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Abstract

Intelligent agents that operate in real-world real-time environn
have limited resources. An agent must take these limitations into ac
when deciding which of two control modes - planning versus reaction -
control its behavior in a given situation. The main goal of this thesis
develop a framework that allows a resource-bounded agent to deci
planning time which control mode to adopt for anticipated possible r1
contingencies. Using our framework, the agent: (a) analyzes a com
(conditional) plan for achieving a particular goal; (b) decides which «
anticipated contingencies require and allow for preparation of re
responses at planning time; and (c) enhances the plan with pre
reactions for critical contingencies, while maintaining the size of the
the planning and response times, and the use of all other critical resou
the agent within task-specific limits. For a given contingency, the decisi
plan or react is based on the characteristics of the contingency, the ass
reactive response, and the situation itself. Contingencies that may occur
same situation compete for reactive response preparation because ¢
agent's limited resources. The thesis also proposes a knowledge represe
formalism to facilitate the acquisition and maintenance of knowledge ir
in this decision process. We also show how the proposed framework c:
adapted for the problem of deciding, for a given contingency, whett
prepare a special branch in the conditional plan under development
leave the contingency for opportunistic treatment at execution time. We
a theoretical analysis of the properties of our framework and
demonstrate them experimentally. We also show experimentally that
framework can simulate several different styles of human reactive bel
described in the literature and, therefore, can be wuseful as a Dbasi
describing and contrasting such behaviors. Finally we demonstrate th
framework can be applied in a challenging real domain. That is: (a
knowledge and data needed for the decision making within our fram
exist and can be acquired from experts, and (b) the behavior of an age
uses our framework improves according to response time, reliability
resource utilization criteria.
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Chapter 1
Introduction

How should an intelligent agent prepare to satisfy a goal, while 1
able to respond to the great variety of contingencies that might impe
achievement of goals? Short answer: through planning. For a
comprehensive answer, you may want to read this thesis. It may provic
with a partial answer to this question, but it may also raise many
questions.

Many Al research resources have already been devoted to fin:
solutions to the problem of planning, usually defined as choosing the ne
or steps for the execution of a system, based on knowledge of the p
situation, the system's goals, and the operators available. The essen
planning in AI is the ability to reason about actions and their effects
equally important, this reasoning process can take place before the
execution starts. Therefore, it must deal with all the uncertainties due
fact that the actual situation at execution time can only be assum
planning time, when many characteristics of the environment either
be taken into account, or simply cannot be known. Many activitie
Computer Science can be regarded as instances of planning. One exam
programming, which requires making decisions (at planning -
programming - time) about actions to be performed Ilater, at prc
execution time, based on expectations about the environment in whicl
will be executed. A computer program is a formal specification of hov
resources of the computer will be applied to solve a given problem. Al
conventional plans are not synonymous with programs, as also argu
[Drummond, 1989], we briefly use the analogy here for explanatory pu
The more complex and unpredictable the execution environment is, th
contingencies can occur during a program execution. The programmer
therefore prepare the computer to properly respond to as many of
contingencies as possible, while still keeping the program within
computer resources, that is, it must still be small enough to fit in memc
must still be fast enough to give an answer in a required amount of tin
same situation occurs in all other domains in which planning is require

A special kind of planning is reactive planning, i.e. building a se
specific perception-action rules stored in a computationally efficient
[Brooks, 1986; Agre & Chapman, 1987]. From now on, we will call this ty
planningreaction, as opposed to the conventional type of planning whic
will call simplylanning or sometimes, to clearly distinguish it from react
conditional planning. To continue our parallel with computer prograi
interruptions, traps, exceptions, and error treatment routines in a r
can be regarded as reactions. They are executed as response to a large
of specific situations, and are not necessarily intended to ensure the su
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normal continuation of the program towards completing its final
Sometimes, they are just intended to allow the program to interact gre
with the environment or to help the program recover from a critical
and allow the user to intervene to facilitate the continuation of the p
or maybe to start the execution of another program, or even to write
program (to replan).

All the characteristics discussed so far for computer programi
apply to most domains where planning is needed as a means of en
proper behavior of the system, before starting the actual execution c
system to achieve a given goal. Such domains range from "high-le
cognitive, symbolic domains like medical fields (e.g. anesthesiology, int
care monitoring), to "low-level" manipulation domains like robot mani
control. The common characteristics of all such domains is that their p
tasks can be (at least conceptually) translated into computer program
therefore conform to our previous discussion.

The same planning problem can be of very different levels of diffi
depending on the assumptions made about the environment in which t
is to be executed. For a well structured, "well behaved" environment
will not present "surprises" to the executing agent, the planning prob
much easier than for a more natural environment. In the latter case,
contingencies are possible during plan execution. We will call a contir
any state of the world entered by the executing agent while following a
that should not have occurred as a result of executing the plan up to th
Contingencies are the effect of interactions between the agent anc
environment; they occur because of: (i) predictable actions of
environment, or (ii) the wunpredictability of the environment, or (ii
unpredictability of the execution subsystems of the agent. In the real
the number and variety of contingencies that can occur during the ex
of a plan is unlimited. An ideal planner should take care of all
contingencies and build a "universal" plan [Schoppers, 1987] for the age
has already been shown [Ginsberg, 1989], building such a plan is not f
for interesting application domains, due to practical limitations of the
resources. However, many of these contingencies can be ignored, ¢
because they do not seriously affect the execution of the plan or becau:
have an extremely low likelihood of occurrence. Some of the rema
contingencies may have a very high likelihood of occurrence while
requiring elaborate subplans to treat them. Therefore, these subplans
be included as conditional branches in the original plan. Other signif
less likely contingencies may allow for a very short time of response,
having disastrous consequences if the response does not occur in time
contingencies probably should be treated reactively. These reactions ne
lead the agent to the final goal of the initial plan; it is enough if the
stabilize the situation, avoid the consequences of the contingency, and
the planner to replan a comprehensive solution from the current situs
the final goal. Yet other contingencies, not extremely likely and without
term dramatic consequences, can be ignored at planning time and left
possible replanning phase at execution time: when they appear, the
(which is not under very high time pressure) can suspend execution at
its time to replan a solution from that situation to the final goal. Thi
involve either a complete solution or, more frequently, a patch to bri
agent back to one of the states in its original plan from which it can c
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execution (one such mechanism was implemented by the triangle table
in STRIPS [Nilsson, 1984]).

From the above discussion we can derive the two basic control mode
an agent that must deal with such contingencies: planning and reactic
planning we will understand here both building a courdeefafreaction
starting its execution and dynamic replanning, i.e. interleaving ple
with execution. Each of these two modes has its advantages in ce
circumstances, and we shall summarize them here. [Hayes-Roth, 1993] p
a complete discussion of these characteristics.

Among the strengths of the planning model is the fact that plans c¢
built to have a set of desirable global properties regarding the goals
attained and the resources of the agent. The side effects of the actions
executed as part of the plan can be carefully taken into account and a
before execution begins. These properties are achieved by taking into ¢
complete descriptions of the states of the world as they are predicted
planner. Of course, these states will conform to reality only if
environment behaves according to the model that the planner has at
The more incomplete this model is, the more uncertainty in the behay
the environment, and the more uncertainty about the actual states that
encountered by the agent during plan execution. The final plan has
degree of coherence and is easily comprehensible by a human user (tt
point is very important in domains where the entire credibility of the
depends on how much a user can understand from the reasoning «
system, such as medical domains). The plan generated by a conditional
usually makes a close approximation of the optimal usage of the a
resources. Finally, the planned actions can be executed promptly at ru
(since the agent simply follows a completely specified plan, in which th:
action is taken according to the plan, maybe after evaluating the rest
some tests in the case of conditional plans). However, the planning moc
its weaknesses with respect to the real world. The two main disadvantag
(i) the high computational cost of planning (which makes it necessa
carefully consider which contingencies should be exhaustively treated i
way - otherwise the time to build the plan may become prohibitive); a:
the inflexibility of the planned behavior - the agent can only act in st:
the world which are specified in the plan, and its performance will d
very abruptly with any variations to such states.

The reactive model constructs a set of goal-specific perception-a
rules and stores them in a computationally efficient form. The
advantages of the reactive model are its flexibility of response to a larger
run-time conditions (since each response is less carefully analyzed tt
the previous case, and the response does not need to embody a co
solution to the final goal but can merely be an action to stabilize the s
and allow the time for replanning) and its short time of response (det
by the efficient way of storing the reactive plan). On the other hand, r
still cannot anticipate, distinguish and store all runtime contingencies.
therefore still exhibit precipitous failure in wunanticipated conditions. E
main disadvantage of reaction is that it is taken after a superficial eva
of the current state, and does not benefit from an in depth analysis of t
and the related action consequences. Therefore, while a reaction mu:
locally appropriate, its global effectiveness is uncertain.



The planning and reactive control modes are near the end-points
theoretical continuum of control modes. Together with two other c
modes (reflex and dead-reckoning), they form a two-dimensional
described in [Hayes-Roth, 1993]. Also analyzed there is the correspon
between the space of control modes and a two-dimensional space of ¢
situations, as well as the effect of combining the control modes in di
degrees on the quality of run-time behaviors in the corresponding sp
control situations.

We believe that planning and reacting complement each other,
therefore we envision agents that: (a) plan courses of action design
achieve goals under certain anticipated contingencies - conditional b1
are built in the plan for the very likely contingencies that also re
significant planning to reach the goal; (b) augment these plans
context-dependent reactions for noticing and responding to less likel
important exogenous events; (c) control their behavior by following
plans, while simultaneously monitoring for and, when appropriate, ex
reactions associated with particular phases of their plans; and (d) revis
plans when local reactions do not adequately address unanticipated eve

However, this complementarity of the planning and reaction co
modes in intelligent agents is overlooked by many researchers today.
planning research to date has been concentrated either towards just one
two control modes, or when it attempts to combine them, the main purpo
increase the reactive capabilities of the agent and to unload the conve
planner's responsibilities. In this latter case, the general assumption i
reaction comes for free, that is, either the agent's resources are unlim
the reaction process does not use any significant amount of the a
resources. Unfortunately, this is not the case in reality: any real ager
limited resources, and the reaction process may use significant amounts
agent's resources. This fact has a couple of consequences: (i) a decrease
reactive responsiveness of the agent (or equivalently an increase i
response time to a given contingency), which may make some reac
useless if they come too late, and (ii) a limitation in the number of re
for which the agent can prepare in a given situation. This means th
agent must be more selective in the types of reaction it prepares for
situation, preparing the most important reactions and ignoring the otl
the following chapters we define and characterize the value of reactios
identify those characteristics of the agent and its working environmer
influence the response capabilities of the agent to different situations
may encounter in its working environment. Based on this analysis
formulate a framework to decide, at planning time, which control mc
choose for contingencies that may appear during plan execution, that
framework to decide, at planning time, whether a certain situation r¢
special preparation for a possible reactive response, or whether it can
for dynamic replanning at execution time. The problem is partic
important for planning the activity of an intelligent agent which mus!
in a dynamic, complex, unpredictable real-time environment.

The approach begins with a plan designed to achieve a goal
enhances it to cope reactively with critical contingencies, while maint
the size of the plan and the planning and response times within reas
limits. The framework can also be modified for the problem of deciding,
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given contingency, whether to prepare a special branch in the (condi
plan or to leave the contingency for opportunistic treatment at executic

As an example, consider driving a car between two given locati
Before starting, the driving agent plans its route in some detail, inc
turns at intersections and expectations of achieving milestones along th
in order to minimize travel time. It also prepares a conditional branch
plan as an alternative route in case the original route is blocked at a
intersection where blockage is highly probable. This conditional b
requires extensive planning resources but produces a complete solutio
leads all the way to the final goal. Along the way, the agent in fact encc
unexpected heavy traffic and revises the remainder of its plan to ta
alternate route. As it follows the revised plan, the agent passes a school,
it watches carefufbr children who might suddenly run into the street. A:
leaves the neighborhood of the school and enters an industrial area, th
forgets about children and watches for other coneiggemnaiéway
crossings, trucks coming out of driveways). Note that the agent,
executing the plan, is prepared to react to certain contingencies at d
stages of the plan, while wusing dynamic replanning to solve o
contingencies.

Given certain conditions (like the time of day, the weather, the ty
roads to be used) the agent prepares in advance for possible conting
that may appear on certain portions of the trip. However, it does not
expectations for and responses to these contingencies as steps of the
since they are not essential for the plan to be executed successfully. (
other hand, if they happen and are not responded to properly, the
preclude the successful completion of the plan. Examples of s
contingencies are: sliding on a slippery road in cold weather, an unsi\
object in the street during night time, a child running in front of the c
a nearby school, or a traffic jam at rush hours. Note that these contin
were qualified by the characteristics of the situation in which they are
to appear. For some such contingencies, a reactive response must alread
since the situation does not allow enough time for the agent to rep
solution. There exists an infinite set of such contingencies, so the
cannot prepare to always react to all of them. Moreover, due to li
computational and non-computational resources, if the agent prepares
large a set of contingencies in a situation, selecting the correct respon
the one that actually occurs may become a too long process, thus rer
the response ineffective. However, the responses to such contingencies «
need to include an entire solution to the main plan's ultimate goal; if th
responds to them fast enough to avoid unwanted consequences, then
take the time to replan the entire solution from there on. Since
contingencies are too many and not very likely, they do not warr:
complete conditional branch in the initial plan to lead to the final goal.

Therefore, we need a decision framework to guide the selectior
contingencies for which a reactive response should be prepared at pl
time. This need arises in many domains besides car driving (for examrt
intensive care monitoring, anesthesiology [DeAnda & Gaba, 1991; Fish
1991; Gaba & al, 1991; Gaba 1991], nuclear power plant operation [Woods
1987]). Formulating this framework is an important step toward buildi
control engine of real-time intelligent agents with limited resources for
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domains. The formulation and evaluation (theoretical and experiment
such a framework is the topic of this research.

In the following chapter, we outline the problem in more precise t
We define the notion of contingency and classify contingencies into
according to their importance and the way they should be treated by tt
(with conditional plans, with reactions, or simply ignored at planning
and left for dynamic replanning if necessary). We also characterize
domains where the framework developed here will be most applicable.
a review of related work points out similarities with other paradigms.

Chapter 3 presents the basic approach. After giving an intui
solution for a simple problem in the driving domain and analyzing
solution, we present the details of the framework for the reaction prer
decision. We show how it can be used to establish the value of reacting
contingency in a given situation and to make the decision of whether t
to react to that contingency. The chapter closes with a discussion of hc
framework may be modified and applied to decide whether a ce
contingency, in a given situation, requires preparation of a complete
in the initial conditional plan.

Chapter 4 discusses a proposal for a knowledge representa
formalism for contingencies, reactions and situations, to facilitate
structuring of the planner's knowledge and its manipulation.

Chapter 5 presents a theoretical analysis of the framework present
chapter 3 for deciding whether to plan to react to a given contingenc
given situation. A few formal properties are stated and justified, to s
claims of generality and optimality (in terms of using the agent's resc
for the proposed formalism.

Experimental demonstrations are then presented and briefly anc
in chapter 6. Three domains were used for this purpose: an everyday
where everyone is an "expert" (car driving) and two highly specia
medical domains of expertise (anesthesiology and intensive care monit
Results include simulations of several models of human reactive bel
discussed in the literature. A demonstration in a complex, real-v
application domain shows: (1) that the knowledge and data needed f
decision making process exists and can be acquired from experts in
domain; and (2) that the behavior of the agent improves (accordi:
response time, reliability and resource wuse criteria) as a result
incorporating our decision framework in the agent's planning mechan

After summarizing our work, we make in chapter 7 a few suggestios
natural continuations of this research, including applications of case
reasoning techniques for managing a library of reactive plans and a
of contingencies and reactions, and several applications of lear
mechanisms to different parts of our framework.

Appendix 1 briefly presents the architecture of the reaction de«
module and the interface for integrating the module in an intelligent a

Appendix 2 completes the vocabulary example started in chapter
the driving domain. It presents a large enough grammar to represent r
the situations, contingencies and reactions used as examples from this
throughout the thesis.

In appendix 3 we present the results of a number of experiment
have conducted in the anesthesiology domain, in order to provide |
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evidence regarding the generality and applicability of our framewo
real-world domains.

Finally, appendix 4 complements the presentation of intensive
monitoring domain experiments in chapter 6, by presenting a few co
sets of contingencies as they were ranked by our framework.



Chapter 2
The Problem

In this chapter, we outline the problem in more precise terms.
define the notion of contingency and classify contingencies into three
according to their importance and the way they should be treated by tt
(with conditional plans, with reactions, or simply ignored at planning
and left for dynamic replanning if necessary). We also give a character
of the domains where the framework developed here will be best app
and what its limitations are. Finally a review of related work points
similarities with other planning paradigms.

2.1. Contingencies
Let us consider first a more detailed version of the example present
the previous chapter. Suppose the agent commutes each morning by ca
home (starting point S) to the office (final goal G), as shown in figure 2
will limit ourselves to the study of a small segment of the car's route b
points A and E. Suppose the route comes to an intersection with a traffi
(point B). The fastest route between B and E is through C, which is the
the agent normally takes if the traffic light at point B is green. Howeve
driving agent knows that, if this traffic light is red, then many other
lights between B and E through C will be red when the car will reach
thus making the journey very slow. In the same time, the agent knows I
at point B, it will take a right turn and go through point D, then it car

point E (and therefore the goal G) much faster.

D

Figure 2.1. Conditional plan

The fact (and its associated state of the world) that the traffic light
when the agent reaches the intersection at point B is a contingency, sinc
not a result of the execution of the plan. In this case, the agent prep
complete branch in the conditional plan to treat this contingency.

Suppose now that the point A in the plan built by the agent is a ¢
in front of which the agent passes with its car. If the commute takes plac
time when children are at school, or go to school, the agent prepares ftc
carefully for children who might suddenly run into the street. It also
that in front of a school, a ball may suddenly pop up in front of the car
and many other contingencies (some more of which will be considered
demonstrations described later on) may appear during the time when
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is in the school zone A. As it leaves the neighborhood of the school and
another area (e.g. an industrial area), the agent forgets about childre
balls and prepares for other contingencies (e.g. railway crossings,
coming out of driveways, etc.).

Let us consider for a moment the following three contingencies w
appeared in the previous example: the traffic light at point B, the
running into the street in front of the car, and the ball popping up in

the car. The common characteristic of these three contingencies is that
are not generated as a result of the execution of the plan. We defi
contingency to be any state of the world entered by the executing agen
following a plan, which is not: (i) a direct consequence of executing
actions of the plan up to that point, or (ii) an exogenously generated s
the world assumed in the design of the plan. Therefore, a contingency d
necessarily affect the agent or the plan execution, and when a conti:
does affect the plan, it is not necessary that it will negatively affect i
example, a contingency may be a state which is not the current expecte
according to the plan execution, but is a state which should have been
along the way, after executing some more steps of the plan. The agen
detect it and use it to skip the unnecessary steps in the plan, for exampl
same way as it was done with triangle tables in [Nilsson, 1984]. To simpli
exposition, from here on we will use thentdmgency to also mean any

fact or sign that was not expected as a result of the plan execution, and
may indicate that a state is a contingency according to the previous del

The three contingencies presented above are very different in n
and will be treated differently by our agent. The traffic light contingen«
happen very often (the actual probability to encounter a red signal is
by the length of time the signal is green divided by the length of time i
the signal to complete an entire cycle, provided that the signal is
correlated with another signal previously encountered by the car and t
signal behaves independently of the amount of traffic that passes thro
for a two-way signal equally divided between the two directions of traffi
probability is almost 0.5, though somewhat less because of the color yellc
likelihood of occurrence is significantly (one or more orders of magn
higher than that of the other two contingencies. The treatment of
contingency (by following an alternate route through point D to reach j
and then the goal G) also needs an elaborate plan which must be prep:
advance (otherwise, after turning right at the traffic light, the agent
stop and replan its route by possibly using maps, which may take a
enough time to wipe out any savings obtained by avoiding the traffic lig
the path through C). Therefore, the agent must prepare a conditional
in the main plan for this contingency. This will use significant pla
resources, but will have all the advantages associated with the pla
control model discussed in the previous chapter.

The contingency defined by the child running in front of the c
much less likely to happen than encountering a red traffic light, even
driving in front of the school. This contingency has also a much b
uncertainty about when and where it can occur. Thirdly, the plan to tr
contingency is much simpler (it is usually enough to brake and maybe t
to the right, depending on the distance to the child); after takin
corrective action and avoiding the collision, the situation does not prese¢
more dangers, so the agent can take its time to replan a course of actic
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will get it from the new state to the goal (this may be as simple as res
the car, or as elaborate as finding an alternative means of transporta
the car was damaged by hitting a pole on the side of the road while a
the child). While the critical situation was avoided by a simple plan, th
obtained after its execution is unknown and may belong to a large set ¢
different states. Therefore, a comprehensive conditional plan to exhat
treat all these states and preplan the agent's execution from them to th
goal G may be prohibitive. The practical alternative is to treat
contingencies in a reactive manner, by attaching simple reactive pla
those points in the main plan where such contingencies may occur. Aft
reaction will yield a non-dangerous state for the agent, it can take its t
dynamically replan for a complete solution.

The third contingency stated before - the ball popping up in fro
the car when driving along a school - is a little more probable than th
running in front of the car, but the likelihoods of the two contingenci
roughly of the same order of magnitude. However, in this third case
consequences of hitting a ball with a car (especially with a relatively
moving car in the vicinity of a known school) are significantly smaller
in the child case. Moreover, the side effects of making a dangerous ma
to avoid the ball may outweigh by far the consequences of hitting the
Therefore, for such a contingency, the agent is much better off if it ign
at planning time, thus conserving its limited resources for other
important contingencies.

To summarize the discussion in this section, we have identified
types of contingencies that may appear during the execution of a plan
are classified according to the action taken by the agent at planning t
prepare for their occurrence at execution time. These types of conting
are:

(i) contingencies for which the planner builds complete conditi
branches, from the contingency state to the goal state, in the main

(ii)contingencies for which the agent prepares reactive responses;
are combined into reactive plans by a reactive planner, and
attached to appropriate segments of the complete plan provided t
conditional planner;

(iii) contingencies ignored by the agent at planning time, either be¢
their treatments can be left for dynamic replanning when they
encountered at execution time, or because they are considered
important than the contingencies included in the previous
categories, and the agent simply does not have the resources to p
a reaction (much less a complete branch in the plan) for them.
The justification for this classification is mainly related to the lir

resources that a real agent can use. For a few contingencies, the ager
generate complete plans and combine them in a conditional plan. Ho
the agent's limited planning and execution resources do not allow for to
contingencies to be treated this way. Still, the agent can prepare at pl
time reactive responses for a larger set of contingencies; these response
not ensure full solutions to the goal state, but they will give the ages
possibility to dynamically replan its actions at execution time. But in n
can a real agent with limited resources prepare for all possible contin;
in a real world application domain. Many of these contingencies mu
ignored at planning time. The problem addressed in this thesis is how to
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which contingencies to select for preparation of reactive responses,
which to ignore at planning time.

