framework may al
applied when dynamically replanning courses of actions, and when
limitations on the agent's planning resources needed to build such r
plans may become a factor to be considered. In such cases, the rea
planner model may also be required to estimate the complexity of the r
plan structuring algorithm. This estimate can then be taken into accou
our framework, and may lead to the decision of reducing the set of con
to be included into the reactive plan, in order to ensure that the time 
to construct the reactive plan will not exceed the time allowed for this ta

3.4.2. The Agent Model
The second agent dependent model involved in this later stage o

framework in which the agent makes the actual decision of whether to 
the contingency and its associated reaction into the reaction plan built 
current situation is the agent model. It synthesizes the agent's properti
the limitations on its resources at execution time.

The agent model describes the (situation dependent) respo
capabilities of the agent (figure 3.11). The functions (fr i  ) describe the

variation of the availability of resource i (i=0 for computational time) d
the fact that the agent cannot devote its entire resourcei exclusively to
responding to that contingency. For example, the computational load o
agent slows its responsiveness by a factor Kt  greater than 1, and can be
expressed by:

  fr0 (timer) = timer * Kt ;  

or if the agent can devote itself to solving this contingency only after
constant time Ka, then

   fr0 (timer) = timer + Ka,

and so on.
The agent model also supplies the amount of each resource (K1, K2, ...)

that may be allocated  to reacting in the given situation, for 
non-computational resources. Example of non-computational resources a
the anesthesiology domain, oxygen masks and ventilators. Such resourc
available in limited quantity, and also may only become available af
certain waiting period. The agent model does not have to specify suc
upper limit on the availability of resources for computational time, sinc
is already specified separately for each contingency through the re
time allowed to respond to it (the time pressure dimension of the cri
space values associated with the condition in the agent's knowledge base

The agent model is  very important in domains wher
non-computational resources may not be available all the time, but m
obtained after some waiting period (as in medical domains like anesthe
intensive care monitoring, or in nuclear power plant operation).

By comparing the requirements of each of the agent's run t
resources, for the set of the previously included contingencies plus
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current contingency under consideration, with the limitations on
availability of that respective resource (given by the agent model
non-computational resources and the agent's knowledge base for time
agent can decide whether this contingency can be included in the re
plan for the current situation or not. We shall analyze this decision pro
detail in the next subsection.

3.4.3. Deciding Whether to Prepare to React
The final purpose of this entire framework is to decide, for e

contingency-response pair associated with a given situation, whethe
preplan the reaction to it or not. As shown in figure 3.11, this decision i
by comparing the estimated execution time resource requirements fo
agent to respond to all the contingencies already decided to be included
reactive plan plus the contingency currently under consideration, wi
allowed response times for each of these contingencies in that situation.

Given the criticality of the current contingency and the set of the 
contingencies known possible in the current situation, this decision p
proceeds as follows: the framework computes the agent's execution 
resource requirements to respond to any of the contingencies as:

Resourcei = fti (Situation, Criticality, Agent's_knowledge, RP_model)  

for each resourcei (i = 0,1,...) of the agent (for a unitary exposition we

sometimes call the agent's computation time as resource0 ; all other re

of the agent (possibly including the amount of memory needed by the r
plan, as well as other domain dependent critical and limited resource
ventilators in an intensive care unit, etc.) are numbered starting with 
functions ft i  are given by the reactive planner model, and estimate 

increase in resourcei requirements by adding this new contingency-reacti

pair to the reactive plan. For i = 0, ft0 = ft estimates how much does the r

response time (considered from the time a contingency is detected, and 
reaction to resolve it can be taken) increase, on average, by adding
condition to the reactive plan. As discussed in subsection 3.4.1, ft  is

approximately linear for decision lists and roughly logarithmic for de
trees. Obviously, the better the reactive planner model is (i.e. the bette
estimates are), the better use of the execution time resources of the age
be ensured by the selected set of contingencies.

As we have mentioned in section 3.3.1, the decision to monitor f
contingency is taken based only on the criticality value of the contin
and independent of the reactive plan characteristics. The reason is th
decision to include a reaction for a contingency is taken dependent o
agent's run-time resources and performance, which may change over 
but are not taken into account for monitoring purposes. Also, t
monitoring actions may detect a contingency for which no reactive re
was prepared, but for which the agent has the resources to dynam
replan its response. The decision to monitor is taken as a threshold func
the criticality of the contingency:

Monitor = fm (Criticality) = (criticality ³  MON) = 

 i f (criticality ³  MON) t h e n fm = yes
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 else fm = no .
where MON is the monitoring threshold defined by the expert in the 
model (section 3.3.1).

The final decision of preparing a reaction for the currently ana
contingency is taken by the function fr:
React = fr (Timer, Resource1,...,Resourcen, Agent_model, Situation, Critic
=

i f criticality < MON t h e n fr = no
elseif fr0(Timer) > Timerc t h e n fr = no

elseif fr1(Resource1) > K1t h e n fr = no

elseif fr2(Resource2) > K2t h e n fr = no

    . . . . .
elseif frn(Resourcen) > Knt h e n fr = no

else fr = yes .

=  (monitor L   £  Ki)))   , 

where resource0  is the real computational time, and K0  = Timerc is the real

response time allowed by the contingency for the response to be s
without consequences (the time pressure dimension of the criticality 
values for this contingency).

The functions fr i  are given by the agent model, and describe th

execution time overhead imposed by other processes which the agent 
attend to in the same time in which it must respond to the contin
Equivalently, they describe the availability of resourcei for this reactive plan.
They may be therefore situation dependent, and can be described as s
the agent model. A common expression for these functions is of the form

fri (resourcei)  =  resourcei *  kt + ka  ,

where kt is the overhead due to the agent's load (or the portion of it wh

be expressed as a delaying factor), and ka is an initial delay or cost associated

with the use of that resource (for example, a process which cannot start
a certain lead time, or a resource which cannot be delivered to the 
before a waiting period has elapsed). All these parameters must be specif
the agent model.

//   input: a situation
//   output: a list of reactions (symptoms-actions pairs) for that situation

cr-list <- extract from the agent's KB all contingency-reaction pairs matching situation;
//   cr-list is the set of all the contingencies known to the agent to be possible in situation

for  each contingency in cr-list  do
time-pressure <- ftc (timerc); //  expert model
criticality <- fc (time-pressure, consequences, side-effects, likelihood); // behavior model
if  criticality > MON 
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then  monitor <- true  
else  monitor <- false

if  not  monitor  
then  eliminate this contingency from  cr-list

enddo

cr-list <- order cr-list by criticality value, then by consequences, then by likelihood

include <- ()
//   include is the set of all the contingencies to be included in the reactive plan 
// associated with situation

for   each contingency in cr-list do
timer <- ft (include + contingency, situation) ;  
resourcei <- fti (include + contingency, situation);

inclusion <- fr (timer, resource1, ..., resourcek, timerc, k1, ..., kk)

//   fr  returns true  iff there are enough resources to respond reactively to all 
// contingencies previously added to the list include and to the currently 
// considered contingency.

if  inclusion
then   add contingency to  include

enddo

return  the list  include.

Figure 3.13. Reaction decision making algorithm
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function  fr (timer, resource1, ..., resourcek, timerc, k1, ..., kk)

  // returns true  iff there are enough resources to respond reactively to all contingencies 
  // previously added to the list include, and to the currently considered one.

if   fr0 (timer ) > timerc
then  return  NO;

for  i = 1 to  number_of_agent_resources do
if   fri ( resourcei ) >  ki

then  return  NO;
enddo

for each contingency in include do

if   fr0 (contingency.timer ) > contingency.timerc
then  return  NO;

for  i = 1 to  number_of_agent_resources do
if   fri (contingency. resourcei ) >  ki

then  return  NO;
enddo

enddo

return  YES.

Figure 3.13. Reaction decision making algorithm (continued)
One final set of parameters specified by the agent model are 

execution time resource limitations of the agent (Ki , i = 1,2,... , in the formula
for fr  above). They do not include Timerc  which is a characteristic of
contingency and therefore is specified in the agent's knowledge base. 
what the decision function does is simply to check that:

(i) the contingency is critical enough to be at least monitored for,
(ii) the agent will have enough time at execution to respond to 

contingency in the context of the larger set of contingenc
considered for reactive response in the same situation,

(iii) none of the execution time limitations of the agent resources (b
computational time) may be exceeded when attempting to respon
this contingency, considering the entire reactive plan containin
(i.e. all the contingencies with higher criticality, already decided t
included in this reactive plan), and

(iv) the agent's run time resources are still enough to respond prope
all the contingencies previously included in the reactive plan, w
this new contingency is added to the reactive plan.
This decision process ensures that no reaction is included 

contingencies which are not monitored for, and that there is enough av
of each resource in order to attempt a reaction for all the conting
included in a reactive plan. For the computational time resource, this 
that the time needed to start a reaction to the contingency is less than 
time allowed before the action must be taken (otherwise the reaction b
useless).

Figure 3.13 makes a brief summary of the algorithm for deciding, 
a plan execution situation, on the set of contingencies to be included
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reactive plan which will be associated with the conditional plan befor
actual execution starts. The actual decision function fr is presented sep
in the second part of the figure.

The fourth test mentioned above essentially repeats the second
third tests (carried out by the functions fr i  , i = 0,1,...) for each of the

contingencies already decided to be included in the reactive plan. It m
done each time a new contingency is considered for addition to the r
plan, because the addition of the contingency, while possible from the p
view of the restrictions imposed by its characteristics, may increase
resource requirements to respond to previously included contingencie
may therefore exceed the restrictions imposed by their critic
characteristics. For example, in the case of a reactive planner base
decision trees, adding a new contingency may force the reactive plann
add one more level of tests in the decision tree, and thus increase the r
time to all the contingencies included in this reactive plan. This way, so
them may now exceed the real time allowed for reaction to be taken, an
reactions may become useless in that situation. (Conform to the analy
section 3.4.1, the time to react to all the contingencies contained in a r
plan with a complete decision tree structure is approximately constan
proportional to the depth of the decision tree).

The decision function fr  is applied in turn to each continge
considered for the current situation, in the order given by their cri
values, as defined in section 3.3.2 (each time, it applies each of the fun
fri , i = 0,1,..., to each of the contingencies already included in the re

plan and to the current contingency, considering the reactive plan to 
this contingency plus all the contingencies previously decided to be in
in the reactive plan for this situation). This iterative process is continue
either all the agent's execution time resources are estimated to be exhau
no more contingencies are known to the agent to be possible in the c
situation.

This concludes the presentation of our framework for deciding wh
to plan to react. Given a plan situation and a set of contingencies known
agent to possibly appear in this situation, it decides for which of 
contingencies the agent may prepare reactive responses, considerin
execution time limitations on the agent's resources. In the next two ch
we present a knowledge representation formalism to help the agent to
with the considerable amount of knowledge related to this decision p
and theoretical justifications for some properties of our decision fram
Then, in chapter 6, we present the results of our experiments using
framework. But before doing all this, let us see how the ideas presented 
can be applied to a related problem: given a plan situation and a s
contingencies known to the agent to possibly appear in this situation, 
for which of these contingencies the agent should prepare complete br
in the main conditional plan.

3.5. Conditional Planning
We briefly discuss here how the framework presented so far 

deciding whether to prepare to react to a contingency can be modifi
answer the question of whether the agent should prepare in its plan 
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conditional branch for a contingency. We first resume our discussio
section 2.1 regarding possible classifications of contingencies, and the
adapt the previous framework to this new task.

3.5.1. Contingencies Revisited
In section 2.1 we have identified there types of contingencies that

appear during the execution of a plan. They are classified according t
action taken by the agent at planning time to prepare for their occurr
execution time. These types of contingencies are:

( i ) contingencies for which the planner builds complete condit ional
branches , from the contingency state to the goal state, in the main
As an example, suppose that the agent has two alternative routes
driving to work in the morning, depending on the color of a part
traffic light when the agent reaches it: the regular plan assumes
color is green, and the alternate branch is conditioned on the 
being red. For a non-driving commuter, the plan may involve wa
or taking a bus, depending on the weather, and so on.

( i i )contingencies for which the agent prepares react ive  responses,
combined into reactive plans by a reactive planner, and attache
appropriate segments of the complete plan provided by the condi
planner. An obvious example is the one we used before, involvin
child running in front of the car.

(iii) contingencies ignored by the agent at planning time; their trea
at execution time can fall under two subclasses:
(a) dynamic replanning , if the agent has enough resources at exec

time to perform it. As example, suppose that the agent encounte
traffic jam on a seldomly traveled route, for which it did not b
to prepare a conditional plan branch before execution.

(b) noop , that is take no action, either because the consequences o
contingencies are not high enough to warrant an action, or bec
the agent simply does not have the resources to take an actio
solve them (e.g. they have a too short response time allowed).
extreme example may be the contingency involving the met
falling on the car, which we have encountered in table 3.1.

The justification for this classification is mainly related to the lim
resources that a real agent can use. For a few contingencies, the agen
generate complete plans and combine them in a conditional plan. Ho
the agent's limited planning and execution resources do not allow for to
contingencies to be treated this way. Still, the agent can prepare at pl
time reactive responses for a larger set of contingencies; these response
not ensure full solutions to the goal state, but they will give the agen
possibility to dynamically replan its actions at execution time. But in n
can a real agent with limited resources prepare for all possible conting
in a real world application domain. Many of these contingencies mu
ignored at planning time.

Let us intuitively analyze now the characteristics of the exam
given, and try to feel the qualitative differences among these classe
cont ingencies .

In the previous conditional planning example, the contingencies 
often, i.e. with a high likelihood (the occurrence probability may app
50%, but should not exceed it, since if it does, then the contingency s
rather be considered the normal case and the main plan should be
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accordingly). Also, a solution to the contingency requires the preparat
an entire plan branch all the way to the initial goal (since the executio
may be critical and thus replanning cannot be used at any stage 
reaching the goal, i.e. a local situation stabilizing response to the conti
is not sufficient), as well as certain resources whose availability mus
planned in advance (e.g. an umbrella, or the correct set of maps fo
alternate route to be traveled).

For the reacting case we have already devised a comprehens
framework stating the main necessary characteristics for a contingency 
considered appropriate for a reactive response. For the previous exampl
include critical response time and high consequences of not respondin
important characteristic is also that a short response (already availab
sufficient to stabilize the situation and allow for replanning of the a
actions all the way to the initial goal.

The rest of the contingencies will be ignored at planning time, bu
have been able to further subclassify them. The ones for which the agen
try to replan at execution time should not occur too often (otherw
conditional branch may be appropriate), and should also allow for e
time for the agent to be able to build the new course of action. Finall
contingencies for which the agent will take no action anyway (e.g.,
falling meteor case) do not allow for enough time to respond to them, 
circumstances, given the agent's limited resources and execution capabi

In section 3.2.3 we introduced a criticality space, which is one pos
representation of the space of contingencies, whose dimensions 
appropriate for reaction decision purposes. To facilitate the understand
the relationships among the classes of contingencies, we shall attempt h
simpler and more general graphical representation of the space
contingencies, which can depict all the classes mentioned above. 
representation can conceptually be obtained from any more com
representation (like the criticality space mentioned before, or the imp
space to be introduced later on in this section), by projecting the points
space onto points in the simpler spaces defined here.

noop
conditional
planning

reactingreplanning

criticality

Figure 3.14. Contingency space - linear representation
The simplest representation for the space of contingencies is a l

space in which contingencies are ordered by either criticality (as d
before) or importance (as defined further in this section). Figure 3.14 
that such a representation can outline the most frequent transitions b
bordering classes, but cannot represent other still possible bordering
between reacting and noop (e.g. determined by allowed response tim
conditional planning and replanning (determined, for example, by
planning time needed). Therefore, a planar representation (figure 3.
more appropriate. The dimensions here are the reaction response valu
the planning response value for the contingency. While much better
representation still does not represent the direct relation between con
planning and noop (which, to be fair, is the least frequent one, so
representation can be used for most purposes). We have therefore dev
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third, 3-D surface representation using a spherical surface (figure 3.16
orthogonal dimensions (akin to latitude and longitude) are the same as 
second representation, and it can represent all the borders between p
classes.

noop

conditional
planning

reacting

replanning

reacting
value

planning
value

child

meteor
infrequent
traffic jam

frequent red
traffic light

Figure 3.15. Contingency space - planar representation
The examples given with the informal description of these classes a

beginning of this section constitute extreme cases in each class (figure 
In between these extreme cases there is an entire space of contingenci
which more than one (in some cases even all) of the response altern
may be justified. The borders among these classes in the space
contingencies associated with a particular agent are determined by the 
resource capabilities and limitations. For example, conditional plannin
replanning are separated mainly by the agent's planning resou
replanning is circumscribed both by the agent's planning and exe
capabilities, while reacting is mainly characterized by the agent's exe
capabilities.

Due to the way the different classes of contingencies have been de
in order to be able to best classify a given contingency, we only need
membership decision frameworks for two of them, namely condit
planning and reaction. We have already defined a framework for de
whether the agent should prepare a reaction to a contingency in a 
situation. In the rest of this section we will give a description of a fram
to decide whether to prepare a conditional plan branch for a contingenc
given situation.
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noop

conditional
planning

reacting

replanning

planning
value

reacting
value

Figure 3.16. Contingency space - 3-D surface representation
There are two qualitative differences between conditional p

branches and reactions. The first is that conditional plan branches re
global solutions to the initial problem, that is, they are sequences of a
which ensure that the agent reaches the goal (in the absence of 
contingencies). Reactions on the other hand are only single (or 
sequences of) actions, intended only to stabilize the situation so that th
can then take its time to replan a solution from the state reached 
reacting to the initial goal. Therefore, on one hand reactions can be se
the first steps of incomplete conditional branches, but in the same tim
are more generally applicable than specific plan branches. There is al
assurance that after executing a reaction, the agent may find a plan to g
the initial goal, i.e. it is possible that the planner may subsequently fi
solution from the state in which the agent finds itself after completin
reaction to the goal; this is not the case for conditional plan bran
assuming no other contingencies are encountered. Therefore, we a
assume that a conditional planned branch is a better solution than a r
to the same contingency, and as a consequence, given a set of conting
for a situation, the conditional planning decision framework should be 
before the reaction one.

The second difference involves the planning process itself. 
conditional planning, the planner has to work out a solution (sequen
actions) from a given state (the contingency) to the goal. In rea
planning, as assumed throughout this thesis, the agent already knows 
knowledge base) the best reactions associated with contingencies 
applicable classes of situations, so the only task of the reaction planner
combine the reactions associated with the set of contingencies to be pr
for, into a structure which will be conveniently searched at execution t
determine the actual contingency encountered and its associated reactio
decision trees, decision lists, etc.). Therefore, planning time is definite
importance in conditional planning, but may not be an issue w
structuring a reactive plan from a set of known reactions (if it cann
ignored, then, as mentioned in section 3.4.1, the complexity of the re
plan structuring algorithm can be taken into account in the Reactive P
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Model, to further prune the set of contingencies for which reactions sho
prepared) .

Having noted these differences, we must now acknowledge that 
particular decision frameworks associated with the two classes 
contingencies have very similar underlying structures, so their presen
may obey the same general lines. There are significant analogies betwee
two problems and their solutions. They would suggest taking a un
approach and combine the two frameworks into a single one, with aest
benefits of uniformity and elegance in presentation. However, we believ
this would yield an unnecessarily complex framework, intuitively diffic
present and understand. Therefore, as well as for easier understanding 
keep each framework manageable, we decided to present them separately
is also in agreement with the way in which an agent should apply 
although in different order. Indeed, the frameworks may indicate that 
contingencies are suitable for both conditional branch and rea
preparation. In these cases a conditional branch should be prepared, sin
assumed to be a more accurate solution, as argued before.

We first presented in sections 3.1 to 3.4 the reaction decision fram
(which is the main topic of this thesis). In the remainder of this chapt
use analogies with the previous presentation to describe the condi
planning decision framework, by pointing out their similarities 
differences. We transform one framework into the other by removing, 
and replacing some of its elements. Since the two frameworks are very cl
form (although with underlying differences in content), an aesthet
interested reader can easily merge them together if he or she so desires

 3.5.2. Framework for Conditional Planning Decision
Let us first state the conditional planning decision problem, in a 

similar to the one used in section 2.2 for reaction. We assume the agen
built a linear main plan to go from an initial situation to a given goa
issue then is to enable the agent, for each phase of the already built
plan, to select the right set of contingencies for which to prepare cond
branches all the way to the goal. That is, the problem  is to specify a d
framework which:

m  given:
l an intelligent agent with:

G  capabilities:
F  planning and dynamically replanning
F  monitoring

G  constraints:
F  limited resources
F  real-time performance

l a linear plan by which the agent can achieve its goal
l a set of contingencies known to possibly appear at certain ti

during the plan execution, and for which the agent may pla
conditional branch, each with:
G  known characteristics, associated with it (e.g. gravity 

consequences, time deadlines) and with preplanning 
conditional branch for it (e.g. resource requirements)

G  characteristics of their replanning alternatives (replanning 
and other resource requirements)
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m  e n a b l e  the agent to decide for which contingencies to prep
conditional branches in the plan (according to a desired beha
pattern) while not exceeding the agent's planning capabilities 
preserving the real-time responsiveness of the agent to all th
contingencies, given its limited resources.

Planner Model Agent Model

Agent's
Knowledge

Behavior Model: fi

Situation

      Contingency
(& characteristics of
it and of planning
its response path)

    Importance
(conditional planning value)

Prepare
plan branch
(yes / no)

fi

Figure 3.17. Overview of the Conditional Planning Decision Framework
As can easily be seen by comparing the two problems, they are si

enough such that a solution to the second problem can be obtaine
relatively small modifications to the framework solving the first one. In
the high level overview of the conditional planning framework show
figure 3.17 is very similar in form to the one for the reaction fram
depicted in figure 3.2. There are however a few underlying differences 
pointed out:

m the knowledge available to the agent and associated with 
contingency does not include the response to it, but only some ge
characteristics (outlined in section 3.5.3) of the planning process 
done for that contingency;

m the criticality (reaction value) computed by the reaction dec
framework is replaced by an importance value (conditional plan
value) which synthesizes how important it is for the agent to prep
conditional branch for that contingency, i.e. what is the value
preparing a conditional branch for it in the plan vs. leaving it
other possible treatments;

m the reactive planner model is replaced by a model of the conven
planner used to build the initial plan and the conditional branche

m the final decision of the framework is now whether to prepare a b
in the plan, instead of whether to include a reaction to the contin
in the reactive plan associated with it.
Also, the agent model and the behavior model will reflect slig

different characteristics in the two cases, and the functions used to ca
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the conditional planning values and the final decision are based on som
different variables, as will become evident soon.