2.2. Summary of the Problem

The example problem outlined in the previous section highlights
aspects of the general problem with which we are concerned. We shall
here this problem more precisely, and then we will propose a solution fc
the next chapter.

In all our previous discussion we have referred to reactiamn planni
a conscious form of preparing condition-action behavior. That is, the
consciously prepares, before starting the actual execution, a set
perception-action rules for a certain segment of the plan. They are
executed by high level execution mechanisms of the agent similar to tho
execute the main plan, and are not intended for execution by a "lower
higher priority execution mechanism which may be part of the .
architecture (like the one proposed by [Brooks, 1986; Kaelbling, 1¢
Actually, the agent will resort to a reaction to a contingency only if it |
conditional branch in the plan at that stage during the execution, ar
consciously take the decision to try to use reaction in that situation. Th
not mean that we specifically prohibit in our agent architectures any
level execution mechanisms which have the ability to react faster anc
higher priority to certain contingencies. It only means that we are
concerned with such precognitive types of reaction (e.g. locomotion
reactions like avoiding obstacles by a moving robot). We are only con
here with contingencies to which such reaction mechanisms cannot re
On the other hand, if the agent architecture does not include such lov
reaction mechanisms, then the contingencies to be treated by them m:
the set of contingencies which are analyzed by the higher level cog
mechanisms of the agent using the framework proposed in this work.

Since we will talk more in the following section about tl
characteristics of the domains in which this work is best applicable, W
simply say here that we are particularly interested in planning the act
an intelligent agent with limited resources and multiple goals working
dynamic, unpredictable, real-time environment. The agent must itself
real-time, i.e. be “predictably fast enough for use by the process
serviced” [Marsh & Greenwood, 1986]. In order to behave properly, the
must plan its actions ahead of time, and then monitor the plan executi
be prepared to respond to contingencies that may appear during
execution. This emphasizes two orthogonal qualities that the agent
exhibit: sensitivity to run-time contingencies and commitment to St
goal-oriented actions. Such behavior can be accomplished by combinir
two fundamental control modes mentioned before: planning and reactir

As will be shown in section 2.4, most research to date is conce:
either with employing only one of these control modes, or simply atten
turn a system to become increasingly reactive and rely as little as possi
planning. These works concentrate mainly on how to prepare re:
responses and tend to use them in such a way as to substitute r
planning. Our approach differs from these others in its recognition «
complementary strengths and weaknesses of the two modes, and in it
integration of planning and reacting within a single agent.
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Our premise is that, whenever time and other resources allow
dynamically planned response 1is never worse (and usually better

responding to a contingency than a reactivé paspaassly prepared
for it. There are several reasons for this assumption: (i) the repl:
response is generated at execution time when more information is availzc
opposed to planning time, when the reaction is prepared; (ii) -
replanning, an agent has time to analyze all the relevant information
search for the best available solution by planning a complete solution |
the goal, while in order to react, the agent may have only a few alter:
(in the reactive plan) to choose from and only a few tests to decide ¢
response, which must therefore be taken based on incomplete infor;
obtained from an incomplete analysis of the current situation; (iii) if tim
limited that it cannot even perform all these tests, the agent may have tc
more general action hoping to improve the situation at least temporar
to buy more time to look for a better solution. The reason we need t
reaction is that the replanned solution may be found too late and there
of no more use at the time it can be taken. Thus, we assume that the imj
of regular planning makes it irreplaceable (due to the vast diversi
situations in real-world environments), but the agent's real-time perfc
can be significantly improved by preparing reactive responses for a 1
number of critical contingencies that may be foreseen to appear ¢
execution of the plan already built to achieve the main goal.

By not including enough contingencies for reactive treatment,
performance of the agent will be suboptimal. On the other hand, by in
too many such contingencies, the reactive response time becomes too
thus degrading the system performance once again.

Unless otherwise stated, we assume that, given a contingency, the
knows of an action (maybe a small sequence of elementary actions) wh
applied reactively, either solves the problem generated by the continge
at least postpones its deadline long enough to allow for replanning «
entire solution.

The main issue for us then is to enable the agent, for each phase ¢
main plan, to select the right set of contingencies for which to pr
reactions. That is, our problem is to specify a decision framework which:

m given:
| an intelligent agent with:

G capabilities:
F planning and dynamically replanning
F monitoring
F reactive behavior

G constraints:
F limited resources
F real-time performance

| a (possibly conditional) plan by which the agent can achieve

current goal

| a set of contingencies known to possibly appear at certain ti

during the plan execution, each with:

G reactive responses associated with them

G known characteristics associated with each such contingency
gravity of consequences, time deadlines) and with their reac
(e.g. resource requirements)



m enable the agent to decide at planning time on haw "matseleal"
subset of these contingencies (according to a desired behavior pa
for which the reactive responses should be attached to the main
(while preserving the real-time responsiveness of the agent to all
contingencies, given its limited resources).

We have used the word '"rational" in the previous definition, ar
needs some disambiguation. A behavior of the agent in a given situat
defined by the order in which the agent classifies the set of contingenc
that situation, according to the value of reacting to them. For the
situation and set of contingencies, there are different behaviors that th
may exhibit. Some of these behaviors may either not be suitable for
situation, or may even be considered abnormal, hazardous or
pathological. But there is at least one such behavior which is consi
appropriate or normal for that situation, by the experts in the domair
even possible that there are several different behaviors that ma
considered appropriate in a given situation. Each behavior is apprc
according to a behavior model, and in the literature there have been de
number of such reactive behavior types for domains in which critica
stressful situations are common and very dangerous like aircraft flying
1991], nuclear power plant management [Woods & al., 1987] or anesthesic
& al., 1991]. In most of the thesis we will refer to what is considered to
"normal" behavior by experts in each domain from which we draw
examples. However, in section 6.3, we will discuss some other type:
behaviors and how they can be translated and simulated with our fram

One problem related to the one we stated before is conditional pla
As discussed before, there are three courses of action that an agent can
prepare a response to a possible contingency: plan a conditional branc
a reactive behavior, or ignore the contingency at planning time. Our a
will focus on how to decide whether to prepare a reactive response
contingency, but the general framework which will be developed for
purpose is also applicable (with certain modifications) to the proble
deciding whether to prepare an entire conditional branch in the mai
for a possible contingency. In section 3.5 we will briefly discuss what a;
changes that must be made to our formalism so that it can also be used t
which is the set of contingencies for which conditional branches shou
planned. However, in the rest of the thesis, we will assume that the age
already built the complete conditional plan, and is only trying to augr
with reactive responses to as many contingencies as possible being limit
its finite resources.

The selection criteria which we are looking for are much more cor
than any utility measures (e.g., [Minton, 1990]) proposed so far. For ex
in our approach, some of the contingencies associated with a situatios
appear in practice with a very low probability, but they may be very cr
they occur, and thus are worth preparing for reactively and are also
being remembered. This is in contrast with most of the research to date,
is mainly concerned with improving the systems' performance by «c:
into reactive plans the responses to the most frequently occu
contingencies.

But before reviewing the previous research in this domain, let
attempt to characterize first the domains in which the problem stated
significant and where our solution framework is applicable.



2.3. Application Domains

Much of the planning work to date has concentrated on applicatic
artificial domains. Such domains are well-structured and well-defined t
system designer, which wusually means that the entire set of pos
contingencies is known in advance, and that this set is of a manageabl
The main implication of this is that the resource limitations of the age
be ignored (particularly at execution time) with respect to the size of th
whether the main control mode employed is conditional planning or r
planning, that is, we can always assume that we have a powerful enougt
to be able to respond in time to any of the contingencies that it knows
This is clearly an artificial assumption which drastically simplifies
planning problem and limits the applicability of the solutions proposed.

By contrast, we are interested here in applying the planning para
to real-world domains and to allow the agent to operate in real-world
closed and limited for practical purposes) domains. The main character:
such a domain and the agents operating in them is real-time defin
[Marsh and Greenwood, 1986] as “predictably fast enough for use b
process being serviced”. This means that the agent must be guarante
respond, at execution time, in a prespecified time limit to any contingei
which it has prepared a response at planning time. However, if an ager
limited resources prepares to respond to too many contingencies in a
situation, than it may not be able to guarantee a timely response to th
time-pressured of these contingencies: e.g. it make take too long for the
to discriminate among the possible contingencies for which it is prepa
react, from the time it detects a contingency and wuntil it has to tak
corrective action. An example of an interesting domain for our framew
the car driving domain, which will be used for exemplification throt
most of the thesis. If a child appears in front of the car at small distanc
is very little time for the agent to discriminate among the contingenci
which it is prepared to react in that situation and to decide what k:
contingency this is and how to react to it. For an agent with lir
computational resources it may be therefore better not to prepare to 1
the same situation for a much less critical contingency like a ball com
front of the car, or a sudden loss in the radio signal, and so on.

These observations are valid in real-life domains because anothe
their characteristics: they are very large, both in the number and var
contingencies that may appear (which has been noticed a long time ¢
[McCarthy, 1977] when describing the qualification problem), and i1
variety of corrective actions that may apply. Each corrective action apr
to a certain contingency may be better suited in some situation th
another one. Therefore, we will always consider pairs contingency-sit
associated with each situation in which that contingency may arise a
which that response is the best to this contingency. For well-struc
(usually artificial) or very Ilimited domains where the number
contingencies and responses is limited, the framework described in this
is not necessary, since it is conceptually possible to use a more powerful
which can take care of all the contingencies in each situation.

As seen before, real-world environments areunpnadictable,
that is contingencies may occur at any time, arnaerleasth in that the
effects of actions and the actual state of the world after the execution of



8

step cannot be foreseen with utmost precision. Such domains are also
dynamic in the sense that the state of the world may change withor
participation of our agent, for example, as a result of actions of ot
cooperative or antagonistic - independent agents working in the
environment (e.g. there are other agents driving cars on the same str

our agent and their paths may intersect3). In real domains some contir
tend to appear associated with certain plan steps or situations an
likelihood of their appearance may be different for different situations.
others can appear at any time with the same likelihood. For example,
always possible for a child to run into the street, or for a meteor to fall i
street or for the car to fall to pieces, but it is impractical for the agent tc
the lookout for all of these possible events all the time. Real-world do
also present a huge variety of situdniomsich situation different

contingencies can happen, and the same contingency may be vi
differently in different situations. In certain situations, some conting
are more likely or more important than others. If the agent has to dr
car on a mountain road in winter, it should expect bumps or damaged -
of the road, or slippery roads, instead of, say, traffic lights. The agent
prepare for yet another set of possible contingencies in the case of driy
freeways. Also, the most effective responses associated with a conting
which may appear in different situations may be situation dependen
agent should therefore be able to selectively prepare itself for the
critical contingencies in each possible situation along a prepared plan.

We should also note that some of the contingencies associated wi
situation may appear with a very low probability, but they may be
critical if they occur, and thus are worth preparing for. This is in c«
with most of the literature to date, since most authors are mainly co1
with improving their systems' performance by caching the most freg
used plans.

We also assume that short plans (a single action or a small sequen
actions), if applied reactively, are usually enough to either solve the p
generated by the contingency, or at least to postpone its deadline long
to give the planner the time needed to dynamically replan the entire
under the new circumstances.

Most real domains which have the features described above are u
characterized as high level, knowledge intensive domains. Examples of
domains are some medical domains (e.g. intensive care monito
anesthesia), nuclear power plant operation, aircraft flying, car driving
on. These are contingency-intensive domains, in which many conting
can appear and in which some of these contingencies are very time-c
and / or with very high consequences, even if they do not appear wit
high frequency. Although these domains also require (some more
others) significant skill development (by skill we mean here auton
low-level, unconscious reflexes to certain contingencies), their r
characteristic is that the process of planning and responding to contin
is knowledge-intensive and thus wuses significant high-level cogn!
resources of the agent. Our framework can be in principle applied t
domain, but its value and effectiveness can be questioned for very
structured, artificial domains (like the blocks world) and for low-level,
intensive domains (or such tasks in higher-level domains), like locon
tasks (e.g. reflex obstacle avoidance) or fine-motion robot manipulation
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(e.g. the peg-in-the-hole insertion problem), in which the number
diversity of contingencies is limited and well-known in advance.

Even for such Ilimited but real domains, we can argue that
framework can be applicable as long as the resources of the agent in
are not powerful enough to completely remove the uncertainty in the
An example of such a domain is robot motion planning. The main p1
here is the uncertainty, at execution time, in the position and orienta
the parts and of the robot (e.g., a manipulator) in the workspace. A cl
planning methods developed for this problem deal with such uncertaint
second phase of planning; in the first phase, plan skeletons and
strategies are produced, using path planning methods which assume
uncertainty (i.e. no contingencies) [Latombe & al., 1991]. Then diff
methods are used to deal with contingencies generated by the aforeme
uncertainties. For example, SPAR [Hutchinson and Kak, 1990] adds verifi
and local recovery plans to reduce uncertainty and to prepare for p
failures. Similarly to the reactions used in our framework, these
recovery plans are only single, special-purpose actions (which ma
entered by the user) and are associated with wuncertainty-reduction ¢
priori. An inductive learning technique is used by [Dufay and Latombe,
a trainer module generates patches to be inserted in the ground plan
are local strategies refining the ground plan, similar to our reactive
attached to the main plan (e.g. rotate a card to insert it into a slot). The
further provides for the graceful degradation of its performance by a
for entering rules on line if everything else fails. However, the most cc
technique for dealing with wuncertainty-generated contingencies in
domain is skeleton refining [Lozano-Perez, 1976; Taylor, 1976]. A skeletor
(or assembly description) appropriate to the task at hand is retrieved a
plan and then iteratively modified by inserting complements (e.g.
readings) during a feedback planning or plan checking phase.
modification of assembly strategies to fit particular geometric enviroi
results in building conditional plans. Then strategies are examined for
failures and the planner generates tests (monitoring actions) and
corrective actions (which are either conditional branches, or reactive i
e.g. if the robot manipulator is on the verge of overturning a workpiec
pushing it with a peg, then retract the hand a little to stabilize the si
and then replan the action). If the plan contains many such reactions
many contingencies for the same situation, the agent may become too s
respond to some of the most time-critical of these contingencies. The s
is to use the framework developed here to choose among these conting
Further refinements of the plan-skeleton paradigm include symb
computations of the effects of uncertainties [Brooks, 1982] to identify an
the most significant ones by making inferences about uncertainties and
them in computations, as well as using formal program proving technic
deal with these wuncertainties [Pertin-Troccaz and Puget, 1987]. All
discussion shows that, even if the robot manipulator programming don
not, as a whole, a high-level knowledge intensive domain (in the sense «
before), the formalism presented here can still be applied if the s
uncertainty-related contingencies becomes too large and if their tre
requires conscious actions (as opposed to just locomotive reflexes).

Besides the domain characteristics, the agent's capabilities are
important in this discussion. If we have an ideal agent with unli1
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resources and unlimited speed of computation, then the entire formalis
become wuseless, even in the real-world, high-level domains presented |1
However, if we are again interested in the real world, then it is only nat
assume that the agent has Ilimited reamdrcekat the number of
contingencies for which it has to prepare exceed both its conditional p
capabilities, and its real-time execution capabilities. In such cases, the «
exerts time pressure on the agent's limited resources. Therefore, the
needs to be able to decide which contingencies to prepare treatment f
which to ignore at planning time. These are the types of agents and d
for which the framework developed here is useful.

2.4. Related Work

We make here a brief review of other work that is relevant to
problem of how to combine planning and reaction to achieve the
performance of the agent in a particular environment. The purpose «
section is to place our work in the global context of related research
outline its original contributions.

Planning (describing a set of actions expected to allow the agen
achieve a given goal) has been a central problem in Al since its
beginnings [McCarthy, 1958]. The techniques proposed have evc
considerably, and so have the application domains. We classify t
techniques into several classes, according to the ways they combine th
fundamental control modes described before: condition@lsoptahleing
here classical plannimg simply planning) and reactive plasoing
simply called reaction). These classes are:

(i) purely conditional planning techniques

(ii) purely reactive techniques

(iii)static combinations of planning and reaction

(iv)techniques to shift from planning to reaction

(v) techniques to decide at execution time whether to (re)act o:

continue the replanning process

(vi)techniques to decide at planning time which contingencies

prepare reactions for

A lot of early planning work has been conducted towards specit
robust techniques for conditional planning. The systems produced (e.g.
[Fikes and Nilsson, 1971], NOAH [Sacerdoti, 1975], MOLGEN [Stefik, 1981], TWI
[Chapman, 1987] to almost randomly name just a very tiny subset si1
exhaustive summary would be well beyond the scope of this section) wet
to solve increasingly complex problems. Although some of them had fa
for monitoring their plans execution and responding to some conting
(e.g. PLANEX for STRIPS [Fikes & al., 1972]), these facilities were very limi
and worked only in well-structured domains, based on the existence of
matching the contingency in the original conditional plan. More flex
and higher response speed was needed to build systems for real-world te

The need for reactivity to the dynamic aspects of the environmen
addressed by building systems which operate on a perception-action
without relying on an abstract representation of the environment [F
1991]. Horizontal layer decomposed systems [Brooks, 1986; Kaelbling,
included such reactions while still being able to pursue high-level goal
their reactions were limited to the types of locomotive, low-level precoy
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reactions which we described earlier and which do not make the object
work.

Realizing full reactive behavior (reaction plan planning) has |
proposed through wuniversal plans [Schoppers, 1987] which are exhe
conditional plans, and therefore are prohibitively expensive to produ
any reasonably complex domain [Ginsberg, 1989]. Situated Control
[Drummond, 1989] are used for situation-based plan indexing, to redu
non-deterministic choice in the case of plan nets. They may be used
incomplete alternative to universal plans, in those cases when there
enough time to build the entire universal plan. An incomplete univers:
may not contain any answer to a problem, while missing situated contrc
do not necessary preclude a solution (which may be fou
nondeterministically); they only ensure a solution when they are spe
This approach maximizes the use of planning time and takes into a«
planning resource limitations, but without taking into account any ex
time limitations of the agent.

Pengi [Agre and Chapman, 1987] is a purely reactive planning sy
which wuses sensory input to index structures for possible subsequent :
However, Pengi cannot completely represent most real situations due t«
uncertainty and the limited information available about other agent
processes.

Due to the shortcomings of pure reactive systems, researchers
subsequently concentrated on integrating planning with high-level re
[Firby, 1987] uses Reactive Action Packages like stored reactive plan
integrate planning and reactive responses. However, reactive planni
used without time considerations, while we allow the agent to tn
dynamically replan its course of action if there is enough time to do i
only prepare to react to critical events. [Hendler & Agrawala, 1990] imp
reactive planning systems on a guaranteed scheduling, real-time op«
system using the Dynamic Reaction model: an agent performs an activit
either its goals lead it to select some new action, or some event in the
forces it to react, thus integrating planning and reaction in a cos
environment. [Georgeff & Lanski, 1987; Georgeff, 1989] propose
architecture (the Procedural Reasoning System) that is both highly re
and goal directed. They store (reactive) plans, called Knowledge Area
procedural form, supplied in advance. [Cohen & al., 1989] monito1
execution of the Phoenix agents' plans and use three mechanisms
handling unexpected events: low level reflexes to stabilize the situation,
recovery and replanning implemented as high level cognitive actions
envelopes as a general monitoring mechanism. The agent always prepait
the same fixed set of reactions, without considering the characteristics
plan or of the situations that might be encountered during its execution
systems have limited flexibility since the set of reactions is limited, alwa
same, and always available in its entirety to the execution components.

Hardware implementations of reactive plans into agents whose ac
are guided by overall goals have been proposed in [Nilsson, 1988;
Continuous actions are modeled wusing T-R trees (teleo-reactive, i.e.
goal-directed and ever-responsive) to build a reactive program v
execution produces circuits to control the agent's actions. Selective re:
would be very important here because of the various costs associated
hardware implementations.
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The next step on the research path towards agents with better re:
performance was to devise techniques which shift some of the sys
activities from planning to reaction, with the aim of producing incre:
reactive agents. [Mitchell, 1990] combines reactive (stimulus-response
search-based architectures to control autonomous agents. Explanation
learning techniques [Mitchell & al., 1986] are used to extract
(condition-action pairs) from plans to make the Theo-Agent increa:
reactive by learning plans into reactions: the agent first tries to react,
plan. Scaling issues for the approach are briefly mentioned, and a solu
proposed based on selective learning invocation wusing a utility fur
similar to the one suggested in [Minton, 1990]. However, as we ment
before, there are too many characteristics of the situations and contin
as well as of the agent (planning and execution modules) which are not
into account by this utility function. This fact is even more important
rules are tested in sequence for reaction, which yields a high cost of r
at execution. [Martin & Allen, 1990] propose a two-level architec
consisting of a strategic planner (generating high-level goal descrip
which sends commands to a reactive system which must fill in the detail:
use statistics to constrain the probability that the execution modul
accomplish a particular task. Reactive behaviors are learned selectively,
statistical estimates on the utility of these actions versus the utility o
components. But once learned, the reactions are always available tc
execution system. Soar [Laird & Rosenbloom, 1990] also provides a combi
of reactive execution and planning seen as essential behaviors of
autonomous intelligent agent. Plans are learned into reactions
chunking, and afterwards all reactive plans learned are always availal
the executor. The authors express their concern that after learning toc
such reactions, the responsiveness of the system may be significantly r
but do not attempt to address this problem.

These works concentrate mainly on how to prepare reactive resp
and tend to use them in such a way as to substitute regular plannin
approach differs from these others in its recognition of the complen
strengths and weaknesses of the two modes, and in its full integrati
planning and reacting within a single agent. A recurring, unaddr
problem in these works is the value (utility) of reaction. While we beliey
learning such reactions is very useful in real domains, we also believ
this utility problem should be addressed at planning time, and not (o
learning time. The work described in this thesis is aimed precisely towar
goal. In the next chapter, we will define a framework to select only
relevant events associated with a given situation. Reactions to then
incorporated into stored reactive plans, depending on several factors s
event criticality, reaction time allowed and exhibited, load of the a:
reasoning capabilities and other resources, and reactive plan size, as Vv
on the desired behavior pattern for the agent. Our main problem is to
which contingencies to prepare reactive responses for, in each situatior
is in contrast with most of the research cited above, where the autho
concerned mainly with improving their systems' performance by tryi
react (and maybe cache) the most frequently used plans. Our selection
will necessarily be much more complex than the utility measures propo
far.
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However, the utility of reacting versus planning can also be, and
lately already been, addressed at execution time. [Horvitz, 1989] deve
decision theoretic framework to reason about the value of continui:
reflect about a problem vs. taking an action to try to solve it, at executio
using the expected value of computation (EVC) as fundamental measur
attempts to optimize behavior under resource constraints by integ
reaction with deliberative reasoning (replanning). However, he ignore
overhead of retrieval of a reaction and the computation time while taki
account only limited other resource constraints (e.g. memory cost) whic
not be the most relevant ones for real-world agents. He also assume
reactions are always available and only attempts to decide, at executior
whether to react or to replan, and is not concerned with such decisi
planning time (clearly, some contingencies do not allow time for
metalevel deliberations at run-time, before taking an action to respc
them). [Yamada, 1992] uses the notion of success probability to determi
best time until which dynamic replanning may continue and when ex
of the action should actually start. Again, the computation is done at ex
time.

The sixth category of techniques which we have identified at
beginning of this section involves methods to decide, at planning tim
which contingencies to select for preparation of reactive responses i
plan, and which to ignore and leave for dynamic replanning at executic
if such a contingency will arise. The problem is occasionally mentioned
literature, but without being analyzed in detail and especially wi
proposing any solutions to it. While discussing the CIRCA system, [Muslin
al., 1994] make the most comprehensive presentation of the problem t
were able to find. They recognize the limitations that exist in the
execution resources, and attempt to divide the main plan into smaller
and create reactive plans that guarantee the achievement of critical
However, there is no analysis of how to partition the set of goals
guaranteed and unguaranteed ones (when the system cannot gua
responses to all of them). CIRCA only tries to build guaranteed plans by
into account only the time allowed to respond to a contingency.
contingency characteristics relevant for the decision process (like crif
and probability) are mentioned as necessary to be considered in future
but they are not actually used here. Control level goals are linked t
system's safety, which is not always necessary (in our work, any chan
the environment that was not expected as a result of executing the maji
is considered a contingency). CIRCA also partitions the goals into just
subsets according to a system designer specified priority: critical or not.

We are unaware of any previous research towards a solution to
general problem of deciding whether to prepare a reactive response
contingency or not; therefore, it is here where the work described ii
thesis has been concentrated.

As shown before most research to date is concerned either
employing only one of the planning or reacting control modes, or ¢
attempts to turn a system to become increasingly reactive and rely as 1
possible on planning. All the reactive responses are always available t
agent executing a plan, and they usually tend to take precedence ov
(re)planning alternative. This approach can only work in either very
task environments, or for idealized, unlimited resource agents. In our
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we take into account the real-world constraint of limited resources for
that have to act in stressful, resource-demanding, real-time situatio:
which reaction does not come for free. Therefore, we assume that
importance of regular planning makes it irreplaceable, but the a
performance can be significantly improved by selectively preparing r
responses only for those contingencies that are critically enough to
them. We work towards integrating planning with reaction, instead o
enabling the agents to shift from planning to reaction. [Hayes-Roth,
proposes a paradigm for integrating planning and reaction t
opportunistic control of action: run-time control conditions trigger a su
possible actions, strategic plans constrain intended actions, and the
between possible actions and strategic plans controls action execution.

Other work, directly related to various subsections of the thesis,
briefly surveyed when relevant.
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Chapter 3
The Approach

In this chapter we describe our framework for deciding, at plar
whether to prepare a reaction for a given contingency in a ¢

situation. We first define a few terms which we will frequently use:

m

m

m

aplan donditional plar main plaar conventional plisna
(possibly conditional) time dependent, partially ordered set of a
and expectations (figures 2.1 and 3.1.a).

an action is the application of an operator to the current state. It y
new state, which may be identical or not to an expected state.

a contingency is any state of the world entered by the executing
while following a plan, which is not: (i) a direct consequence
executing the actions of the plan up to that point, or (ii) an exoge:
generated state of the world assumed in the design of the ¢
Therefore, a contingency does not necessarily affect the agent o1
plan execution, and when a contingency does affect the plan, it i
necessary that it will negatively affect it. For example, a conting
may be a state which is not the current expected state according
plan execution, but is a state which should have been reached alor
way, after executing some more steps of the plan. The agent may
it and use it to skip the unnecessary steps in the plan, for examtg
the same way as it was done with triangle tables in [Nilsson, 1984]
simplify the exposition, we also use the term contingency to mear
event, fact or sign that was not expected as a result of the |
execution, and which triggers an (undesired) change in the state ¢
world, not expected at that time in the plan, i.e. which characteri
state as a contingency according to the previous definition.
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Reactive plans

(c) Context-specific plan

Figure 3.1. Types of plans

m a reaction is a perception-action rule of behavior, usually stored
computationally efficient form. The action part may be a short sec
of actions which are enough to either solve the problem generated
contingency, or at least to extend its deadline long enough to allo
replanning of the entire solution under the new circumstances.

m acondition is a pair contingency-reaction; there may be more thai
reaction which can solve the same contingency, and there may be
than one contingency which can be solved by the same reaction.

m a reactive plais a set of tests and reactions (possibly arrange:
hierarchically for efficiency reasons [Ash & Hayes-Roth, 1993]
therefore represented as triangles in figure 3.1.b) able to solve an
of a set of contingencies.

m a context-specific plsn obtained from a conditional plan by
augmenting it with monitoring actions and reactive plans for ce
contingencies (figure 3.1.c). It deals with these contingencies in a
and usually incomplete way, as opposed to the conditional plan
prepares in advance for a full treatment of the possible situation:
were taken into account.

The basic approach to obtain a final context-specific plan for a |
problem starts with a conditional plan (produced by a conventional t
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to achieve the main goal of the problem. The agent has a knowledge b
contingencies that may appear during the execution of plans, togethe
proper reactions to them. After developing a plan, this knowledge is u
analyze it and to identify situations of interest, that is, those points in t
for which the agent knows of possible contingencies and how to respo
them.

The general agent architecture to do this is briefly discussec
appendix 1. In the rest of the thesis, we assume that the agent has ¢
decided upon such a situation and has identified the set of conting
which may be associated with it together with their appropriate re
responses. Now the task of the agent is to decide for which of ¢t
contingencies to actually include responses in a reactive plan which
subsequently be attached to the main plan at the appropriate place (s
by the particular situation isolated before). The context-specific plan i
completed by augmenting the initial main plan with monitoring actior
reactive plans for the critical contingencies (figure 3.1.c). Monitoring
can be attached to the plan even if reactions to their contingencies a
(e.g. when the contingency is important enough to be watched for, but
its likelihood of occurrence is low enough, or the time allowed to respon
is long enough for replanning).

In the next section, we first analyze a simple problem and try
formulate an intuitive solution. We then formalize this intuitive solut
the rest of the chapter.

3.1. Intuitive Solution

Let us revisit the driving problem presented in the previous cha
and attempt to analyze it in more detail.

In section 2.1 we formulated the problem of an agent which comi
every morning by car from home to work, and at some point A along the
passes in front of a school while driving straight, at 25 mph. The co1
takes place at a time when children are at school, or go to school. The
knows its route well enough to know about a few contingencies that may
while on this portion of its route. Table 3.1 lists a partial set of
contingencies, and the best reaction for each of them known to the
Notice that the contingencies are dependent on the characteristics «
actual situation described. Here are some of these dependencies:
contingencies depend on the type of plan used (e.g. if the agent uses
transportation, than it need not be concerned with hitting a child, sinc
not in control of the car), on the action involved (if the current action
be driving on a freeway, then the likelihood of having children runn
front of the car would be much smaller), on the context of solving the
(if the same action takes place during vacation time, when that sche
closed, then again the likelihood of having a child run in front of tt
decreases a lot), and so on. In the next section, we rigorously define the
of a situation, and then precisely characterize this particular situation
example of our definition.

In order to be useful for our purpose, the notion of a situation (a
associated characteristics) must be much more rigorously specified. Al
contingencies must be expressed in some structured language in order t
a better representation and usage (e.g. it is important whether the car
slowly or fast, whether the child runs from left to right or from right f
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and so on). We detail these specification requirements and present fori
to facilitate their expression in the next three sections of this chapter
the next chapter.

Contingency
Reaction

1
Child runs from right, 20 m in front of car
Brake hard and steer right

2
Car crosses w/o priority 20 m in front, from right to left
Brake and gently steer right

3
Car in front stops suddenly
Brake hard

4
Cat runs across street, 20 m in front
Brake hard and steer right gently

5
Traffic light changes red 40 m in front
Brake hard

6
Tire explosion
Brake gently and do not steer

7
A deep and medium width hole detected 30 m in front
Brake hard and steer right gently

8
Airplane lands in front of car
Brake moderately hard

9
Brake malfunction light turns on
Brake gently

10
Engine overheat light turns on
Brake gently to stop the car

11
Loud radio turns on suddenly
Adjust radio volume

12
Meteor falls on the trunk of the car
Accelerate hard
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A ball pops in the street, from the right, at 20 m in front
Brake hard and steer right

Table 3.1. Set of contingencies for the car driving domain

Our problem is to decide which of these contingencies are cri
enough to require the agent to prepare in advance reactive respons
them and which should be ignored at planning time. The solution hze
phases. In the first phase, the agent must order the contingencies accor
the value of reacting to them; then taking into account the characteris
the planner and the limitations of the agent's run-time resources, it mt
out how many (and actually which) of the contingencies can be takei
account for reactive treatment. In order to be able to define the wval
reaction to a contingency and to be then able to order the conting
according to this value, we have to identify the characteristics
contingencies which influence this reaction value. These characteristic
defined not for a contingency alone, but for a condition (]
contingency-response) in a given situation (as seen above, tI
characteristics can vary from one situation to another).

One characteristic which has been recognized by earlier researct
remarked in section 2.4) is the likelihood of appearance of the continge
that situation. We have already discussed how the same contingency ma
different likelihood in different situations. Also, different contingencie
have different likelihood in the same situation. For example, in our c
child running into the street is less likely than encountering a red
light, but more likely than having a plane land on the street in front
car.

Since reactive response is geared especially towards satisfy
real-time deadlines, of special concern is the time pressure exerted L
contingency upon the agent. This time pressure (or urgency) is inv
proportional to the actual real time allowed for the agent to act in resp
the contingency. Clearly, responding to the child contingency is more
than taking care of the radio which has just turned on by itself. On th
hand, the child running into the street and the ball popping up in fron
car at the same distance, allow for the same time of response, i.e. exe
same time pressure onto the agent.

But the value of reacting to a contingency is also determined by
gravity of the consequences presented by the contingency if no acti
taken in the allowed response time. Obviously, the consequences are
more dramatic in the case of hitting a child, than if the car hits a ball.

And finally, there is one more characteristic of the conditions tha
to be taken into account. This characteristic is more closely related
response associated to the contingency, and it takes into account the g
side-effects that may be incurred if the reaction to the contingency is t
time. For example, the side-effects of avoiding the child by braking har
possibility to be hit by the car following our agent's car) and steering
(the agent's car may hit the sidewalk, or a pole on the sidewalk) are th
as for avoiding the ball through the same maneuver, and can be signi
higher than the side-effects of adjusting the radio.

We assume that the agent's knowledge base contains, along with
contingency and reaction, a set of values for these characteristics (the
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be obtained from experts in the domain - as we have done it, or tk
automatic learning methods). These characteristics have different weig
deciding upon the value of reacting to a given contingency. As we shal
these weights are not fixed, but they are dependent on the application
and also on the behavior model according to which the agent acts. We st
now restrict our discussion to a generally accepted (by the experts |
domain) "normal" behavior, and will briefly discuss other types of bel
in section 6.3. Under this behavior model, the highest weight is associc
the time pressure characteristic, followed by consequences and
likelihood. However, if the side-effects are much higher than
consequences, then the agent is probably better off by ignoring
contingency at planning time.

Therefore, a driving agent will give highest priority to the c
running into the street contingency (since the time pressure is very
and the consequences are also very high), and will give a very low prio
the ball contingency, since the side-effects of doing a dangerous mar
outweigh by far the consequences of hitting the ball. The traffic light f
red contingency will follow the child one, followed in turn by the ai
landing and the loud radio turning on (since both have low likelihood,
airplane has much higher consequences and time pressure).
contingencies listed in table 3.1 are actually ordered according to the
behavior model described by a panel of experts whom we have intern
(section 6.1 presents more details about our knowledge acquisition proc
this domain). At first glance it may be surprising, for example, that th
contingency was placed after the radio contingency; remember howeve
we are only interested here in preparing reactions for these conting
Therefore, this ordering says that, if the agent has enough resources,
try to prepare a reaction to the radio contingency (although the va
reacting to it will be pretty low), but should avoid as much as possit
prepare a reaction to the ball contingency, since the side-effects of reac
it may be much higher than the consequences of not reacting
equivalently, the benefits of reacting).

The second phase of our solution involves deciding which of t
contingencies will actually be included in the reactive plan, by taking
account the characteristics of the reactive planner and the limitations
agent's resources. The characteristics of the reactive planner (specifiec
reactive planner model) allow the agent to estimate the complexity of is
the contingency and its reaction from the reactive plan prepared f«
entire set of selected contingencies associated with that situation.
complexity is direct proportional to the time needed by the agent frc
moment it detects the existence of a contingency and until it can s
reaction to it. However, this time is further influenced (i.e. increased)
availability and limitations of the agent's resources, specified by an
model (e.g. computational overhead). For each contingency included i
reactive plan, this response time has to be smaller than the time allow
the contingency before the (re)action has to be taken (otherwise the
to that contingency becomes useless). Therefore, given the reactive p
model and the agent model, we have to analyze each contingency assc
with the situation, in the order specified by the first phase of our anal
our example, we will always include in our reactive plan a response t
child contingency, since it has the top priority. We will also include i
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plan a response to the car crossing contingency, if we estimate that the
will have the resources to react to both contingencies in time, and so on.
reach a contingency which cannot be responded to in the allowed time
while still being able to respond to all the contingencies included 1
reactive plan before it, then this contingency will be left out. However
process continues until all contingencies have been examined, since
contingency further down the list may allow a longer response time,
still allowing time to respond to all the already included contingencie
example, assume we have time to respond to only two contingencies wit
high time pressure, and to some other contingency with much lower
pressure. Then we will want to include the child and car cros
contingencies (which are the first two on our ordered list), ignore tt
stopping and cat crossing contingencies for which we do not have tii
respond, and include the red traffic light contingency which follows i
list, because it allows for a much longer response time. Such a policy (wl
rigorously defined in section 3.4) makes optimal use of the agent's exc
time resources, as justified in chapter 5).

In the following three sections we define our framework, along
lines of the intuitive analysis presented here, and in chapter 5 we 1w
brief analysis of some of the theoretical properties of this framewor
chapter 6 subsequently then present a few more examples of applyin
framework in other domains like anesthesia and intensive care monitos

3.2. Framework for Reaction Decision

In the following sections we define our framework, along the line
the intuitive analysis presented above. We specify a consistent framew:
help decide whether the agent should prepare in advance to react to
possible contingencies, or whether it can ignore them at planning tim
can replan at execution time to deal with them. As seen before, the inclu
monitoring actions and/or reactive responses for a particular continge
a plan may depend on a large number of characteristics of the envirc
the contingency and its response, and on the relations between them, :
as on the models of the different factors involved in this process: the
the agent and the reactive planner. They also depend on the set of
contingencies possible in the same situation (how many, how critical, an
complex their reactions are) vs. the agent's capabilities. To help visuali
heuristic rules that take these decisions, we define a few multi-dimer
spaces and the relationships among them. The position of a continge:
these spaces determines whether or not the agent reacts to the event.

3.2.1. Overview of the Framework

We begin with a general presentation of the interactions among
components of our framework, and in the subsequent sections we pres
detail each of these components.

Figure 3.2 presents a schematic overview of the framework desci
here. The entire framework is used to decide, for a given condition
contingency-reaction), whether the agent should include the reaction
contingency in the reactive plan which is prepared for the situation
consideration. Therefore, given the condition and the situation,
framework has to provide the means to associate a criticality value t
contingency. This criticality reflects the value of reacting to the conti
(using its associated reaction, if it appears in this situation), as oppo
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leaving the agent unprepared to respond to this contingency and hopi
it will be able to solve it by dynamic replanning if the need will arise.
reaction value is high enough, the agent will at least monitor for
occurrence of this contingency during execution of this phase of the
However, the agent may not be able to prepare for all contingencies
criticality high enough to be monitored for.

Agent Model

Reactive Planner Model

Agent's
Knowledge

Situation Inclusion
(yes / no)

Condition Criticality Monitor
(Contingency + Response) i (reaction value) (yes / no)

& its characteristics

Behavior Model: fc

Figure 3.2. Overview of the Framework

The decision of whether to include the reaction to this contingen
the reactive plan is taken based on the characteristics of the situatio
time pressure exerted by the contingency upon the agent (or equivaler
time allowed for response by the contingency), and of course the critice
the contingency, compared with the criticalities of the other conting
known to the agent to possibly appear in the current situation. The cr
values induce an order relation on the set of contingencies associated
situation, and the agent first attempts to include the most critical of
contingencies for reactive response. All the contingencies (taken fror
agent's knowledge base) associated with the current situation are con
in turn for inclusion, in the order of their criticality value. When re
the stage where the current contingency is analyzed, all the conting
applicable in the current situation, with higher «criticality, have been
analyzed, and for some of them (not necessarily all) the agent has deci
include reactive responses in the reactive plan. The current contingen
be included in the reactive plan only if the agent using this new reactiy
will be able, at execution time, to respond to this contingency in its a
time, while still being able to respond in their allowed times to all
contingencies already included in the reactive plan. In order to tak
decision, our framework needs a model of the characteristics of the ri
plan built by the agent, as well as a model of the execution time charact
of the agent resources and their limitations.

Figure 3.3 presents in more detail the source and flow of inform
through our framework. Each situation has a number of characteristics,
therefore represented as a point in a situation space. This represei
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allows for flexible generalizations and for the representation of sets of
situations as regions in the situation space. Similarly, the characteristic
contingency will define the dimensions of a criticality space, in which
point represents the value of reacting to that type of contingency. Th
space used represents the reactive plan characteristics, in terms o
resources required by the execution of the reactive plan (given by
reactive planner model) and the resources available for execution b
agent. The agent model gives indications on how these resources are m
by the agent and how they are used by other modules of the agent, as
the limitations on the agent resources, and is therefore used in the fin:
of the decision process. The expert model is used by the framework to i1
the wvalues suggested by the expert for the characteristics of
contingencies, and specifies a set of threshold values for these characte
Finally, the behavior model defines the function which computes
criticality value for each contingency. Different behavior models ass
different values for the same reaction to the same contingency, accord
the individual values of its criticality space characteristics. The two ¢
stages of the framework are establishing the «criticality or reaction val
the contingency, and making the decision of whether to include its r
into the reactive plan built for the current situation.

In the remaining subsections of this section we discuss in detail ea
the three spaces mentioned above, and then we present a complete sum:
the entire framework. The following two sections will then describe th
critical points of the framework mentioned above.



Reactive Planner Model

Agent's
Knowledge I

Agent Model

Reactive Plan

Situation Situation
Space

Condition
(Contingency + Response)
& its characteristics

Expert Model >

p-( Criticality Criticality
Space f (reaction value)

Cc

Behavior Model: fC

Inclusion
(yes / no)

Monitor
(yes / no)

Figure 3.3. The General Framework

Ol
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3.2.2. The Situation Space

The situation space is the set of all possible situations. Its dimensior
the aforementioned characteristics of a situation. A point in this
characterizes a general, contingency-independent environment situati
state. Situations will be wused to index contingency-response pairs ir
agent's knowledge base, according to the relevant situation characteris
which they may apply. We will elaborate more on the same driving ex
used before, and will try to specify it more accurately from the perspec
our problem. The seven dimensions of this situation space are:

m problem - is the main problem to be solved by the agent. It is a sy1
of the problem characteristics and how they can determine the ¢
situation. An example of problem is to carry a small package of t
from home to work. We shall use this example throughout this secti
small change in the problem statement can have important inflt
on the set of contingencies that can be expected. For example, if
problem is instead: carry a small package of radioactive material
home to work, then an entire subset of contingencies generated b
fact that the package contains radioactive materials has to be take
account.

m plan - is a synthesis of the characteristics of the type of main plan
to solve the problem. The type of plan chosen by the convent:
planner is obviously dependent on the problem to be solved.
example, the plan may differ depending on the size of the package
carried, on its weight or on its content, as well as on the distance
traveled. However, even for the same given problem there may I
large number of solutions (plans to solve it), and each of them
create different conditions with which contingencies may be assoc
For example, for our problem, one can choose to walk or to use a 1
of transportation, and further, to drive or to use public transpot
and further to drive a car or a bike, or any combination of these, :
on. Let us assume the planner's choice was to drive a car.

m context - is a synthesis of the characteristics of the environmer
which the plan is to be executed to solve the problem. It covers al
general aspects of the domain which are not covered by the pre
two dimensions. For the driving example, it includes the time of th
(it may make a considerable difference for the types of contingenc:
be expected, whether it is day or night), the time of the year (in v
the road is wusually more slippery, but the engine is less likely
overheat), weather conditions, the abilities of the driver, and sc
Suppose in our example the context is a working day morning d
the month of May. This means that children are going to school,
therefore children and balls can be very well expected into the
around the school.

m action - is the action to be currently executed by the agent accord
the plan. Since the contingency preparation process is an off
analysis of the main plan, "current" here means the currently an
time point of the plan. Non-execution of planned actions (mis
actions) may also be represented on this dimension, since conting
may occur both associated with the execution of actions in the
plan (e.g. steering to the right may cause the car to slip sideway
well as with non-execution of an action (e.g. not steering to the
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when the road turns right may have obvious consequences...). In
example the action is just to drive straight ahead on street S at a sp
25 mph.

m expectations - are descriptions of situations (changes in the state .

environment) along the plan path. In order to monitor the execut
the plan, the agent looks for some important such states which
prespecified at planning time. We call these states milestones.
achievement (or not) of a milestone may determine the agent to c
the conditional plan branch which it is following, and therefor
change the set of contingencies for which it is on the lookc
According to the way they may be generated, there are two Kkinc
expectations which must be taken into account when definin:
situation:
| internal expectationslue to actions performed by our agent while
executing the plan (e.g.: an attained milestone may be entering
freeway, as expected, while to the contrary, an unattained mile
may be a situation in which the agent did not enter the free
although this was expected as a result of executing a set of |
steps). Such an occurring state change can be foreseen, and if
change does not occur, it becomes a contingency: it may signal
something went wrong with the plan execution, and therefore
agent should try to find out what and replan, but in the meanti
should be on the lookout for a certain set of contingencies that
also appear in this situation. For example, due to driving on stre
the agent expects (as milestone) to arrive in front of a school.
does not, then maybe the plan was not entirely correct and the
is somewhere else than it should be at that time. It should ther
react (attempt to stop) and replan: attempt first to find out wher
(e.g. by reading the street signs), and then replan its route
there on.
| external expectations - due to other independent agents which wc
the same environment (e.g. changes in traffic lights). These ag
may generate contingencies by themselves, since they activ
change the environment; their actions may have a certain non
degree of correlation with the actions of our agent, or may be t
uncorrelated. For example, the traffic light is an agent whose ac
may be somewhat correlated with our agent's actions if our a
approaches the traffic light from some direction where there
street sensors or other traffic lights synchronized with this
otherwise, the traffic light's actions are totally uncorrelated
the actions of our agent. Two kinds of events may be distingui
here too: (i) something may happen (like the signal change) or
something expected may not happen (e.g. a malfunctioning
signal which does not change after a long waiting time period)
the example situation we have been building in this section
possible external expectation might be to notice children in the
(since it is a working day morning in May and we are in front
school). However, this is not a milestone: it is possible that
children may be in class at that time, and this fact does not alt
any way the execution of our main plan.
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m time - this basic characteristic of planning problems will appear in
of the abstract spaces we consider, although with different mea:
(when the possibility of confusion arises, we will denote the 1
dimension for the situation spaceimvétd). Here it represents the

amount of time elapsed since some action was taken or since a sitt
change was noticed, or the amount of time allowed until a situ
change must appear. It is therefore strongly coupled with
expectations dimensions (expectations become more or less strc
with time passage). For example, if we allow for 3 minutes from
moment we start driving on street S until reaching the school an
expectation is not met, then something wrong may be going on (¢
traffic jam, or a deviation from the route) and the agent should
replan (or maybe first to react and then to replan) for an alte
route.