Figure 3.18 presents in more detail the flow and source of inform
through the new framework. Again, the comparison with the gen
framework for the reaction case (figure 3.3) shows obvious similar
between the two frameworks. The differences between the two framewor
this level of detail and functionality are basically the same as the 
mentioned above for the higher level of abstraction used in the ove
presentat ion.

Let us now briefly discuss each element of our new framework, 
compare it where appropriate to the equivalent element of the re
decision framework. First, the situation spaces are identical in the 
frameworks, since a situation has the same definition and characte
related to contingencies, regardless of the kind of response we prepa
them.
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       Plan
Characteristics

Situation
  Space

Importance
  Space

Expert Model

Planner Model Agent Model

   Agent's
Knowledge

Behavior Model: fi

Situation

Contingency

    Importance
(conditional planning value)

Prepare
 branch
(yes / no)

fi

Figure 3.18. General Framework for Conditional Planning Decision



47

Two parts of the framework require special attention here. The 
establishes the conditional planning value of the contingency, and the 
takes the actual decision of whether to prepare a conditional branch f
contingency. They are briefly discussed in the following two subsections
then we conclude this presentation with a summary of the entire fram
put together.

 3.5.3. Establishing the Conditional Planning Value
Figure 3.19 presents the part of the framework concerned directly

calculating a conditional planning value for the contingency in the 
situation. It is similar to figure 3.5 which shows the criticality space an
process of calculating the reaction value for a contingency. We 
concentrate here on the differences between the two frameworks at this

m the criticality space is replaced by an Importance Space which uses 5
dimensions to characterize a contingency from the conditio
planning point of view. These dimensions are:
l Timep  - represents the same time pressure as in the reactive case;

obtained from T i m e r c  - the time allowed to respond to t
contingency, once an unexpected state is detected (same as in
reactive case).

l P T i m e  - is the estimated planning time needed to build a branch
this contingency at planning time (e.g., the time needed to plan
alternative route, starting with a right turn at traffic light B, all
way to the office); the simplest estimate may be, for example, 
planning time used to build the original plan from that point u
the goal.

l Consequences  - summarizes the consequences of not responding to
contingency in the time allowed (same as in the reactive case).

l P R e s o u r c e s  - is a measure of how hard (time consuming, ag
resource consuming and any other costs involved) it is to obtai
replanning time (during execution) the resources needed to r
and carry out this plan branch (if not preplanned in advan
Besides actual planning and replanning times, this also invo
resources not needed in carrying out the initial plan, but which
be needed for replanning purposes (like maps which may be har
obtain along the way) or for carrying out the alternate plan b
(like an umbrella if it rains, or in medical domains a ventilato
certain test results).

l L i k e l i h o o d  - represents the likelihood of occurrence of t
contingency in the given situation (same as for reaction).

m the Importance  value which orders contingencies by their conditi
planning value (in the same way as criticality does for reaction).

m the function (fi) calculating the importance value for a contingency h
the form:

Importance = fi (t, pt, c, pr, l) =

i f (t > Tpmax)
 t h e n fi = 0
elseif (t < Tpmin)

t h e n fi = 
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elseif (pt > PTpmax)
t h e n fi = 

elseif (pr < PRpmin)
t h e n fi = 

elseif (l < Lpmin)
t h e n fi = 

else fi = t
pp1

*pt
pp2

*c
pp3

*pr
pp4

*l
p p 5

where, for the purpose of stating the importance function in a 
succinct form, we made the following notations for the (situa
dependent) importance space dimensions: 
    t = Timep, pt = PTime, c = Consequences, pr = PResources, l = Likelih
The two kinds of parameters involved are:
l (conditional) preplanning behavior model parameters: pp1 to pp5
l parameters specified by the expert model: Tpmax, Tpmin, PTpmax,

PRpmin, Lpmin . They are domain dependent and are defined by 
expert specifying the domain knowledge. Their meaning is def
below. 

m the Expert Model reflects the new dimensions of the importance spac
must specify the following:
l funct ions :

G  ftc : transforms (as for reaction decision) real-time values i
time-pressure values, inversely proportional, so it has t
general form:

Timep = ftc (Timerc) = k / Timerc
l parameters :

G  T p m a x  - time pressure threshold - for greater time pressure, 
attempt of response is useless (akin to Tm a x  for reacti
decision);

G T p m i n  - time pressure threshold - for smaller time pressu
dynamic replanning is possible (and thus less costly, since it 
be done only if the contingency actually arises); akin to Tmin  for
the reaction framework;

G  P T max  - planning time threshold - if the estimated planning 
required is longer than this threshold, then the agent may no
able to complete the conditional branch in the estima
available planning time;

G  P R min  - replanning resources threshold - for smaller values, 
agent has enough execution time resources such that replan
is possible (and presumably less costly);

G  L m i n  - likelihood threshold - if lower likelihood, the cost 
preparing a conditional branch for this contingency in t
situation is probably unjustified (same as for the react
decision framework).

m the parameters of the Behavior Model (pp1 to pp5) also reflect the new

dimensions of the importance space as well as the new funct
computing the importance value.
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Timep

Consequences
PResources

Likelihood

Expert Model:
Tpmax, Tpmin,
PTmax, PRmin,
Lpmin, ftc

Situation

Contingency

Timerc
ftc

Importance
        Space

fi
  Importance
 (conditional
planning value)

Timerc = f1 (Situation, Condition)             Consequences = f2 (Situation, Condition)
PTime = f5 (Situation, Condition)              Likelihood = f4 (Situation, Condition)
PResources = f6 (Situation, Condition)    Timep = ftc (Timerc) = k / Timerc
Importance = fi (Timep, PTime, Consequences, PResources, Likelihood)

PTime

Behavior Model: fi

Figure 3.19. Establishing the Conditional Planning Value
Note that the time to preplan a conditional branch may be diff

from the time to replan it at execution time, because of different res
availability and different information availability; in the driving exa
when building the plan at home we may have all the necessary maps, so
which may be unavailable when replanning later on during the execut
the initial plan, and obtaining them may be time consuming, thus mak
initial planning time shorter than replanning time. On the other hand
replanning, the agent may have access to more accurate state inform
than at initial planning time, and therefore the initial planning time m
this case be longer than the replanning time (for example, when the 
must replan its route due to a traffic jam, it has more knowledge about
alternatives are available for faster traffic flow, than it could have bef
actually reached this point in the plan execution).

Also note that side-effects are not taken into account in this frame
since once prepared, the conditional branch is executed as a regular
which under normal circumstances leads to the final goal (the side-e
were a measure of the risk of not being able to reach the final goal an
once the reaction is executed).

 3.5.4. Deciding Whether to Plan a Conditional Branch
Figure 3.20 presents the part of the framework concerned with the

decision of whether to prepare a conditional branch for the contingen
the given situation. It is similar to figure 3.11 which shows the rea
decision making phase of the previous framework. We shall outline her
differences between the two frameworks at this stage:

m the reactive plan characteristics space is replaced by a P l a n
Characterist ics  Space  whose dimensions characterize the en
conditional plan to be built, from the point of view of the ag
planning and execution resources. These dimensions are:
l TPTime  - measures the total planning time needed by the planner

conditional branch for this contingency will be planned in add
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to the main plan and conditional branches for the contingen
already selected for conditional planning;

l T i m e r  - is the estimated time needed by the agent to respond
execution time, to this contingency, given that the conditional 
includes a branch for it together with branches for t
contingencies already selected for conditional planning (simila
the reaction framework);

l Resource i (i = 1,2,...) - represents the total requirements impose
the agent's i-th resource by the conditional plan containing
branch for this contingency as well as branches for th
contingencies already selected for conditional planning (simila
the reaction framework); an example of such a resource may
memory amount required by the plan, which is separat
represented in figure 3.20 by the total plan size (PSize) .

Timer
PSize

Resource2. . . . .
Resourcen

TPTime

Agent Model:
  Ktp, Kp , Kq,
Ki (i = 1,2,...), fb

Agent's
Knowledge

Space of Plan
Characteristics

fp

fpi

Prepare
branch
(yes / no)

fb

Situation

       Importance
(conditional planning value)

TPTime = ftp (Situation, Importance, Agent's_knowledge, Planner_model)
Timer = fp (Situation, Importance, Agent's_knowledge, Planner_model)
PSize = fp1 (Situation, Importance, Agent's_knowledge, Planner_model)

Resourcei = fpi (Situation, Importance, Agent's_knowledge, Planner_model)

Prepare_branch = fb (TPTime, Timer, PSize, Resource2,..., Resourcen,
    Agent_model, Importance, Situation)

Planner Model:
functions to estimate:
TPTime, PSize,
Timer, Resourcei

ftp

Figure 3.20. The Conditional Planning Decision Making Phase
m the P lanner  Model  reflects the new dimensions of the pl

characteristics space. It must supply the following functions to est
values for these dimensions:
l ftp  - estimates the time needed to build the plan, including a b

for this contingency (in its simplest form, it may simply add 
already estimated times to build each individual branch);
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l fp  - estimates the time needed to respond to the contingency whe
plan includes conditional branches for it and for all contingen
with higher importance (similar to the reaction decisi
f ramework) ;

l fpi (i = 1,2,...) - estimates the amount of resourcei needed to respo

the contingency when the plan contains conditional branches f
and for all contingencies with higher importance (similar to 
reaction decision framework); for i = 1, the function estimates 
amount of memory the agent needs in order to accommodate 
conditional plan.

m the Agent Model  also reflects the new dimensions of the pla
characteristics space. It must specify the following:
l estimated maximum resource amounts that may be allocated by

agent to this task:
G K tp  - the maximum planning time allowed to build the conditi

plan (i.e. before any execution begins)
G  K1, K2, ... - the maximum amount of resourcei (i = 1,2,...) available at

execution time (i = 1 for memory availability or, equivalen
plan size)

l functions to estimate resource utilization:
G  f b p  - the increase in planning time due to the agen

computational overhead at the time of planning; it may be of
form:

fbp (TPtime) = TPtime* Kp
where Kp is a factor greater than 1, or:

fbp (TPtime) = TPtime + Kq
if the agent can devote itself to planning for this continge
only after some constant time Kq, and so on.

G fbi  (i = 0,1,...) - the variation of the availability, at execution t

of resourcei (i=0 for computational time; i = 1 for memory or 
size) due to the fact that the agent cannot devote its en
resourcei exclusively to responding to that contingency (same
the functions fri  for the reactive plan characteristics space

the reaction decision framework).
l the function (fb ) making the actual decision for a conditional b

preparat ion :
Preplan = fb (TPTime, Timer, PSize, Resource2, ... ,Resourcen,

Agent_model, Importance, Situation) =

i f fbp(TPTime) > Ktp t h e n fr = no

elseif fb0(Timer) > Timerc t h e n fr = no

elseif fb1(PSize) > K1 t h e n fr = no

elseif fb2(Resource2) > K2t h e n fr = no

    . . . . .
elseif fbn(Resourcen) > Knt h e n fr = no
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else fr = yes .

=   £ Ki))   , 

where resourcep  is the planning time, resource0  is the execution

real computational time, and K0  = Timerc is the real response time

allowed by the contingency for the response to be started wit
consequences (the time pressure dimension of the importance 
values for this contingency).

Figure 3.21 shows a detailed summary of the framework for sele
the contingencies for which complete conditional branches are to
prepared. We shall not continue the discussion on this topic, since this t
mainly concerned with developing the reaction decision framework, an
have included the presentation of the conditional planning framework o
point out that, after we have one of the two frameworks well defined
experimentally proved adequate, the other one can be developed us
certain degree of analogy.
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Figure 3.21. The Conditional Planning Decision Framework
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Figure 3.22 presents two examples of contingencies that may wa
conditional planning of branches to solve them. They are both taken fr
driving domain, but may appear in significantly different circumstance
they both largely illustrate the way the framework is intended to be app

Space
Dimensions
Car driving to work
Car driving to Reno

Problem
Go from home to work
Go from Palo Alto to Reno

Plan
Drive car
Drive car on I80

Situ-
Context
Morning, commute time
Winter, night time

ation
Action
Approach intersection B
Approach Sacramento

Int Expect
Observe traffic light
See Sacramento

Ext Expect
Heavy traffic
Dark (night time)

Time
max. 3 mins.
30 mins.

Contingency

Red traffic light (slow - all following lights red too)
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Cold & raining hard - maybe snow in mountains

Timep
To reach intersection B
To reach junction I80, I50

Impor-
PTime
High (»1/2 of main plan)
High (»1/2 of main plan)

tance
Consequence
Late for imp. meeting
big delay, maybe life threat

PResources
Need maps + planning
Need maps + planning

Likelihood
High (£ 50% of time)
High

Conditional 
plan branch

Right turn at traffic light, then alternate route
Use I50 - longer but more reliable when snowing

Figure 3.22. Conditional planning examples
The first example is the one we mentioned in this section before: o

usual commute to work, there is a certain traffic light which, if red on 
means that all the following traffic lights will be red, and the commut
take significantly longer than if an alternate route is followed by mak
right turn. However, this alternate route is slower if the traffic ligh
question is found on green.

The second example is set during a trip from the San Francisco Bay
to Reno at night time during winter. If it is cold and raining ar
Sacramento, then there is a good chance that the usual (and faster) f
may be closed in the mountains due to snow, so an alternate route is wis
it has to be prepared in advance since it may require maps for planning

A comparison between figures 3.21 and 3.7 shows that the 
frameworks are close enough so that an aesthetically concerned reade
easily merge them into a single framework, so we shall not concern our
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with this topic anymore. Instead, in the next chapter, we present a kno
representation formalism to help the agent to cope with the consid
amount of knowledge related to these decision processes.
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Chapter 4
Knowledge Representation Formalism

In order to operate in an environment, the agent has to possess a 
knowledge about that environment. For the purpose of deciding whet
plan to react to possible contingencies according to the framework pre
in the previous chapter, the agent has to possess three types of infor
knowledge about situations that may be encountered during plan exec
knowledge about the contingencies that may happen in these situation
knowledge about the most suitable reactions to these contingencies.
agent's knowledge base contains associations of contingencies and 
appropriate reactions. Each pair contingency-reaction is indexed in
knowledge base by the characteristics of the situation in which 
contingency may appear and in which that is the most suitable reaction
Therefore, each condition stored in the knowledge base has three parts:

(i) a description of the contingency (signs, preconditions, and so on) 
set of values for the dimensions of the criticality space

(ii) a description of the best suited reaction for this contingency i
situation described by the third part

(iii) a description of the situation in which this contingency may a
and in which the best response to it is the reaction described in
(ii). This description contains the values for each of the se
dimensions of the situation space mentioned in chapter 3.
 In the previous chapter we have presented the kind of inform

associated with each of these classes of knowledge. With the exception o
contingency information which contains numerical values for the valu
the characteristics of the criticality space, the rest of the informati
symbolic. This includes the values for the situation space dimensions
descriptions of the contingencies, and the descriptions of the actions 
make up the reactions to contingencies. Theoretically, one could use
natural language to specify these values. However, such a natural lan
interface and the mechanisms to process the information in such a for
are beyond the scope of this work. In order to contain the explosio
complexity generated by such a natural language representation, we
defined a knowledge representation formalism which restricts the desc
language for each of the classes of knowledge under consideration, 
retaining enough flexibility to be suitable to any domain and with the 
advantage of a well defined structure which can be used in the rea
process.

In this chapter we shall discuss this knowledge representat
formalism for each of the classes of knowledge involved, with examples
the driving domain. We shall first present the general idea which is app
all the three classes, and then we shall discuss an example of representi



2

contingency description knowledge for the car driving domain. Appen
presents an example of representations of reactions and representatio
situations for the same domain.

4.1. Description Languages
The need to devise a knowledge representation formalism for desc

situations, contingencies and reactions has arisen from two consideratio
(i) the space of all possible natural language descriptions for these c

of knowledge is too large to be manageable; this in turn gener
problems like the possibility of having different representations
the same piece of knowledge and the associated difficulty of comp
such representations and deciding on their identity. For example, i
car driving set of reactions we have used during the previous ch
"steer" may be equivalent to "change direction", and clearly e
situation has many different equivalent ways of being described.

(ii) the practical application domains for the framework of deci
whether to prepare to react presented before have a significant a
of inherent structure implicitly contained in them and it would
unfortunate not to be able to exploit this structure. Notice for ex
that eleven out of the thirteen examples of contingencies we gave
the car driving domain (table 3.1) use the action "brake" in 
description of their associated reactions. The car driving domain
also a significant amount of inherent structure in the description o
possible contingencies. For example, the following two contingenc
"Child runs from right, 20 m in front of car" and "Adult crosses
street from right 20 m in front of car" have both the same criti
space values, and the same associated reactions, and therefore do
need separate representations in the agent's knowledge base.
If the structure of the application domain is not taken into accoun

explosion of the information that has to be recorded in the agent's kno
base quickly exceeds any realistically manageable amount for ag
operating in the real-world domains described in chapter 2. For example
are any number of individual situations for which the same 
contingency-response applies, and it would be entirely unreasonab
represent each of them and all their associations with different conditio

Given these considerations, we have designed a representat
formalism for these classes of knowledge which preserves most of 
flexibility of the natural language representation, while allowing the 
to take advantage of the structure of the domain.

For each domain there are nine languages which must be define
language for describing the contingencies, one for describing the rea
and seven languages for describing the values associated with each o
seven situation space dimensions. Each of these languages will be desc
according to the same formalism, so we shall only describe the formalism
and then (in the following section) we will give an example of each 
language in the driving domain.

The expert is required to define a hierarchical vocabulary for eac
these languages in his domain. The words in the vocabulary are parti
into two classes: terminals and nonterminals. Each nonterminal repres
class of words (both nonterminals and terminals). The terminals are clas
themselves. The expert must also define all the membership and su
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relationships among the words in the vocabulary. Each such relatio
defines a directed edge in a tree (actually a forest, since there is no ne
full connectionism in a vocabulary) which induces a hierarchy onto
vocabulary. The tree is actually an AND/OR graph, in which the OR  n
represent the membership and subclass relationships, and the AND  
represent structural relationships among words in a valid sentence i
language. Our formalism has a few common features with the lang
representation formalism presented in [Utgoff, 1988], although it diff
many other aspects. Our formalism defines a context free grammar: 

G = (N, T, P, S),  where
m  N - is the set of nonterminal words of the domain dependent vocab

defined by the expert
m  T - is the set of terminals in the vocabulary
m  P - is the set of productions of the grammar; there are two type

productions:
l unit productions, defined by a membership relation betwee

terminal and a nonterminal or by a subclass relation among 
nontermina l s

l non-unit productions, defined by AND nodes in the vocabulary - 
give the rules of correct derivations in the language.

m  S - the start symbol, which is either the root of the tree (if one exist
if the vocabulary is organized as a forest, then it is a new nonter
(OR node) to which all the roots of the trees making up the fores
connected through subset relationships edges.
This context free grammar defines the language used for descri

either the contingencies in the domain, or the reactions, or one of the
characteristics of the situation space, with one important difference fro
classic theory of context free languages: every word in the vocabulary m
part of a sentential form in the language, that is, both terminals
nonterminals may be used to build sentential forms. The set of terminals
vocabulary makes up the agent language, that is, the set of all indiv
describable contingencies (or reactions, or characteristics of situation
sentential form containing only terminals represents a description 
specific contingency, reaction, or situation characteristic. It can als
interpreted as a description of a singleton set of contingencies, reactio
situation characteristics. A sentential form containing at least a nonte
symbol represents a description of a set (of any cardinality) of 
contingencies, reactions or situation characteristics. This extension o
context free grammar paradigm enables us to represent the structure 
application domain.

Our formalism also extends the classical context free grammar para
with the notion of identification functions for nonterminals in 
vocabulary. An identification function is a compact way of represent
large set of class membership relationships or a large set of sub
relationships. For example, the nonterminal "slow_driving_speed" ca
identified by a function defined as: 

f (speed) = 5 mph < speed < 20 mph.
This function replaces all the edges in the tree between the nonter
"slow_driving_speed"  and all  the terminals "speed = x" where x can ta
the discrete values representable in the machine (or in the defined d
vocabulary) between 5 mph and 20 mph.
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Every tree generated by a vocabulary as described above defines
partial order relations among the words of the vocabulary as well as 
the set of sentential forms that can be built. The elementary partial 
relation, which we call "contains", among words in the vocabulary, is define
as:  "a  contains b " if and only if a  and b  are words in the vocabulary, a  is a
nonterminal, and either a  and b  are identical, or a  contains b  as a memb
is a terminal), or a  includes b  as a subset (if b  is a nonterminal). The extended
partial order relation with the same name is applied to sentential 
through the following definition: "A  contains B "  if and only if A  and B  are
sentential forms in the language (according to the previous definition
every word in A  contains the word in B  in the corresponding position, i.e

if     A  = a1a2 . . . ak     and     B = b1b2 . . . bn 

then a1  contains b1b2 . . . bp1  ,  a
2

 contains b
p1+1

b
p1+2

 . . . b
p2

 ,  and so on

until  a
k

 which contains b
pk-1+1

b
pk-1+2

 . . . b
n

 . 

In the next section we shall give an example of applying the form
described here to the car driving domain and we shall present the voc
trees which can be used to express the contingencies given in table 3.1
effectiveness of this representation formalism in structuring the appl
domain will be illustrated by the realization that the same vocabular
allows for the representation of a much larger set of contingencies,
essentially the same knowledge acquisition effort and similar storage
computational requirements. We shall then conclude this chapter with 
summary of the advantages of this knowledge representation formalism

4.2. Example
In this section we shall present the hierarchical vocabulary (

consequently the grammar) which are sufficient to represent the th
contingencies for the car driving domain listed in table 3.1. Append
contains a description of the vocabulary for representing  the reaction
those for the situations encountered in chapter 3. The vocabularies w
only be able represent the knowledge contained in table 3.1, but also 
more. 

Figure 4.1 presents the hierarchical vocabulary for represen
cont ingencies .
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Object

Animate Non-animate

Human Animal

Child

Cat Cow

A.Small A.Big Large&Hard Small&Hard Large&Soft Small&Soft

BallMeteor Brick Mattress

Large HardSmall Soft

Sign Hole

H.Small H.Medium H.LargeT.light  . . .