Problem
Plan
Context

Situation = fg (Problem, Plan, Context, Action,

Internal_Expectations,

Action External_Expectations, Timeg)

External
Expectations

Internal
Expectations

Times

Figure 3.4. The Situation Space

The values along each dimension of the situation space are descri
of those dimensions, as given in the example built during this sectio:
summarized in section 3.2.5. A pointsicaldedon) of this space, fully
defines (for our purposes) the agent's situation, that is: the action execu
the current expectations in the course of executing a certain type of g
solve a given problem in a specific general context or environment. W
use it further to determine whether the agent should prepare or not a
for a contingency "in the current situation". In chapter 4 we pres
representation formalism for the values of the situation space dimei
which allows us to group situations into classes to facilitate the stora
knowledge and the reasoning and knowledge acquisition processes fi
agent wusing our framework. Figure 3.4 summarizes the functi
dependencies described here.

With each point in the situation space, there is a (possibly null) s
contingencies (and responses) associated (known to the agent throu!
knowledge base) for which the agent has to further decide whether to
for and to prepare reactions for. Let us suppose that the contingencies
by our agent to be associated with the situation described in this secti
the ones listed in table 3.1. However, we shall mainly discuss and compsz
characteristics of only two of these contingencies, which have essential
same reaction: (i) children running in the street in front of the car, anc
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ball appearing in front of the car. As the need will arise, we will refer tc
contingencies in the set for comparisons too.
3.2.3. The Criticality Space

The criticality space describes the characteristics of a contingency
its associated reaction in a specific situation, and helps in establishir
value of performing the reaction when the contingency appears in
situation. In the previous subsection we used the situation space to eva
situation, independently of the contingencies that might appear in it. H
evaluate the criticality of a contingency, dependent on the situation in
it occurs, but independent of the set of other possible contingencies f
same situation, and independent of the characteristics of the reactive
and those of the agent. Resuming our driving example, we continu
exemplify our presentation by analyzing the two contingencies asso
with the situation described during subsection 3.2.2. The four dimension
situation-dependent values) defining the criticality space are (figure 3..

m time - is the time deadline, or the urgency to correct the problem
by the contingency. This is in contrast with the time dimension fo
situation space introduced in the previous subsection, wtk
represented the time allowed to pass until a contingency is declare:
actually use two strongly correlated values here:
| Timerc - is the actual real-time interval allowed to pass (witl

consequences) between the time a contingency is detected and
the corrective action is taken.
| Timep - is the corresponding time pressure acting upon the agent
inversely proportional to the real time (the proportionality fact
a parameter of the expert model).
In our example, in both the child and the ball case, this is the dy
planning time available before the action must be taken in ord¢
avoid collision, from the moment the contingency is detected. This
is shorter than, for example, the time allowed to respond to the
turning itself suddenly loud. Therefore, the time pressure is 1
higher in the first two cases than in the radio contingency.

m consequences - is a summary of the gravity of the consequences
may appear if no action is taken (before the time deadline) in res
to the contingency. This value can (but need not) be situa
dependent. In our example, hitting a child can be fatal, and this
will be very high. But hitting a ball is usually no big deal, so its "
will be small.

m side-effects - is a summary of the gravity of the consequences that
occur as a result of reacting, and therefore this characteristic is r
dependent on the reaction and the situation, and less dependent
actual contingency. Alternatively, it is a measure of the risk of
being able to reach the final goal anymore, once the reactior
executed. In our case, in order to avoid hitting the child or the
when driving a car, the same reaction is indicated. It is a dange
maneuver (braking hard implies the possibility to be hit by the
following our agent's car, and steering right implies the possibility
the agent's car may hit the sidewalk or a pole on the sidewalk) an:
yields a high value for the side-effects characteristic in this case,
significantly higher than, say, the side-effects of adjusting the rad
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m likelihood - this dimension summarizes the probability of occurren

a given contingency in a given situation. However, it is importan

note that it need not be the actual probability, or not even per

correlated to it. It can simply be a value that is approximately cort
to the actual probability, in that the relative values of the probat
of different contingencies are reflected in their relative likelil

values. Initially, this value can be determined from previously k

cases in the literature describing the domain, from the estimates

expert, or from a theoretical analysis when a sufficiently strong d

theory exists. Later on during its lifetime, the agent may adjus

according to its own experience. Assuming the agent has no r

experience in our example, we initialize the likelihood as medium

both a child and a ball appearing in front of the car passing in fr

a school, with the likelihood for the ball contingency a little hi

than for the child one. They are both higher than the likelihood t¢

an airplane land on the street, but lower than the likelihooc
encounter a red traffic sign.

The values along the consequences, side-effects and likelih
dimensions of the criticality space are reals in the interval [0,10]. The
for the time pressure dimension are real numbers greater than O0; the
limit for the time pressure depends on the threshold values imposed
expert model, which will be discussed in section 3.3.1. All the values for
criticality space dimensions may be specified qualitatively (e.g. for
consequences dimension using {very small, small, medium, high, very
and are then translated into numeric values. These values are sit
dependent; they may be different for the same contingency associate
different points in the situation space. For example, the side-effects ¢
proposed dangerous maneuver to avoid a collision with a child or a b:
much smaller if driving in an empty, large parking lot, than when driv
a busy street. The values for the criticality space dimensions for
condition and situation must be specified in the agent's knowledge base
important to note here that these values need not be very precise in
values. It is enough if they are in the correct order and approximat
correct relative values. This is because the method for computing
criticality value (section 3.3.2) and the way this value is used further
framework are robust (i.e. noise tolerant), making the entire fram
robust. We shall substantiate these remarks in chapter 6, when we
discuss the experiments we have conducted. Given these relaxed pre
requirements, the experts with whom we have worked on the know
acquisition part of our experiments were able to specify quickly and wit
effort suitable wvalues for the characteristics of the contingencies ir
experiments.

A point in the criticality space presented here defines an exp«
value for the reaction to a contingency, versus a dynamically repl
response, as shown in section 3.3.2. The agent attaches to the plan s
reaction only if the contingency is critical enough with respect to the
contingencies possible in this situation, and only if it will have en
resources at execution time to respond in time to this contingency as wel
all the previously accepted contingencies. That is, as we shall see in s
3.4, not all such reactiamrs be included, but monitoring actions for al
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contingencies found to be critical enough (according to an expert d
threshold) after this analysis will be included in the plan.

Situation

Consequences
Side-effects
Likelihood

Criticality
(reaction value)

Expert Model

Condition S
(Contingency + Response) Criticality Space
Timeyc = f1 (Situation, Condition) Consequences = fo (Situation, Condition)
Side-effects = f3 (Situation, Condition)  Likelihood = f4 (Situation, Condition)
Timep = fic (Timeyc) =k / Timeyc Monitor = f, (Criticality)

Criticality = f¢ (Timep, Consequences, Side-effects, Likelihood)

Figure 3.5 The Criticality Space
Figure 3.5 summarizes the characteristics of the «criticality sj
defined above, and their relationships (functions) to other elements
framework. Functions fq to f4 are implicitly contained in the expert 1

they are not explicitly used in the framework, since the values for th
dimensions of the criticality space are acquired directly form the e
However, for well-structured domains, it is possible that a strong d«
theory might exist which can explicitly specify these functions.
3.2.4. Reactive Plan Space

The reactive plan characteristics represent one more set of featur
consider in deciding whether to prepare a reaction to a contingency ¢«
We define a reactive plan characteristics space to help wus study
relationships between replanning a response, versus reacting to the
contingency in the same situation. The factors to be taken into accour
are the availability of computational and non-computational resources
agent, expressed through the reactive planner model and the agent
(subsections 3.4.1 and 3.4.2). Here, the values of the dimensions in this
will be based on all the elements of our framework: situation, contin
criticality, and reactive planner and agent models. Thus, we have bui
framework hierarchically, the coordinates of each space of the fram
being defined in terms of the values of elements in (and the dimensio
the previous spaces.
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: Reactive Plan Agent Model
| Reactive Planner Model Characteristics

Agent's

~A
' Knowledge '

Timer = f; (Situation, Criticality, Agent's_knowledge, Reactive_planner_model)
Resourcej = fti (Situation, Criticality, Agent's_knowledge, RP_model)

fr Inclusion
(yes / no)

Situation

Criticality

Inclusion = f, (Timer,Resource1,...,Resourcen,Agent_model,Situation,Criticality)

Figure 3.6. Reactive Plan Characteristics Space
The dimensions of the reactive plan space, which also represent
characteristics of reactive plans, are (figure 3.6):
m time, - is the time needed by the agent between the momer

contingency is detected, and until the proper reaction to it ca
started; it depends on both the computational and non-comput:
resources of the agent, their capabilities and their load in that sit
The wvalue of this dimension grows with the number of t
contingencies included in the reactive plan and with the complex:
identifying them and their reactive responses.

mresource; - is the total requirement imposed on the agent's i-th re

by the reactive plan containing the current contingency analyzed
all the contingencies previously decided to be included for rea
response and associated with this same situation. These dimension
of special concern for real systems. Both computational ¢
non-computational resources (including memory) are limited, and
availability may be decisive for the successful completion of
reaction (e.g., in the limit, a wuniversal plan for a real domain
require an infinite amount of memory, which is unacceptable in
systems).

Inclusion of a reaction to a new contingency depends on the size ¢
resulting reactive plan, which combines it with the set of all the reacti
contingencies already decided to be included in the reactive plan fo
situation. These contingencies were obtained from the agent's knowledg
where they are indexed by their applicable situations, and have
previously analyzed by this framework (since their criticality must be
than the criticality of the currently analyzed contingency).

The agent's knowledge base includes all the contingency-reaction
known to the agent, indexed by the situations in which they may appe:
with associated descriptions for the criticality space dimensions. We
present in chapter 4 a formalism to construct languages for repres
situations, contingencies and reactions in the knowledge base, designed
advantage of the regularities of the application domain.
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To continue with our example, the more contingencies (selected
the 13 contingencies given in table 3.1) are included in the reactive pl
more likely it is to decrease the responsiveness of the agent to each «
contingencies included. Since we have no information (yet) on the str
of the reactive plan built by the reactive planner, and also on the
resource limitations, we cannot actually specify how much each of the
contingencies will increase the response time (we shall see in section
that for some structures of reactive plans, adding some new contingenc
in some circumstances, not increase the response time at all). In any wz:
agent will always try to include at least the reaction to I
child-in-front-of-the-car contingency, and will continue to add to it as
as possible, in the order given in the table. However, it will not ac
contingency if either (i) its estimated response time would be bigger tt
allowed response time, or (ii) if adding it would determine the response
any previously included contingency to exceed its allowed response
(given by the Time,. value of the criticality space associated with

contingency).

Figure 3.6 summarizes the characteristics of the reactive plan ¢
defined above, and their relationships (functions) to other elements
framework. Functiogsarfd all f;; are explicitly contained in the reactiy

planner model and are then used in conjunction with the limitations
agent resources defined by the agent model.
3.2.5. Summary of the Framework

The purpose of our entire framework (and of the thesis for that n
is to keep the reactive response time and other resources for very ¢
contingencies within acceptable (i.e. useful) bounds, while ensuring r¢
behavior at least for the most critical contingencies known for e
situation. Given the information contained in the three spaces defined
the agent has all the data it needs to be able, for every contingency, to
decision of whether to include it or not in the reactive plan associated
given situation. The result of processing the contingencies through the
framework is a partition of the set of known contingencies possible in a
situation into two classes: to be included in and to be excluded fror
reactive plan.
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Problem
Plan
Action

Context

Internal _\\fs

Reactive Planner Model
f, fti (i=1,2,...)

Reactive Plan
Characteristics

Agent's
Knowledge]

Agent Model:
Kt K (i=1,2,...)

; O+ Situation
Expert Model
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CSmin’ I—min’
MON, ftc

Expectations

External
Expectations

T|meS

Condition
(Contingency + Response)

Criticality

Likelihood

fe Criticality
(reaction
value)

Behavior Model: fC

Inclusion
(yes/no)

Monitor
(yes/no)

Figure 3.7. The Plan-to-React Decision Framework
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Figure 3.7 shows a detailed summary of the framework for selectin:
contingencies for which reactions are prepared and those for v
monitoring actions are added to the plan. It details the diagram prese:
figure 3.3, and essentially combines figures 3.4, 3.5 and 3.6. At any tim
agent knows of a set of contingencies and reactions to them. Each conti
may be associated with several regions in the situation space, and eack
in the situation space may have several contingencies associated (man:
relationship). Each contingency is characterized in a situation by a cri
point. While the criticality value alone decides which contingencies wi
monitored in which situations, the decision for including the treatment
contingency in the reactive plan associated with that situation is made
on both the criticality value, and the reaction value of the entire r
plan for that situation, in relationship with the reactive planner mod
the agent model.

Situation = g (Problem, Plan, Coniext, Action, Internal_expectations,
i_l\m, HMeg)
—Timerc =11 (oraaton, Conartor)
—Conseguences = 17 (oitaatton, Conattor
Side-effects = f3 (Situation, Condition)
Likelihood = f4 (Situation, Condition)

= = (o
Criticality = fc (Timep, Consequences, Side-effects, Likelihood)
Monitor = fm (Criticality) - Expert Model
Timer = ft (Situation, Criticality, Agent's_knowledge,

Reactive_ptranmer _modeh)

T
H H —_ c’

Reactve pranmer—modet) =12
AgentTroder, Sraatior, Critcanty)
Hegure—3-8—Functional—Retattonships—ftor—the
Plan-to-React Decision Framework
The set of functional relationships among the elements of
framework is summarized in figure 3.8.
Appendix 1 presents the general agent architecture and the basic
flow during the plan modification process.
Our agent integrates reactive responses with the plan to compensa
the unfeasibility of universal plans. It does not only try to prepare f
most frequent or likely contingencies, but also for some very infrequen
which are very critical. Due to real-world resource limitations, some
frequent but not very critical contingencies may be excluded from reac
favor of less frequent but very critical ones.

Space
Dimensions
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Problem
Deliver package to work

Plan
drive car

Context
school time (May, week)

Situation
Action
drive straight, 25 mph

Intern. Expectations
reaching school

External Expectations
children in sight

Time
max. 3 mins.

Contingency

Child / Ball in front of car

Time
to avoid collision (short)
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Consequence
fatal (very high) / small

Criticality
Side_effects
high

Likelihood
medium

React. Plan
Time
N.A. / to be considered

Characts.
Memory
N.A. / to be considered

Figure 3.9. Example for the driving domain
Two advantages of the framework introduced here are: (i)
specification is general, domain and agent-independent, so we expect it
applicable to a wide variety of agents working in a variety of environ
and (ii) it is highly parameterized, which ensures a proper adjustment
framework to a specific agent and to domain-dependent require:

(domain, expert, reactive planner, and agent characteristics and capab
as well as to the desired type of behavior. In chapter 5 we claim and
that the framework, as presented here, is free of redundancies; that is,
the elements included in our framework are necessary to completely d
the characteristics of a contingency and its reaction in order to allo
agent to decide at planning time whether to prepare for the reaction
contingency in that situation. While we cannot prove that the framew
also sufficient (i.e. that there are no other elements needed for this d
besides the ones described here), the experiments described in chapter
successfully conducted wusing this framework. Should the need to exter
framework arise, we believe that it can be easily done, while preservir
elements and their structure discussed here.

Space
Dimensions
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Problem
inguinal hernia

Plan
surgery procedure H

Context
heart disorder history

Situation
Action
apply anesthetic

Internal Expectations
get patient asleep

External Expectations
surgeon perf. incision

Time
from action to sleep

Contingency

heart failure

Time
to restore heart (short)
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Consequence
fatal (very high)

Criticality
Side_effects
very low

Likelihood
high

React. Plan
Time
N.A. (irrelevant)

Characts.
Memory
N.A. (irrelevant)

Figure 3.10. Example for the anesthesia domain

Figure 3.9 presents a summary of the car driving example
throughout this section to illustrate our framework. Figure 3.10 prese
example from a different domain - anesthesiology, to show the general
our theoretical framework.

The agent is an anesthesiologist preparing for an operation di
which contingencies that endanger a patient's life may appear. The si
space is defined by the general characteristics of the operation (in
hernia to be treated through a specific surgery procedure performed
patient with heart disorder history). The plan analysis is at the point
anesthetic is applied. This action will give rise to two kinds of expect
(milestones) to be watched for: as a result of the action, the patient sho
asleep after a certain amount of time, and from the external environm
expectation of an incision being performed by a surgeon. At this poin
anesthesiologist agent analyzes as a possible contingency a heart failc
has a short deadline (the time to restore the patient's heart without
brain damage) and the consequences of not reacting in time are fatal
high). It also has a high likelihood of occurrence, given the patient's n
history. As we shall see in the following sections, since these characte
yield a very high criticality value for this contingency, the agent
probably decide to add monitoring actions to the plan, and will pr
include its reaction in the reactive plan for this situation, almost regarc
the rest of the contingencies relevant to the same situation (analogous
child contingency in the driving example). In chapter 6 we present a
set of results which we have obtained from our experiments in this n
domain.
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3.3. Establishing the Value of Reaction

As mentioned in the overview of the framework which we made
section 3.2.1, our framework has two critical phases: establishing
criticality (or reaction value) of the contingency, and making the decis
whether to include its associated reaction into the reaction plan built
current situation. In this section we will concentrate on the first of
phases, and will leave the second one for the next section. But before w
present our method for establishing the reaction value of a contingen
have to talk briefly about the expert model, since it is according to s
model that the values for the criticality space dimensions are specified.

3.3.1. The Expert Model

The situation-dependent criticality space values for
contingency-reaction pair are supplied by an expert, and are thus sub
the personal interpretation of the expert, according ebperis mwdel.

As our experiments have shown (chapter 6), the experts need not be
precise in the absolute values they provide. It is enough if they are

correct order and approximately of correct relative values. This is becat
method for computing the criticality value (section 3.3.2) and the wa
value is used further in the framework are robust (i.e. noise tolerant),
the entire framework very robust. We shall substantiate these remar
chapter 6, when we shall discuss the experiments we have conducted.
these relaxed precision requirements, the experts with whom we have

on the knowledge acquisition part of our experiments were able to s
quickly and with very little effort suitable values for the characteristics
contingencies in these experiments.

The values specified by the expert for each contingency are the
time interval allowed between the moment a contingency is detected an
its reaction is started, the consequences of not reacting to the contir
the side-effects of executing the reaction associated with the contingenc
the likelihood of occurrence of the contingency in that situation. Th
three values are real numbers in the interval [0,10]. The values for th
pressure dimension are positive reals; the upper limit for the time p
depends on the threshold values imposed by the expert model, whic
presented below. All these values may be specified qualitatively (eg fc
consequences dimension wusing {very small, small, medium, high, very
and are then translated into numeric values (e.g., correspondmg t
previous set of qualitative values, these numeric values will be in
intervals: {(0.2], (2,4], (4,0], (6,8], (8,10]}. As seen in previous chapters,
values are situation dependent; they may be different for the
contingency associated with different points in the situation space.

The expert model reflects the expert's interpretation of the domair
the way he or she estimates the values of the contingency character
This model must include the following threshold values, which will be u
the next section in our analysis:

m Tmax - is an upper limit on the reasonable values for the time pr

exerted by contingencies on the agent. A time pressure higher
this value makes the reaction useless since it can only be taken to«
(the agent has no way to react before the deadline). In our dr
example, the meteor contingency has a too short deadline to



responded to realistically, so the agent is better off by not inch
such a reaction in the reactive plan (and leaving the reactive plan
for contingencies that can be responded to in reasonable time).

m Tmin - is a lower limit on the time pressure values for which the
should try to respond reactively. If the agent has more time thar
threshold, then it can probably dynamically replan its response,
leaving room in the reactive plan for other, more time presst
contingencies. Therefore, the value of reacting here is significe
lower, although not zero - if the agent has left enough execu
resources, then maybe it is still a good idea to prepare a rea
response for such a contingency. For example, if the agent drivi
car detects a traffic jam, it does not have to react (well, usually...
can take its time to replan an alternate route. However, we can ¢
imagine traffic jam situations in which the agent is much better o
first reacting (and, say, leave the freeway) and then replanning,
just by taking its time to dynamically replan (and, say, pass the fr
exit).

mLmin - is a lower limit on the likelihood of occurrence of continge
for which the agent should prepare reactions. A likelihood value
than this threshold indicates that the contingency is so unlike]
appear in this situation that the overhead of preparing and mana
reactive response is probably unjustified, so the value of reacting
is significantly lower. An example here can again be the met
contingency, and maybe the airplane landing contingency too.
treatment can be dangerous in certain domains where
consequences may still be fatal, but in such cases this threshold c:
lowered to zero. Also, the value of reacting if the likelihood drops 1
the threshold is again still positive (though much smaller), so if
agent has left enough execution resources, then it may again be a
idea to prepare a reactive response for such a contingency.

m CSmin - if the side-effects of a reaction to a contingency outweigh
consequences of not reacting by more than this value, then i
probably wiser not to take any action. In this case, like in the
time pressure threshodgyxT the value of reacting to the contingency

is considered zero. An example is the contingency of a ball poppin
in front of the agent's car: the side-effects of taking the recommu
dangerous maneuver outweigh by far the consequences of hitting

at 25 mph, so the agent is better off by ignoring this contingency
the reactive plan preparations.

m MON - is a criticality threshold beyond which monitoring actions fo
contingency should be included in the main plan (even if reactions
cannot be included); the reason is that the decision to include a re
for a contingency is taken dependent on the agent's run-time res
and performance, which may change over time, but are not taker
account at this stage of the decision process. Also, these monitc
actions may detect a contingency for which no reactive response
prepared, but for which the agent has the resources to dynam
replan its response.
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The agent model must also specify the function ft¢ which transf

real-time values into time-pressure values. These pairs of values are in
proportional, so this function has the form:

Tlmep = ftc (Timerc) = k / Timerc
where only the constant k has to actually be specified by the expert moc
has to be in some (weak) correlation with the two time pressure thre
presented above.

Also implicitly contained in the expert's model are the functions f7.
which associate the values for the criticality space dimensions with eac
condition-situation, as discussed in section 3.2.2.

3.3.2. Value of Reaction

The criticality value for a contingency-reaction pair is a measure c
merit of the reaction to the contingency as opposed to dynamically rer
a response to that contingency, in a particular situation in whict
contingency is known to possibly appear. This value induces an order 1
on the set of contingencies that can appear in that situation. This order
to allow the selection of those contingencies that should be reacted to
the limited resources of the agent. Function f¢, which computes the cri

value for a contingency given the values of the characteristics of
criticality space for the contingency, implements the evaluation funct
the behavioral model to be exhibited by the agent.

The behavior modealepresents the type of behavior which the ager
attempts to simulate. By imposing an order (i.e. a preference of treatme
the set of contingencies associated with a situation, the agent commits it
a pattern of reactive behavior. It involves both which contingencie:
preferred over which, and which contingencies are ruled out altogethe
the reaction process. Each behavior model is charactedyadubsioan
function which, given a set of conditions (pairs contingency-reaction)
situation in which they apply, computes a score with the following pr
the higher this score is, the better (more appropriate) that se
contingencies is (according to the particular reaction philosophy of
behavior model). The evaluation function orders the set of conting
associated with a situation according to their priority for a reactive res]

The behavior model is implemented in our framework through
relative values of the parameters in the function computing the wval
reaction (which is presented here), and through the values of the thr
on the criticality space dimensions (presented in the expert model) rele
the values of the parameters of the criticality function. In chapter 5 we
a few properties of the relationship between the evaluation function
behavior model and the criticality function defined below. The most im
property is that both functions define the same order relation on a
contingencies associated with a same situation, which implies that
criticality function can be consistently used to implement behavior moc

The criticality function we have used in our experiments has
following general form:

Criticality = f¢c (t, ¢, s, 1) =

if (t>Tmax)
then fc=0

elseif (¢ + CSmin - s < 0)
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thenfc =0
elseif (t < Tmin)

4 5 p6
then fe =" *(c+CSmin-s)" *1X ")

elseif (1 < Lmln)

4 5 p6
then fec=" *(c+CSmin-s)F *IP")

1 2 4
else fc =tp *cp *sps*(c+s)p *(c+CSmin—s)p5*1p6
where, for the purpose of stating the criticality function in a more s1
form, we made the following notations for the (situation dependent) cr
space dimensions:

t = Timep (is the time pressure)

c = Consequences (of not reacting)

s = Side-effects (of the reaction)

1 = Likelihood (of encountering the contingency)

Parameters mhx, Thin, Chhin, lnin are dependent on the domain and
are defined by the expert specifying the domain knowledge. Their m
has already been defined in the previous subsection. They are import
implementing a specific behavior model. For example, if the upper thr
on the time pressugead is made lower, than more contingencies will be le

out of the reactive plan since the agent estimates that there is not enou
at execution time to give a timely response to these contingencies.
behavior simulates the resignation behavior model [FAA, 1991] (the
leaves responses to contingencies to others, since it believes there is no
try to react to them, i.e. it believes that there is no time to take care o

anyway). On the other hand, taking *I'mgmuwlates a behavior intended to

avoid legal liabilities by always doing something.
Parameters p1 & pre also used to model different (human) behavio

their relative values place the agent in different behavioral models and
viewed as labels for human reactive behavior. For exampleg pp > p

(with p3 and pyg very low) represents what is usually accepted as n

behavior in the car driving domain: most importance is given to the
pressure and then to the difference between consequences and likel
with more emphasis on consequences; lastly, it also considers the likelih
occurrence. Another behavior model in which consequences and esp:
side-effects are almost disregarded with respect to time pressure impl
an attitude of invulnerability - the agent is prone to risk taking and du
believe that anything wrong can happen to him. Again, it is importe
notice the robustness of our model: the only important thing about
parameters are their relative values, and these can themselves vary
while still obtaining consistent results. This property makes the life ¢
domain experts participating in the knowledge acquisition and behavior
specification process much easier. In chapter 6 we shall discuss a num
experiments we have made and how they justify our claims for the frar
robustness.

As stated before, the value of reaction associated with a conting
induces a total order relation on the set of contingencies associated
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certain situation. This is only a partial order on the set of all conting
known to the agent, since contingencies in different situations may
(although sometimes can) be comparable according to their criticality
This order relation is defined as:

"A is more_critical_than B " if and only if:

A and B are contingencies applicable in the same situation S, anc
A has higher criticality value than B, or
A and B have same criticality, but A has higher consequences,
A and B have same criticality and same consequAndess but
higher likelihood.

This ordering characterizes the behavior model of the agent. It
subsequently be used to choose the contingencies for which reaction
prepared (section 3.4.3).

Different combinations of these parameters defining the «critic
function are used in both the theoretical and experimental evaluatic
prove certain conjectures. In chapter 5 we claim that the paramet
function defined here can implement the human reactive behavior
described in the literature, and while we cannot formally prove this cla
justify it through the experiments discussed in chapter 6. Therefore
framework can also be used in psychological studies of "hazardous" attiti
certain high-risk domains like nuclear power plant operation and ai
flying. In section 6.3 we present and briefly evaluate a series of exper
we have conducted with our framework to simulate a number of re
behavior models described in the literature.

3.4. The Reaction Decision Making

Making the actual decision of whether to include the contingency
its associated reaction into the reaction plan built for the current situ:
the second and last critical phase of our framework. This phase is based
the elements and the information previously acquired and computed
framework. As shown in figure 3.7, there are two agent dependent mode
participate in this phase: the reactive planner model and the agent
They synthesize the agent's properties and the limitations on its resou
planning time and execution time respectively. We first make a
presentation of these models and the information they are expected to
and then we give the actual algorithm for deciding whether to plan to r

3.4.1. The Reactive Planner Model

The reactive planner model describes the planning time properti
the agent, and the characteristics of the reactive plans built by the age
their relationships to the agent's execution time resources (computation
as well as other non-computational resources). This model must alloy
agent, at planning time, to estimate the wvariations in execution time r
requirements with respect to the growth of the reactive plan, namely w
number of contingencies and reactions included in the reactive plan. ~
accomplished by the functions f; and f;; in figure 3.11 which depic

entire decision making process presented in this section.
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Agent Model:
K, Ki (i=1,2,...),
Reactive Planner Model: Reactive Plan | frg, fr; (i=1,2,...

fr=ftg , f5 (i=12,..) Characteristics

Inclusion
(yes / no)

Situation

Criticality

Timey = f; (Situation, Criticality, Agent's_knowledge,
Reactive_planner_model)

Resourcej = ft, (Situation, Criticality, Agent's_knowledge,
Reactive_planner_model)

Inclusion = f, (Timey, Resourceq,..., Resourcep,, Agent_model,
Situation, Criticality)

Figure 3.11. The Reaction Decision Making Phase
Function ft estimates the time needed by the agent from the mom

detects the existence of a contingency and until it can react to this pa
contingency, when the reactive plan known to the agent in this sit
contains the response to this contingency as well as responses to al
contingencies with higher criticality which apply in the current sitt
The reactive planner model assumes that the agent can devote a
computational resources to this task (this assumption is then taken care
the agent model, described in the next section, which takes into accou
overhead that the agent may experience in that situationy. Functi
estimates how much does the reactive response time increase, on avera
adding this contingency to the reactive plan.
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to
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(a) Decision List (b) Decision Tree

Figure 3.12. Two reactive plan models

Two commonly encountered examples of reactive planner models
decision lists and decision trees. For a reactive planner based on decisic
(figure 3.12.a), the time to react increases approximately linear wit
number of contingencies to be considered, since for each new contir
added to the reactive plan, a new test must be added to discrimin:
Therefore, the time needed to react to a contingency according to this
will be the sum of the times required for each test that has to be done
deciding on the contingency. If we assume the testing time to be ro
constant, then the estimated time to react becomes:

Timer = test_time * rank_in_reactive_plan
i.e. is directly proportional to the number of tests to be performed wl
equal to the number of levels in the decision list before the continge:
question. In figure 3.12, tj (i = 0,...,3) and tjj (i = 0,1,2; j = 0,...,4) are test
performed in order to determine the proper reaction to the contingen
Ci (i = 1,...,8) are the contingencies (and their associated reactions) for
the reactive plan contains responses.

If the reactive planner uses decision trees to index the reactions i
final reactive plan, then the time to reach a response is closer to the lo
of the number of contingencies (the base of the logarithm is equal t
branching factor (assumed constant) of the decision tree), assuming ag
approximately constant testing time. Figure 3.12.b presents such a co
binary tree, for which the reaction time for each of the contingenc
roughly:

Timer = test_time = log2 (number_of_contingencies_in_reactive_p!

i.e. is directly proportional to the logarithm of the number of contin;
treated by that reactive plan (we assume complete decision trees, in wh
k leaves (contingency-reaction pairs) are all situated at levBl, mrifpk = 2
of the leaves are at level 2™ and the other k-2p leaves are p‘ﬁ‘céd at leve
when k = 2071 | p (1 <p <2m1y

Similar reactive planner models can be built for other method
organizing the reactions in reactive plans.
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Functions tif have the same mission for each of the other critic

resources of the agent (e.g. the amount of memory needed by the r
plan, as well as any other non-computational limited resources that the
might need in order to start its reactive response), as ft has for compu
time.

The two formalisms for structuring reactive plans mentioned a
(complete binary decision trees and decision lists) deserve here a
comparison. At the first glance, a qualitative reasoning seems to impl
decision trees are better (or at least never worse) than decision lists.
running the experiments described in chapter 6, we have found out that
not necessarily the case. We shall show here when this is not necessaril
and analyze and justify it. (A formalism is considered better if it can i
more reactions to more critical contingencies in the reactive plan f
executed by the same agent with the same resource characteristics
limitations, in identical situations). During this discussion we will assum
all the tests require the same amount of time (T), and that there are
tests available such that any arrangement of reactions in the resp
reactive models is possible. In this case, responding to the n-th continge
the reactive plan will take téma Th the decision lists case, and T * log2 (n)

in the case of complete binary decision trees.

We must note two things here: (i) different contingencies may
significantly different time pressures (i.e. significantly different all
response times), and (ii) a structural difference between decision list
decision trees is that the complete decision tree takes the same amount
to respond to all the contingencies, while decision lists respond fast
contingencies placed towards the root of the list, and this response
increases with the distance of the condition from the root.

Therefore, once the decision tree reactive planner has decidec
include a given contingency (say C) in the reactive plan, it can only a
many contingencies to the plan until the estimated response tim
contingency C becomes larger than its allowed response time. This mear
the decision tree formalism is actually limited by the contingency wil
highest time pressure which the agent decided to include in the reactiv
This is not the case however for reactive planners based on decision
Here, the contingencies with the highest time pressure can be placed t
the root of the tree, and the response time to them will not be affected
number of contingencies covered by that reactive plan. There
contingencies with lower time pressure can still be added towards the
the decision list, since they allow for a longer time of response, and Wwi
affect the response time for contingencies placed higher on the list. A
of experimental results which support this analysis (actually, as we
earlier, they have prompted this analysis) are presented and discus:
section 6.2.

In summary, when the response times allowed by the continge:
under consideration vary within a small relative range, the decisior
based reactive planner will be able to include more such contingencies
all its leaves are reached in roughly the same amount of time). On the
hand, when the time pressures of the contingencies vary widely (which
to be the case in real-world domains), decision lists are better suite
including responses to a larger number of contingencies, since testing



33

for contingencies with shorter time of response allows timely reactio
more contingencies with lower time pressure. Naturally, the best so
would be an incomplete decision tree which combines the advantages o
formalisms.

In this thesis, we assume that the agent has enough planning resc
and time to build the most comprehensive reactive plans which do not
its execution time resource limitations. However, this framework may al
applied when dynamically replanning courses of actions, and wher
limitations on the agent's planning resources needed to build such r
plans may become a factor to be considered. In such cases, the re
planner model may also be required to estimate the complexity of the
plan structuring algorithm. This estimate can then be taken into acco
our framework, and may lead to the decision of reducing the set of cor
to be included into the reactive plan, in order to ensure that the time
to construct the reactive plan will not exceed the time allowed for this t:

3.4.2. The Agent Model

The second agent dependent model involved in this later stage o
framework in which the agent makes the actual decision of whether to
the contingency and its associated reaction into the reaction plan built
current situation is the agent model. It synthesizes the agent's propert
the limitations on its resources at execution time.

The agent model describes the (situation dependent) resp«
capabilities of the agent (figure 3.11). The fynctiomes¢fibe the

variation of the availability of resource i (i=0 for computational time)
the fact that the agent cannot devote its entifeexelsmwivety to

responding to that contingency. For example, the computational load
agent slows its responsiveness by a facgoeatkr than 1, and can be
expressed by:

fro (timer) = timer * K¢ ;

or if the agent can devote itself to solving this contingency only after
constant time Kg, then

fro (timer) = timer + Kg,

and so on.
The agent model also supplies the amount of each (rd€ource (K

that may be allocated to reacting in the given situation, for
non-computational resources. Example of non-computational resources :
the anesthesiology domain, oxygen masks and ventilators. Such resourc
available in limited quantity, and also may only become available af
certain waiting period. The agent model does not have to specify su
upper limit on the availability of resources for computational time, sin
is already specified separately for each contingency through the re
time allowed to respond to it (the time pressure dimension of the cri
space values associated with the condition in the agent's knowledge base

The agent model is very important in domains whe
non-computational resources may not be available all the time, but
obtained after some waiting period (as in medical domains like anesthe
intensive care monitoring, or in nuclear power plant operation).

By comparing the requirements of each of the agent's run
resources, for the set of the previously included contingencies plu:
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current contingency under consideration, with the limitations or
availability of that respective resource (given by the agent model
non-computational resources and the agent's knowledge base for time
agent can decide whether this contingency can be included in the r¢
plan for the current situation or not. We shall analyze this decision pro
detail in the next subsection.

3.4.3. Deciding Whether to Prepare to React
The final purpose of this entire framework is to decide, for e
contingency-response pair associated with a given situation, wheth:
preplan the reaction to it or not. As shown in figure 3.11, this decision i
by comparing the estimated execution time resource requirements fi
agent to respond to all the contingencies already decided to be included
reactive plan plus the contingency currently under consideration, wi
allowed response times for each of these contingencies in that situation.
Given the criticality of the current contingency and the set of the
contingencies known possible in the current situation, this decision
proceeds as follows: the framework computes the agent's execution
resource requirements to respond to any of the contingencies as:
Resour(:ei = f; (Situation, Criticality, Agent's_knowledge, RP_model)

for each resource, (i = 0,1,...) of the agent (for a unitary exposition we
sometimes call the agent's computation time as resource; all other re

of the agent (possibly including the amount of memory needed by the
plan, as well as other domain dependent critical and limited resource
ventilators in an intensive care unit, etc.) are numbered starting with
functions (;f are given by the reactive planner model, and estimate

increase in resoilrcrequirements by adding this new contingency-reacti
pair to the reactive plan. For i = 0O, f;y = f; estimates how much does the

response time (considered from the time a contingency is detected, and
reaction to resolve it can be taken) increase, on average, by adding
condition to the reactive plan. As discussed in subsectjoris 3.4.1,

approximately linear for decision lists and roughly logarithmic for de
trees. Obviously, the better the reactive planner model is (i.e. the bette
estimates are), the better use of the execution time resources of the age
be ensured by the selected set of contingencies.

As we have mentioned in section 3.3.1, the decision to monitor f
contingency is taken based only on the criticality value of the contin
and independent of the reactive plan characteristics. The reason is tt
decision to include a reaction for a contingency is taken dependent «
agent's run-time resources and performance, which may change over
but are not taken into account for monitoring purposes. Also,
monitoring actions may detect a contingency for which no reactive re
was prepared, but for which the agent has the resources to dynan
replan its response. The decision to monitor is taken as a threshold func
the criticality of the contingency:

Monitor = frn (Criticality) = (criticality = MON) =

if (criticality = MON) then fm = yes
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else fm = no .

where MON is the monitoring threshold defined by the expert in the
model (section 3.3.1).

The final decision of preparing a reaction for the currently ana
contingency is taken by the function fy:

React = fr (Timer, Resourcei,...,Resourcepn, Agent_model, Situation, Critic

if criticality < MON then fr = no
elseif fro(Timer) > Timercthen fr = no

elseif fr1(Resource1) > Kithen fr = no
elseif fr2(Resource2) > K2then fr = no

elseif frn(Resourcepn) > Khhen fr = no
else fr = yes .
= (monitor A = Ki))) ,

where resoupces the real computational timeg aadlike,. is the real

response time allowed by the contingency for the response to be s
without consequences (the time pressure dimension of the criticality
values for this contingency).

The functions.jfare given by the agent model, and describe th

execution time overhead imposed by other processes which the agent

attend to in the same time in which it must respond to the contin

Equivalently, they describe the availability qgf foesahiscereactive plan.

They may be therefore situation dependent, and can be described as ¢

the agent model. A common expression for these functions is of the form
fri (resourcei) = resource; * kt + ka ,

where kt is the overhead due to the agent's load (or the portion of it wt
be expressed as a delaying factor)d mndnkinitial delay or cost associated

with the use of that resource (for example, a process which cannot start
a certain lead time, or a resource which cannot be delivered to the
before a waiting period has elapsed). All these parameters must be speci:
the agent model.

/I Input: a situation

Cr=1tST = extract fronT the agent s KB ait ContMgency-Teaction pairs matcmg situatiorT,
/I cr-list is the set of all the contingencies known to the agent to be possible in situation

Tor—eacit cont T ngency nrcr=11Stdo
——Hre-pressare <—Hg thrercy: H—expertmoger—

criticality <- f¢ (time-pressure, consequences, side-effects, likelihood); // behavior model

———erreaiy=MON
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then monitor <- true
else monitor <- false
if not monitor
then eliminate this cont i ngency from cr-list
enddo

cr=rrst=<-orgercr -im’f—by-crrl'rcamy valtue, thermr Dy CornSequernces, therr oy TRefmood

therade =0
/I include is the set of all the contingencies to be included in the reactive plan
/1 associated with situation

fUI Udb;l bUIIi I IIUCIIby LLALI Ll_ilbt UIU
timer <- ft (include + conti ngency, situation) ;

resourcej <- fj (include + conti ngency, situation);
inclusion <- fy (timey, resourceq, ..., resourceg, timere, k1, ..., Kk)

e 3 101
Cly tu an

/I contingencies previously added to the list include and to the currently

7 \jw) \.a_y.
——eraston
then add conti ngency to include
enddo
returmthe st craae:

i S

- 3 1D} + pn | T A | 1
I'Igultc Jd.1 0. IANCTaACLIUI1 CUCCISIUILD 1A NIIT g dlg UL ILLIIIL
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function fr (timey, resourceq, ..., resourcek, timerg, K1, ..., Kk)

:f_fm-ﬁeﬁ?{_fﬁ‘lcrc
then return NO;

if fri (resource; )_> T(i -
then return NO;
enddo

—fm-each-ccm-t-rrrgenty-m-n‘remﬂc o

——— g (cont Frgency tmer > ontrHgency —tmerc
then return NO;

for += 1 10 Turmber—or—agent_resources ao
if frj (contingency. resourcej) > k;j
then return NO;
enddo
enddo

Feﬁ 7T

L= =0
A ] 2 1) 4 = | 1 1 £ 1o L 4 d
I'Igultc Jd.1 0. INTACLIUIL CUCTCISIUIL HIANIILE alg UL (CUIItIIT e

One final set of parameters specified by the agent model are
execution time resource limitations of thej agerst1(X... , in the formula
for § above). They do not include Timerc which is a characteristic of
contingency and therefore is specified in the agent's knowledge base.
what the decision function does is simply to check that:

(i) the contingency is critical enough to be at least monitored for,

(ii) the agent will have enough time at execution to respond to
contingency in the context of the larger set of contingenc
considered for reactive response in the same situation,

(iii) none of the execution time limitations of the agent resources (t
computational time) may be exceeded when attempting to respor
this contingency, considering the entire reactive plan containir
(i.e. all the contingencies with higher criticality, already decided 1
included in this reactive plan), and

(iv) the agent's run time resources are still enough to respond prop:
all the contingencies previously included in the reactive plan, -
this new contingency is added to the reactive plan.

This decision process ensures that no reaction is included
contingencies which are not monitored for, and that there is enough a
of each resource in order to attempt a reaction for all the conting
included in a reactive plan. For the computational time resource, this
that the time needed to start a reaction to the contingency is less than
time allowed before the action must be taken (otherwise the reaction b
useless).

Figure 3.13 makes a brief summary of the algorithm for deciding,
a plan execution situation, on the set of contingencies to be included
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reactive plan which will be associated with the conditional plan befor
actual execution starts. The actual decision function fr is presented ser

in the second part of the figure.
The fourth test mentioned above essentially repeats the second
third tests (carried out by the fungtions =f 0,1,...) for each of the

contingencies already decided to be included in the reactive plan. It m
done each time a new contingency is considered for addition to the r
plan, because the addition of the contingency, while possible from the p
view of the restrictions imposed by its characteristics, may increase
resource requirements to respond to previously included contingenci
may therefore exceed the restrictions imposed by their critic
characteristics. For example, in the case of a reactive planner base
decision trees, adding a new contingency may force the reactive plan:
add one more level of tests in the decision tree, and thus increase the r
time to all the contingencies included in this reactive plan. This way, sc
them may now exceed the real time allowed for reaction to be taken, an
reactions may become useless in that situation. (Conform to the analy
section 3.4.1, the time to react to all the contingencies contained in a 1
plan with a complete decision tree structure is approximately constar
proportional to the depth of the decision tree).

The decision function fy is applied in turn to each continge
considered for the current situation, in the order given by their cri
values, as defined in section 3.3.2 (each time, it applies each of the fu:
fri , i = 0,1,..., to each of the contingencies already included in the r¢

plan and to the current contingency, considering the reactive plan to
this contingency plus all the contingencies previously decided to be ir
in the reactive plan for this situation). This iterative process is continue
either all the agent's execution time resources are estimated to be exhau
no more contingencies are known to the agent to be possible in the «
situation.

This concludes the presentation of our framework for deciding wt
to plan to react. Given a plan situation and a set of contingencies known
agent to possibly appear in this situation, it decides for which of
contingencies the agent may prepare reactive responses, considerin
execution time limitations on the agent's resources. In the next two cl
we present a knowledge representation formalism to help the agent tc
with the considerable amount of knowledge related to this decision p
and theoretical justifications for some properties of our decision fram
Then, in chapter 6, we present the results of our experiments usin
framework. But before doing all this, let us see how the ideas presented
can be applied to a related problem: given a plan situation and a
contingencies known to the agent to possibly appear in this situation,
for which of these contingencies the agent should prepare complete b
in the main conditional plan.

3.5. Conditional Planning
We briefly discuss here how the framework presented so far
deciding whether to prepare to react to a contingency can be modif
answer the question of whether the agent should prepare in its plan
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conditional branch for a contingency. We first resume our discussic
section 2.1 regarding possible classifications of contingencies, and the
adapt the previous framework to this new task.