Contingency

Object - Motion - Distance Malfunctioning

Figure 4.1. Vocabulary for describing contingencies in the driving domain
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Motion

Crossing Stopped

L->R & Fast L->R & Slow R->L & Fast R->L & Slow

Fast L->RSlow R->L

Same_direction Opposite_direction

Faster Slower

None

Distance

D.Small D.Medium D.Long N/A

Malfunctioning

Warning_light_on Tire

On OffExplosion Flat

Radio

FadeBrake_light Overheat Gas

Figure 4.1. Vocabulary for describing contingencies in the driving domain (continued)
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This hierarchy is equivalent to the following grammar:
G = (N, T, P, S), where:

N = { Contingency, Object, Motion, Distance, Malfunctioning, Sign,
Animate, Non-animate, Hole, Human, Animal, Large, Small, Hard
Soft, A.Small, A.Big, Large&Hard, Small&hard, Large&Soft,
Small&Soft, Same_direction, Crossing, Fast, Slow, LÐ>R, RÐ>L,
Warning_light_on, Tire, Radio }

T = { T.light, Child, Cat, Cow, Meteor, Brick, Mattress, Ball, H.Small,
H.Medium, H.Large, Faster, Slower, Opposite_direction, 
LÐ>R&Fast, LÐ>R&Slow, RÐ>L&Fast, RÐ>L&Slow, Stopped, D.Small,
D.Medium, D.Long, Brake, Overheat, Gas, Explosion, Flat, On, Off,
Fade }

P = { Contingency Ð> Object - Motion - Distance | Malfunctioning
Object Ð> Sign | Animate | Non-animate | Hole
Sign Ð> T.light | . . .
Animate Ð> Human | Animal
Non- Ð> Large | Small | Hard | Soft
Hole Ð> H.Small | H.Medium | H.Large
Human Ð> Child | ...
Animal Ð> A.Small | A.Big
Large Ð> Large&Hard | Large&Soft
Small Ð> Small&Har | Small&Soft
Hard Ð> Large&Hard | Small&Hard
Soft Ð> Large&Soft | Small&Soft
A.Small Ð> Cat | . . .
A.Big Ð> Cow | . . .
Large&Hard Ð> Meteor | . . .
Small&Hard Ð> Brick | . . .
Large&Soft Ð> Mattress | . . .
Small&Soft Ð> Ball | . . .
Motion Ð> Same_direction | Opposite_direction | Crossing | Stopp
Same_direction Ð> Faster | Slower
Crossing Ð> Fast | Slow | LÐ>R | RÐ>L
Fast Ð> LÐ>R&Fast | LÐ>R&Slow | RÐ>L&Fast | RÐ>L&Slow
Distance Ð> D.Small | D.Medium | D.Long | N/A
Malfunctioning Ð>Warning_light_on | Tire | Radio
Warning_light_on Ð> Brake_light | Overheat | Gas
Tire Ð> Explosion | Flat
Radio Ð> On | Off | Fade }

S = Contingency
Some derivations may be done through identification functions.

example, the grammar symbols D.Small, D.Medium, D.Long can be consid
nonterminals (instead of terminals like in the previous example), an
actual values of the distance can be considered terminals. Then, a fu
like:

D.Small = 5 m < distance < 25 m
can be used to perform the transition over the edge linking D.Small wi
actual terminal, say "distance = 20 m".

Every contingency in table 3.1 can now be obtained through a nu
of different derivations in this grammar, and since the reactions to
usually apply to more general contingencies, the derivation can be stop
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higher levels, since a sentential form can contain both terminals 
non-terminals in the grammar. For example, the contingency:

"Child runs from right 20m in front of car" 
can be obtained through the following derivation:

Contingency Ð>
Object - Motion - Distance Ð>
Animate - Motion - Distance Ð>
Animate - Crossing - Distance Ð>
Animate - Crossing - D.Small Ð>
Human - Crossing - D.Small Ð>
Human - Fast - D.Small Ð>
Human - RÐ>L&Fast - D.Small Ð>
Child - RÐ>L&Fast - D.Small Ð>
Child - RÐ>L&Fast - distance=20m.

Any sentential form encountered during this derivation (or durin
other derivation leading to the same contingency) can be used to deno
contingency. Each such sentential form contains (and denotes) the set 
contingencies derivable from it. The same reaction specified for 
contingency in table 3.1. (Brake hard and steer right) would probab
recommended for the entire set of contingencies: "Human - RÐ>L&Fa
D.Small", while the consequences of the contingency would probably hav
same value for an even larger set of contingencies: "Human - Crossi
D.Small".

Clearly, this small vocabulary is not enough to describe all poss
contingencies in the driving domain. It was not our goal to provide s
vocabulary and grammar. However, while every contingency in table 3.
be derived in this formalism, it supports the derivation of many 
contingencies for the driving domain. In fact, just by enlarging the s
terminals, the number of contingencies expressible with this small gra
becomes very large indeed. This fact underlines the most important adv
of this representation formalism, namely imposing a (hierarchical) str
on the set of possible contingencies in the domain, which then makes
much easier to be stored, managed, analyzed and reasoned about.

The knowledge representation formalism used in this chapter allow
collapsing entire sets of contingencies in categories, thus alleviating
problem of knowledge base size explosion.

Another advantage of this representation formalism is that it ca
used in a future work for learning purposes, that is for learning which 
contingencies are similar from certain points of view of the gen
framework for deciding whether to plan to react introduced in this 
which contingencies have the same characteristics, or the same reactio
may appear in the same situations. Concept learning mechanisms ([Mi
1978; Mitchell & al., 1983; Dabija, 1990]) can be applied to continge
represented in this formalism, mainly because the terms "classification
and "concept description" used in machine learning are synonyms wit
description", which represents any sentential form derivable in 
formalism. This representation can also be used to discover new class
contingencies (non-terminals in the vocabulary) which have eluded
expert's attention when specifying the domain, through bias shifting 
automatically [Utgoff, 1988], or interactively with the expert [Dabija &
1992a,b]).



10

The primary disadvantage of the knowledge representation form
described in this chapter is that the expert must define the structure 
domain, that is, must specify both the nonterminals of the grammar (n
the terminals), and the membership and subclass relations among
elements of the vocabulary. This may place some burden on the expe
may make the knowledge acquisition process more difficult. Ano
disadvantage is that each specified vocabulary is domain-dependent (an
user-dependent), as are all the relationships expressed through 
formalism. They all reflect how the expert who participated in the know
acquisition process views the domain. But the advantages (mentioned abo
structuring the domain and significantly reducing the size of the kno
base outweigh by far this disadvantage, with the added benefit that the
is himself compelled to structure his own knowledge of the domain. 
problems may further be alleviated by using the learning techn
mentioned above: some of them will attempt an automatic restructuring 
knowledge base, while others will help the expert to structure his 
knowledge of the domain through interactions with the system. Howeve
knowledge acquisition work has been done as part of this thesis.

The entire previous discussion applies equally well to represen
reactions and situations. Hierarchical vocabularies may be used to cl
reactions since in real domains there are usually a small set of actions 
can be combined to produce useful reactive plans, which are then asso
with classes of (rather than individual) contingencies. This allows a 
structuring of the set of reactions, which in turn ensures better analys
facilitates the reasoning about different sets of related reactions and
characteristics with respect to the framework presented in the pre
chapter .

The same is true for representing situations. Here this represent
formalism is even more useful since the variety of situations in real do
in virtually infinite, so any mechanism which induces a certain structu
facilitates the reasoning process is more than welcome. Identifica
functions are also particularly useful here, since the values of some o
dimensions may belong to continuous sets. Classes of situations de
through this knowledge representation formalism and satisfying 
"contains" relation, are used to more efficiently index contingencies
reactions in the knowledge base (as opposed to indexing them to sp
situations, which would be prohibitive in any reasonably-sized real do
The vocabulary for representing situations may be partitioned into 
distinct vocabularies, one for each dimension of the situation sp
Alternatively, for uniformity of presentation reasons, we can combin
seven vocabularies into a single one, with a new start symbol "Situation", by
adding to the grammar a new production of the form:

Situation Ð> Problem - Plan - Context - Action - Internal_Expectations
External_Expectations - Time,

where Problem, Plan, Context, Action, Internal_Expectations, Time a
External_Expectations , were the start symbols for each of the vocabulari
the seven dimensions of the situation space.

The hierarchical vocabularies (and the grammars they generate
representing the reactions listed in table 3.1 for the car driving domai
for representing certain situations in this domain (including the one
throughout chapter 3) are presented in appendix 2. Some derivatio
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sentential forms encountered in chapter 3 for reactions and situations 
driving domain are also discussed in appendix 2. As in the case
contingencies, these vocabularies can represent a much larger se
reactions and situations than the ones we have encountered durin
presentation in the previous chapters, with very little or no overhead
once again supports our claim regarding the power of the knowl
representation formalism presented here, and outweighs by far
disadvantages.
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Chapter 5
Theoretical Analysis

The dream of any designer is to prove that his product is the ideal 
solve the original problem that motivated the design. In our case, this 
mean proving that the framework introduced in chapter 3 is always a
decide, for any given situation, which of a set of contingencies possible i
situation should be selected at planning time to prepare reactive respon
It would also mean to prove that this is the simplest framework with
property, and also that the set of contingencies selected by it make th
possible use of the agent's execution time resources. But since our objec
to design a framework that is applicable in the most demanding re
domains, theoretically proving all the previous properties is beyond
means. However, we have been able to theoretically justify some of 
properties and some weaker versions of others. For the rest, while w
believe that they hold in our case, we could only provide experim
justifications which are presented in the following chapter.

In this chapter we present the theoretical justifications for a few o
properties stated above. We first justify (through counterexamples) our
that each of the elements included in the framework is necessary, that 
the framework is free of redundancies. Next we claim that the framewor
consistently implement desired behavior models, and that the crit
function defined in section 3.3.2 can implement any known type of re
behavior; we formally justify the first of these claims, and in the next c
we present an experimental justification for the second one. Finally, we
claim that the set of contingencies selected through our framework mak
optimal use of the agent's execution time resources while simulating
desired reactive behavior pattern, and we formally justify it. One more
which cannot be justified theoretically but is verified experimentally 
next chapter is that the knowledge required by our framework in or
execute properly exists and can be acquired in real domains.

But in the next section let us first briefly review the gene
assumptions of our framework, which will be used during this chapter. 
following sections we shall then present our theoretical justifications t
properties of necessity, consistency and optimality of the framework.

5.1. Assumptions
As discussed in chapter 2, during our presentation we have m

certain assumptions about the problem we attempted to solve. T
assumptions refer to both the agent, and the environment in which 
designed to work. The assumptions regarding the agent refer both t
agent's execution capabilities, as well as to the design of its different c
modes.
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The main assumptions for designing our framework were:
m  about the agent capabilities:

l planning (and planning to react)
l monitoring
l reacting
l limited resources (including computational time)

m  about the task environment:
l real-time requirements
l complex - there exist a large (infinite) number of possible situatio
l complex - there exist a large (maybe infinite) number of poss

contingencies in each situation
m  about the agent control modes:

l planning is better than reaction, whenever the resources (inclu
execution time) allow it

l planning (like reaction) is useless whenever there is insufficient 
to reach a solution

l reaction is faster than planning
l limited resources allow only for limited amounts of reaction
We also assume that the agent's knowledge base always conta

whatever information may be necessary for the operation of the fram
Whether such information exists in real life and whether its acquisitio
the knowledge engineer or the agent is possible will not be of concern i
chapter. However, we claim that this information indeed exists and
acquisition is not very difficult, and we support our claim with 
experiments described in the next chapter and performed in different 
requiring quite different types of human expertise.

Note that all the assumptions listed here are not very restrictive. In
they mostly restate the applicability conditions for our framework, pre
in chapter 2. This means that the following results do not lose their gen
from these assumptions.

Any other local assumptions that we shall make in order to allow u
perform theoretical analyses of our particular claims will be stated wh
they apply.

5.2. Necessity
We claim that each element of our framework is indispensable for

final decision, that is that each element in the framework is necessary f
final decision, or alternatively, that the framework is free of redunda
The simplest way to justify this claim is to assume that each element o
framework is redundant (one at a time) and then disprove this assump
presenting a counterexample. This also proves that the elements o
framework are independent (uncorrelated). To do this, we specify a co
decision problem (again in the car driving domain since now we are
familiar with it) and then change the values of each element of
framework, one at a time, and show that this potentially yields a dif
decision each time. This implies that if that element of the framewo
missing, then an ambiguity is allowed in the decision process.

Property : The framework presented in chapter 3 for deciding wheth
plan to react to a given contingency in a given situation is 
of redundancies, i.e. each element of the framework is neces
for the final decision.
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Justification : we shall state a problem, assume in turn that each elem
it is redundant, and show by counterexample that this is not 

Example problem:
Variables:

Situation Space:
Problem: Carry book from home to the office
Plan: Drive car
Context: School time (Weekday, morning, May)
Action: drive straight on Street S, 25 mph
Internal Expectations:reach school
External Expectations:children in sight
Times: 1 - 3 minutes

Contingency: Ball in front of car
Criticality Space:

Timep (Timerc): very high (very short) (9)
Consequences: small (3)
Side-effects: medium-high (6)
Likelihood: medium (5)

Parameters :
Expert Model:

Tmax = 9.5;- maximum time pressure allowed to respond
Tmin = 3; - minimum time pressure required to react
CSmin = 4; - maximum difference allowed between

side-effects and consequences
Lm i n = 3; - minimum likelihood required to react
MON = 1000; - minimum criticality required to monitor

Agent's Knowledge:
7 contingencies:4 of higher criticality than this one, 

2 of lower criticality than this one
Reactive Planner Model: 

 decision trees:
ft:  log: 0.2 * log2(nr_of_conting_with_greater_criticality

Agent Model:
computational overload - implies computational time delay:

fr0: 1.3 * timer 

Behavior Model:  "normal"
Parameters for the criticality function fc:  p1 > p5 > p6 > p2

p1 = 5;    p2 = 1;    p3 = 0;    p4 = 0;   p5 = 3;    p6 = 2
Changing one element of the framework at a time produces 

following changes in the criticality space values and implicitly in
reaction value of this contingency (which imply changes in the 
of including the contingencies in the reactive plan):

Situation Space:
Problem: Carry 3 kg of radioactive material

Changes:increases Side-effects
Plan: Ride a bike

Changes: increases Consequences
decreases Side-effects

Context: Night-time (non-school time)
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Changes:decreases Likelihood
Action: drive straight, 40 mph

Changes:increases Consequences
increases Side-effects
increases Time pressure

Internal Expectations:reach railway crossing
Changes:decreases Likelihood

External Expectations:train in sight
Changes:decreases Likelihood

Times: £ 0.5 seconds
Changes:decreases Likelihood

Note: Any of the changes in the situation space dimensio
mentioned also changes the set of possible contingencies which in
the one under consideration. Some of the changes add continge
with high criticality, so this contingency will get a smaller priorit
being considered for reactive response, others have the opposite e

Cont ingency Child in front of car
Changes: increases Consequences

Expert Model
Tmax: lower (8.5)

Changes: decreases Criticality (as a whole) since timep (9)
becomes greater than Tmax (8.5)

Tmin: higher (9.1)
Changes: decreases Criticality (as a whole) since timep (9)

becomes smaller than Tmin (9.1)
CSmin: lower (2.5)

Changes: decreases Criticality (as a whole) since the
difference side_effects Ð consequences (3)
becomes greater than CSmin (2.5)

Lmin: higher (6)
Changes: decreases Criticality (as a whole) since likelihood

(5) becomes smaller than Lmin (6)
MON: higher (i.e. higher than the criticality of

this contingency)
Changes: do not even monitor (or prepare to react to) this

cont ingency
Agent's Knowledge:

larger: 24 critical contingencies (more critical than this one)
Changes: the chances to prepare reaction to this

contingency decrease because it has a low
reaction value compared to the other
contingencies known for the same situation

Reactive Planner Model:
decision lists: 

ft = linear: 0.2 * nr_contingencies_with_greater_criticality
Changes:increases real response time

Agent Model:
fr0: 1.8 * timer 
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Changes: increases real response time which may
determine it to exceed timerc and thus to be
excluded from the reactive plan

Behavior Model: - changes in the criticality function's (fc)
parameters: 

p1: lower (1)
Changes: decreases criticality - disregards allowed

response time
p2: higher (3)

Changes: increases criticality - stresses consequences
p3: higher (2)

Changes: increases criticality - stresses side-effects
p4: higher (2)

Changes: increases criticality - stresses anything that can
go wrong (both consequences and
side-effects)

p5: lower (1)
Changes: decreases criticality - disregards consequences

p6: higher (5)
Changes: increases criticality - stresses likelihood

(prepares first for the most frequent
cont ingencies)

All these changes in the parameters values of the critical
function denote a change in the behavior model implemented by
framework, and have as effect a change in the ordering 
contingencies by reaction value, which may yield a different set
contingencies to be selected for reactive response.

o
This concludes our justification that each element of our framewo

necessary for the final decision, or alternatively, that the framework is 
redundancies. We have shown that for any such element, there may 
variation in its value which may determine a different outcome of the
decision, and also that such a variation in this value is possible (and
plausible) in the domains under consideration.

5.3. Consistency
I would have liked to be able to say that I proved that the frame

introduced in chapter 3 is always able to decide, for any given situation,
of a set of contingencies possible in that situation should be selecte
planning time to prepare reactive responses for. This would obviously 
this problem forever, and we could all do something else. But since
objective is to design a framework that is applicable in the most dema
real-life domains, theoretically proving this property is beyond our m
However, we are able to theoretically justify a few weaker properties w
would still ensure the usefulness of the framework. On an encouraging
the previous claim actually held in the domains in which  experiments
conducted. And since these domains are significantly varied in nature, w
still conclude that it will be true for a large set of real-world domains.
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We present here the theoretical justification for our claim that
framework for deciding whether to plan to react defined before 
consistently implement behavior models. This actually means that the o
which the contingencies associated with a certain situation are clas
according to their reaction value by our framework is the same order as
by the behavior pattern under consideration.

In order to construct our justification, we start with a few prepar
definitions and we will prove a few other properties along the way too.

Definition : An Evaluation function  (fe) is a function which, given a set of
conditions (pairs contingency-reaction) and a situation in w
they apply, computes a score, with the property: the higher 
score, the better (more appropriate) that set of contingencies
according to a particular reaction philosophy (behavior model).

Def in i t ion : A Behavior model is an order relationship on the set of
contingencies associated with a situation.

The behavior model represents the type of reactive behavior exh
by the agent, that is, given any pair of contingencies and their reaction
situation, which contingency is to be preferred by the agent for reactio
has priority in reacting to, and hence in preparing a reaction for).

O b s .: there is a functional relationship between evaluation functions
behavior models, i.e. every evaluation function characterizes
behavior model, but a behavior model may be characterized by 
of evaluation functions.

D e f i n i t i o n : A R a t i o n a l  behavior is a subset of conditions (pairs
contingency-reaction) such that, given an evaluation function 
an agent with limited resources, there is no other subset 
conditions that gives a better score for this function while satis
the resource limitations.

The notion of rational behavior has been defined independently o
situation characteristics, because all the contingencies that belong to th
subset must first of all apply to the same situation. The only contribution
situation space to the framework is to uniquely define each situation, an
unambiguously identify the contingencies and the reactions associated w

The criticality function fc  (section 3.3.2) defines an order rela
called "more important " on a set of conditions matching a given situatio

Definition : Condition a is more important than b in situation S (a >S  b) if

and only if:
(i) both conditions a and b match situation S
(ii) in situation S: fc (a) > fc (b), i.e. the criticality value of a is hi

than that of b.
 O b s : "more important" is not a partial order relation on the entire 

conditions in the agent's knowledge base, because there may be
situations (S and T) in which both contingencies a  and b  may appear
and such that  a >S  b, and b >T  a. Therefore, the relation "more

important" is only defined in a given situation.
Property : The sum of the criticality values  (reaction values) for a s

conditions is an evaluation function.
J u s t i f i c a t i o n : Let fc (c) be the reaction value of condition (p

contingency-react ion)  c  in situation S , and let C  be a set of
conditions associated with situation S . Then:
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fe(C) = )
is an evaluation function. Indeed, according to the previ
definition of an evaluation function, fc computes a score for a set of

conditions in a situation, and since fc(c) ³  0 for any cÎC (according

to its definition in section 3.3.2), fe  can characterize a behavior

model. This is true because for any condition a  and any set of
different conditions C , CÈ {a} must be preferred to C by the behavior
model (it is never worse to be prepared to react to mo
contingencies, when agent resource limitations are not taken 
account, and here the behavior model has been defin
independently of the agent's resource limitations).

o
Property : For any two conditions a  and b  associated with a same situation S,

we have: a > S  b if and only if, in situation S , the behavior model

prefers condition a  to condition b , i.e. it requires the agent to at
to include the reactive response for condition a  before attempting to
include a reactive response for b  (i.e., according to the behavior
model, given a choice, it is more important that the agent is pre
to react to contingency a  than to contingency b ) .

Just i f icat ion : If a > S  b then fc (a) >  fc (b) in situation S , so for any s

conditions C  not including a  and b :
fe(CÈ{a})  = ) + fc(a)  >  ) + fc(b)  =  fe(CÈ{b}) ,

so the evaluation function gives a higher value for CÈ {a} than 

CÈ {b}, and thus the behavior model requires the agent to attemp
include a  before b  in the reactive plan associated with situation S

C o n v e r s e l y , if the behavior model requires the agent to attemp
include a  before b  in the reactive plan associated with situation S,
then the evaluation function for this behavior model gives a h
value for CÈ {a} than for CÈ {b}, for any set of conditions C  applicable

in situation S  and which do not include a  and b , i.e.:  fe(CÈ {a})  >

fe(CÈ{b}) ,   i.e.:

   )   >  ) ,         that is:
    ) + fc(a)  >  ) + fc(b) ,

and so fc(a) > fc(b) in situation S , i.e. a >S b.

o
Property : The framework presented in chapter 3 for deciding wheth

plan to react to a given contingency in a given situati
consistently implements behavior models.

Justification : The notion of behavior model is only about the preferen
reacting to contingencies, and thus it is only connected to the n
of reaction value, implemented in the framework by the critic
function. The previous property shows that the "more impor
relation introduced by the criticality function orders t
contingencies applicable in a situation in the same way as 
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preferences of the behavior model described by this critica
function. Therefore, the criticality function represents 
appropriate way to describe a reactive behavior model in 
f ramework .

o
Moreover, because of the optimality property proved in the 

section, the framework, using the criticality function ordering
contingencies, can always optimally implement the behavior mode
restricted by the agent's resource limitations, i.e. the rational behavior.

This concludes our justification for the consistency property of
framework. This last property has stopped short of claiming that
framework is sufficient to simulate any behavior pattern desired, 
theoretically there are an uncountable number of behavior models and 
countable number of implementable criticality functions (as a subset of 
of all programs written in a given programming language), so this would
been impossible to prove (actually we just explained it to be false). How
we shall state a much more practical conjecture here.

Conjecture : for each known (cited in the literature) type of behavior,
exists a combination of parameters in our criticality function w
implement it.

This conjecture cannot be actually proved, but can be experimen
supported, as discussed in section 6.3. Coupled with the previous prope
implies that the framework yields the rational behavior for the agent 
an evaluation function (a behavior model), for any distributions of the 
characteristics for the conditions (including any distribution of deadlin
the reactions to contingencies) and for any distributions of the a
resources .

If we are unable to come up with a suitable criticality function f
desired behavior model, then any of a significant number of automa
interactive learning methods may be employed to learn this functio
suggested in chapter 7.

5.4. Optimality
We also claim about our framework that it makes the best use of

execution time resources of the agent. This means that, given a se
contingencies for a situation, the framework will choose not only t
contingencies that are most important to be treated reactively (according
reactive model), but will also select as many as it can so that the reactiv
built for these contingencies maximizes the use of the agent's run
resources .

We first restate here the definition for a rational behavior introd
in the previous section:

D e f i n i t i o n : A R a t i o n a l  behavior is a subset of conditions (pairs
contingency-reaction) such that, given an evaluation function 
an agent with limited resources, there is no other subset 
conditions that gives a better score for this function while satis
the resource limitations.

According to this definition, a rational behavior maximizes 
evaluation function for a given situation and agent model, while in the
time producing a behavior pattern consistent with the agent's behavior 
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Property : In the assumptions of section 5.1, an agent, enhanced wit
framework presented in chapter 3, exhibits the rational behavio
maximizes the use of its resources, while simulating the desi
reactive behavior pattern.

Jus t i f i c a t i on : The criticality value establishes an order on the se
contingencies associated with the situation, according to the de
evaluation function (conf. section 5.3). The decision proc
(function fr  in section 3.4.3) is then applied to each of thes

contingencies, in the order established. There are two poss
outcomes of this process for a contingency which was alrea
considered worth monitoring: if there are enough resources 
estimated by the agent model) then the contingency will be incl
in the reactive plan; otherwise, this contingency will not 
included for reactive response. However, this does not mean tha
agent's resources were exhausted by the set of contingencies alr
considered. It only means that the resources left available are
sufficient to respond to this contingency (while still respondin
useful time to the ones with higher criticality, already include
the reactive plan). Therefore, our framework continues t
evaluation of the remaining contingencies (also in the order
their criticality values) since a less critical contingency m
require less resources and therefore can also be included 
reactive response. No contingency can be added to this set w
each of the remaining contingencies requires more resources 
left available by the ones already in the set. Therefore, we conc
that our framework makes the best use of the agent's resources
estimated by the agent model) given a certain evaluation func
(which expresses a specific desired reactive behavior of the agen

o
We have thus theoretically justified our claim that the framework

have introduced in chapter 3 for deciding whether to plan to react to a
contingency in a certain situation yields the rational behavior for the
given an evaluation function (a behavior model), for any distributions 
set of characteristics for the conditions (including any distributio
deadlines for the reactions to contingencies) and for any distributions 
agent's resources. This fact takes off some burden of our experiments, sin
will only have to conduct experiments for the claims which have
theoretical justification. However, we also present, in chapter 6, the resu
an experimental demonstration of the rational behavior claim as well 
claims justified in the previous section.
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Chapter 6
Exper imen t s

In order to demonstrate the applicability and scalability of the re
decision framework presented in chapter 3, we have run a numbe
experiments. We describe here these experiments and the main concl
that can be drawn from them. In order to demonstrate the generality 
framework, we have conducted the experiments in three different do
the driving domain from which we took most of the examples used duri
previous presentations, and two medical domains of expertise: anesthe
and intensive care patient monitoring. It is well known that different e
in a domain may have different opinions on specific subjects from the d
In order to obtain a consensus of these opinions in the driving domai
have polled 8 experts, and we have combined their opinions in different
It was interesting to find out that the results of these combinations had 
degree of similarity among them, and were well in line with the indiv
opinions of the experts (although among them opinions may have v
significantly). For the medical domains we have only used the advice 
single expert in the field. In the following section we describe the know
acquisition process which we have conducted in the driving domain, a
results. Then we describe a set of experiments in this domain, that supp
claim of optimality for our framework which has been theoretically ju
in the previous chapter. In the third section we present a set of exper
which were aimed to demonstrate how different behavior models ca
described in our framework and how they affect the reactive behavior 
agent using them. We conclude this chapter with a description of how
reaction decision framework proposed here can be included in a co
agent which runs in a real, complex world.

6.1. The Driving Domain
In this domain we were able to collect knowledge from 8 experts, 

most people can be considered experts in this domain, and seven o
colleagues (David Ash, Alex Brousilovski, Lee Brownston, Janet Murdo
Serdar Uckun, Rich Washington and Michael Wolverton) were kind enou
volunteer their valuable time and experience for this part of the p
Beside providing the raw knowledge, they have also made signifi
comments which have helped me clarify the knowledge acquisition pro
involved. I am indebted to all of them (the eighth person in the expe
was myself).

                 Contingency
              Reaction
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  1
Child runs from right, 20 m in front of car
Brake hard and steer right

  2
Car crosses w/o priority 20 m in front, from right to left
Brake and gently steer right

  3
Car in front stops suddenly
Brake hard

  4
Cat runs across street, 20 m in front
Brake hard and steer right gently

  5
Traffic light changes red 40 m in front
Brake hard

  6
Tire explosion
Brake gently and do not steer

  7
A deep and medium width hole detected 30 m in front
Brake hard and steer right gently

  8
Airplane lands in front of car
Brake moderately hard

  9
Brake malfunction light turns on
Brake gently

10
Engine overheat light turns on
Brake gently to stop the car

11
Loud radio turns on suddenly
Adjust radio volume

12
Meteor falls on the trunk of the car
Accelerate hard

13
A ball pops in the street, from the right, at 20 m in front5
Brake hard and steer right

Table 6.1. Contingencies for the car driving domain experiments
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Table 6.1 lists the 13 contingencies (also listed in table 3.1 and use
illustration purposes throughout the thesis) proposed, together wit
reactions for each of them.

The knowledge acquisition problem was to specify a value betwee
and 10 for three of the criticality space dimensions (consequences, side 
and likelihood), and a real time value for the time to respond to
contingency, for each of these 13 contingencies, when considered possi
appear in the following situation:

Problem: Deliver package to work
Plan: Drive car
Context: May, midweek, morning (school time), pass in front of a sch
Ext. Expect.:Children in sight
Int. Expect.:Reaching school zone
Action: Drive straight, 25mph
Times: max. 3 minutes

The experts were instructed to translate their qualitative feelings
quantitative values, and to concentrate more on relative values than 
absolute values they were giving. As some of them have commented, the
used was sometimes closer to logarithmic and sometimes closer to expon
but very seldom (if ever) was it approximately linear.

Each expert was also independently asked to order the set 
contingencies by reaction value, that is, to specify the order in which 
she believes the agent should consider these contingencies for reactio
well as where a threshold on monitoring for them should be placed.
information was then used to evaluate the results of applying our fram
to the data supplied by the experts. The experts were asked to provid
contingency dependent knowledge independently of the final orderin
any case, we believe there is little danger of any conscious correl
between the data supplied by an expert for each contingency and the
preference specified by the same expert, because of the amount of infor
they had to supply - over 50 values each only for contingency data.

I will omit here the individual values supplied by each expert for 
contingency precisely because of the considerable amount of num
involved. I would prefer to comment instead a little on the distribution o
values, although a meaningful statistical analysis would not be fully re
because the still small number of experts involved. The absolute v
specified varied quite a lot. For example, the consequences of not react
the engine overheating was rated between 4 and 10 (on the scale of 0 
where 0 meant no consequences at all), while the likelihood of a 
running in front of the car was rated between 4 and 9. Although the o
of the contingencies differed too (traffic light was placed between firs
seventh while airplane, radio and meteor all varied between the ninth a
thirteenth places), the experts opinions agreed much more on the s
contingencies to be actually taken into account (i.e. the monito
threshold): all of them indicated the first four contingencies as order
table 6.1, all but one indicated the hole, and all but two indicated the c
the tire contingencies. 

This was the first indication that, although individual pairs of ex
may disagree, each of the experts tends to agree with the opinion of the
This conjecture was then supported by a deeper analysis of the rest of t
supplied by the experts. We have further analyzed the order specified 
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experts on the set of contingencies, by assigning an order number to
contingency according to each expert's specification, and then taking
median value, average value, and average of the set of 6 numbers obtai
eliminating the highest and lowest expert specified value for e
contingency independently. In all three cases, the result of orderin
contingencies by the values obtained this way were identical, and
differences with each expert were much smaller than differences be
individual experts. This again supports the previous conjecture. It was
interesting to see that not even one expert had specified the same orde
inferred by all the three statistical methods. A further confirmation o
conjecture came from the fact that, for each characteristic of 
contingencies, the three statistical measures have produced very s
results. Moreover, after eliminating the two extreme values in each cas
remaining values were much closer, which shows that the experts ten
agree with each other most of the time. Also, since different experts
different scales to measure the same qualitative phenomenon, the qua
aspects of their input (orderings) tend to agree more than the quan
formulations (the experiments described further in this chapter will 
that our framework is robust to quantitative variations in the know
specification, and is well suited to extract the qualitative aspects of it, 
are the ones which eventually interest us). 

The analysis of this data also suggested that different experts tak
same (or consistent) decisions, but apparently for different reasons, t
they have different heuristic "formulae" or rules to combine their eva
of the characteristics of events in their domain of expertise. All t
observations support our explicit inclusion in the framework of an 
model, which has the role of calibrating the entire reaction dec
framework according to the set of qualitative_to_quantitative transfor
functions used by the expert providing the domain knowledge.

Cont ingency

Timerc
Timep
Consequences
Side-effects
Likelihood

  1
Child
      1.0
    10.0
        10.0
       6.5
       4.5

  2
Car-X
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      1.0
    10.0
          8.8
       5.7
       4.0

  3
Car stop
      2.0
      5.0
          7.0
       3.2
       6.2

  4
Cat
      1.0
    10.0
          5.2
       5.9
       6.8

  5
T.light
      4.0
      2.5
          6.2
       0.7
       8.8

  6
Tire
      3.0
      3.3
          6.0
       2.8
       2.3

  7
Hole
      2.0
      5.0
          4.5
       4.5
       2.8
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  8
P l ane
      2.5
      4.0
          9.5
       4.5
       0.3

  9
Brake
    30.0
      0.3
          6.2
       1.0
       2.0

10
Heat
    50.0
      0.2
          5.5
       0.3
       2.2

11
Radio
  100.0
      0.1
          1.8
       0.7
       2.0

12
Meteor
      0.1
  100.0
          9.5
       3.2
       0.1

13
Ball
      1.0
    10.0
          0.7
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       5.7
       5.0

Table 6.2. Data values for the car driving domain experiments
In our experiments conducted with data from the driving domain

have used the average_after_extremes_elimination values, obtained fro
raw data provided by the experts as described above. These values
presented in table 6.2. The order in which the contingencies are presen
both tables 6.1 and 6.2 is the average_after_extremes_elimination (whi
mentioned above, is the same as the average and the median) order o
from the pool of experts. The experiments with this set of data are b
presented in the next two sections.

6.2. Optimality
We present here the results of the experiments we have conducte

support the theoretical claims made in chapter 5. Since most of these 
were justified theoretically, these experiments are merely demonstratio
applying the framework. We have used four different reactive planner 
and five agent models to show how the recommendations of the fram
vary and how it continues to ensure the optimal use of the agent's re
for the given agent models.

We have also used a "normal" behavior model, that is we expect
agent to behave the same way as the experts recommend. In calculatin
reaction value of a contingency, this model assigns more weight to the
pressure dimension, followed by the difference between consequence
side-effects, and then likelihood. Consequences are taken into account b
themselves, but also (and mostly) in combination with the side-effects. 
the criticality function parameters given by the behavior model are: 

p1 = 5, p2 = 1, p3 = 0, p4 = 0, p5 = 3, p6 = 2,
where the parameters specified by the expert model (an abst
"average_after_extremes_elimination" expert) are:

Tmax = 20.0;   Tmin = 1.0;   CSmin = 2.3;   Lmin = 1.3;   MON = 10000,
and the function computing the time pressure is:

ftc = 10 / timerc .
In this particular case,  the criticality function (described in se

3.3.2) becomes:
  Criticality = fc (t, c, s, l) =

i f (t > 20) t h e n fc = 0
elseif (c + 2.3 - s < 0)t h e n fc = 0

elseif (t < 1) t h e n fc = 3 * l2)

elseif (l < 1.3) t h e n fc = 3 * l2)

else fc = t5 * c * (c+CSmin-s)3 * l2

Table 6.3 presents the values returned by this function, and the ou
of the monitoring decision of the framework. We provide them only to 
the reader to 'feel' the results of the framework. The monitoring thresho
set by the expert model in a region of the contingency space where ther
substantial gap among the reaction values of the contingencies order
criticality. Since the expert and behavior models do not change durin
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experiments described in this section, these values will not change e
They will however change anytime at least one of the expert or beh
models change. In the experiments described in the following sections w
not include this criticality value anymore. It can however be ea
recomputed from the behavior models, which will always be specified.

    Contingency

     Criticality
    Monitor

     1
 Child
        3.95E9
        yes

     2
 Car-X
        2.21E9
        yes

     3
 Car stop
        1.90E8
        yes

     4
 Cat
        9.84E7
        yes

     5
 Traffic light
        2.22E7
        yes

     6
 Tire
        2.17E6
        yes

     7
 Hole
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        1.34E6
        yes

     8
 Plane
        5.83E2

     9
 Brake
        6.56

    10
 Heat
        1.89

    11
 Radio
        5.3E-2

    12
 Meteor
        0.00

    13
 Ball
        0.00

Table 6.3. Criticality values for the "normal" behavior model,
     for the car driving domain experiments

The first and most important observation of the experiment is tha
framework orders the contingencies by criticality value (based on the
from the "average" expert) identically to the order indicated by the
"average" expert. When presented with this ordering, all the human e
involved have agreed to its rationality.

We must also point out here that the framework proved very robu
that considerable variations in the values of the behavior and expert 
parameters as well as in the absolute values for the dimensions
contingencies have yielded the same order induced by the criticality fu
What really matters is the relative relationship among pairs of elements 
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framework. For example, in the normal behavior model, time pressur
greatest weight. We have experimented with variations of up to 25% i
absolute value of its weight (p1) and have still obtained the same orde
have repeated the experiment for other behavior models were time pres
also considered most important, as well as by varying other paramete
slightly varying individual values of the characteristics of contingencies
in each case we have obtained robust behaviors of the framework. 
suggests that small variations in the values provided by experts shoul
negatively influence the behavior of an agent using this framework.

In the experiments described in this section, we have used the foll
four reactive planner models:

RP1: constructs balanced binary decision trees; the function estimatin
global reacting response time:
ft = kp * log2 (number_of_contingencies_with_³_criticality),

where the average test time is:   kp = 0.2 seconds.
RP2: same as RP1, but the average test time is:   kp = 0.3 seconds.
RP3: constructs decision lists; the function estimating the global rea

response time is linear:
ft = kp * number_of_contingencies_with_³_criticality,
where the average test time is:   kp = 0.2 seconds, and the decision
are built such that the pre-conditions discriminating t
contingencies with the highest time pressure are tested first.

RP4: same as RP3, but the average test time is:   kp = 0.3 seconds.
We have also used five agent models. The only difference among the

the computational load estimated to be imposed on the agent at executio
(for this situation), which has the effect of slowing the agent, that 
increases the response time of the agent to a contingency by a factor Kt:

  fr0 (timer) = timer * Kt ;  

The five agent models used are:
AM1: Kt = 1, that is, there is no computational overhead estimated;
AM2: Kt = 1.3, that is, there is a 30% computational overhead estimated;
AM3: Kt = 1.8, that is, there is an 80% computational overhead estimate
AM4: Kt = 2.5;
AM5: Kt = 4.0.

   Contingency

Monitor
 React   (RPModel = decision trees - kp = 0.2)
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Kt = 1.0
Kt = 1.3
Kt = 1.8
Kt = 2.5
Kt = 4.0

 1
 Child
   yes
    yes
    yes
    yes
    yes
    yes

 2
 Car-X
   yes
    yes
    yes
    yes
    yes
    yes

 3
 Car stop
   yes
    yes
    yes
    yes
    yes

 4
 Cat
   yes
    yes
    yes
    yes
    yes

 5
 Traffic light
   yes



12

    yes
    yes
    yes

 6
 Tire
   yes
    yes
    yes
    yes

 7
 Hole
   yes
    yes
    yes

 8
 Plane

 9
 Brake

10
 Heat
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11
 Radio

12
 Meteor

13
 Ball

Table 6.4. Optimality demonstrations results for reactive planner model 

   Contingency

Monitor
 React   (RPModel = decision trees - kp = 0.3)

Kt = 1.0
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Kt = 1.3
Kt = 1.8
Kt = 2.5
Kt = 4.0

 1
 Child
   yes
    yes
    yes
    yes
    yes
    yes

 2
 Car-X
   yes
    yes
    yes
    yes
    yes

 3
 Car stop
   yes
    yes
    yes
    yes

 4
 Cat
   yes
    yes
    yes

 5
 Traffic light
   yes
    yes
    yes
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 6
 Tire
   yes
    yes

 7
 Hole
   yes
    yes

 8
 Plane

 9
 Brake

10
 Heat
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11
 Radio

12
 Meteor

13
 Ball

Table 6.5. Optimality demonstrations results for reactive planner model
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   Contingency

Monitor
  React   (RPModel = decision lists - kp = 0.2)

Kt = 1.0
Kt = 1.3
Kt = 1.8
Kt = 2.5
Kt = 4.0

 1
 Child
   yes
    yes
    yes
    yes
    yes
    yes

 2
 Car-X
   yes
    yes
    yes
    yes
    yes

 3
 Car stop
   yes
    yes
    yes
    yes
    yes
    yes
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 4
 Cat
   yes
    yes
    yes

 5
 Traffic light
   yes
    yes
    yes
    yes
    yes
    yes

 6
 Tire
   yes
    yes
    yes
    yes
    yes
    yes

 7
 Hole
   yes
    yes
    yes
    yes
    yes

 8
 Plane
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 9
 Brake

10
 Heat

11
 Radio

12
 Meteor

13
 Ball

Table 6.6. Optimality demonstrations results for reactive planner model
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   Contingency

Monitor
  React   (RPModel = decision lists - kp = 0.3)

Kt = 1.0
Kt = 1.3
Kt = 1.8
Kt = 2.5
Kt = 4.0

 1
 Child
   yes
    yes
    yes
    yes
    yes

 2
 Car-X
   yes
    yes
    yes

 3
 Car stop
   yes
    yes
    yes
    yes
    yes
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    yes

 4
 Cat
   yes
    yes

 5
 Traffic light
   yes
    yes
    yes
    yes
    yes
    yes

 6
 Tire
   yes
    yes
    yes
    yes
    yes
    yes

 7
 Hole
   yes
    yes
    yes
    yes

 8
 Plane
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 9
 Brake

10
 Heat

11
 Radio

12
 Meteor

13
 Ball
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Table 6.7. Optimality demonstrations results for reactive planner model
Tables 6.4 to 6.7 summarize the results of our demonstrations. The

the set of contingencies recommended by our framework for rea
response preparation, in each case. As expected, this set decreases wi
increase in the agent computational load, all other things being 
(different columns in the same table). It also decreases with an increase 
cost (here time) of the average tests to be performed (as can be see
comparing the corresponding columns in tables 6.4 and 6.5, as well as th
columns in tables 6.6 and 6.7. In each case, the agent tries to optimize t
of the agent resources (i.e. to include as many contingencies as poss
while maximizing the evaluation function on the subset of sele
contingencies, by essentially including the highest criticality conting
possible. Obviously, the more accurate the agent and planner models us
better the selected contingencies will actually optimize the use of run
resources (the models used here are quite rough - assume all tests ta
same time and that the simple logarithmic and linear formulae stated 
correctly approximate the agent). 

In this example the decision trees model always selects t
contingencies in the strict order of criticality (which need not be the c
general), while the decision lists model allows for gaps in the strict ord
that it can accommodate a larger number of contingencies. This is one
proof that the algorithm proposed in chapter 3 optimizes the use of the
resources. For example, in table 6.7, for Kt = 2.5, the agent can respond to only
one contingency with a response time of maximum 1 second, so it choos
one with largest criticality (the chi ld  contingency); it can respond to
contingencies with maximum response time of 2 seconds (the car_stop  a
hole  contingencies), and so on, but cannot respond to the other contin
with short (1 second) response time, so it will omit them from the fina
Also note that the decision lists based planner model assumes that
contingencies are ordered by the response time allowed (in the final r
plan), and also that the test times for each contingency are constant. 
first of these assumptions would have not been included in the re
planner model, then the default assumption is that the contingencie
ordered by criticality, and then the reactive plan for this case could no
included the hole  contingency since it would have been last in the de
list, and its response time would have exceeded its allowed response time.

One last observation from these experiments is that, for this part
set of data, it confirms our discussion of decision trees versus decision
from section 3.4.1. We argued there that there are frequent cases in wh
set of contingencies recommended by the framework is larger when us
decision lists planner than a decision trees planner, all other things 
equal (which may seem somewhat counterintuitive at the first glance). 
in this demonstration, the decision lists based agent includes m
contingencies than its decision trees based counterpart for most of the
covered. In our example, the evaluation function value is usually grea
the decision trees case, because of a subtle violation of the "all other 
being equal" assumption: the decision trees based planner model assum
there  is no test time needed to reach a response for a single contin
(log2 1 = 0), while the decision lists based planner model assumes that th

needed to reach such a response is still the time needed to perform one 
this assumption would have been made in the first case too, then the d
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lists planner model would have yielded also a higher evaluation functio
its corresponding decision trees counterpart, for the set of conting
recommended in at least some cases (like RP2 and RP4 (kp = 0.3) and AM4t =
4.0)).

6.3. Behavior Models
Though not intended as a simulation of human behavior, our app

to solving the reaction planning decision problem has some pote
applications in this area too. Specifically, it provides the basis for a po
language to discuss the characteristics of different human behavior m
related to this task. In this section we shall propose a way of represent
our framework some such behavior models discussed in the literature, a
as the results of a few experiments we have done using this represen
Our discussion here is by no means intended to give a complete solution
problem of simulating human reactive behaviors, but is only intend
suggest a possible such representation, which needs a lot more resear
prove its usefulness or to find its best application domain.

In section 5.3, we have justified the property that our reaction de
framework consistently implements behavior models. We stated then
conjecture that for most types of reaction-related behaviors cited in
literature, there is a corresponding behavior model encoding in 
framework which implements that type of reaction. Here, we go even a
further, by defining a couple more such behavior models and repres
them in our framework too. Since we found no way to theoretically prov
conjecture, we have conducted a number of experiments designed to sup
which we present in this section. They show how our framework 
determine an agent to exhibit different reactive behaviors for the d
domain described before, while also helping us to clarify the meaning 
different thresholds and parameters in our framework.