3.5.1. Contingencies Revisited

In section 2.1 we have identified there types of contingencies that
appear during the execution of a plan. They are classified according
action taken by the agent at planning time to prepare for their occurr
execution time. These types of contingencies are:

(i) contingencies for which the planner builds comgpieitenal
branches, from the contingency state to the goal state, in the main

As an example, suppose that the agent has two alternative route

driving to work in the morning, depending on the color of a part

traffic light when the agent reaches it: the regular plan assumes
color is green, and the alternate branch is conditioned on the
being red. For a non-driving commuter, the plan may involve wa
or taking a bus, depending on the weather, and so on.

(ii)contingencies for which the agent pmEzatdye responses,
combined into reactive plans by a reactive planner, and attache
appropriate segments of the complete plan provided by the cond
planner. An obvious example is the one we used before, involvir
child running in front of the «car.

(iii) contingencies ignored by the agent at planning time; their tre:
at execution time can fall under two subclasses:

(a) dynamic replanning, if the agent has enough resources at exe:
time to perform it. As example, suppose that the agent encount
traffic jam on a seldomly traveled route, for which it did not b
to prepare a conditional plan branch before execution.

(b) noop, that is take no action, either because the consequences o
contingencies are not high enough to warrant an action, or be:
the agent simply does not have the resources to take an actio
solve them (e.g. they have a too short response time allowed).
extreme example may be the contingency involving the me
falling on the car, which we have encountered in table 3.1.

The justification for this classification is mainly related to the lir
resources that a real agent can use. For a few contingencies, the ager
generate complete plans and combine them in a conditional plan. Ho
the agent's limited planning and execution resources do not allow for to
contingencies to be treated this way. Still, the agent can prepare at pl
time reactive responses for a larger set of contingencies; these response
not ensure full solutions to the goal state, but they will give the age:
possibility to dynamically replan its actions at execution time. But in n
can a real agent with limited resources prepare for all possible contin
in a real world application domain. Many of these contingencies mu
ignored at planning time.

Let us intuitively analyze now the characteristics of the exam
given, and try to feel the qualitative differences among these classt
contingencies.

In the previous conditional planning example, the contingencies
often, i.e. with a high likelihood (the occurrence probability may apj
50%, but should not exceed it, since if it does, then the contingency
rather be considered the normal case and the main plan should be
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accordingly). Also, a solution to the contingency requires the preparat
an entire plan branch all the way to the initial goal (since the executio
may be critical and thus replanning cannot be used at any stage
reaching the goal, i.e. a local situation stabilizing response to the conti
is not sufficient), as well as certain resources whose availability mus
planned in advance (e.g. an umbrella, or the correct set of maps fc
alternate route to be traveled).

For the reacting case we have already devised a comprehen:
framework stating the main necessary characteristics for a contingency
considered appropriate for a reactive response. For the previous exampl
include critical response time and high consequences of not respondir
important characteristic is also that a short response (already availal
sufficient to stabilize the situation and allow for replanning of the ¢
actions all the way to the initial goal.

The rest of the contingencies will be ignored at planning time, bu
have been able to further subclassify them. The ones for which the age
try to replan at execution time should not occur too often (otherw
conditional branch may be appropriate), and should also allow for ¢
time for the agent to be able to build the new course of action. Finall
contingencies for which the agent will take no action anyway (e.g.,
falling meteor case) do not allow for enough time to respond to them,
circumstances, given the agent's limited resources and execution capab

In section 3.2.3 we introduced a criticality space, which is one po:
representation of the space of contingencies, whose dimensions
appropriate for reaction decision purposes. To facilitate the understani
the relationships among the classes of contingencies, we shall attempt
simpler and more general graphical representation of the space
contingencies, which can depict all the classes mentioned above.
representation can conceptually be obtained from any more cot1
representation (like the criticality space mentioned before, or the imp
space to be introduced later on in this section), by projecting the points
space onto points in the simpler spaces defined here.

; . conditional
noop replanning reacting .
I | | planning |
I I ,

criticality

Figure 3.14. Contingency space - linear representation

The simplest representation for the space of contingencies is a 1
space in which contingencies are ordered by either criticality (as d
before) or importance (as defined further in this section). Figure 3.14
that such a representation can outline the most frequent transitions I
bordering classes, but cannot represent other still possible bordering
between reacting and noop (e.g. determined by allowed response tim
conditional planning and replanning (determined, for example, b
planning time needed). Therefore, a planar representation (figure 3.
more appropriate. The dimensions here are the reaction response vali
the planning response value for the contingency. While much better
representation still does not represent the direct relation between con
planning and noop (which, to be fair, is the least frequent one, sc
representation can be used for most purposes). We have therefore dey
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third, 3-D surface representation using a spherical surface (figure 3.16
orthogonal dimensions (akin to latitude and longitude) are the same as
second representation, and it can represent all the borders between p
classes.

reacting
al
s ® child frequent red o
traffic light
reacting ;?anndri]:ir:);al

noop replanning
infrequent
® meteor traffic jam @
>
planning
value

Figure 3.15. Contingency space - planar representation

The examples given with the informal description of these classes a
beginning of this section constitute extreme cases in each class (figure
In between these extreme cases there is an entire space of contingenci
which more than one (in some cases even all) of the response alterr
may be justified. The borders among these classes in the space
contingencies associated with a particular agent are determined by the
resource capabilities and limitations. For example, conditional plannin
replanning are separated mainly by the agent's planning resot
replanning is circumscribed both by the agent's planning and exe
capabilities, while reacting is mainly characterized by the agent's exe
capabilities.

Due to the way the different classes of contingencies have been de
in order to be able to best classify a given contingency, we only need
membership decision frameworks for two of them, namely condit
planning and reaction. We have already defined a framework for de
whether the agent should prepare a reaction to a contingency in a
situation. In the rest of this section we will give a description of a franm
to decide whether to prepare a conditional plan branch for a contingen
given situation.
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reacting conditional

planning

reacting
value

planning
value

noop

replanning

Figure 3.16. Contingency space - 3-D surface representation

There are two qualitative differences between conditional
branches and reactions. The first is that conditional plan branches re
global solutions to the initial problem, that is, they are sequences of
which ensure that the agent reaches the goal (in the absence of
contingencies). Reactions on the other hand are only single (or
sequences of) actions, intended only to stabilize the situation so that th
can then take its time to replan a solution from the state reached
reacting to the initial goal. Therefore, on one hand reactions can be s
the first steps of incomplete conditional branches, but in the same tim
are more generally applicable than specific plan branches. There is al
assurance that after executing a reaction, the agent may find a plan to g
the initial goal, i.e. it is possible that the planner may subsequently f{i
solution from the state in which the agent finds itself after completir
reaction to the goal; this is not the case for conditional plan bra:
assuming no other contingencies are encountered. Therefore, we a
assume that a conditional planned branch is a better solution than a
to the same contingency, and as a consequence, given a set of conting
for a situation, the conditional planning decision framework should be
before the reaction one.

The second difference involves the planning process itself.
conditional planning, the planner has to work out a solution (sequet
actions) from a given state (the contingency) to the goal. In rea
planning, as assumed throughout this thesis, the agent already knows
knowledge base) the best reactions associated with contingencies
applicable classes of situations, so the only task of the reaction planner
combine the reactions associated with the set of contingencies to be pi
for, into a structure which will be conveniently searched at execution t
determine the actual contingency encountered and its associated reactic
decision trees, decision lists, etc.). Therefore, planning time is definite
importance in conditional planning, but may not be an issue
structuring a reactive plan from a set of known reactions (if it cann
ignored, then, as mentioned in section 3.4.1, the complexity of the r¢
plan structuring algorithm can be taken into account in the Reactive ]



43

Model, to further prune the set of contingencies for which reactions shc
prepared).

Having noted these differences, we must now acknowledge that
particular decision frameworks associated with the two classes
contingencies have very similar underlying structures, so their preser
may obey the same general lines. There are significant analogies betwe:
two problems and their solutions. They would suggest taking a ur
approach and combine the two frameworks into a single one, with aest
benefits of uniformity and elegance in presentation. However, we believ
this would yield an unnecessarily complex framework, intuitively diffic
present and understand. Therefore, as well as for easier understanding
keep each framework manageable, we decided to present them separatel
is also in agreement with the way in which an agent should apply
although in different order. Indeed, the frameworks may indicate that
contingencies are suitable for both conditional branch and rea
preparation. In these cases a conditional branch should be prepared, sin
assumed to be a more accurate solution, as argued before.

We first presented in sections 3.1 to 3.4 the reaction decision fram
(which is the main topic of this thesis). In the remainder of this chap
use analogies with the previous presentation to describe the condi
planning decision framework, by pointing out their similarities
differences. We transform one framework into the other by removing,
and replacing some of its elements. Since the two frameworks are very c!
form (although with wunderlying differences in content), an aesthe
interested reader can easily merge them together if he or she so desires

3.5.2. Framework for Conditional Planning Decision

Let us first state the conditional planning decision problem, in a
similar to the one used in section 2.2 for reaction. We assume the age
built a linear main plan to go from an initial situation to a given goa
issue then is to enable the agent, for each phase of the already built
plan, to select the right set of contingencies for which to prepare conc
branches all the way to the goal. That is, the problem is to specify a d
framework which:

m given:

| an intelligent agent with:

G capabilities:

F planning and dynamically replanning
F monitoring
G constraints:
F limited resources
F real-time performance

| a linear plan by which the agent can achieve its goal

| a set of contingencies known to possibly appear at certain ti

during the plan execution, and for which the agent may pla

conditional branch, each with:

G known characteristics, associated with it (e.g. gravity
consequences, time deadlines) and with preplanning
conditional branch for it (e.g. resource requirements)

G characteristics of their replanning alternatives (replanning
and other resource requirements)
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enable the agent to decide for which contingencies to prej
conditional branches in the plan (according to a desired beh
pattern) while not exceeding the agent's planning capabilities
preserving the real-time responsiveness of the agent to all t
contingencies, given its limited resources.

(& characteristics of
it and of planning
its response path)

Planner Model Agent Model

Agent's
Knowledge

Prepare
plan branch
(yes / no)

Situation

Contingency ————» Importance

f;  (conditional planning value)

Behavior Model: fi

Figure 3.17. Overview of the Conditional Planning Decision Frameworl

As can easily be seen by comparing the two problems, they are si

enough such that a solution to the second problem can be obtain
relatively small modifications to the framework solving the first one. Ir
the high level overview of the conditional planning framework show
figure 3.17 is very similar in form to the one for the reaction fram
depicted in figure 3.2. There are however a few underlying differences
pointed out:

m

m

the knowledge available to the agent and associated with

contingency does not include the response to it, but only some g
characteristics (outlined in section 3.5.3) of the planning process

done for that contingency;

the criticality (reaction value) computed by the reaction dec
framework 1is replaced by an importance value (conditional pla;
value) which synthesizes how important it is for the agent to prer
conditional branch for that contingency, i.e. what is the valuc
preparing a conditional branch for it in the plan vs. leaving it
other possible treatments;

m the reactive planner model is replaced by a model of the conven

planner used to build the initial plan and the conditional branche

m the final decision of the framework is now whether to prepare a t

in the plan, instead of whether to include a reaction to the contir
in the reactive plan associated with it.
Also, the agent model and the behavior model will reflect slig

different characteristics in the two cases, and the functions used to c¢
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the conditional planning values and the final decision are based on so
different wvariables, as will become evident soon.

Figure 3.18 presents in more detail the flow and source of inform
through the new framework. Again, the comparison with the ges
framework for the reaction case (figure 3.3) shows obvious simila:
between the two frameworks. The differences between the two framewo
this level of detail and functionality are basically the same as the
mentioned above for the higher level of abstraction used in the ove
presentation.

Let us now briefly discuss each element of our new framework,
compare it where appropriate to the equivalent element of the re
decision framework. First, the situation spaces are identical in the
frameworks, since a situation has the same definition and characte
related to contingencies, regardless of the kind of response we prepa
them.



Contingency

Situation Situation
Space
Expert Model———»>

Importance
Space fi (conditional planning value)

Planner Model

Agent Model

Agent's
Knowledge]

Behavior Model: f;

Prepare
—% branch
(yes / no)

Figure 3.18. General Framework for Conditional Planning Decision

9%
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Two parts of the framework require special attention here. The
establishes the conditional planning value of the contingency, and the
takes the actual decision of whether to prepare a conditional branch i
contingency. They are briefly discussed in the following two subsection:
then we conclude this presentation with a summary of the entire frar
put together.

3.5.3. Establishing the Conditional Planning Value

Figure 3.19 presents the part of the framework concerned directly
calculating a conditional planning value for the contingency in the
situation. It is similar to figure 3.5 which shows the criticality space ar
process of calculating the reaction value for a contingency. We
concentrate here on the differences between the two frameworks at this

m the criticality space is replaced by an ImportanwhicEpases 5
dimensions to characterize a contingency from the conditic
planning point of view. These dimensions are:

ITimep - represents the same time pressure as in the reactive case;

obtained from Timey: - the time allowed to respond to

contingency, once an unexpected state is detected (same as in
reactive case).

| PTime - is the estimated planning time needed to build a branc
this contingency at planning time (e.g., the time needed to pla:
alternative route, starting with a right turn at traffic light B, al
way to the office); the simplest estimate may be, for example,
planning time used to build the original plan from that point 1
the goal.

| Consequences - summarizes the consequences of not responding t
contingency in the time allowed (same as in the reactive case).

| PResources - is a measure of how hard (time consuming, ag
resource consuming and any other costs involved) it is to obtai
replanning time (during execution) the resources needed to r
and carry out this plan branch (if not preplanned in adva:
Besides actual planning and replanning times, this also invo
resources not needed in carrying out the initial plan, but which
be needed for replanning purposes (like maps which may be ha
obtain along the way) or for carrying out the alternate plan b
(like an umbrella if it rains, or in medical domains a ventilato
certain test results).

| Likelihood - represents the likelihood of occurrence of t
contingency in the given situation (same as for reaction).

m the Importance value which orders contingencies by their condit
planning value (in the same way as criticality does for reaction).
m the functiodfj)( calculating the importance value for a contingency |

the form:
Importance = fj (t, pt, ¢, pr, 1) =

if (t > Tpmax)
then fj=0

elseif (t < Tpmin)
then fj
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elseif (pt > PTpmax)
then fj=
elseif (pI’ < PRpmln)
then fj=
elseif (I < Lpmin)
then fj=
olse £ - tpp1,kptplcﬁ*Cp1o3*pr1:>1o4*11:>p5
where, for the purpose of stating the importance function in a
succinct form, we made the following notations for the (situa
dependent) importance space dimensions:
t = Timep, pt = PTime, ¢ = Consequences, pr = PResources, 1 = Likelit
The two kinds of parameters involved are:
| (conditional) preplanning behavior model parameters: pp; to pp:

| parameters specified by the expert mpmagel; gimin, PTpmax,
PRpmin, pmin. They are domain dependent and are defined by

expert specifying the domain knowledge. Their meaning is def

below.

m theExpert Model reflects the new dimensions of the importance spac
must specify the following:
| functions:

G ftc: transforms (as for reaction decision) real-time values i
time-pressure values, inversely proportional, so it has
general form:

Timep = ftc (Timerc) =k / Timerc
| parameters:
G Tpmax - time pressure threshold - for greater time pressure,

attempt of response is wuseless (akin to Tmgx for reacti
decision);

G Tpmin - time pressure threshold - for smaller time press:
dynamic replanning is possible (and thus less costly, since it
be done only if the contingency actually arises)i gkifoto T

the reaction framework;

G PTmax - planning time threshold - if the estimated planning
required is longer than this threshold, then the agent may n¢
able to complete the conditional branch in the estima
available planning time;

G PRmin - replanning resources threshold - for smaller values,
agent has enough execution time resources such that replan
is possible (and presumably less costly);

G Lmin - likelihood threshold - if lower likelihood, the cost

preparing a conditional branch for this contingency in
situation is probably unjustified (same as for the react
decision framework).

m the parameters of Rakavior Model {ppo pps) also reflect the new

dimensions of the importance space as well as the new func
computing the importance value.
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Situation - ftc

Importance
(conditional
planning value)

Expert Model:

Tpmax, Tpmin,
PTmax: PRmin.

Lpmin, ftc

Importance
Space

Contingency Behavior Model: f;

Timec = f1 (Situation, Condition) Consequences = fo (Situation, Condition)
PTime = fg (Situation, Condition) Likelihood = f4 (Situation, Condition)
PResources = fg (Situation, Condition)  Timep = fic (Timerc) = k/ Timerc
Importance = fj (Timep, PTime, Consequences, PResources, Likelihood)

Figure 3.19. Establishing the Conditional Planning Value

Note that the time to preplan a conditional branch may be difl
from the time to replan it at execution time, because of different res
availability and different information availability; in the driving ex:
when building the plan at home we may have all the necessary maps, S¢
which may be unavailable when replanning later on during the execut
the initial plan, and obtaining them may be time consuming, thus mak
initial planning time shorter than replanning time. On the other hand
replanning, the agent may have access to more accurate state infor
than at initial planning time, and therefore the initial planning time
this case be longer than the replanning time (for example, when the
must replan its route due to a traffic jam, it has more knowledge about
alternatives are available for faster traffic flow, than it could have bel
actually reached this point in the plan execution).

Also note that side-effects are not taken into account in this frame
since once prepared, the conditional branch is executed as a regulai
which under normal circumstances leads to the final goal (the side-
were a measure of the risk of not being able to reach the final goal an
once the reaction is executed).

3.5.4. Deciding Whether to Plan a Conditional Branch

Figure 3.20 presents the part of the framework concerned with the
decision of whether to prepare a conditional branch for the continge
the given situation. It is similar to figure 3.11 which shows the re:
decision making phase of the previous framework. We shall outline he:
differences between the two frameworks at this stage:

m the reactive plan characteristics space is replaceRlaiby a
Characteristics Space whose dimensions characterize the en
conditional plan to be built, from the point of view of the ag
planning and execution resources. These dimensions are:
| TPTime - measures the total planning time needed by the planner

conditional branch for this contingency will be planned in adc
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to the main plan and conditional branches for the continge:
already selected for conditional planning;
| Timer - is the estimated time needed by the agent to responc

execution time, to this contingency, given that the conditional
includes a branch for it together with branches for ¢t
contingencies already selected for conditional planning (simila
the reaction framework);

| Resourcej (i = 1,2,...) - represents the total requirements impose
the agent's i-th resource by the conditional plan containin
branch for this contingency as well as branches for t
contingencies already selected for conditional planning (simila
the reaction framework); an example of such a resource may
memory amount required by the plan, which is separat
represented in figure 3.20 by the total plan size (PSize).

Agent Model:
Planner Model: Kip: Kp . Ka,
functions to estimate: Ki(i=1,2,..), fb

TPTime, PSize,
Timey, Resource;

Prepare
branch
(yes / no)

Resourcen,

Situation

Space of Plan
Characteristics

Importance
(conditional planning value)

TPTime = ftp (Situation, Importance, Agent's_knowledge, Planner_model)
Timey = fp (Situation, Importance, Agent's_knowledge, Planner_model)
PSize = fp1 (Situation, Importance, Agent's_knowledge, Planner_model)
Resourcej = fpi (Situation, Importance, Agent's_knowledge, Planner_model)

Prepare_branch = f, (TPTime, Timey, PSize, Resourceo,..., Resourcep,
Agent_model, Importance, Situation)

Figure 3.20. The Conditional Planning Decision Making Phase
m the Planner Model reflects the new dimensions of the pl
characteristics space. It must supply the following functions to est
values for these dimensions:
| ftp - estimates the time needed to build the plan, including a b
for this contingency (in its simplest form, it may simply add
already estimated times to build each individual branch);
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| fp - estimates the time needed to respond to the contingency whe
plan includes conditional branches for it and for all continge:
with higher importance (similar to the reaction decisi
framework);

| fpi (i = 1,2,...) - estimates the amount of resourcej needed to respo

the contingency when the plan contains conditional branches f
and for all contingencies with higher importance (similar to
reaction decision framework); for i = 1, the function estimates
amount of memory the agent needs in order to accommodate
conditional plan.
m the Agent Model also reflects the new dimensions of the pl
characteristics space. It must specify the following:
| estimated maximum resource amounts that may be allocated by
agent to this task:

GKtp - the maximum planning time allowed to build the condit
plan (i.e. before any execution begins)

G K1, K2, ... - the maximum amount ofjréseundce,...) available at
execution time (i = 1 for memory availability or, equivalen
plan size)

| functions to estimate resource utilization:
G fpp - the increase in planning time due to the agen

computational overhead at the time of planning; it may be of
form:
fpp (TPtime) = TPtimex Kp
where Kp is a factor greater than 1, or:
fpp (TPtime) = TPtime + Kg
if the agent can devote itself to planning for this continge
only after some constant time Kg, and so on.
Gfp; (i = 0,1,...) - the variation of the availability, at execution t

of resourcej (i=0 for computational time; i = 1 for memory or

size) due to the fact that the agent cannot devote its en
resourcej exclusively to responding to that contingency (sam

the functions fyi; for the reactive plan characteristics space

the reaction decision framework).
| the function (fp) making the actual decision for a conditional b
preparation:
Preplan = fp (TPTime, Timer, PSize, Resource?, ... ,Resourcep,

Agent_model, Importance, Situation) =

if fop(TPTime) > Ktp then fr = no
elseif fpo(Timeyr) > Timeghen fr = no
elseif fp1(PSize) > K1 then fr = no
elseif fp2(Resource2) > Kphen fr = no

elseif fbn(Resourcen) > Kpen fr = no
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else fr = yes .
= = KI)) ’

where resourcey, is the planning time, résotiree execution
real computational time, gné Kime,. is the real response time

allowed by the contingency for the response to be started wit
consequences (the time pressure dimension of the importance
values for this contingency).

Figure 3.21 shows a detailed summary of the framework for sele
the contingencies for which complete conditional branches are tc
prepared. We shall not continue the discussion on this topic, since this t
mainly concerned with developing the reaction decision framework, ai
have included the presentation of the conditional planning framework
point out that, after we have one of the two frameworks well definec
experimentally proved adequate, the other one can be developed us
certain degree of analogy.