Besides the so called "recommended" or "normal" behavior, we h
found six more types of  reaction-related behaviors - sometimes c
hazardous attitudes [Woods & al., 1987; FAA, 1991]. The last two behaviors
proposed by David Gaba (personal communication, 1993). Here is a 
description of each of these behaviors:

m Recommended Behavior - is the normal behavior expected by the exper
and from an expert in the domain.

m Antiauthority Behavior  - is the "don't tell me!" type of behavior
which the agent regards rules, regulations and procedures 
unnecessary, and thus tends to disobey them.

m Impulsivity Behavior - is the "do anything quickly!" type of behavior, i
which the agent attempts to always do the first thing that come
mind, without stopping to think and select the best alternative.

m Invulnerabi l i ty Behavior  - is the "it won't happen to me" type
behavior, in which the agent is always inclined to take risks sinc
believes that the current situation is never one of those (less likel
still possible) situations when something wrong might just happen

m Macho Behavior - is the "I can do it!" type of behavior, in which 
agent wants to impress others, and is ready to take significant risks 
it. It is inclined to react even when not really necessary or when it
be more dangerous than not to react. Such agents either forget 
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the possible side-effects of their actions, or at least discount de
these side-effects.

m Resignation Behavior - is the "what's the use?" type of behavior, in
which the agent faced with a critical situation usually chooses to
nothing, since it underestimates its capacity to respond to the even
the effectiveness of such a response, in the given time frame. It h
tendency to leave such actions to others, for better or for worse.

m Risk-averse Behavior - the agent tries to avoid risk by all means
(considering both the consequences of not being prepared to rea
time, and the possible side-effects of reactions), but may therefore
sometimes less importance to the time pressure.

m Liability Conscious Behavior - the agent is particularly interested in
avoiding any legal liabilities that may arise from its actions. There
it tends to prepare to always do something, preferably what is le
bounding, even if that something may be believed not to succeed in
particular situation. This may prevent the agent to prepare for 
other contingencies which are less liability creating, but which c
have been treated if there were enough resources available.

m Social Responsibility Behavior - the "socially conscious" agent tend
put the interests of the society before those of the individual, incl
itself.
Each of these behaviors can be simulated in our framework by adju

the parameters of the corresponding behavior model. While the a
parameter values are less important, their relative values define the d
behavior models. 

        Behavior Model
           Expert Model

Behavior 
  p1   p2   p3   p4   p5   p6
Tmax  Tmin  CSmax  Lmin

Recommended 
   5     1      0     0     3      2
  20.0      1.0     2.3        1.3

Antiauthority 
   5     1      0     0     3      0

Impulsivity 
   0     0      0     0     0      3
             10.0                  5.0
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Invulnerability 
   5     1      0     0     3      2
                                      4.2

Macho 
   4     1      0     0     0      3
                       10.0

Resignation 
   5     1      0     0     3      2
    5.0

Risk-averse 
   2     2      4     2     1      1

Liability conscious 
   3     3      1     2     1      2
100.0      0.0                  0.0

Social responsibility
   4     3      0     0     4      3

Table 6.8 Representing Behavior Models
Table 6.8 summarizes the representation of these behavior models

our framework. Recall that a behavior model in our framework is imple
by a set of values for the parameters of the criticality function (comput
reaction value of the contingencies), and may also be influenced by 
values of the thresholds given by the expert model (section 3.3). The val
the expert model parameters are completely specified in the table only 
recommended behavior model; for the other models, only values that
changed from the initial specification are given. Also remember that
pressure is the only parameter which can take values outside the in
[0,10], because it is converted from arbitrary real values using the 
specified conversion function ft c . Therefore, the time pressure related
parameters are harder to generalize among domains, as will be notic
appendix 3, where we present the results of the same experiments run 
anesthesiology domain, with the same parameter values as here except f
time pressure dimension. The expert models in table 6.8 were used i
demonstrations in the driving domain.

To illustrate the simulation of these behaviors in our framework
have run the framework with the behavior models presented in table 6
the 13 contingencies presented previously the driving domain. Tabl
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summarizes the results of these experiments. We have also shown the re
values produced by the criticality function. Their absolute values hav
meaning whatsoever; what matters are their relative values (and only 
the same behavior model), which represent the relative value of react
one contingency vs. another in a same situation and under the same b
model. For each behavior, the monitoring threshold was set (throug
expert model) in a region of the contingency space where there 
substantial gap among the reaction values of the contingencies order
criticality. The threshold is represented by a thicker line separatin
contingencies for each behavior into two sets. The numbering 
contingencies for each behavior model is the same as for the recomm
behavior. This was done in order to facilitate comparisons of each be
model with the "normal" one.

In chapter 5, we have defined a behavior model to be an o
relationship on the set of contingencies associated with a situation. The
in the experiments described in this section, we only concentrate on
ordering of contingencies by reaction value (and sometimes relative val
the criticality function, but never on its absolute values), and ignor
issues related to the reactive planner model and the agent model, that
ignore the final decision of applying the framework to a set of conting
This is consistent with the purpose of our demonstrations here, sinc
specific agent (with a given reactive planner and resource limitations
exhibit any of the reaction behaviors discussed, depending only on the
in which its behavior model recommends the contingencies for conside
to be reacted to, and not on the actual components and resources of the 

   Behavior Model 1

   Behavior Model 2

   Behavior Model 3

    (Recommended)

    (Antiauthority)

      (Impulsivity)
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  1
Child
3.95E9
 1
Child
1.95E8
 4
Cat
3.14E2

  2
Car-X
2.21E9
 2
Car-X
1.38E8
 5
T.light
26.10

  3
Car stop
1.90E8
 3
Car stop
4.96E6
 3
Car stop
15.43

  4
Cat
9.84E7
 4
Cat
2.12E6
 1
Child
9.54

  6
T.light
2.22E7
 6
Tire
4.10E5
 2
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Car-X
8.00

  5
Tire
2.17E6
 5
T.light
2.87E5
 7
Hole
4.68

  7
Hole
1.34E6
 7
Hole
1.71E5
 6
Tire
3.48

  8
P l ane
5.83E2
 8
P lane
1.94E3
10
Heat
3.26

  9
Brake
6.56
 9
Brake
3.28
 9
Brake
2.82

10
Heat
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1.89
10
Heat
0.86
11
Radio
2.82

11
Radio
5.3E-2
11
Radio
2.6E-2
 8
P l ane
0.16

12
Meteor
0.00
12
Meteor
0.00
12
Meteor
0.00

13
Ball
0.00
13
Ball
0.00
13
Ball
0.00

Table 6.9 Reactive Behavior Experiments for the Driving Domain

   Behavior Model 4

   Behavior Model 5
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   Behavior Model 6

  (Invulnerability )

          (Macho )

     (Resignation )

 1
Child
3.95E9
 4
Cat
1.63E7
 3
Car stop
1.90E8

 3
Car stop
1.90E8
 1
Child
9.11E6
 5
T.light
2.22E7

 4
Cat
9.84E7
 2
Car-X
5.63E6
 6
Tire
2.17E6
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 5
T.light
2.22E7
 3
Car stop
1.04E6
 7
Hole
1.34E6

 2
Car-X
4.70E4
13
Ball
8.75E5
 8
P lane
5.83E2

 6
Tire
1.47E3
 5
T.light
1.65E5
 9
Brake
6.56

 7
Hole
1.15E3
 7
Hole
6.17E4
10
Heat
1.89

 8
P lane
5.83E2
 6
Tire
9.01E3
11
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Radio
5.3E-2

 9
Brake
6.56
 8
P lane
8.10
 1
Child
0.00

10
Heat
1.89
 9
Brake
0.78
12
Meteor
0.00

11
Radio
5.3E-2
10
Heat
0.30
 2
Car-X
0.00

12
Meteor
0.00
11
Radio
3.7E-2
 4
Cat
0.00

13
Ball
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0.00
12
Meteor
0.00
13
Ball
0.00

Table 6.9 Reactive Behavior Experiments for the Driving Domain (contin

   Behavior Model 7

   Behavior Model 8

   Behavior Model 9

     (Risk-averse )

(Liability conscious )

(Social responsibility)

 1
Child
1.2E11
 1
Child
2.0E11
 1
Child
1.0E12

 2
Car-X
3.7E10
 2
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Car-X
7.0E10
 2
Car-X
3.7E11

 4
Cat
4.39E9
12
Meteor
3.8E10
 3
Car stop
7.0E10

 3
Car stop
5.05E8
 4
Cat
7.56E9
 5
T.light
2.3E10

 7
Hole
1.08E8
 3
Car stop
3.34E9
 4
Cat
2.89E9

 6
Tire
2.40E7
 5
T.light
7.49E7
 6
Tire
2.96E8
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 5
T.light
1.88E5
 7
Hole
7.48E7
 7
Hole
3.49E7

 8
P lane
1.59E5
 6
Tire
5.04E7
 8
P lane
4.10E3

 9
Brake
57.62
 8
P lane
3.17E7
 9
Brake
2.72E2

10
Heat
2.33
 9
Brake
1.37E4
10
Heat
94.70

11
Radio
0.57
10
Heat
4.87E2
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11
Radio
0.78

12
Meteor
0.00
11
Radio
0.34
12
Meteor
0.00

13
Ball
0.00
13
Ball
0.00
13
Ball
0.00

Table 6.9 Reactive Behavior Experiments for the Driving Domain (contin
Here is a brief explanation of the changes required by the param

for each behavior model, with respect to the normal behavior model de
in the previous section, as well as the main effects they have on the or
of the 13 contingencies we have presented in the previous section, for t
driving domain:

m Antiauthority Behavior Model - do not take likelihood into account 
likely events are usually covered by laws, regulations and procedu
The traffic light contingency goes down in criticality, as the only
regulation to be observed as a contingency in our set; the rest re
the same.

m Impulsivity Behavior Model - consider a single response, for a
contingency with great (but serviceable) time pressure and 
likelihood, to allow at least for a reasonable response in a signif
number of cases; the reactive plan will consist of a single reactio
this contingency. Consequences and side-effects are disregarded, w
time pressure is considered only through raising Tmin  (to 10) so as to
include only the high but still acceptable time pressures. Likelihoo
the only one still considered in the reaction value formula, and Lmin is
also raised significantly (Lm i n  = 5). Therefore, the cat  contingency
becomes the only one selected for reaction preparation.

m Invulnerability Behavior Model - Low and medium likelihood
contingencies are considered much less critical ("it won't happe
me..."); only high likelihood contingencies are really conside
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critical, so the Lmin threshold is significantly increased (Lmin = 4.2
our tests, the car crossing contingency falls a lot because its likelihood
becomes lower than this threshold.

m Macho Behavior Model  - Forget about side-effects, and also ta
consequences less into account, since the agent mainly tries to im
others, by preparing for time pressured, but especially lik
contingencies, so that it can react most of the time. The likelih
weight is increased, while the CSmin threshold is also increased (CSm i n
= 10.0) such that it becomes useless. In our demonstration, ball advances
all the way to number 4 because the difference between consequ
and side-effects is not considered here, while cat  advances to number
one since it is more likely than the first three, and its side-effects
also disregarded.

m Resignation Behavior Model - here it is interpreted as underconfidence,
that is underestimating its own abilities, since we only talk ab
reaction preparation at planning time, and not reaction behavi
execution time (were it would have been interpreted as 'giving up')
agent is willing to prepare to respond only to low time pressured e
and therefore the Tm a x  threshold is significantly reduced (by 75
T m a x  = 5). Therefore, many contingencies with higher time pres
get zero reaction value and fall at the end of the list.

m Risk-averse Behavior Model - taking most precautions to avoid risk,
decision process considers mostly the side-effects of the react
followed by the consequences of not reacting and the sum 
consequences and side-effects, and much less time pressure 
likelihood. The driving domain contingencies become roughly ord
by this sum, with a few exceptions: the plane  contingency has very
likelihood, the brake  contingency has very low time pressure, and
meteor  contingency has a too short response time allowed for a re
to be effective.

m Liability Conscious Behavior Model - while the weight of time press
and of the difference between contingencies and side-effects decre
the agent assigns more importance to consequences, side-effects 
their sum. Also, there are no threshold for either time pressur
likelihood (Tmin = Lmin = 0; Tmax  = 100), since a contingency sh
never be discarded only because a reaction to it is believed to be u
Therefore, meteor  becomes very high priority here, and the agent w
prepare roughly in the order of collision with people, moving 
animals, objects. Ba l l  is still not considered here at all because the
side-effects are still much higher (and potentially more liable) tha
consequences. Also in this case, more contingencies are considered
monitoring than usually.

m Social Responsibility Behavior Model - preparing a population optimal
behavior involves considering both consequences alone and 
difference between consequences and side-effects, as well as 
likelihood, more than before (with respect to time pressure). It is c
to the "normal" behavior described in the previous section, with
only difference that traffic light gains priority with respect to 
since this behavior tends to favor groups of people over single pe
and people over animals. Notice here that significant overall cha
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in the values of the parameters, but small changes in their rel
order, have produced a very similar ordering of the contingencie
compared to the recommended behavior.
As can be noticed from the above discussion, the results of th

demonstrations require a certain amount of interpretation. This is ne
especially since the definitions of these behavior models are generally 
on execution time types of reactions, while we attempt here to implemen
at planning time. However, their interpretation shows that they 
reasonable and consistent with the generally accepted (execution-
definition of each behavior model, and that there is a plausible explanat
the results that maps them into the corresponding (conceptual) beh
These demonstrations show that our framework may at least provi
reasonable basis for representing and exchanging information and 
about reaction-related behavior models, and thus for interpreting
studying different behaviors. For example, given a specific behavior (ord
the set of contingencies), we can automatically discover the parameters
behavior model which emulates it, and then we can characterize this b
and maybe attempt to correct it.

The specific values of the different parameters of the behavior m
used may vary in certain limits, producing essentially the same results
fact contributes to the robustness of our framework, and simplifie
knowledge acquisition process by easing the burden of specifying acc
values for the criticality space dimensions by the expert. More importa
the relative values the expert supplies, but this is generally easier to a
Also the expert model may influence some of the behavior models, s
expert should probably be informed in advance about the desired be
model. However, our experiments were conducted without informing
expert on the type of behavior model desired, and as can be seen fro
discussion here (and also according to our experts), the results ar
agreement with the definition of each behavior model.

We have also run the same demonstrations on a set of contingencie
a situation in the anesthesiology domain. Again the results satisfied the 
interpretation of the different behavior models. A brief description o
experiment and a short interpretation of the results for each behavior
are presented in appendix 3.

In the next section we present a final experiment, aimed 
demonstrating that the framework defined in this thesis can scale up 
integrated in complex autonomous agents, designed to work in real, co
domains, and that by doing this, we improve the agent's global real
performance (by making it more responsive to those events that
considered more critical in the domain). This way we not only improv
quantitative performance of the agent, but more importantly, the quality
performance. The experiment presented in the next section was also aim
supporting evidence that the knowledge required to apply our fram
exists in real domains, that it can be reasonably quantified by experts 
domain, and that it can be acquired from these experts and produce rea
results .

6.4. Complex Real World Domain
We present here one more experiment we have conducted with

framework, in a real life medical domain: patient monitoring in an int
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care unit (ICU). This time, our framework was integrated in a com
real-time agent architecture capable of planning, reaction, and dy
replanning: the Guardian system [Hayes-Roth & al., 1992, Hayes-Roth, 1
Our framework has the role of filtering the information which flows fro
planner to the reactive planner, according to the architectural d
outlined in appendix 1.

The two domain experts who have generously advised us (David G
and Serdar Uckun) have identified 68 contingencies for a set of situ
corresponding to a general intensive care monitoring case (figure 6.1).
have also specified heuristic values for the four characteristics for ea
these contingencies. For an easier understanding of the presentation, w
present part of these experiments and most of the data concerned, in a
4, and shall discuss here only the main results.

Problem: Intensive care monitoring
Plan: normal postoperative procedure
Context: after coronary artery bypass grafting (CABG) procedure

50 years old patient, no other history known 
Action: ventilate patient / weaning / extubate patient
Internal Expect:
External Expect:
Time: 0-8 hours / 9-18 hours / 18-48 hours

Figure 6.1. Situations for the ICU domain
Table A4.1 lists the entire set of contingencies and the characte

values for them, in the order specified by the experts (grouped by cat
of complications that may develop).

The first part of this demonstration consisted in running the crit
function part of the framework on this data set, for the recomme
behavior model (section 6.3), for several expert models. We have 
exemplified for a large real-life case, the influence of varying diffe
expert model parameters, over the ordering of contingencies by criti
Appendix 4 presents a partial set of results from this demonstration 
A4.2 to A4.5).

The most important conclusion to be drawn from this demonstrati
that the recommendations of our framework are reasonable from the e
point of view. Our experts have agreed, in each case (i.e. for each expert 
used) with the ordering of the contingencies proposed by our system, 
them reasonable and finding reasonable interpretations for them. Since
is no other (objective) way to evaluate the framework's recommendation
may conclude that the framework and the "normal" behavior model we
defined are a reasonable solution to our original problem.

#
Contingency (Response would be the typical response for this event)
Resp.
t ime

 Conse-
quences  
Side-
ef f .
Likeli-
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 hood
Criti-
cal i ty

34
et-tube-disconnection

2
10
2
4

4.2E12

18
ventr icular - tachycardia

1
9
7
2

2.2E12

13
ventr icular - f ibr i l la t ion

1
10
8
1

6.1E11

35
kinked-et - tube

5
8
2
4

1.8E10

20
hypoxia

5
8
6
4

2.53E9

  7
myocardial- ischemia

5
8
6
3

1.42E9
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15
sinus-bradycardia

5
7
5
3

1.24E9

14
ventr icular -ectopy

5
7
7
6

7.62E8

  5
cardiac-tamponade

5
8.5
7.5
3

6.84E8

19
sinus- tachycardia

10
6
5
7

8.21E7

22
cardiogenic-pulmonary-edema

10
8.5
7
3

3.26E7

  1
myocardial-depression-post-cpb

10
8.5
7
3

3.26E7

32
pulmonary-embol ism
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10
8.5
7.5
3

2.13E7

  6
hypovolemia

20
7
3
7

2.08E7

  3
decreased-preload

20
7
3
7

2.08E7

25
pneumothorax

10
8
7
3

2.01E7

40
acute-hemolyt ic- transfusion-react

10
8.5
5
1

1.28E7

26
hemothorax

10
7
7
4

1.05E7

  9
r ight -hear t - fa i lure

10
8
7
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2
8.94E6

11
postop-hypertens ion

20
6.5
5
4

1.38E6

Table 6.10. Selected Contingencies for kp = 0.5 (30 seconds)
for ExplorerII (kt = 1.166)

The second part of the demonstration considers the behavior of
framework in the context of the Guardian system. The blackboard-b
[Hayes-Roth, 1985] Guardian agent has a reactive planner (ReAct) u
action-based hierarchies [Ash, 1994].

#
Contingency (Response would be the typical response for this event)
Resp.
t ime

 Conse-
quences  
Side-
ef f .
Likeli-
 hood
Criti-
cal i ty

34
et-tube-disconnection

2
10
2
4

4.2E12

18
ventr icular - tachycardia

1
9
7
2

2.2E12

13
ventr icular - f ibr i l la t ion

1
10
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8
1

6.1E11

35
kinked-et - tube

5
8
2
4

1.8E10

20
hypoxia

5
8
6
4

2.53E9

  7
myocardial- ischemia

5
8
6
3

1.42E9

15
sinus-bradycardia

5
7
5
3

1.24E9

14
ventr icular -ectopy

5
7
7
6

7.62E8

  5
cardiac-tamponade

5
8.5
7.5
3

6.84E8
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19
sinus- tachycardia

10
6
5
7

8.21E7

22
cardiogenic-pulmonary-edema

10
8.5
7
3

3.26E7

  1
myocardial-depression-post-cpb

10
8.5
7
3

3.26E7

32
pulmonary-embol ism

10
8.5
7.5
3

2.13E7

  6
hypovolemia

20
7
3
7

2.08E7

  3
decreased-preload

20
7
3
7

2.08E7

25
pneumothorax
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10
8
7
3

2.01E7

40
acute-hemolyt ic- transfusion-react

10
8.5
5
1

1.28E7

26
hemothorax

10
7
7
4

1.05E7

  9
r ight -hear t - fa i lure

10
8
7
2

8.94E6

11
postop-hypertens ion

20
6.5
5
4

1.38E6

  4
increased-afterload

20
6.5
5
4

1.38E6

36
r ight -mainstem- intubat ion

20
6.5
3
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2
1.23E6

16
atrial - f ibri l lat ion

20
7
6
4

9.78E5

41
febr i le -nonhemolyt ic - transfus-react

20
6.5
4
2

6.98E5

67
low-k

30
7.5
5
5

6.63E5

42
mechanica l -b leeding

20
7.5
7.5
4

3.54E5

66
dilutional- low-na

30
7
2
2

3.48E5

64
low-na

30
7
2
2

3.48E5
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17
paroxysmal-supraventr ic - tachycardia

20
6
6
4

2.83E5

23
noncardiogenic-pulmonary-edema

20
8.5
8
2

1.81E5

68
h i g h - k

30
8
7
4

1.47E5

31
bronchospasm

30
8
7
4

1.47E5

62
low-mg

60
7
3
7

8.57E4

45
intr insic-pathway-defects

60
7
3
5

4.37E4

Table 6.11. Selected Contingencies for kp = 0.5 (30 seconds)
for SPARC10 (kt = 1.02)
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The reactive planner model for it (kindly specified by my colleague
its designer, David Ash) states that the reactive plan built tends to b
implicit hierarchy with about 3 levels, with a roughly constant bran
factor throughout. Actually distinguishing a child node in the im
hierarchy is accomplished in the real hierarchy with a decision lis
structure. According to this model, reaching a contingency in the plan
for n contingencies takes roughly a constant time, equal to 3*  time
amount of time for a single test (assuming the tests take approxim
constant time). This assumption can be made in our domain and for our
since tests which take much longer (e.g. laboratory tests) are to be inclu
the main plan by the planner, to be performed regularly so that their 
always meaningful. This is generally the way physicians operate in real
settings. Therefore, for the purpose of our model, we can assume tha
length of a test is roughly given by the time a human operator needs in
to retrieve and check a piece of data and to input it into the comput
approximately 30 seconds. The reactive planner model also allows for a
set of contingencies (say, three) to be hooked directly to the top o
hierarchy, and thus to be reached by tests independently of the 
contingencies to be solved by this reactive plan. This is useful when the
a few very time critical contingencies, and the rest are with a much s
time pressure.