Agent Model:
Planner Model: Kp, Kt Ks,
functions to estimate: Ki(i=12,.),f
TPTime, PSize, plan LI=T&)
Timer’ Resourcei Characteristics

Situation Space

Prepare
branch
(yes / no)

Problem
Plan
Action

Agent's
Knowledge]

Context

Internal
Expectations

Externgl

Importance

nsequenc + i
Consequence (conditional planning value)

PResources
X Likelihood

Expert Model:

Tpmax: Tpmin Importance
PTmax; PRmin; Space

Lpmin ftc " |Behavior Model: f;

Figure 3.21. The Conditional Planning Decision Framework
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Figure 3.22 presents two examples of contingencies that may wa
conditional planning of branches to solve them. They are both taken fr
driving domain, but may appear in significantly different circumstance
they both largely illustrate the way the framework is intended to be apj

Space
Dimensions

Car driving to work
Car driving to Reno

Problem
Go from home to work
Go from Palo Alto to Reno

Plan
Drive car
Drive car on 180

Situ-
Context

Morning, commute time
Winter, night time

ation

Action

Approach intersection B
Approach Sacramento

Int Expect
Observe traffic light
See Sacramento

Ext Expect
Heavy traffic
Dark (night time)

Time

max. 3 mins.
30 mins.
Contingency

Red traffic light (slow - all following lights red too)
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Cold & raining hard - maybe snow in mountains

Timep
To reach intersection B
To reach junction 180, 150

Impor-
PTime
High (=1/2 of main plan)
High (=1/2 of main plan)

tance

Consequence

Late for imp. meeting

big delay, maybe life threat

PResources
Need maps + planning
Need maps + planning

Likelihood
High (= 50% of time)
High

Conditional
plan branch

Right turn at traffic light, then alternate route
Use 150 - longer but more reliable when snowing

Figure 3.22. Conditional planning examples

The first example is the one we mentioned in this section before: o
usual commute to work, there is a certain traffic light which, if red on
means that all the following traffic lights will be red, and the commut
take significantly longer than if an alternate route is followed by mal
right turn. However, this alternate route is slower if the traffic ligl
question is found on green.

The second example is set during a trip from the San Francisco Bay
to Reno at night time during winter. If it is cold and raining ar
Sacramento, then there is a good chance that the usual (and faster) f
may be closed in the mountains due to snow, so an alternate route is wi!
it has to be prepared in advance since it may require maps for planning

A comparison between figures 3.21 and 3.7 shows that the
frameworks are close enough so that an aesthetically concerned reade
easily merge them into a single framework, so we shall not concern ou
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with this topic anymore. Instead, in the next chapter, we present a knc
representation formalism to help the agent to cope with the consid
amount of knowledge related to these decision processes.



Chapter 4
Knowledge Representation Formalism

In order to operate in an environment, the agent has to possess a
knowledge about that environment. For the purpose of deciding whet
plan to react to possible contingencies according to the framework pre
in the previous chapter, the agent has to possess three types of infor
knowledge about situations that may be encountered during plan exec
knowledge about the contingencies that may happen in these situatior
knowledge about the most suitable reactions to these contingencies.
agent's knowledge base contains associations of contingencies and
appropriate reactions. Each pair contingency-reaction is indexed ir
knowledge base by the characteristics of the situation in which
contingency may appear and in which that is the most suitable reactior
Therefore, each condition stored in the knowledge base has three parts:

(i) a description of the contingency (signs, preconditions, and so on)
set of values for the dimensions of the criticality space

(ii) a description of the best suited reaction for this contingency i
situation described by the third part

(iii) a description of the situation in which this contingency may ¢
and in which the best response to it is the reaction described in

(ii). This description contains the values for each of the se

dimensions of the situation space mentioned in chapter 3.

In the previous chapter we have presented the kind of inform
associated with each of these classes of knowledge. With the exception
contingency information which contains numerical values for the valt
the characteristics of the criticality space, the rest of the informati
symbolic. This includes the values for the situation space dimensions
descriptions of the contingencies, and the descriptions of the actions
make up the reactions to contingencies. Theoretically, one could us
natural language to specify these values. However, such a natural lar
interface and the mechanisms to process the information in such a for
are beyond the scope of this work. In order to contain the explosic
complexity generated by such a natural language representation, we
defined a knowledge representation formalism which restricts the desc
language for each of the classes of knowledge under consideration,
retaining enough flexibility to be suitable to any domain and with the
advantage of a well defined structure which can be used in the rea
process.

In this chapter we shall discuss this knowledge representa
formalism for each of the classes of knowledge involved, with examples
the driving domain. We shall first present the general idea which is app
all the three classes, and then we shall discuss an example of representi
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contingency description knowledge for the car driving domain. Apper
presents an example of representations of reactions and representati
situations for the same domain.

4.1. Description Languages

The need to devise a knowledge representation formalism for desc

situations, contingencies and reactions has arisen from two consideratic
(i) the space of all possible natural language descriptions for these «
of knowledge is too large to be manageable; this in turn gener
problems like the possibility of having different representations

the same piece of knowledge and the associated difficulty of comp
such representations and deciding on their identity. For example,

car driving set of reactions we have used during the previous ch

"steer" may be equivalent to "change direction", and clearly

situation has many different equivalent ways of being described.

(ii) the practical application domains for the framework of dec
whether to prepare to react presented before have a significant a
of inherent structure implicitly contained in them and it woul
unfortunate not to be able to exploit this structure. Notice for ex
that eleven out of the thirteen examples of contingencies we gave
the car driving domain (table 3.1) use the action "brake" in
description of their associated reactions. The car driving domain
also a significant amount of inherent structure in the description
possible contingencies. For example, the following two contingen:

"Child runs from right, 20 m in front of car" and "Adult crosses

street from right 20 m in front of car" have both the same criti

space values, and the same associated reactions, and therefore d«

need separate representations in the agent's knowledge base.

If the structure of the application domain is not taken into accour
explosion of the information that has to be recorded in the agent's knc
base quickly exceeds any realistically manageable amount for ajg
operating in the real-world domains described in chapter 2. For example
are any number of individual situations for which the same
contingency-response applies, and it would be entirely unreasonab
represent each of them and all their associations with different conditic

Given these considerations, we have designed a representat
formalism for these classes of knowledge which preserves most of
flexibility of the natural language representation, while allowing the
to take advantage of the structure of the domain.

For each domain there are nine languages which must be define
language for describing the contingencies, one for describing the rea
and seven languages for describing the values associated with each c
seven situation space dimensions. Each of these languages will be des:
according to the same formalism, so we shall only describe the formalisn
and then (in the following section) we will give an example of each
language in the driving domain.

The expert is required to define a hierarchical vocabulary for eac
these languages in his domain. The words in the vocabulary are part
into two classes: terminals and nonterminals. Each nonterminal repres
class of words (both nonterminals and terminals). The terminals are clas
themselves. The expert must also define all the membership and su
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relationships among the words in the vocabulary. Each such relatic
defines a directed edge in a tree (actually a forest, since there is no ne
full connectionism in a vocabulary) which induces a hierarchy ont«
vocabulary. The tree is actually an AND/OR graph, in which the OR 1
represent the membership and subclass relationships, and the AND
represent structural relationships among words in a valid sentence
language. Our formalism has a few common features with the lang
representation formalism presented in [Utgoff, 1988], although it diff
many other aspects. Our formalism defines a context free grammar:
G=(N,T,P,S), where
m N - is the set of nonterminal words of the domain dependent voca
defined by the expert
T - is the set of terminals in the vocabulary
P - is the set of productions of the grammar; there are two type
productions:
| unit productions, defined by a membership relation betwee
terminal and a nonterminal or by a subclass relation among
nonterminals
| non-unit productions, defined by AND nodes in the vocabulary -
give the rules of correct derivations in the language.
m S - the start symbol, which is either the root of the tree (if one exist
if the vocabulary is organized as a forest, then it is a new nonter

(OR node) to which all the roots of the trees making up the fores

connected through subset relationships edges.

This context free grammar defines the language used for descr:
either the contingencies in the domain, or the reactions, or one of the
characteristics of the situation space, with one important difference fr¢
classic theory of context free languages: every word in the vocabulary n
part of a sentential form in the language, that is, both terminals
nonterminals may be used to build sentential forms. The set of terminals
vocabulary makes up the agent language, that is, the set of all indi
describable contingencies (or reactions, or characteristics of situatior
sentential form containing only terminals represents a description
specific contingency, reaction, or situation characteristic. It can als
interpreted as a description of a singleton set of contingencies, reacti
situation characteristics. A sentential form containing at least a nonte
symbol represents a description of a set (of any cardinality) of
contingencies, reactions or situation characteristics. This extension ¢
context free grammar paradigm enables us to represent the structure
application domain.

Our formalism also extends the classical context free grammar par:
with the notion of identification functions for nonterminals in
vocabulary. An identification function is a compact way of represent
large set of class membership relationships or a large set of sub
relationships. For example, the nonterminal "slow_driving_speed" ca
identified by a function defined as:

f (speed) = 5 mph < speed < 20 mph.
This function replaces all the edges in the tree between the nontes
"slow_driving_speed" and all the terminals "speed = x" where Xx can te
the discrete values representable in the machine (or in the defined .
vocabulary) between 5 mph and 20 mph.

m
m



Every tree generated by a vocabulary as described above defines
partial order relations among the words of the vocabulary as well as
the set of sentential forms that can be built. The elementary partial
relation, which we calntains", among words in the vocabulary, is define
as: "a contains b" if and omnlyarnfl b are words in the vocabulary, a is a
nonterminal, and either a and b are identical, or a contains b as a memt
is a terminal), or a includes b as a sbbget difnonterminal). The extended
partial order relation with the same name is applied to sentential
through the following definition: "A &htdinand only Af and B are
sentential forms in the language (according to the previous definition
every word in A contains the word in B in the corresponding position, i.e

if A=ajap...ay and B =Dbjby...bp
then aq containgbb . . 6)1 , a. contains_b_Db b, and so on

2 pl+l pl+2 P2’
until ak which contains bpk—1+1bpk—1+2 . bn .

In the next section we shall give an example of applying the form
described here to the car driving domain and we shall present the voc
trees which can be used to express the contingencies given in table 3.
effectiveness of this representation formalism in structuring the appl
domain will be illustrated by the realization that the same vocabular
allows for the representation of a much larger set of contingencies,
essentially the same knowledge acquisition effort and similar storage
computational requirements. We shall then conclude this chapter with
summary of the advantages of this knowledge representation formalism

4.2. Example

In this section we shall present the hierarchical vocabulary
consequently the grammar) which are sufficient to represent the tl
contingencies for the car driving domain listed in table 3.1. Appent
contains a description of the vocabulary for representing the reactior
those for the situations encountered in chapter 3. The vocabularies w
only be able represent the knowledge contained in table 3.1, but also
more.

Figure 4.1 presents the hierarchical vocabulary for represen
contingencies.



Contingency

Object - Motion - Distance Malfunctioning

Object
Animate Non-animate Hole
Human Animal Large Small Hard Soft H.Small H.Medium H.Large

AN =7 AN

Child A.SmallA.Big Large&Hard Small&Hard Large&Soft Small&Soft

Cat Cow Meteor Brick Mattress Ball

Figure 4.1. Vocabulary for describing contingencies in the driving domain







Motion

/N

Same_direction Opposite_direction Crossing Stopped None
Faster Slower Fast Slow L->R R->L
L->R & Fast L->R & Slow R->L & Fast R->L & Slow
Distance Malfunctioning
D.Small D.Medium D.Long N/A Warning_light_on Tire Radio

/\

Brake_light Overheat Gas Explosion Flat On Off Fade

Figure 4.1. Vocabulary for describing contingencies in the driving domain (continued)




This hierarchy is equivalent to the following grammar:
G = (N, T, P, S), where:
N = { Contingency, Object, Motion, Distance, Malfunctioning, Sign,
Animate, Non-animate, Hole, Human, Animal, Large, Small, Har«
Soft, A.Small, A.Big, Large&Hard, Small&hard, Large&Soft,
Small&Soft, Same_direction, Crossing, Fast, Slow, L->R, R->L,
Warning_light_on, Tire, Radio }

T = { T.light, Child, Cat, Cow, Meteor, Brick, Mattress, Ball, H.Small,
H.Medium, H.Large, Faster, Slower, Opposite_direction,
L->R&Fast, L->R&Slow, R->L&Fast, R->L&Slow, Stopped, D.Small,
D.Medium, D.Long, Brake, Overheat, Gas, Explosion, Flat, On, Off,
Fade }

{ Contingency -> Object - Motion - Distance | Malfunctioning
Object -> Sign | Animate | Non-animate | Hole
Sign —> T.light | . ..
Animate -> Human | Animal
Non- -> Large | Small | Hard | Soft
Hole -> H.Small | H.Medium | H.Large
Human -> Child | ...
Animal -> A.Small | A.Big
Large -> Large&Hard | Large&Soft
Small -> Small&Har | Small&Soft
Hard -> Large&Hard | Small&Hard
Soft -> Large&Soft | Small&Soft
A.Small -> Cat | ...
A.Big —> Cow | . ..
Large&Hard -> Meteor | . . .
Small&Hard -> Brick | . . .
Large&Soft -> Mattress | . . .
Small&Soft —> Ball | . . .
Motion -> Same_direction | Opposite_direction | Crossing | Stopr
Same_direction -> Faster | Slower
Crossing —> Fast | Slow | L->R | R->L
Fast -> L->R&Fast | L->R&Slow | R->L&Fast | R->L&Slow
Distance -> D.Small | D.Medium | D.Long | N/A
Malfunctioning ->Warning_light_on | Tire | Radio
Warning_light_on -> Brake_light | Overheat | Gas
Tire -> Explosion | Flat
Radio -> On | Off | Fade }

S = Contingency

Some derivations may be done through identification functions.
example, the grammar symbols D.Small, D.Medium, D.Long can be consi
nonterminals (instead of terminals like in the previous example), an
actual values of the distance can be considered terminals. Then, a fu
like:

av!
Il

D.Small = 5 m < distance < 25 m
can be used to perform the transition over the edge linking D.Small wi
actual terminal, say "distance = 20 m".
Every contingency in table 3.1 can now be obtained through a nt
of different derivations in this grammar, and since the reactions to
usually apply to more general contingencies, the derivation can be stor
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higher levels, since a sentential form can contain both terminals
non-terminals in the grammar. For example, the contingency:

"Child runs from right 20m in front of car"
can be obtained through the following derivation:

Contingency ->

Object - Motion - Distance —>
Animate - Motion - Distance ->
Animate - Crossing - Distance ->
Animate - Crossing - D.Small ->
Human - Crossing - D.Small —>
Human - Fast - D.Small —>

Human - R->L&Fast - D.Small —>
Child - R->L&Fast - D.Small ->
Child - R->L&Fast - distance=20m.

Any sentential form encountered during this derivation (or durin
other derivation leading to the same contingency) can be used to denc
contingency. Each such sentential form contains (and denotes) the set
contingencies derivable from it. The same reaction specified for
contingency in table 3.1. (Brake hard and steer right) would probat

recommended for the entire set of contingencies: "Human - R->L&Fa
D.Small", while the consequences of the contingency would probably ha
same value for an even larger set of contingencies: "Human - Crossi
D.Small".

Clearly, this small vocabulary is not enough to describe all pos:
contingencies in the driving domain. It was not our goal to provide s
vocabulary and grammar. However, while every contingency in table 3.
be derived in this formalism, it supports the derivation of many
contingencies for the driving domain. In fact, just by enlarging the
terminals, the number of contingencies expressible with this small gr:
becomes very large indeed. This fact underlines the most important ad
of this representation formalism, namely imposing a (hierarchical) st
on the set of possible contingencies in the domain, which then makes
much easier to be stored, managed, analyzed and reasoned about.

The knowledge representation formalism used in this chapter allow
collapsing entire sets of contingencies in categories, thus alleviating
problem of knowledge base size explosion.

Another advantage of this representation formalism is that it ca
used in a future work for learning purposes, that is for learning which
contingencies are similar from certain points of view of the ger
framework for deciding whether to plan to react introduced in this
which contingencies have the same characteristics, or the same reactio
may appear in the same situations. Concept learning mechanisms ([Mi
1978; Mitchell & al., 1983; Dabija, 1990]) can be applied to continge
represented in this formalism, mainly because the terms "classification
and "concept description" used in machine learning are synonyms wit
description", which represents any sentential form derivable in
formalism. This representation can also be used to discover new class
contingencies (non-terminals in the vocabulary) which have eludec
expert's attention when specifying the domain, through bias shifting
automatically [Utgoff, 1988], or interactively with the expert [Dabija ¢
1992a,b]).
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The primary disadvantage of the knowledge representation form
described in this chapter is that the expert must define the structure
domain, that is, must specify both the nonterminals of the grammar (r
the terminals), and the membership and subclass relations among
elements of the vocabulary. This may place some burden on the expe
may make the knowledge acquisition process more difficult. Anc
disadvantage is that each specified vocabulary is domain-dependent (an
user-dependent), as are all the relationships expressed through
formalism. They all reflect how the expert who participated in the kno
acquisition process views the domain. But the advantages (mentioned ab:
structuring the domain and significantly reducing the size of the kno
base outweigh by far this disadvantage, with the added benefit that the
is himself compelled to structure his own knowledge of the domain.
problems may further be alleviated by wusing the learning techn
mentioned above: some of them will attempt an automatic restructuring
knowledge base, while others will help the expert to structure his
knowledge of the domain through interactions with the system. Howev
knowledge acquisition work has been done as part of this thesis.

The entire previous discussion applies equally well to represel
reactions and situations. Hierarchical vocabularies may be used to
reactions since in real domains there are usually a small set of actions
can be combined to produce useful reactive plans, which are then ass
with classes of (rather than individual) contingencies. This allows a
structuring of the set of reactions, which in turn ensures better analy:
facilitates the reasoning about different sets of related reactions and
characteristics with respect to the framework presented in the pre
chapter.

The same is true for representing situations. Here this represen!
formalism is even more useful since the variety of situations in real d
in virtually infinite, so any mechanism which induces a certain structu
facilitates the reasoning process is more than welcome. Identific
functions are also particularly useful here, since the values of some «
dimensions may belong to continuous sets. Classes of situations de
through this knowledge representation formalism and satisfying
"contains" relation, are wused to more efficiently index contingencies
reactions in the knowledge base (as opposed to indexing them to st
situations, which would be prohibitive in any reasonably-sized real dc
The vocabulary for representing situations may be partitioned into
distinct vocabularies, one for each dimension of the situation s
Alternatively, for uniformity of presentation reasons, we can combin
seven vocabularies into a single one, with a new stdyitustitool, by
adding to the grammar a new production of the form:

Situation -> Problem - Plan - Context - Action - Internal_Expectations

External_Expectations - Time,
where Problem, Plan, Context, Action, Internal_Expectations, Time a
External_Expectations, were the start symbols for each of the vocabular:
the seven dimensions of the situation space.

The hierarchical vocabularies (and the grammars they generate
representing the reactions listed in table 3.1 for the car driving doma:
for representing certain situations in this domain (including the onc¢
throughout chapter 3) are presented in appendix 2. Some derivatic
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sentential forms encountered in chapter 3 for reactions and situations
driving domain are also discussed in appendix 2. As in the case
contingencies, these vocabularies can represent a much larger se
reactions and situations than the ones we have encountered durin
presentation in the previous chapters, with very little or no overheac
once again supports our claim regarding the power of the know
representation formalism presented here, and outweighs by far
disadvantages.



Chapter 5
Theoretical Analysis

The dream of any designer is to prove that his product is the ideal
solve the original problem that motivated the design. In our case, this
mean proving that the framework introduced in chapter 3 is always ¢
decide, for any given situation, which of a set of contingencies possible :
situation should be selected at planning time to prepare reactive respon
It would also mean to prove that this is the simplest framework witl
property, and also that the set of contingencies selected by it make tt
possible use of the agent's execution time resources. But since our objec
to design a framework that is applicable in the most demanding re
domains, theoretically proving all the previous properties is beyon
means. However, we have been able to theoretically justify some of
properties and some weaker versions of others. For the rest, while w
believe that they hold in our case, we could only provide experin
justifications which are presented in the following chapter.

In this chapter we present the theoretical justifications for a few c
properties stated above. We first justify (through counterexamples) our
that each of the elements included in the framework is necessary, that
the framework is free of redundancies. Next we claim that the framewo:
consistently implement desired behavior models, and that the crit
function defined in section 3.3.2 can implement any known type of r
behavior; we formally justify the first of these claims, and in the next «
we present an experimental justification for the second one. Finally, w:
claim that the set of contingencies selected through our framework mal
optimal use of the agent's execution time resources while simulatin;
desired reactive behavior pattern, and we formally justify it. One more
which cannot be justified theoretically but is verified experimentally
next chapter is that the knowledge required by our framework in or
execute properly exists and can be acquired in real domains.

But in the next section let us first briefly review the gene
assumptions of our framework, which will be used during this chapter.
following sections we shall then present our theoretical justifications
properties of necessity, consistency and optimality of the framework.

5.1. Assumptions
As discussed in chapter 2, during our presentation we have r
certain assumptions about the problem we attempted to solve.
assumptions refer to both the agent, and the environment in which
designed to work. The assumptions regarding the agent refer both t
agent's execution capabilities, as well as to the design of its different «
modes.



The main assumptions for designing our framework were:
m about the agent capabilities:
planning (and planning to react)
monitoring
reacting
limited resources (including computational time)
m about the task environment:

| real-time requirements

| complex - there exist a large (infinite) number of possible situatic

| complex - there exist a large (maybe infinite) number of poss

contingencies in each situation
m about the agent control modes:

| planning is better than reaction, whenever the resources (incl

execution time) allow it

| planning (like reaction) is useless whenever there is insufficient

to reach a solution

| reaction is faster than planning

| limited resources allow only for limited amounts of reaction

We also assume that the agent's knowledge base always cont:
whatever information may be necessary for the operation of the fram
Whether such information exists in real life and whether its acquisitis
the knowledge engineer or the agent is possible will not be of concern -
chapter. However, we claim that this information indeed exists anc
acquisition is not very difficult, and we support our claim with
experiments described in the next chapter and performed in different
requiring quite different types of human expertise.

Note that all the assumptions listed here are not very restrictive. It
they mostly restate the applicability conditions for our framework, pr
in chapter 2. This means that the following results do not lose their ge:
from these assumptions.

Any other local assumptions that we shall make in order to allow -
perform theoretical analyses of our particular claims will be stated wh

they apply.