#
Contingency (Response would be the typical response for this event)
Resp.
t ime

 Conse-
quences  
Side-
ef f .
Likeli-
 hood
Criti-
cal i ty

34
et-tube-disconnection

2
10
2
4

4.2E12

18
ventr icular - tachycardia

1
9
7
2

2.2E12
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13
ventr icular - f ibr i l la t ion

1
10
8
1

6.1E11

35
kinked-et - tube

5
8
2
4

1.8E10

20
hypoxia

5
8
6
4

2.53E9

  7
myocardial- ischemia

5
8
6
3

1.42E9

15
sinus-bradycardia

5
7
5
3

1.24E9

14
ventr icular -ectopy

5
7
7
6

7.62E8

  5
cardiac-tamponade

5
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8.5
7.5
3

6.84E8

19
sinus- tachycardia

10
6
5
7

8.21E7

22
cardiogenic-pulmonary-edema

10
8.5
7
3

3.26E7

Table 6.12. Selected Contingencies for kp = 0.6 (36 seconds)
for ExplorerII (kt = 1.166)

The agent model only takes into account the slowdown of the system
to computational overhead. Simulations on two different platforms 
yielded significantly different results: if Guardian is run on Explo
machines, the computational overhead is on average 16% for the sim
time period we are interested in (approximately two hours of simulated
on a SPARC10 workstation, this overhead is reduced to approximately 2%. 
6.10 presents the results of running our entire framework, with the r
planner and agent models described here, for the Guardian agent runn
an ExplorerII platform. Table 6.11 presents the same results for a SPA
workstation. We have run the same experiment for an estimated test ti
20% larger (36 seconds) and the results are presented in tables 6.12 an
for ExplorerII and SPARC10 respectively. In the second case, the system
able to include about 75% more contingencies in the reactive plan. Also
that in all cases the system was able to include about 66% more conting
in the reactive plan to be run on the SPARC10.

#
Contingency (Response would be the typical response for this event)
Resp.
t ime

 Conse-
quences  
Side-
ef f .
Likeli-
 hood
Criti-
cal i ty
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34
et-tube-disconnection

2
10
2
4

4.2E12

18
ventr icular - tachycardia

1
9
7
2

2.2E12

13
ventr icular - f ibr i l la t ion

1
10
8
1

6.1E11

35
kinked-et - tube

5
8
2
4

1.8E10

20
hypoxia

5
8
6
4

2.53E9

  7
myocardial- ischemia

5
8
6
3

1.42E9

15
sinus-bradycardia
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5
7
5
3

1.24E9

14
ventr icular -ectopy

5
7
7
6

7.62E8

  5
cardiac-tamponade

5
8.5
7.5
3

6.84E8

19
sinus- tachycardia

10
6
5
7

8.21E7

22
cardiogenic-pulmonary-edema

10
8.5
7
3

3.26E7

  1
myocardial-depression-post-cpb

10
8.5
7
3

3.26E7

32
pulmonary-embol ism

10
8.5
7.5
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3
2.13E7

  6
hypovolemia

20
7
3
7

2.08E7

  3
decreased-preload

20
7
3
7

2.08E7

25
pneumothorax

10
8
7
3

2.01E7

40
acute-hemolyt ic- transfusion-react

10
8.5
5
1

1.28E7

26
hemothorax

10
7
7
4

1.05E7

  9
r ight -hear t - fa i lure

10
8
7
2

8.94E6
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Table 6.13. Selected Contingencies for kp = 0.6 (36 seconds)
for SPARC10 (kt = 1.02)

The sets of selected contingencies include the first as many as po
contingencies in the order of their criticality value (table A4.2). They d
include the fourth contingency in table A4.2 because of the special tre
of highly time pressured contingencies in the reactive planner mod
allows for three contingencies to be reacted to faster than the rest - oth
the set of contingencies might have included only the first f
contingencies, but very few others if any). Due to the decision tree form 
reactive plan, all leaves are reached in approximately the same time (
3.4.1), so the set of contingencies selected is limited by the response time
most time pressured contingency included (in our case 5 minutes, sin
one and two minute contingencies are treated separately).

These experiments reinforce a few statements we have made along
thesis. They show that the framework proposed here is useful in pruni
set of contingencies for which the agent should prepare to react. Th
however necessary only in such domains where the number of conting
is large enough to pose problems due to agent resource limitations (a
have characterized such domains in chapter 2); Guardian and its doma
typical in this respect. The performance of the enhanced agent improve
the performance of the same agent without the benefit of our frame
because in the latter case, the reactive planner would have prepar
reactive plan to include all 68 contingencies, and due to its size, the re
requirements for such a plan could not achieve reactions to the mos
pressured contingencies in this set. The set of contingencies selected d
on the characteristics of the agent and of its reactive planner (as repr
by the agent model and reactive planner model). The more accurate
models are, the better will be the use of agent resources made by the 
contingencies selected. Also note that the agent may exhibit different r
behaviors, as defined by the reactive behavior model.

Our experiments also show that the necessary data for our framewo
be applicable exists in practice and can be acquired from experts in rea
domains. The more difficult part of the knowledge acquisition process w
identification of the set of contingencies possible in a given situation
acquisition of the characteristic values for them was much easier, esp
since their absolute values are less important than their relative order, 
the robustness of the framework).

The experiments described in this chapter and performed in dif
domains requiring quite different types of human expertise (mundane
highly skilled domains, etc.) demonstrate the applicability of our fram
in the general types of domains described in chapter 2.
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Chapter 7
Conc lus ions

Most research projects have their roots in one or two basic quest
attempt (more or less successfully) to provide answers to these question
during this process usually generate many more new questions than a
This thesis was no exception. In the next section, we present a summary 
answers which our work provides, and in the following section we enum
a few questions raised and research avenues opened during our efforts 
solutions to the original problems stated in chapter 2.

7.1. Summary
Executing plans in the real world has long ago been recognized a

difficult and uncertainty-filled problem, due to contingencies generat
interactions between the executing agent and its environment. Cond
planning, reaction and dynamic replanning are all possible control mo
solve this problem, but none of them alone is entirely suitable for agent
limited resources working in complex environments. Therefore, the 
arises for a mechanism to select, from the set of possible contingencies 
domain, the subsets which should be treated using each of the prev
mentioned control modes. In this thesis we have defined a framework to
the subset of contingencies which are best suited for reactive response
framework's decisions are based on the plan situation under considerati
characteristics of the contingencies and of an expert model specifying 
as well as on the reactive planner and agent models. A behavior m
determines the type of reactive behavior to be exhibited by the agen
these models are designed as application-dependent plug-in modules 
attached to our framework, thus substantially increasing its generalit
applicability across domains and types of agents. The decision of wheth
prepare a reaction to a given contingency or not is taken while consi
the entire set of contingencies that may appear in that situation
relationship with the limitations of the agent's execution time resource
have justified a few theoretical claims about our framework (includin
optimal use of agent's resources), and then we have verified t
experimentally. We have also demonstrated other properties of the fram
the most important being that the reactive behavior of an agent usin
framework has the agreement of the experts in the field.

A couple of extensions to our framework were also discussed. The 
one involves a similar framework to decide on the subset of contingenci
which to prepare a conditional branch (all the way to the final goal) 
plan. The second involves a proposal for a knowledge representa
formalism for the types of knowledge involved in our framew
contingencies, reactions and situations. It was designed to facilitate
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structuring and manipulation of this knowledge, as well as to facilitate t
of automatic knowledge acquisition and learning techniques to cope wi
explosion of the related knowledge in complex domains. However, both 
extensions were discussed only at a theoretical level and, as stated in th
section, they need more work in order to be fully understood and for
potential to be fully used.

7.2. Future Work
It is unfortunate (or maybe actually very fortunate) that a thesis 

encompass an entire research career. Unfortunate because while tryi
solve the originally stated problems, there are so many new problem
arise and which I would have liked to address. Fortunate because I am su
while trying to address these new issues, many other problems would 
and then no thesis would ever be finished. We shall briefly overview in
section a few of the research issues which came up while solving the pr
mentioned before.

Two already stated issues are the extensions to our framework 
above. The first involves the framework for deciding whether to prepare
conditional branch for a contingency. While we have defined the ge
framework in section 3.5, there are many details that still have to be sor
before a usable framework like the one for reactions can be obtained
function computing the conditional planning value of a contingency m
identified and tested, and the values for its parameters must be specified
normal behavior model (and possibly for other types of behavior mo
Guidelines for specifying the planner model and especially the agent 
(from the perspective of conventional plan execution) must also be set.

The second issue involves the knowledge representation forma
proposed in chapter 4. Since specifying the nonterminals of the gra
imposes some additional burden on the experts, it would be very help
devise a set of knowledge acquisition and learning tools to help the exp
this task. We believe that the best results here can be achieved by com
automatic learning methods with interactive knowledge acquisition 
(similarly with the methods used in [Dabija & al., 1992a]). Such an app
would better use the potential for bias shifting [Utgoff, 1988] and co
classification that this knowledge representation formalism is appropria

Another open research issue related to our framework is its pote
integration with case based reasoning and planning techniques. Figur
presents the possible information flow in such a system. The ag
knowledge base (contingencies and associated reactions in specific situ
may be organized as a library of cases. The agent may also have a libr
reactive plans already built (each reactive plan built, may be cached in
library), organized by the situations in which they may apply. New kno
may be added at any time to the case library, and each time an a
encountered situation arises, the reactive plan that may already exist 
plan library is combined with any new contingency-reaction pairs app
in that situation that have been included in the agent's knowledge bas
the last use of this reactive plan. Our framework will decide, for each
situation, which are the best contingencies for which reactions shou
included in the updated reactive plan. If no new relevant knowledge
applicable in the current situation) has been added to the knowledge
since its last use, this reactive plan may be used without any changes or
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Many issues arise here related to the independent management of th
libraries (knowledge structuring, and "forgetting") as well as 
relationships between them. There are also interesting research issues 
to the problem of acquiring the knowledge for the two libraries: know
for each of them may be acquired from an expert (and here inter
knowledge acquisition techniques may be used) or from the agent's
domain experience.

Reactive Plan
     Library

 Case
Library

New Reactive Plan

Formalism for
    Reaction
    Decisions

Main Plan
Situation

Reactive Plan
  Generation

Figure 7.1. Extended system architecture
In domains where strong theories about possible contingencies e

these theories can be used to anticipate all the contingencies that may 
for situations along the plan, and to specify their characteristics. Howev
most domains with which we are concerned, such theories either do not
or they are very weak (e.g. cover the domain only partially, or can ant
only certain kinds of events all over the domain). In such cases, the agen
generate prototype cases (akin to the cases in the case library) and p
solutions for them. They may then be evaluated and compared
corresponding actual cases, and the differences may be used to impro
weak domain theory that has generated them in the first place.

In this thesis we have also introduced a formalism to describe rea
behavior models. As we have shown in chapter 6, most of the human re
behavior models described in the literature can be conveniently expres
our framework, which therefore provides a possible vehicle for the exc
of information on this subject. However, we have only touched the tip 
iceberg in this respect. Considerably more research is needed to refin
formalism so that it can be really useful for providing comp
characterizations of these behavior models and therefore become use
attempts to correct or influence human behaviors in critical domain
nuclear power plant supervision or aircraft flying. For example, in ord
better model the differences between behaviors like social responsibili
ind iv idua l i sm , the consequences dimension of the criticality space m
split into two components: (i) internal-consequences (which directly 
our agent) and (ii) external-consequences (effects of not responding 
contingency, over other agents in the environment).

As stated at the beginning of this section, the range of open prob
suggested by this research is very wide, and we believe that at least p
them are worth further investigation.
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Appendix 1
System Architecture

We briefly present here the way our framework is to be integrate
the general architecture of an agent with planning, reaction and mon
capabilities. We assumed a modular system, in which each component c
principle, be plugged in and out and the agent's performance should 
gracefully. For example, if the agent is to operate without a reactive pl
then it will be able to respond only to the contingencies for which cond
branches have been prepared by the planner, while if it is to operate
with a reactive planner, then the agent should be able to react to a
contingencies for which it has reactions prepared for, but may never 
the overall goal since it lacks the main plan to do it. The framework to 
whether to prepare to react may be regarded as another such module,
when present, ensures that the agent is better prepared to cope wi
different contingencies that may appear during its plan execution. 

An alternative view is that the other agent modules (the plan
reactive planner, execution mechanisms, knowledge base, the expert 
and the behavior model) are all independent modules which can be p
into, and out of, the framework discussed in the thesis. The framewor
defined in a general manner such that all these modules are parameter
will change the outcome of the analysis, but the general principles pre
in chapters 3 and 4 and the theoretical analysis in chapter 5 remain a
(since they all were done independent of any particular such module).
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Conditions
 Extractor

   Agent's
Knowledge
     Base

  Framework
 for Deciding
  Whether to
Plan to React

   Plan
Analyzer

Situation

Expert Model

Agent Model

Reactive Planner
        Model

Behavior Model

     Set of Conditions
(contingency + reaction)

     Reaction
Decision Maker

Set of Conditions

Reactive Plan
   Generator

Monitoring
   Actions

Planner

Reactive
   Plan

Initial
 Plan

Final
Plan

Figure A1.1. System Architecture and Information Flow
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Figure A1 presents how all these modules fit together in a "comp
agent, as well as the information flow during the plan modification pr
We assume this process starts when the planner  has produced a complete
(conditional) plan to solve a given problem. In order to identify the sit
that may generate contingencies in the plan, the plan analyzer scans th
and for each stage (situation) searches the agent's knowledge base for the set
of contingencies that may appear in that situation, and their appro
reactions. Each situation for which there are known contingencies wi
further analyzed to prepare reactive plans for it.

All relevant contingencies found in the agent's knowledge base by the
contingency extractor for a certain situation are passed on to the reac t ion
decision maker which uses our framework presented in chapter 3, toget
with an expert model, a behavior model, the agent model (corresponding to the
execution capabilities of this agent), and the reactive planner m
(corresponding to the reactive planner available to this agent), to selec
contingencies for which reactive responses should be prepared by
reactive plan generator. The reactive plan is passed back to the p l a n n e
together with monitoring actions to be included in the plan. The reactiv
is eventually attached to the context-specific plan and the next stage 
plan will be subsequently analyzed.

This entire process is performed first at planning time, before the 
starts executing the main plan, and is repeated each time the agent is fo
dynamically replan its actions (and generate a new main plan) durin
execution phase because of a major failure in executing the initial main 

One agent with such an architecture with which we have condu
demonstrations of our framework is the Guardian agent (for monit
patients in an intensive care unit) [Hayes-Roth, 1990].  The results of 
demonstrations are discussed in section 6.4.
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Appendix 2
Knowledge Representation
in the Car-Driving Domain

We continue here the example started in section 4.2, with 
hierarchical vocabularies and the corresponding grammars for repres
reactions and situations in the car driving domain. While we do not p
specify the complete vocabularies for this domain, the ones that are 
here are sufficient to represent all the examples encountered in chapter
well as the experiments discussed in chapter 6 for the driving domain
are also enough to represent a good deal more knowledge from this dom

Figure A2.1 presents the hierarchical vocabulary for represen
reactions in the car driving domain. This hierarchy is equivalent (acc
to the formalism discussed in chapter 4) to the following grammar:

G = (N, T, P, S), where:
N = { Reaction, Brake, Steer, Other, Left, Right, Hard, Gently,

Adjust_Radio }
T = { B.Hard, B.Gently, B.None, Left&Hard, Right&Hard, Left&Gently,

Right&Gently, None, Turn_on_Lights, Adjust_Volume,
Adjust_Station, Open_Window }

P = { Reaction Ð> Brake - Steer | Other
Brake Ð> B.Hard | B.Gently | B.None
Steer Ð> Left | Right | Hard | Gently | None
Left Ð> Left&Hard | Right&Hard
Right Ð> Right&Hard | Right&Gently
Hard Ð> Left&Hard | Right&Hard
Gently Ð> Left&Gently | Right&Gently
Other Ð> Turn_on_Lights | Adjust_Radio | Open_Window | ...
Adjust_Radio Ð> Adjust_Volume | Adjust_Station }

S = Reaction



2

Brake

B.Hard B.Gently B.None

Reaction

Brake - Steer Other

Steer

Left & Hard Right & Hard Left & Gently Right & Gently

Left HardRight Gently None

Other

Turn_on_Lights Adjust_Radio Open_Window

Adjust_Volume

. . .

Adjust_Station

Figure A2.1. Vocabulary for describing reactions in the driving doma
Every reaction specified in table 3.1 can be obtained through a nu

of different derivations in this very small and simple grammar. Also, 
other reactions in the driving domain can be expressed using this voca
(this is generally true especially for reactions, since there are usually a
set of actions in a domain which can make up useful reactive plans in
domain). Since general reactions are often enough to be specified,
derivations may be stopped at those levels where the reaction expressed 
sentential form obtained thus far "contains" (according to the order r
defined in chapter 4) all the elementary reactions acceptable in that si
For example, if the agent only needs to reduce speed somewhat, than "
may be sufficient, without qualifying the action further.

Here is an example of deriving the reaction "Brake hard and s
right" to the first contingency in table 3.1 ("Child runs from right 20
front of car"):

Reaction Ð>
Brake - Steer Ð>
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B.Hard - Steer Ð>
B.Hard - Right.

This derivation has already been stopped before reaching a sent
form made up only of terminals in the vocabulary, since the "Ri
nonterminal could have been further refined to one of the two ter
given by the production:

Right Ð> Right&Hard | Right&Gently.
It therefore represents a set of possible reactions, contained in 
description (i.e. derivable from it).

Figure A2.2 presents the hierarchical vocabulary for represen
situations in the car driving domain.

Some productions (both shown in figure A2.2 and omitted) may
realized through identification functions, as shown in chapter 4. For ex
the grammar symbols Slow, Medium, Fast, can be considered nonterm
(instead of terminals like in this example), and the actual values of the
can be considered terminals.
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Situation

Problem

Object - Place

Plan

Airplane Local.Transp Walk . . .

Context

C.Time Weather . . . Direction - Speed Adjust_Control

Action

Figure A2.2a. Vocabulay for describing situations in the driving domain

Internal_Expectations

Object Sound . . .

External_Expectations

Object Sound . . .

Time

Very.Short Short Medium Long Very.Long

Problem Ð Plan Ð Context Ð Action Ð Internal_Expectations Ð External_Expectations Ð Time
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Object

Animate Non-animate

Human Animal

Can_take_care_of_himself

Cat Cow

A.Small A.Big Large & Heavy Small & Heavy Large & Light Small & Light

BallMeteor Brick Mattress

Large HeavySmall Light

Cannot_take_care_of_himself

InfantOld . . . Book

Figure A2.2b. Vocabulay for describing situations in the driving domain (continued)
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Place

Close & Known Far & Known Close & Unknown Far & Unknown

Close KnownFar Unknown

Office

Local.Transp

Drive Ride Public.Transp

Car Truck Bike Horse Bus Subway . . .

C.Time

Day.Time Year.Time

Morning   Afternoon   Evening   Night . . . Winter   Spring   Summer   Fall

Weather

Sunny   Rain   Snow

Figure A2.2c. Vocabulay for describing situations in the driving domain (continued)
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Figure A2.2d. Vocabulay for describing situations in the driving domain (continued)

Steer

Left & Hard Right & Hard Left & Gently Right & Gently

Left HardRight Gently

Straight

Direction

Speed

Slow   Medium   Fast

Constant Accelerate Break

A.Hard   A.Slowly B.Hard   B.Slowly

Adjust_Control

Window Radio . . .

Sound

Type Intensity

Gentle   Harsh Soft   Loud. . . . . .
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An example of such a function may then be:
Slow = fs (speed) = 5 mph < speed < 20 mph,

which can be used to perform the transition over the edge linking "Slow
the actual terminal, say "speed = 15 mph".

We have collapsed the seven vocabularies for representing values
the seven dimensions of the situation space into a single vocabulary, wi
help of the first production of the grammar. Alternatively, we could 
specified seven independent grammars, by throwing out the first prod
and the nonterminal Situation; each of these grammars would have h
starting symbols the nonterminals: Situation, Problem, Plan, Context, A
Internal_Expectations, External_Expectations, Time (respectively), 
productions all the productions which can be reached from their res
start symbols using the productions of the reunited grammar, an
nonterminals and terminals all those from the large grammar which
involved in the productions of each respective grammar.

The hierarchy in figure A2.2 is equivalent (according to the form
discussed in chapter 4) to the following grammar:

G = (N, T, P, S), where:
N = { Situation, Problem, Plan, Context, Action, Internal_Expectations

External_Expectations, Time,
Object, Animate, Human, Cannot_take_care_of_himself, Animal
A.Small, A.Big, Non-animate, Large, Small, Heavy, Light,
Large&Heavy, Small&Heavy, Large&Light, Small&Light, 
Place, Close, Far, Known, Unknown, Close&Unknown,
Local.Transp, Drive, Ride, Public.Transp, 
C.Time, Day.Time, Year.Time, Weather,
Direction, Steer, Left, Right, Hard, Gently,
Speed, Constant, Accelerate, Break, 
Adjust_Control,
Sound, Type, Intensity }

T = { Airplane, Walk, 
Very.Short, Short, Medium, Long, Very.Long,
Can_take_care_of_himself, Old, Infant, Cat, Cow, Meteor, Brick,
Mattress, Book, Ball,
Office, Far&Known, Close&Unknown, Far&Unknown, 
Car, Truck, Bike, Horse, Bus, Subway,
Morning, Afternoon, Evening, Night, 
Winter, Spring, Summer, Fall,
Sunny, Rain, Snow,
Straight, Left&Hard, Right&Hard, Left&Gently, Right&Gently,
Slow, Medium, Fast, A.Hard, A.Slowly, B.Hard, B.Slowly
Window, Radio,
Gentle, Harsh, Soft, Loud,
. . . }

P = { Situation Ð> Problem - Plan - Context - Action -
Internal_Expectations - External_Expectations - Time

Problem Ð> Object - Place
Plan Ð> Airplane | Local.Transp | Walk | . . .
Context Ð> C.Time | Weather | . . .
Action Ð> Direction - Speed | Adjust_Control
Internal_Expectations Ð> Object | Sound | . . .
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External_Expectations Ð> Object | Sound | . . .
Time Ð> Very.Short | Short | Medium | Long | Very.Long
Object Ð> Animate | Non-animate
Animate Ð> Human | Animal
Human Ð> Can_take_care_of_himself |

Cannot_take_care_of_himself
Cannot_take_care_of_himself Ð> Old | Infant | . . .
Animal Ð> A.Small | A.Big
A.Small Ð> Cat | . . .
A.Big Ð> Cow | . . .
Non-animate Ð> Large | Small | Heavy | Light
Large Ð> Large&Heavy | Large&Light
Small Ð> Small&Heavy | Small&Light
Heavy Ð> Large&Heavy | Small&Heavy
Light Ð> Large&Light | Small&Light
Large&Heavy Ð> Meteor | . . .
Small&Heavy Ð> Brick | . . .
Large&Light Ð> Mattress | . . .
Small&Light Ð> Book | Ball | . . .
Place Ð> Close | Far | Known | Unknown
Close Ð> Close&Known | Close&Unknown
Far Ð> Far&Known | Far&Unknown
Known Ð> Close&Known | Far&Known
Unknown Ð> Close&Unknown | Far&Unknown
Close&Unknown Ð> Office | . . .
Local.Transp Ð> Drive | Ride | Public.Transp
Drive Ð> Car | Truck
Ride Ð> Bike | Horse
Public.Transp Ð> Bus | Subway | . . .
C.Time Ð> Day.Time | Year.Time
Day.Time Ð> Morning | Afternoon | Evening | Night | . . .
Year.Time Ð> Winter | Spring | Summer | Fall
Weather Ð> Sunny | Rain | Snow
Direction Ð> Straight | Steer
Steer Ð> Left | Right | Hard | Gently
Left Ð> Left&Hard | Left&Gently
Right Ð> Right&Hard | Right&Gently
Hard Ð> Left&Hard | Right&Hard
Gently Ð> Left&Gently | Right&Gently
Speed Ð> Constant | Accelerate | Break
Constant Ð> Slow | Medium | Fast
Accelerate Ð> A.Hard | A.Slowly
Break Ð> B.Hard | B.Slowly
Adjust_Control Ð> Window | Radio | . . .
Sound Ð> Type | Intensity
Type Ð> Gentle | Harsh | . . .
Intensity Ð> Soft | Loud | . . . }

S = Situation
Most of the driving domain situations encountered during this t

can now be obtained through a number of different derivations in
grammar. Also, many other situations in the driving domain can be exp
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using this vocabulary. Clearly, this vocabulary is not enough to descri
possible contingencies in the driving domain. It was not our goal to p
such a vocabulary and grammar. However, it can be easily extende
encompass, in the same domain, any other desired situation which can
represented yet.

Contingencies and reactions are, in general, associated with sets
situations. Therefore, general situations are most often enough to be sp
and the derivations may be stopped at those levels where the situ
expressed by the sentential form obtained thus far "contains" (accord
the order relation defined in chapter 4) all the elementary situations to
the contingency or reaction apply. This knowledge structuring proper
the representation formalism is most important here, since it helps c
the explosion of the situations in the domain, ensuring the representab
the knowledge needed for our planning-to-react decision framework in
domains.

While most situations encountered in chapter 3 can be derived in
formalism, it also supports the derivation of many other situations fo
driving domain. In fact, just by enlarging the set of terminals, the num
situations expressible with this small grammar becomes very large in
This fact underlines the most important advantage of this represen
formalism, namely imposing a (hierarchical) structure on the set of p
situations in the domain, which then makes them much easier to be 
managed, analyzed and reasoned about.
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Appendix 3
Anesthesiology Domain Experiments

In order to demonstrate the applicability and scalability of the re
decision framework presented in chapter 3, we have run demonstratio
one other domain than those described in chapter 6. We briefly describ
these demonstrations. The domain is anesthesiology, and I am indebted 
David Gaba for letting me benefit from his time and knowledge by servin
role of the domain expert both for the knowledge acquisition task, as w
for the evaluation phase of the experiments. Working in a professional 
of high expertise, we have used this time a single expert to provide u
necessary knowledge (in contrast with the driving domain where we 
acquired it through a statistical analysis of the opinions of a group of 
in the domain, as explained in section 6.1).

Table A3.1 lists the set of 13 contingencies selected for this experim
together with the reactions for each of them (in the "random" order sp
by the expert), for the following situation:

Problem: Anesthetize patient for bowel obstruction
Plan: Induce anesthesia [rapid sequence induction]
Context: Middle of the night, emergency case, patient has corona

artery disease (moderate) and chronic obstructiv
pulmonary disease (severe)

Ext. Expect.:Change in vital signs
Int. Expect.:Patient becomes unresponsive to commands
Action: Rapid sequence induction (Pentothal and Succinylcholi

have just been administered)
Times: 60 seconds.

The expert was asked to translate his qualitative feelings i
quantitative values, and to concentrate more on relative values than 
absolute values he was going to specify. The expert was not asked to ord
contingencies as he feels would be appropriate for a normal behavior. 
we have presented him with the system's results and ask him to evalua
behavior recommended by our framework. The knowledge acquired fro
expert was for the following contingency characteristics: time to res
(real values in seconds), criticality, side-effects, and likelihood (all these
on a scale of [0,10]).

                 Contingency
              Reaction

  1
Patient vomits
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Turn head; suction mouth; intubate

  2
Patient does not "fall asleep"
Check IV and syringe; give more drug

  3
Muscle fasciculations (twitching 2" to drug)
Ensure patient does not fall asleep

  4
Decreased blood pressure
Increase IV rate; administer vasopressor

  5
Increased heart rate
Consider deeper anesthesia or b  blocker

  6
Cardiac Arrest
ACLS (Advanced Cardiac Life Support)

  7
Meteor strikes OR
Move patient out of OR

  8
Failure of pipeline oxygen supply
Switch tanks ON; disconnect pipeline

  9
Failure of 1° and backup electric power
Obtain flashlight

10
Inability to intubate trachea
Ventilate by mask if possible; emer-gency procedures for difficult airway

11
Message from PACU about previous patient
Listen to the message

12
Severe bronchospasm (wheezing)
Ensure correct intubation; treat with bronchodilators

13
O2 saturation decreases to < 90%
Ventilate by mask or tube with 100% O2

Table A3.1. Contingencies for the anesthesia domain experiments
We have also asked the expert to calibrate his data by supplying v

for the expert model parameters for the recommended behavior model.
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values were: 1 second for minimum real time (corresponding to Tm a x
minutes for maximum real time threshold (corresponding to Tm i n ), 1
minimum likelihood (Lmin), and 2.3 for the difference between conseq
and side-effects (CSm i n ). We did not ask the expert to actually give 
function to translate from real time to time pressure, but rather we
specified it ourselves, in such a way as to include most of the time pressu
the interval [0,10]. The function we came up with is:

ftc = k / timerc = 50 / timerc .
We have experimented with significantly different values for k (bet
[10,100]) and the results obtained were remarkably similar (actually mo
identical) with the ones reported here. However, we have settled for the
k = 50, for the reason stated above (all but one time pressure value
between [0,10], with a reasonable spread in this interval). The results 
knowledge acquisition process in this domain are summarized in table A
the same order as the previous table).

      Contingency

t imer c
timep
consequence
side-effect
l ikelihood

  1
vomit
    15.0
    3.33
         8.0
      2.0
      7.0

  2
not fall asleep
    45.0
    1.11
         7.0
      4.0
      4.0

  3
muscle fascic.
  100.0
    0.5
         3.0
      1.0
      8.0

  4
decreased BP
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    15.0
    3.33
         8.0
      5.0
      6.0

  5
increased HR
    15.0
    3.33
         6.0
      6.0
      7.0

  6
cardiac arrest
      5.0
  10.0
       10.0
      7.0
      2.0

  7
meteor
      0.1
500.0
         9.0
      7.0
      0.01

  8
O2 supply fails
    30.0
    1.67
         8.5
      5.0
      1.0

  9
power failure
    30.0
    1.67
         6.0
      5.0
      1.0

10
can't intubate
    10.0
    5.0
         9.5
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      8.0
      5.0

11
PACU message
  200.0
    0.25
         1.0
      1.0
      4.0

12
bronchospasm
    25.0
    2.0
         9.0
      7.0
      6.0

13
O2 sat < 90%
    15.0
    3.33
         8.0
      4.0
      6.0

Table A3.2. Data values for the anesthesiology domain experiments
We have first run the "normal" behavior model on these continge

The values for the criticality function parameters given by the beh
model were the same as for the driving domain:

p1 = 5, p2 = 1, p3 = 0, p4 = 0, p5 = 3, p6 = 2,
with the parameters specified by the expert model (and discussed above
to those given in section 6.2. Table A3.3 summarizes the results of this ru
contingencies are this time numbered in the order specified by the cri
function for this case, which we shall call from now on t
"system-recommended" order (since it was obtained by running the s
with the recommended behavior model). There are two possible moni
thresholds, since there are two significant gaps in the sequence of v
returned by the criticality function.

    Contingency

     Criticality
    Monitor

     1
cardiac arrest
       5.95E8
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        yes

     2
vomit
       9.22E7
        yes

     3
can't intubate
       4.07E7
        yes

     4
O2 sat < 90%
       2.96E7
        yes

     5
decreased BP
       1.76E7
        yes

     6
increased HR
       1.47E6
        yes

     7
bronchospasm
       8.24E5
        yes

     8
not fall asleep
       2.82E4
         ??

     9
O2 supply fail
       2.13E4
         ??
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    10
power failure
       2.77E3
         ??

    11
muscle fascic.
       4.77E2
         ??

    12
PACU messg
       0.19

    13
meteor
       0.00

Table A3.3. Criticality values for the "normal" behavior model,
     for the anesthesiology domain experiments

As mentioned before, the expert was not required to order 
contingencies by reaction value according to his belief of what 
recommended behavior should be like. However, when presented wit
results, he characterized them as "definitely reasonable". This show
significant portability of the behavior model and of all the parameter 
for the criticality function, across domains (since the driving 
anesthesiology domains are significantly different in nature, and the 
have specified their knowledge in the two domains independent of 
o ther) .

We have then run our framework on this data, for all the o
behavior models defined in section 6.3. We summarize in table A3.4 the 
we have used for the criticality function parameters in each run fo
domain. Note that all the behavior model parameters (p1 to p6) have received
identical values for the two domains. Also most of the expert model para
are unchanged, and the changes reflect the different calibrations o
experts when they have specified the data.

        Behavior Model
           Expert Model

Behavior 
  p1   p2   p3   p4   p5   p6
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Tmax  Tmin  CSmax  Lmin

Recommended 
   5     1      0     0     3      2
  50.0   0.028    2.3        1.0

Antiauthority 
   5     1      0     0     3      0

Impulsivity 
   0     0      0     0     0      3
               5.0                  5.0

Invulnerability 
   5     1      0     0     3      2
                                      5.2

Macho 
   4     1      0     0     0      3
                       10.0

Resignation 
   5     1      0     0     3      2
    2.0

Risk-averse 
   2     2      4     2     1      1

Liability conscious 
   3     3      1     2     1      2
500.0      0.0                  0.0

Social responsibility
   4     3      0     0     4      3

Table A3.4 Representing Behavior Models
Table A3.5 summarizes the results of these experiments. We have 

shown the reaction values produced by the criticality function. Their a
values have no meaning whatsoever; what matters are their relative 
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(and only within the same behavior model), which represent the re
value of reacting to one contingency vs. another in a same situation. Fo
behavior, monitoring thresholds were set (for the expert model) in regi
the contingency space where there are big gaps among the reaction val
the contingencies ordered by criticality. The thresholds are represent
thicker lines separating the contingencies for each behavior into two or
sets (in many cases, two possible places were indicated for this threshold

     Behavior Model 1

     Behavior Model 2

     Behavior Model 3

      (Recommended)

      (Antiauthority)

        (Impulsivity)

  1
cardiac arrest
5.95E8
 1
cardiac arrest
1.48E8
 3
can't intubate
1.25E2

  2
vomit
9.22E7
 2
vomit
1.88E6
11
muscle fascic.
22.62

  3
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can't intubate
4.07E7
 3
can't intubate
1.62E6
 2
vomit
18.52

  4
O2 sat < 90%
2.96E7
 4
O2 sat < 90%
8.23E5
 6
increased HR
18.52

  6
decreased BP
1.76E7
 5
decreased BP
4.90E5
 7
bronchospasm
14.69

  5
increased HR
1.47E6
 6
increased HR
3.00E4
 5
decreased BP
14.69

  7
bronchospasm
8.24E5
 7
bronchospasm
2.28E4
 4
O2 sat < 90%
14.69

  8
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not fall asleep
2.82E4
 9
O2 supply fail
2.13E4
 8
not fall asleep
8.00

  9
O2 supply fail
2.13E4
10
power failure
2.77E3
12
PACU messg
8.00

10
power failure
2.77E3
 8
not fall asleep
1.76E3
 1
cardiac arrest
2.82

11
muscle fascic.
4.77E2
11
muscle fascic.
7.45
 9
O2 supply fail
1.00

12
PACU messg
0.19
12
PACU messg
1.1E-2
10
power failure
1.00

13



12

meteor
0.00
13
meteor
0.00
13
meteor
0.00

Table A3.5 Reactive Behavior Experiments for Anesthesiology 

     Behavior Model 4

     Behavior Model 5

     Behavior Model 6

    (Invulnerability)

             (Macho)

        (Resignation)

 2
vomit
9.22E7
 1
cardiac arrest
8.00E5
 7
bronchospasm
8.24E5

 4
O2 sat < 90%
2.96E7
 3
can't intubate
7.42E5
 8
not fall asleep
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2.82E4

 5
decreased BP
1.76E7
 2
vomit
3.28E5
 9
O2 supply fail
2.13E4

 6
increased HR
1.47E6
 6
increased HR
2.54E5
10
power failure
2.77E3

 7
bronchospasm
8.24E5
 5
decreased BP
2.13E5
11
muscle fascic.
4.77E2

 1
cardiac arrest
2.44E4
 4
O2 sat < 90%
2.13E5
12
PACU messg
0.19

 3
can't intubate
6.38E3
 7
bronchospasm
3.11E4
 1
cardiac arrest
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0.00

11
muscle fascic.
4.77E2
 8
not fall asleep
6.82E2
 3
can't intubate
0.00

 8
not fall asleep
1.68E2
11
muscle fascic.
96.00
13
meteor
0.00

 9
O2 supply fail
1.46E2
 9
O2 supply fail
65.58
 2
vomit
0.00

10
power failure
52.65
10
power failure
46.29
 5
decreased BP
0.00

12
PACU messg
0.43
12
PACU messg
0.25
 4
O2 sat < 90%
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0.00

13
meteor
0.00
13
meteor
0.00
 6
increased HR
0.00

Table A3.5 Reactive Behavior Experiments for Anesthesiology (continue

     Behavior Model 7

     Behavior Model 8

     Behavior Model 9

        (Risk-averse)

   (Liability conscious)

  (Social responsibility)

 1
cardiac arrest
7.3E10
13
meteor
7.0E10
 2
vomit
1.0E11

 3
can't intubate
5.3E10
 1
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cardiac arrest
4.2E10
 1
cardiac arrest
6.3E10

 7
bronchospasm
5.13E9
 3
can't intubate
2.4E10
 4
O2 sat < 90%
2.1E10

 5
decreased BP
2.38E9
 5
decreased BP
3.05E9
 3
can't intubate
1.3E10

 6
increased HR
1.20E9
 4
O2 sat < 90%
2.47E9
 5
decreased BP
1.0E10

 4
O2 sat < 90%
9.90E8
 7
bronchospasm
1.61E9
 7
bronchospasm
8.61E8

 9
O2 supply fail
1.32E8
 2
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vomit
1.54E9
 6
increased HR
2.55E8

 2
vomit
6.61E7
 6
increased HR
7.78E8
 8
not fall asleep
2.64E7

 8
not fall asleep
3.97E7
 8
not fall asleep
1.93E7
 9
O2 supply fail
5.36E6

10
power failure
2.49E7
 9
O2 supply fail
1.50E7
10
power failure
1.97E5

11
muscle fascic.
1.23E3
10
power failure
1.99E6
11
muscle fascic.
2.95E5

12
PACU messg
2.30
11



18

muscle fascic.
1.48E4
12
PACU messg
6.99

13
meteor
0.00
12
PACU messg
2.30
13
meteor
0.00

Table A3.5 Reactive Behavior Experiments for Anesthesiology (continue
The numbering of contingencies for each behavior model in table 

is the same as for the recommended behavior. This was done in ord
facilitate comparisons of each behavior model with the "normal" one.

In chapter 5, we have defined a behavior model to be an o
relationship on the set of contingencies associated with a situation. The
in these experiments, we only concentrate on the ordering of conting
by reaction value (and sometimes relative values of the criticality fun
but never on its absolute values), and ignore any issues related to the r
planner model and the agent model, that is we ignore the final decisi
applying the framework to a set of contingencies. This is consistent wit
purpose of our demonstrations here, since any specific agent (with a 
reactive planner and resource limitations) may exhibit any of the re
behaviors discussed, depending only on the order in which its behavior
recommends the contingencies for consideration to be reacted to, and 
the actual components and resources of the agent.

The results of these demonstrations require a certain amount
interpretation (this is necessary especially since the definitions of 
behavior models are generally based on execution time types of reac
while we attempt here to implement them at planning time). For examp
the antiauthority  behavior model, the order of contingencies does not 
much, since here almost all contingencies considered are covered
regulations or procedures; only "not fall asleep" goes down since after a
is precisely what we want to achieve and is therefore best covered
procedures in this case. In the invulnerabil ity  case, "cardiac arrest" and "can'
intubate" fall significantly (possibly even below the monitoring thre
because they are not likely enough in this particular situation (for
particular patient) where the likelihood threshold has been increased 
the type of behavior under consideration. Also "muscle fasciculat
advances a lot because of its high likelihood compared to the o
contingencies. In the liability conscious  behavior, the agent considers almost
all consequences, except "message from PACU" because of its very long tim
response which should allow for replanning (here "meteor strikes ope
room" becomes very high priority, since once it is considered - regardl
its much too short response time allowed - its very high time pressur
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consequences make it very high priority. Similar arguments can be ma
the results of each of the behavior models used in this demonstration.

The interpretation of our results shows (in the expert's opinion)
they are reasonable and consistent with the generally accep
(execution-time) definition of each behavior model, and that there 
plausible explanation for the results that maps them into the corresp
(conceptual) behaviors. These demonstrations again show that our for
may at least provide a reasonable basis for representing and excha
information and ideas about reaction-related behavior models, and th
interpreting and studying different behaviors, in a considerable vari
domains (from mundane tasks like car driving, to highly specialized one
medical domains). A possible use is to start from a specific behavior (ord
the set of contingencies) exhibited by an agent, discover - using ma
learning techniques - the parameters of the behavior model which em
this behavior in our framework, and then use these parameter
characterize the behavior and maybe to attempt to consciously mod
However, these are only speculations at this point, since as stated before
research is still needed to refine such a behavior description formalism 
useful tool for changing ideas among behavioral experts.
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Appendix 4
Intensive Care Domain Experiments

We present here some of the results of the experiments we h
conducted with our framework in the intensive care monitoring domain
appendix mainly complements section 6.4. 

#
Contingency (Response would be the typical response for this event)
Response

time (min)
Conse-quences 

Side-effects
Likeli-hood

  1
myocardial-depression-post-cpb

10 
8.5
7
3

  2
myocardial-depression-sepsis

20 
8

7.5
1

  3
decreased-preload

20 
7
3
7

  4
increased-afterload

20 
6.5
5
4

  5
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cardiac-tamponade
5 

8.5
7.5
3

  6
hypovolemia

20 
7
3
7

  7
myocardial- ischemia

5 
8
6
3

  8
myocardial - infarct ion

60 
6
5
3

  9
r ight -hear t - fa i lure

10 
8
7
2

10
digitalis-toxicity

180 
5
4
2

11
postop-hypertens ion

20 
6.5
5
4

12
cardiac-arrest

1 
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10
8
1

13
ventr icular - f ibr i l la t ion

1 
10
8
1

14
ventr icular -ectopy

5 
7
7
6

15
sinus-bradycardia

5 
7
5
3

16
atrial - f ibri l lat ion

20 
7
6
4

17
paroxysmal-supraventr ic - tachycardia

20 
6
6
4

18
ventr icular - tachycardia

1 
9
7
2

19
sinus- tachycardia

10 
6
5
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7

20
hypoxia

5 
8
6
4

21
respiratory-acidosis

60 
6
4
4

22
cardiogenic-pulmonary-edema

10 
8.5
7
3

23
noncardiogenic-pulmonary-edema

20 
8.5
8
2

Table A4.1 Contingencies for the ICU domain

24
atelectasis

120 
6.5
5

6.5

25
pneumothorax

10 
8
7
3

26
hemothorax

10 
7
7
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4

27
chylothorax

120 
7
7
2

28
aspirat ion-pneumonia

240 
8
5
1

29
pneumonia

240 
7
5
3

30
diaphragmatic-paralysis

600 
8
7
1

31
bronchospasm

30 
8
7
4

32
pulmonary-embol ism

10 
8.5
7.5
3

33
ARDS

120 
8.5
8
2



6

34
et-tube-disconnection

2 
10
2
4

35
kinked-et - tube

5 
8
2
4

36
r ight -mainstem- intubat ion

20 
6.5
3
2

37
disseminated-intravascular-coagulat

60 
8
7
2

38
dilutional-coagulopathy

60 
7
3
5

39
platelet-deficiency

60 
7
3
5

40
acute-hemolyt ic- transfusion-react

10 
8.5
5
1

41
febr i le -nonhemolyt ic - transfus-react
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20 
 6.5
 4
2

42
mechanica l -b leeding

20 
7.5
7.5
4

43
f ibr inogen-defects

60 
7
3
5

44
extrinsic-pathway-defects

60 
7
3
5

45
intr insic-pathway-defects

60 
7
3
5

46
cerebrovascular- i schemia

60 
8.5
7.5
2

47
cerebrovascular-embolism

30 
9

7.5
1

48
endotoxemia

120 
8.5
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8
1

49
r e w a r m i n g

240 
3
3
7

50
hypothermia

240 
4
4
7

51
hyperg lycemia

120 
5
4
2

52
metabolic-acidosis

60 
6.5
4
3

53
acute-renal - fa i lure

300 
9
8
1

54
acute-tubular-necrosis

300 
9
8
1

55
prerenal -azotemia

300 
5
5
3
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56
renal-azotemia

300 
5
6
1

57
renal -embol ism

300 
7
7
1

58
h i g h - c l

120 
6
4
6

59
low-cl

120 
6
4
2

60
h i g h - c a

60 
7
6
1

61
low-ca

60 
6
3
6

62
low-mg

60 
7
3
7

63
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h i g h - m g
60 
8
5
2

64
low-na

30 
7
2
2

65
h i g h - n a

60 
6
3
2

66
dilutional- low-na

30 
7
2
2

67
low-k

30 
7.5
5
5

68
h i g h - k

30 
8
7
4

Table A4.1 Contingencies for the ICU domain (continued)

#
Contingency (Response would be the typical response for this event)
Resp.
t ime

 Conse-
quences  
Side-
 eff.
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Likeli-
 hood
Criti-
cal i ty

34
et-tube-disconnection

2
10
2
4

4.2E12

18
ventr icular - tachycardia

1
9
7
2

2.2E12

13
ventr icular - f ibr i l la t ion

1
10
8
1

6.1E11

12
cardiac-arrest

1
10
8
1

6.1E11

35
kinked-et - tube

5
8
2
4

1.8E10

20
hypoxia

5
8
6
4
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2.53E9

  7
myocardial- ischemia

5
8
6
3

1.42E9

15
sinus-bradycardia

5
7
5
3

1.24E9

14
ventr icular -ectopy

5
7
7
6

7.62E8

  5
cardiac-tamponade

5
8.5
7.5
3

6.84E8

19
sinus- tachycardia

10
6
5
7

8.21E7

22
cardiogenic-pulmonary-edema

10
8.5
7
3

3.26E7

  1
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myocardial-depression-post-cpb
10
8.5
7
3

3.26E7

32
pulmonary-embol ism

10
8.5
7.5
3

2.13E7

  6
hypovolemia

20
7
3
7

2.08E7

  3
decreased-preload

20
7
3
7

2.08E7

25
pneumothorax

10
8
7
3

2.01E7

40
acute-hemolyt ic- transfusion-react

10
8.5
5
1

1.28E7

26
hemothorax

10
7
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7
4

1.05E7

  9
r ight -hear t - fa i lure

10
8
7
2

8.94E6

11
postop-hypertens ion

20
6.5
5
4

1.38E6

  4
increased-afterload

20
6.5
5
4

1.38E6

36
r ight -mainstem- intubat ion

20
6.5
3
2

1.23E6

16
atrial - f ibri l lat ion

20
7
6
4

9.78E5

41
febr i le -nonhemolyt ic - transfus-react

20
6.5
4
2

6.98E5
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67
low-k

30
7.5
5
5

6.63E5

42
mechanica l -b leeding

20
7.5
7.5
4

3.54E5

66
dilutional- low-na

30
7
2
2

3.48E5

64
low-na

30
7
2
2

3.48E5

17
paroxysmal-supraventr ic - tachycardia

20
6
6
4

2.83E5

23
noncardiogenic-pulmonary-edema

20
8.5
8
2

1.81E5

68
h i g h - k
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30
8
7
4

1.47E5

31
bronchospasm

30
8
7
4

1.47E5

62
low-mg

60
7
3
7

8.57E4

45
intr insic-pathway-defects

60
7
3
5

4.37E4

44
extrinsic-pathway-defects

60
7
3
5

4.37E4

43
f ibr inogen-defects

60
7
3
5

4.37E4

39
platelet-deficiency

60
7
3
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5
4.37E4

38
dilutional-coagulopathy

60
7
3
5

4.37E4

  2
myocardial-depression-sepsis

20
8

7.5
1

4.26E4

61
low-ca

60
6
3
6

3.21E4

47
cerebrovascular-embolism

30
9

7.5
1

1.58E4

21
respiratory-acidosis

60
6
4
4

7.63E3

Table A4.2. ICU domain contingencies ordered by criticality 
for Tmin = 0.5 (2 hours) and Lmin = 1

52
metabolic-acidosis

60
6.5
4
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3
6.46E3

63
h i g h - m g

60
8
5
2

4.76E3

65
h i g h - n a

60
6
3
2

3.57E3

  8
myocardial - infarct ion

60
6
5
3

1.94E3

46
cerebrovascular- i schemia

60
8.5
7.5
2

1.22E3

37
disseminated-intravascular-coagulat

60
8
7
2

1.14E3

58
h i g h - c l

120
6
4
6

5.36E2
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24
atelectasis

120
6.5
5

6.5
4.70E2

60
h i g h - c a

60
7
6
1

2.51E2

59
low-cl

120
6
4
2

59.63

33
ARDS

120
8.5
8
2

23.32

51
hyperg lycemia

120
5
4
2

22.46

27
chylothorax

120
7
7
2

10.64

48
endotoxemia

120
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8.5
8
1

5.83

29
pneumonia

240
7
5
3

2.21

10
digitalis-toxicity

180
5
4
2

1.71

50
hypothermia

240
4
4
7

1.52

49
r e w a r m i n g

240
3
3
7

1.32

28
aspirat ion-pneumonia

240
8
5
1

1.07

55
prerenal -azotemia

300
5
5
3
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0.41

54
acute-tubular-necrosis

300
9
8
1

0.32

53
acute-renal - fa i lure

300
9
8
1

0.32

57
renal -embol ism

300
7
7
1

0.16

56
renal-azotemia

300
5
6
1

5.9E-2

30
diaphragmatic-paralysis

600
8
7
1

5.3E-2

Table A4.2. ICU domain contingencies ordered by criticality 
for Tmin = 0.5 (2 hours) and Lmin = 1 (continued)

Table A4.1 lists the entire set of 68 contingencies defined by the ex
in the domain for the situations described in figure 6.1, together with
characteristic valuesm. The contingencies are listed in the order specifi
the experts (grouped by categories of complications that may develop).

The first part of this demonstration consisted in running the crit
function part of the framework on this data set, for the recomme
behavior model (section 6.3). We have done this for several expert m
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which differ in the minimum time pressure threshold (Tm i n ) value, and the
minimum likelihood threshold (Lm i n ) value. We shall present here only the
results of four such experiments, although we have made a much l
n u m b e r .

Table A4.2 shows the order of the contingencies given by the "nor
behavior model for a maximum reaction time of 2 hours (Tmin  = 0.5) and a
minimum likelihood of 1. The rest of the expert model parameters ar
unchanged during all these experiments (they are: ftc = 60 / timerc; Tmax
(36 seconds); CSmin = 2.3).

#
Contingency (Response would be the typical response for this event)
Resp.
t ime

 Conse-
quences  
Side-
ef f .
Likeli-
 hood
Criti-
cal i ty

34
et-tube-disconnection

2
10
2
4

4.2E12

18
ventr icular - tachycardia

1
9
7
2

2.2E12

35
kinked-et - tube

5
8
2
4

1.8E10

20
hypoxia

5
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8
6
4

2.53E9

  7
myocardial- ischemia

5
8
6
3

1.42E9

15
sinus-bradycardia

5
7
5
3

1.24E9

14
ventr icular -ectopy

5
7
7
6

7.62E8

  5
cardiac-tamponade

5
8.5
7.5
3

6.84E8

19
sinus- tachycardia

10
6
5
7

8.21E7

22
cardiogenic-pulmonary-edema

10
8.5
7
3
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3.26E7

  1
myocardial-depression-post-cpb

10
8.5
7
3

3.26E7

32
pulmonary-embol ism

10
8.5
7.5
3

2.13E7

  6
hypovolemia

20
7
3
7

2.08E7

  3
decreased-preload

20
7
3
7

2.08E7

25
pneumothorax

10
8
7
3

2.01E7

26
hemothorax

10
7
7
4

1.05E7

  9
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r ight -hear t - fa i lure
10
8
7
2

8.94E6

11
postop-hypertens ion

20
6.5
5
4

1.38E6

  4
increased-afterload

20
6.5
5
4

1.38E6

36
r ight -mainstem- intubat ion

20
6.5
3
2

1.23E6

16
atrial - f ibri l lat ion

20
7
6
4

9.78E5

13
ventr icular - f ibr i l la t ion

1
10
8
1

7.86E5

12
cardiac-arrest

1
10
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8
1

7.86E5

41
febr i le -nonhemolyt ic - transfus-react

20
6.5
4
2

6.98E5

67
low-k

30
7.5
5
5

6.63E5

42
mechanica l -b leeding

20
7.5
7.5
4

3.54E5

66
dilutional- low-na

30
7
2
2

3.48E5

64
low-na

30
7
2
2

3.48E5

17
paroxysmal-supraventr ic - tachycardia

20
6
6
4

2.83E5
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23
noncardiogenic-pulmonary-edema

20
8.5
8
2

1.81E5

68
h i g h - k

30
8
7
4

1.47E5

31
bronchospasm

30
8
7
4

1.47E5

62
low-mg

60
7
3
7

8.57E4

45
intr insic-pathway-defects

60
7
3
5

4.37E4

44
extrinsic-pathway-defects

60
7
3
5

4.37E4

43
f ibr inogen-defects



28

60
7
3
5

4.37E4

39
platelet-deficiency

60
7
3
5

4.37E4

38
dilutional-coagulopathy

60
7
3
5

4.37E4

61
low-ca

60
6
3
6

3.21E4

21
respiratory-acidosis

60
6
4
4

7.63E3

Table A4.3. ICU domain contingencies ordered by criticality 
for Tmin = 0.5 (2 hours) and Lmin = 2

52
metabolic-acidosis

60
6.5
4
3

6.46E3

63
h i g h - m g



29

60
8
5
2

4.76E3

40
acute-hemolyt ic- transfusion-react

10
8.5
5
1

3.59E3

65
h i g h - n a

60
6
3
2

3.57E3

  8
myocardial - infarct ion

60
6
5
3

1.94E3

46
cerebrovascular- i schemia

60
8.5
7.5
2

1.22E3

37
disseminated-intravascular-coagulat

60
8
7
2

1.14E3

58
h i g h - c l

120
6
4



30

6
5.36E2

24
atelectasis

120
6.5
5

6.5
4.70E2

  2
myocardial-depression-sepsis

20
8

7.5
1

2.06E2

47
cerebrovascular-embolism

30
9

7.5
1

1.25E2

59
low-cl

120
6
4
2

59.63

33
ARDS

120
8.5
8
2

23.32

51
hyperg lycemia

120
5
4
2

22.46
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60
h i g h - c a

60
7
6
1

15.86

27
chylothorax

120
7
7
2

10.64

48
endotoxemia

120
8.5
8
1

2.41

29
pneumonia

240
7
5
3

2.21

10
digitalis-toxicity

180
5
4
2

1.71

50
hypothermia

240
4
4
7

1.52

49
r e w a r m i n g

240
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3
3
7

1.32

28
aspirat ion-pneumonia

240
8
5
1

1.07

55
prerenal -azotemia

300
5
5
3

0.41

54
acute-tubular-necrosis

300
9
8
1

0.32

53
acute-renal - fa i lure

300
9
8
1

0.32

57
renal -embol ism

300
7
7
1

0.16

56
renal-azotemia

300
5
6
1



33

5.9E-2

30
diaphragmatic-paralysis

600
8
7
1

5.3E-2

Table A4.3. ICU domain contingencies ordered by criticality 
for Tmin = 0.5 (2 hours) and Lmin = 2 (continued)

To show the effect of varying the likelihood parameter in the ex
model, table A4.3 presents the ordering of contingencies according to th
behavior model, with all the parameters unchanged except the min
likelihood raised at 2. We can see that highly consequential but low like
contingencies like ventr icular - f ibr i l la t ion  and cardiac-arrest  experience a
significant drop in criticality (from the 3rd place to the 22nd). However
high consequences and high time pressure ensure that they do not fa
much (they are still ranked by the framework in the first third of a
contingencies considered).

#
Contingency (Response would be the typical response for this event)
Resp.
t ime

 Conse-
quences  
Side-
ef f .
Likeli-
 hood
Criti-
cal i ty

34
et-tube-disconnection

2
10
2
4

4.2E12

18
ventr icular - tachycardia

1
9
7
2

2.2E12



34

13
ventr icular - f ibr i l la t ion

1
10
8
1

6.1E11

12
cardiac-arrest

1
10
8
1

6.1E11

35
kinked-et - tube

5
8
2
4

1.8E10

20
hypoxia

5
8
6
4

2.53E9

  7
myocardial- ischemia

5
8
6
3

1.42E9

15
sinus-bradycardia

5
7
5
3

1.24E9

14
ventr icular -ectopy

5



35

7
7
6

7.62E8

  5
cardiac-tamponade

5
8.5
7.5
3

6.84E8

19
sinus- tachycardia

10
6
5
7

8.21E7

22
cardiogenic-pulmonary-edema

10
8.5
7
3

3.26E7

  1
myocardial-depression-post-cpb

10
8.5
7
3

3.26E7

32
pulmonary-embol ism

10
8.5
7.5
3

2.13E7

  6
hypovolemia

20
7
3
7



36

2.08E7

  3
decreased-preload

20
7
3
7

2.08E7

25
pneumothorax

10
8
7
3

2.01E7

40
acute-hemolyt ic- transfusion-react

10
8.5
5
1

1.28E7

26
hemothorax

10
7
7
4

1.05E7

  9
r ight -hear t - fa i lure

10
8
7
2

8.94E6

11
postop-hypertens ion

20
6.5
5
4

1.38E6

  4



37

increased-afterload
20
6.5
5
4

1.38E6

36
r ight -mainstem- intubat ion

20
6.5
3
2

1.23E6

16
atrial - f ibri l lat ion

20
7
6
4

9.78E5

41
febr i le -nonhemolyt ic - transfus-react

20
6.5
4
2

6.98E5

67
low-k

30
7.5
5
5

6.63E5

42
mechanica l -b leeding

20
7.5
7.5
4

3.54E5

66
dilutional- low-na

30
7
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2
2

3.48E5

64
low-na

30
7
2
2

3.48E5

17
paroxysmal-supraventr ic - tachycardia

20
6
6
4

2.83E5

23
noncardiogenic-pulmonary-edema

20
8.5
8
2

1.81E5

68
h i g h - k

30
8
7
4

1.47E5

31
bronchospasm

30
8
7
4

1.47E5

  2
myocardial-depression-sepsis

20
8

7.5
1

4.26E4
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47
cerebrovascular-embolism

30
9

7.5
1

1.58E4

62
low-mg

60
7
3
7

2.92E2

45
intr insic-pathway-defects

60
7
3
5

2.09E2

44
extrinsic-pathway-defects

60
7
3
5

2.09E2

43
f ibr inogen-defects

60
7
3
5

2.09E2

39
platelet-deficiency

60
7
3
5

2.09E2

38
dilutional-coagulopathy
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60
7
3
5

2.09E2

61
low-ca

60
6
3
6

1.79E2

21
respiratory-acidosis

60
6
4
4

87.36

Table A4.4. ICU domain contingencies ordered by criticality 
for Tmin = 2 (30 minutes) and Lmin = 1

52
metabolic-acidosis

60
6.5
4
3

80.43

63
h i g h - m g

60
8
5
2

69.02

65
h i g h - n a

60
6
3
2

59.77

  8
myocardial - infarct ion

60
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6
5
3

44.05

46
cerebrovascular- i schemia

60
8.5
7.5
2

34.95

37
disseminated-intravascular-coagulat

60
8
7
2

33.91

58
h i g h - c l

120
6
4
6

23.16

24
atelectasis

120
6.5
5

6.5
21.70

60
h i g h - c a

60
7
6
1

15.86

59
low-cl

120
6
4
2



42

7.72

33
ARDS

120
8.5
8
2

4.82

51
hyperg lycemia

120
5
4
2

4.73

27
chylothorax

120
7
7
2

3.26

48
endotoxemia

120
8.5
8
1

2.41

29
pneumonia

240
7
5
3

2.21

10
digitalis-toxicity

180
5
4
2

1.71

50
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hypothermia
240
4
4
7

1.52

49
r e w a r m i n g

240
3
3
7

1.32

28
aspirat ion-pneumonia

240
8
5
1

1.07

55
prerenal -azotemia

300
5
5
3

0.41

54
acute-tubular-necrosis

300
9
8
1

0.32

53
acute-renal - fa i lure

300
9
8
1

0.32

57
renal -embol ism

300
7
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7
1

0.16

56
renal-azotemia

300
5
6
1

5.9E-2

30
diaphragmatic-paralysis

600
8
7
1

5.3E-2

Table A4.4. ICU domain contingencies ordered by criticality 
for Tmin = 2 (30 minutes) and Lmin = 1 (continued)

Tables A4.4 and A4.5 show the effect of increasing the time pres
threshold. While table A4.2 contains the contingencies ordered according
expert model which recommends reactions for contingencies with al
response time of up to 2 hours from the time a contingency is detected
A4.4 reduces this time to half an hour (minimum time pressure Tmin = 
table A4.5 reduces it even further, to just 5 minutes (minimum time p
Tmin = 12). Notice that contingencies with very low likelihood but highe
pressure (like myocardial -depress ion-sepsis  and cerebrovascular -embo
advance over more likely contingencies but with time pressure lower th
recommended reaction threshold, in table A4.4. However, when the 
pressure threshold is raised significantly more (table A4.5), we obtai
identical ordering with the initial one in table A4.2, because the expe
recommended reactions only for very time critical contingencies, which
ranked as having high criticality by the framework even from the beg
other things being equal. There is however a significant difference be
tables A4.2 and A4.5 (and to a lesser extent table A4.4), namely a 
threshold for monitoring. In the case of a very low time pressure thresh
hours), there is no such clear threshold, since the criticality of conting
decreases gradually in table A4.2, without a clear gap. This is because, 
the maximum reaction time recommended is very large, the time pressu
contingencies with long allowed response time is so small anyway, that i
not influence the criticality of that contingency too much. This contrast
the cases when the maximum reaction time recommended is small, for 
the time pressure is high enough to make a significant difference in
criticality value. This is why in table A4.5 we have a clear threshold (giv
a significant gap in the sequence of criticality values) after the 
contingency in the sequence (card iac - tamponade ). The same phenom
takes place in table A4.4 after the cerebrovascular-embolism  contingenc
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#
Contingency (Response would be the typical response for this event)
Resp.
t ime

 Conse-
quences  
Side-
ef f .
Likeli-
 hood
Criti-
cal i ty

34
et-tube-disconnection

2
10
2
4

4.2E12

18
ventr icular - tachycardia

1
9
7
2

2.2E12

13
ventr icular - f ibr i l la t ion

1
10
8
1

6.1E11

12
cardiac-arrest

1
10
8
1

6.1E11

35
kinked-et - tube

5
8
2
4



46

1.8E10

20
hypoxia

5
8
6
4

2.53E9

  7
myocardial- ischemia

5
8
6
3

1.42E9

15
sinus-bradycardia

5
7
5
3

1.24E9

14
ventr icular -ectopy

5
7
7
6

7.62E8

  5
cardiac-tamponade

5
8.5
7.5
3

6.84E8

19
sinus- tachycardia

10
6
5
7

9.06E3

22



47

cardiogenic-pulmonary-edema
10
8.5
7
3

5.71E3

  1
myocardial-depression-post-cpb

10
8.5
7
3

5.71E3

32
pulmonary-embol ism

10
8.5
7.5
3

4.62E3

  6
hypovolemia

20
7
3
7

4.56E3

  3
decreased-preload

20
7
3
7

4.56E3

25
pneumothorax

10
8
7
3

4.48E3

40
acute-hemolyt ic- transfusion-react

10
8.5



48

5
1

3.59E3

26
hemothorax

10
7
7
4

3.25E3

  9
r ight -hear t - fa i lure

10
8
7
2

2.99E3

11
postop-hypertens ion

20
6.5
5
4

1.17E3

  4
increased-afterload

20
6.5
5
4

1.17E3

36
r ight -mainstem- intubat ion

20
6.5
3
2

1.11E3

Table A4.5. ICU domain contingencies ordered by criticality 
for Tmin = 12 (5 minutes) and Lmin = 1

16
atrial - f ibri l lat ion

20
7



49

6
4

9.88E2

41
febr i le -nonhemolyt ic - transfus-react

20
6.5
4
2

8.35E2

67
low-k

30
7.5
5
5

8.14E2

42
mechanica l -b leeding

20
7.5
7.5
4

5.95E2

66
dilutional- low-na

30
7
2
2

5.90E2

64
low-na

30
7
2
2

5.90E2

17
paroxysmal-supraventr ic - tachycardia

20
6
6
4

5.32E2
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23
noncardiogenic-pulmonary-edema

20
8.5
8
2

4.25E2

68
h i g h - k

30
8
7
4

3.83E2

31
bronchospasm

30
8
7
4

3.83E2

62
low-mg

60
7
3
7

2.92E2

45
intr insic-pathway-defects

60
7
3
5

2.09E2

44
extrinsic-pathway-defects

60
7
3
5

2.09E2

43
f ibr inogen-defects
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60
7
3
5

2.09E2

39
platelet-deficiency

60
7
3
5

2.09E2

38
dilutional-coagulopathy

60
7
3
5

2.09E2

  2
myocardial-depression-sepsis

20
8

7.5
1

2.06E2

61
low-ca

60
6
3
6

1.79E2

47
cerebrovascular-embolism

30
9

7.5
1

1.25E2

21
respiratory-acidosis

60
6
4
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4
87.36

52
metabolic-acidosis

60
6.5
4
3

80.43

63
h i g h - m g

60
8
5
2

69.02

65
h i g h - n a

60
6
3
2

59.77

  8
myocardial - infarct ion

60
6
5
3

44.05

46
cerebrovascular- i schemia

60
8.5
7.5
2

34.95

37
disseminated-intravascular-coagulat

60
8
7
2

33.91



53

58
h i g h - c l

120
6
4
6

23.16

24
atelectasis

120
6.5
5

6.5
21.70

60
h i g h - c a

60
7
6
1

15.86

59
low-cl

120
6
4
2

7.72

33
ARDS

120
8.5
8
2

4.82

51
hyperg lycemia

120
5
4
2

4.73

27
chylothorax

120



54

7
7
2

3.26

48
endotoxemia

120
8.5
8
1

2.41

29
pneumonia

240
7
5
3

2.21

10
digitalis-toxicity

180
5
4
2

1.71

50
hypothermia

240
4
4
7

1.52

49
r e w a r m i n g

240
3
3
7

1.32

28
aspirat ion-pneumonia

240
8
5
1
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1.07

55
prerenal -azotemia

300
5
5
3

0.41

54
acute-tubular-necrosis

300
9
8
1

0.32

53
acute-renal - fa i lure

300
9
8
1

0.32

57
renal -embol ism

300
7
7
1

0.16

56
renal-azotemia

300
5
6
1

5.9E-2

30
diaphragmatic-paralysis

600
8
7
1

5.3E-2

Table A4.5. ICU domain contingencies ordered by criticality 
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for Tmin = 12 (5 minutes) and Lmin = 1 (continued)
The most important conclusion to be drawn from this demonstrati

that the recommendations of our framework were found to be reasona
our domain experts. They have agreed, in each case (i.e. for each expert
used) with the ordering of the contingencies proposed by our system, 
them reasonable and finding reasonable interpretations for them. Since
is no other (objective) way to evaluate the framework's recommendation
may conclude that the framework and the "normal" behavior model we
defined are a reasonable solution to our original problem.
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1  In order to simplify the analysis for clarity of exposition, we have delibe
excluded the conventional driver's wisdom case that a ball popping up in the s
usually followed by a running child.

2  Again we stress that, in this work we study conscious forms of reaction, prepa
planning time and consciously taken, as opposed to precognitive types of reacti
locomotion type reaction).

3 Hopefully not at the same time...
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5 We have specifically excluded the conventional driver's wisdom case that a ball 
up in the street is usually followed by a running child.