5.2. Necessity

We claim that each element of our framework is indispensable fo1
final decision, that is that each element in the framework is necessary !
final decision, or alternatively, that the framework is free of redund:
The simplest way to justify this claim is to assume that each element «
framework is redundant (one at a time) and then disprove this assump
presenting a counterexample. This also proves that the elements o
framework are independent (uncorrelated). To do this, we specify a co
decision problem (again in the car driving domain since now we are
familiar with it) and then change the values of each element of
framework, one at a time, and show that this potentially yields a di
decision each time. This implies that if that element of the framewc

missing, then an ambiguity is allowed in the decision process.
Property: The framework presented in chapter 3 for deciding whetl
plan to react to a given contingency in a given situation is
of redundancies, i.e. each element of the framework is neces

for the final decision.
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Justification: we shall state a problem, assume in turn that each elem
it is redundant, and show by counterexample that this is not
Example problem:

Variables:
Situation Space:
Problem: Carry book from home to the office
Plan: Drive car
Context: School time (Weekday, morning, May)
Action: drive straight on Street S, 25 mph

Internal Expectatiorarh school

External Expectatiodtsildren in sight

Timeg: 1 - 3 minutes
Contingency: Ball in front of car
Criticality Space:

Timep (Timerc): very high (very short) (9)

Consequences: small (3)

Side-effects: medium-high (6)

Likelihood: medium (5)
Parameters:

Expert Model:

Tmax = 9.5 maximum time pressure allowed to respond

Tmin =3; - minimum time pressure required to react

CSmin =4; - maximum difference allowed between

side-effects and consequences

Lmin =3; - minimum likelihood required to react

MON = 1000; - minimum criticality required to monitor
Agent's Knowledge:

7 contingencie4: of higher criticality than this one,

2 of lower criticality than this one

Reactive Planner Model:

decision trees:

ft: log: 0.2 * logy(nr_of_conting_with_greater_criticalit

Agent Model:
computational overload - implies computational time delay:
frO: 1.3 * timer
Behavior Model: "normal"
Parameters for the criticality function fc: p1 > p5 > p6 > p2
p1=5 p2=1 p3=0; p4=0; p5=3; p6=2
Changing one element of the framework at a time produces
following changes in the criticality space values and implicitly in
reaction value of this contingency (which imply changes in the
of including the contingencies in the reactive plan):
Situation Space:

Problem: Carry 3 kg of radioactive material
Changesincreases Side-effects
Plan: Ride a bike

Changes: increases Consequences
decreases Side-effects
Context: Night-time (non-school time)



Changesdecreases Likelihood
Action: drive straight, 40 mph
Changesincreases Consequences
increases Side-effects
increases Time pressure
Internal Expectatiomrarh railway crossing
Changesdecreases Likelihood
External Expectatiomrain in sight
Changesdecreases Likelihood
Timeg: < 0.5 seconds
Changesdecreases Likelihood
Note: Any of the changes in the situation space dimensic
mentioned also changes the set of possible contingencies which in
the one under consideration. Some of the changes add continge
with high criticality, so this contingency will get a smaller priorit
being considered for reactive response, others have the opposite e
Contingency Child in front of car
Changes: increases Consequences
Expert Model
Tmax: lower (8.5)
Changes: decreases Criticality (as a whole) since timep (9)
becomes greater than Tmax (8.5)
Tmin: higher (9.1)
Changes: decreases Criticality (as a whole) since timep (9)
becomes smaller than Tmin (9.1)

CSmin: lower (2.5)
Changes: decreases Criticality (as a whole) since the
difference side_effects - consequences (3)
becomes greater than CSmin (2.5)
Lmin: higher (6)

Changes: decreases Criticality (as a whole) since likelihood
(5) becomes smaller than Lmin (6)
MON: higher (i.e. higher than the criticality of
this contingency)
Changes: do not even monitor (or prepare to react to) thi:
contingency
Agent's Knowledge:
larger: 24 critical contingencies (more critical than this one)
Changes: the chances to prepare reaction to this
contingency decrease because it has a low
reaction value compared to the other
contingencies known for the same situation
Reactive Planner Model:
decision lists:
ft = linear: 0.2 * nr_contingencies_with_greater_criticality
Changesincreases real response time
Agent Model:
fro:1.8 * timer



Changes: increases real response time which may
determine it to exceed timerc and thus to be
excluded from the reactive plan

Behavior Model: - changes in the criticality function's (f¢)
parameters:
p1: lower (1)

Changes: decreases criticality - disregards allowed

response time
p2: higher (3)

Changes: increases criticality - stresses consequences
p3: higher (2)
Changes: increases criticality - stresses side-effects

p4: higher (2)

Changes: increases criticality - stresses anything that can
go wrong (both consequences and
side-effects)

p5: lower (1)
Changes: decreases criticality - disregards consequences
p6: higher (5)

Changes: increases criticality - stresses likelihood
(prepares first for the most frequent
contingencies)

All these changes in the parameters values of the critical
function denote a change in the behavior model implemented b
framework, and have as effect a change in the ordering
contingencies by reaction value, which may yield a different se
contingencies to be selected for reactive response.

o]

This concludes our justification that each element of our framewo
necessary for the final decision, or alternatively, that the framework is
redundancies. We have shown that for any such element, there may
variation in its value which may determine a different outcome of the
decision, and also that such a variation in this value is possible (and
plausible) in the domains under consideration.

5.3. Consistency

I would have liked to be able to say that I proved that the frame
introduced in chapter 3 is always able to decide, for any given situation.
of a set of contingencies possible in that situation should be select
planning time to prepare reactive responses for. This would obviously
this problem forever, and we could all do something else. But since
objective is to design a framework that is applicable in the most dem
real-life domains, theoretically proving this property is beyond our
However, we are able to theoretically justify a few weaker properties
would still ensure the usefulness of the framework. On an encouraging
the previous claim actually held in the domains in which experiment:
conducted. And since these domains are significantly varied in nature, v
still conclude that it will be true for a large set of real-world domains.



We present here the theoretical justification for our claim that
framework for deciding whether to plan to react defined before
consistently implement behavior models. This actually means that the o
which the contingencies associated with a certain situation are clas
according to their reaction value by our framework is the same order a:
by the behavior pattern under consideration.

In order to construct our justification, we start with a few prepa:
definitions and we will prove a few other properties along the way too.

Definition: An Evaluation func¢fégonis a function which, given a set of
conditions (pairs contingency-reaction) and a situation in w
they apply, computes a score, with the property: the higher
score, the better (more appropriate) that set of contingencie
according to a particular reaction philosophy (behavior model).

Definition: Behavior modek an order relationship on the set of
contingencies associated with a situation.

The behavior model represents the type of reactive behavior exh
by the agent, that is, given any pair of contingencies and their reactior
situation, which contingency is to be preferred by the agent for reactic
has priority in reacting to, and hence in preparing a reaction for).

Obs.: there is a functional relationship between evaluation function
behavior models, i.e. every evaluation function characterize:
behavior model, but a behavior model may be characterized by
of evaluation functions.

Definition: A Ratiorb@ehavior 1is a subset of conditions (pairs
contingency-reaction) such that, given an evaluation function
an agent with Ilimited resources, there is no other subset
conditions that gives a better score for this function while satis
the resource limitations.

The notion of rational behavior has been defined independently ¢
situation characteristics, because all the contingencies that belong to th
subset must first of all apply to the same situation. The only contributior
situation space to the framework is to uniquely define each situation, ai
unambiguously identify the contingencies and the reactions associated

The criticality function f¢ (section 3.3.2) defines an order rela

called "more important " on a set of conditions matching a given situatic
Definition: Condition a is more imploatatfin situation (a >g b) if

and only if:
(i) both conditions a and b match situation S
(ii) in situation S: f.(a) > f.(b), i.e. the criticality value of a is hi

than that of b.

Obs: "more important" is not a partial order relation on the entire
conditions in the agent's knowledge base, because there may be
situations (S and T) in which both contingenbiesnay aagpear
and such that a >g b, ang l.>Therefore, the relation "more

important" is only defined in a given situation.

Property: The sum of the criticality values (reaction values) for a ¢
conditions is an evaluation function.

Justification: Let f.(c) be the reaction value of condition (r

contingency-reaction) ¢ in situation S,Canbelet set of
conditions associated with situation S. Then:



fe(C) =)
is an evaluation function. Indeed, according to the previ
definition of an evaluation fungtétomptites a score for a set of

conditions in a situation, and imece & for anye€ (according

to its definition in section 33.209anf characterize a behavior
model. This is true because for any canditidnany set of
different conditions W{a§ must be preferred to C by the behavior

model (it is never worse to be prepared to react to me
contingencies, when agent resource limitations are not taken
account, and here the behavior model has been defir
independently of the agent's resource limitations).

o]

Property: For any two condition® aassutiated with a same sitSation
we have: a >g¢ b if and only if, in sifuatiom behavior model

prefers condition a to condition b, i.e. it requires the agent to a
to include the reactive response for condéfiome attempting to
include a reactive responsé féie., according to the behavior
model, given a choice, it is more important that the agent is pre
to react to contingency a than to contingency b).

Justification: If a >¢ b then f.(a) > f.(b) in situation S, so for any s

conditions C not including a and b:
fo(CUfa)) =) +fo(@) > ) +fe(b) = fo(CULDY) ,

so the evaluation function gives a higher value for CU {a} than

CU{b}, and thus the behavior model requires the agent to attem]

include a before b in the reactive plan associated with situation !
Conversely, if the behavior model requires the agent to attemr
includea before b in the reactive plan associated witlf, situation
then the evaluation function for this behavior model gives a h

value for CU{a} than for{lf}, for any set of condiGompplicable
in situatiof and which do not indluded b, ie.. fo(CU {a})

fo(CU{DY) , i.e.:
) > ), that is:
) +fc(@) > ) +fu(b),

and so f.(a) > f.(b) in situation §, i.e. a >¢ b.

(0]

Property: The framework presented in chapter 3 for deciding whetl
plan to react to a given contingency in a given situati
consistently implements behavior models.

Justification: The notion of behavior model is only about the preferen
reacting to contingencies, and thus it is only connected to the r
of reaction value, implemented in the framework by the «critic
function. The previous property shows that the "more impor
relation introduced by the «criticality function orders
contingencies applicable in a situation in the same way as



preferences of the behavior model described by this critice:
function. Therefore, the «criticality function represents
appropriate way to describe a reactive behavior model in
framework.

o]

Moreover, because of the optimality property proved in the
section, the framework, wusing the criticality function ordering
contingencies, can always optimally implement the behavior mode
restricted by the agent's resource limitations, i.e. the rational behavior.

This concludes our justification for the consistency property of
framework. This last property has stopped short of claiming that
framework 1is sufficient to simulate any behavior pattern desired,
theoretically there are an uncountable number of behavior models and
countable number of implementable criticality functions (as a subset of
of all programs written in a given programming language), so this woul
been impossible to prove (actually we just explained it to be false). Ho
we shall state a much more practical conjecture here.

Conjecture: for each known (cited in the literature) type of behavior,
exists a combination of parameters in our criticality function w
implement it.

This conjecture cannot be actually proved, but can be experime
supported, as discussed in section 6.3. Coupled with the previous prop:
implies that the framework yields the rational behavior for the agent
an evaluation function (a behavior model), for any distributions of the
characteristics for the conditions (including any distribution of deadli:
the reactions to contingencies) and for any distributions of the a
resources.

If we are unable to come up with a suitable criticality function f
desired behavior model, then any of a significant number of automa
interactive learning methods may be employed to learn this functic
suggested in chapter 7.

5.4. Optimality

We also claim about our framework that it makes the best use of
execution time resources of the agent. This means that, given a se
contingencies for a situation, the framework will choose not only
contingencies that are most important to be treated reactively (according
reactive model), but will also select as many as it can so that the reactiy
built for these contingencies maximizes the use of the agent's ru
resources.

We first restate here the definition for a rational behavior intro
in the previous section:

Definition: A Ratiorb@ehavior 1is a subset of conditions (pairs
contingency-reaction) such that, given an evaluation function
an agent with Ilimited resources, there is no other subset
conditions that gives a better score for this function while satis
the resource limitations.

According to this definition, a rational behavior maximizes
evaluation function for a given situation and agent model, while in the
time producing a behavior pattern consistent with the agent's behavior
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Property: In the assumptions of section 5.1, an agent, enhanced wit
framework presented in chapter 3, exhibits the rational behavic
maximizes the use of its resources, while simulating the desi
reactive behavior pattern.

Justification: The criticality value establishes an order on the se
contingencies associated with the situation, according to the de
evaluation function (conf. section 5.3). The decision proc
(function fin section 3.4.3) is then applied to each of thes

contingencies, in the order established. There are two poss
outcomes of this process for a contingency which was alre:
considered worth monitoring: if there are enough resources
estimated by the agent model) then the contingency will be inc
in the reactive plan; otherwise, this contingency will not
included for reactive response. However, this does not mean tha
agent's resources were exhausted by the set of contingencies al
considered. It only means that the resources left available are
sufficient to respond to this contingency (while still respondin
useful time to the ones with higher criticality, already include
the reactive plan). Therefore, our framework continues

evaluation of the remaining contingencies (also in the order
their criticality wvalues) since a less critical contingency n
require less resources and therefore can also be included
reactive response. No contingency can be added to this set w
each of the remaining contingencies requires more resources
left available by the ones already in the set. Therefore, we conc
that our framework makes the best use of the agent's resource:
estimated by the agent model) given a certain evaluation fun
(which expresses a specific desired reactive behavior of the age:

o]

We have thus theoretically justified our claim that the framewor]
have introduced in chapter 3 for deciding whether to plan to react to
contingency in a certain situation yields the rational behavior for the
given an evaluation function (a behavior model), for any distributions
set of characteristics for the conditions (including any distributio
deadlines for the reactions to contingencies) and for any distributions
agent's resources. This fact takes off some burden of our experiments, si
will only have to conduct experiments for the claims which have
theoretical justification. However, we also present, in chapter 6, the res
an experimental demonstration of the rational behavior claim as well
claims justified in the previous section.



Chapter 6
Experiments

In order to demonstrate the applicability and scalability of the re
decision framework presented in chapter 3, we have run a numbe
experiments. We describe here these experiments and the main concl
that can be drawn from them. In order to demonstrate the generality
framework, we have conducted the experiments in three different do
the driving domain from which we took most of the examples used duri
previous presentations, and two medical domains of expertise: anesthe
and intensive care patient monitoring. It is well known that different .
in a domain may have different opinions on specific subjects from the ¢
In order to obtain a consensus of these opinions in the driving doma
have polled 8 experts, and we have combined their opinions in differeni
It was interesting to find out that the results of these combinations had
degree of similarity among them, and were well in line with the indi
opinions of the experts (although among them opinions may have
significantly). For the medical domains we have only used the advice
single expert in the field. In the following section we describe the knov
acquisition process which we have conducted in the driving domain, a
results. Then we describe a set of experiments in this domain, that suprg
claim of optimality for our framework which has been theoretically ju
in the previous chapter. In the third section we present a set of expe:
which were aimed to demonstrate how different behavior models ca
described in our framework and how they affect the reactive behavior
agent using them. We conclude this chapter with a description of ho
reaction decision framework proposed here can be included in a co
agent which runs in a real, complex world.

6.1. The Driving Domain

In this domain we were able to collect knowledge from 8 experts,
most people can be considered experts in this domain, and seven c
colleagues (David Ash, Alex Brousilovski, Lee Brownston, Janet Murd«
Serdar Uckun, Rich Washington and Michael Wolverton) were kind enou
volunteer their valuable time and experience for this part of the p
Beside providing the raw knowledge, they have also made signifi
comments which have helped me clarify the knowledge acquisition pr«
involved. I am indebted to all of them (the eighth person in the expe
was myself).

Contingency
Reaction



1
Child runs from right, 20 m in front of car
Brake hard and steer right

2
Car crosses w/o priority 20 m in front, from right to left
Brake and gently steer right

3
Car in front stops suddenly
Brake hard

4
Cat runs across street, 20 m in front
Brake hard and steer right gently

5
Traffic light changes red 40 m in front
Brake hard

6
Tire explosion
Brake gently and do not steer

7
A deep and medium width hole detected 30 m in front
Brake hard and steer right gently

8
Airplane lands in front of car
Brake moderately hard

9
Brake malfunction light turns on
Brake gently

10
Engine overheat light turns on
Brake gently to stop the car

11
Loud radio turns on suddenly
Adjust radio volume

12
Meteor falls on the trunk of the car
Accelerate hard

13
A ball pops in the street, from the right, at 20 m in front>
Brake hard and steer right

Table 6.1. Contingencies for the car driving domain experiments
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Table 6.1 lists the 13 contingencies (also listed in table 3.1 and use
illustration purposes throughout the thesis) proposed, together wit
reactions for each of them.

The knowledge acquisition problem was to specify a value betwee
and 10 for three of the criticality space dimensions (consequences, side
and likelihood), and a real time value for the time to respond tc
contingency, for each of these 13 contingencies, when considered possi
appear in the following situation:

Problem: Deliver package to work

Plan: Drive car

Context: May, midweek, morning (school time), pass in front of a sch
Ext. Expect.Children in sight

Int. ExpectReaching school zone

Action: Drive straight, 25mph

Timeg: max. 3 minutes

The experts were instructed to translate their qualitative feelings
quantitative values, and to concentrate more on relative values than
absolute values they were giving. As some of them have commented, the
used was sometimes closer to logarithmic and sometimes closer to expor
but very seldom (if ever) was it approximately linear.

Each expert was also independently asked to order the set
contingencies by reaction value, that is, to specify the order in which
she believes the agent should consider these contingencies for reactic
well as where a threshold on monitoring for them should be placed.
information was then used to evaluate the results of applying our frar
to the data supplied by the experts. The experts were asked to provi
contingency dependent knowledge independently of the final orderis
any case, we believe there is little danger of any conscious correl
between the data supplied by an expert for each contingency and the
preference specified by the same expert, because of the amount of info
they had to supply - over 50 values each only for contingency data.

I will omit here the individual values supplied by each expert for
contingency precisely because of the considerable amount of nu1
involved. 1 would prefer to comment instead a little on the distribution ¢
values, although a meaningful statistical analysis would not be fully re¢
because the still small number of experts involved. The absolute v
specified varied quite a lot. For example, the consequences of not react
the engine overheating was rated between 4 and 10 (on the scale of O
where O meant no consequences at all), while the likelihood of a
running in front of the car was rated between 4 and 9. Although the c
of the contingencies differed too (traffic light was placed between firs
seventh while airplane, radio and meteor all varied between the ninth :
thirteenth places), the experts opinions agreed much more on the
contingencies to be actually taken into account (i.e. the monitc
threshold): all of them indicated the first four contingencies as orde
table 6.1, all but one indicated the hole, and all but two indicated the
the tire contingencies.

This was the first indication that, although individual pairs of e:
may disagree, each of the experts tends to agree with the opinion of the
This conjecture was then supported by a deeper analysis of the rest of t
supplied by the experts. We have further analyzed the order specified
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experts on the set of contingencies, by assigning an order number tc
contingency according to each expert's specification, and then taking
median value, average value, and average of the set of 6 numbers obtai
eliminating the highest and lowest expert specified value for «
contingency independently. In all three cases, the result of orderin
contingencies by the values obtained this way were identical, and
differences with each expert were much smaller than differences be
individual experts. This again supports the previous conjecture. It wa
interesting to see that not even one expert had specified the same orde
inferred by all the three statistical methods. A further confirmation

conjecture came from the fact that, for each characteristic of
contingencies, the three statistical measures have produced very s
results. Moreover, after eliminating the two extreme values in each cas
remaining values were much closer, which shows that the experts te:
agree with each other most of the time. Also, since different expert:s
different scales to measure the same qualitative phenomenon, the qua
aspects of their input (orderings) tend to agree more than the quan
formulations (the experiments described further in this chapter will
that our framework is robust to quantitative variations in the knoy
specification, and is well suited to extract the qualitative aspects of i,
are the ones which eventually interest us).

The analysis of this data also suggested that different experts tak
same (or consistent) decisions, but apparently for different reasons, t
they have different heuristic "formulae" or rules to combine their eva
of the characteristics of events in their domain of expertise. All
observations support our explicit inclusion in the framework of an
model, which has the role of calibrating the entire reaction dec
framework according to the set of qualitative_to_quantitative transfor
functions used by the expert providing the domain knowledge.

Contingency
Timerc

Timep
Consequences

Side-effects
Likelihood

Child

10.0
10.0

4.5

Car-X



B~ O
SO M
-3 N <t

—2own . e
m ..

e N S

Tire
Hol






5.7
5.0
Table 6.2. Data values for the car driving domain experiments

In our experiments conducted with data from the driving domair
have used the average_after_extremes_elimination values, obtained frc
raw data provided by the experts as described above. These value:
presented in table 6.2. The order in which the contingencies are prese;
both tables 6.1 and 6.2 is the average_after_extremes_elimination (wh
mentioned above, is the same as the average and the median) order o

from the pool of experts. The experiments with this set of data are 1
presented in the next two sections.

6.2. Optimality

We present here the results of the experiments we have conducte
support the theoretical claims made in chapter 5. Since most of these
were justified theoretically, these experiments are merely demonstrati
applying the framework. We have used four different reactive planner
and five agent models to show how the recommendations of the fram
vary and how it continues to ensure the optimal use of the agent's re
for the given agent models.

We have also used a "normal" behavior model, that is we expect
agent to behave the same way as the experts recommend. In calculatii
reaction value of a contingency, this model assigns more weight to the
pressure dimension, followed by the difference between consequence
side-effects, and then likelihood. Consequences are taken into account b
themselves, but also (and mostly) in combination with the side-effects.
the criticality function parameters given by the behavior model are:

pl=5,p2=1’p3=O’p4=0’p5=3’p6=27
where the parameters specified by the expert model (an abst
"average_after_extremes_elimination" expert) are:

Tmax=20.0; Tmin=1.0; CSmin=2.3; Lmin=1.3; MON=1000O,

and the function computing the time pressure is:
ftc = 10 / timerc .

In this particular case, the criticality function (described in se
3.3.2) becomes:

Criticality = fc (t, ¢, s, 1) =

if (t > 20) then fc =0

elseif (c + 2.3 -s <0Ohen fc=0

elseif (t < 1) then fc=3*12)

elseif (I < 1.3) then fc =3 *12)

else fc =t * ¢ * (c+CSmin—s)3 * 12

Table 6.3 presents the values returned by this function, and the o
of the monitoring decision of the framework. We provide them only to
the reader to 'feel' the results of the framework. The monitoring thresh
set by the expert model in a region of the contingency space where the:
substantial gap among the reaction values of the contingencies order
criticality. Since the expert and behavior models do not change durir
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experiments described

in this section,

these values will not change

¢

They will however change anytime at least one of the expert or bel
models change. In the experiments described in the following sections w
e:

not include

recomputed from the behavior models, which will always be specified.

this

Contingency

Criticality
Monitor

Child
3.95E9
yes

Car-X
2.21E9
yes

3
Car stop
1.90E8
yes

Cat
9.84E7
yes

5
Traffic light
2.22E7
yes

Tire
2.17E6
yes

Hole

criticality wvalue

anymore.

It

can however

be



1.34E6
yes

Plane
5.83E2

Brake
6.56

10
Heat
1.89

11
Radio
5.3E-2

12
Meteor
0.00

13
Ball
0.00

Table 6.3. Criticality values for the "normal" behavior model,
for the car driving domain experiments

The first and most important observation of the experiment is the
framework orders the contingencies by criticality value (based on the
from the "average" expert) identically to the order indicated by the
"average" expert. When presented with this ordering, all the human
involved have agreed to its rationality.

We must also point out here that the framework proved very robu
that considerable variations in the values of the behavior and expert
parameters as well as in the absolute values for the dimensions
contingencies have yielded the same order induced by the criticality ft
What really matters is the relative relationship among pairs of elements
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framework. For example, in the normal behavior model, time pressur
greatest weight. We have experimented with variations of up to 25% i
absolute value of its weight (p1) and have still obtained the same ordz«
have repeated the experiment for other behavior models were time pres
also considered most important, as well as by varying other paramet
slightly varying individual values of the characteristics of contingencie
in each case we have obtained robust behaviors of the framework.
suggests that small variations in the values provided by experts shou
negatively influence the behavior of an agent using this framework.
In the experiments described in this section, we have used the foll
four reactive planner models:
RP1: constructs balanced binary decision trees; the function estimatir
global reacting response time:
ft = kp * log2 (number_of_contingencies_with_=_criticality),

where the average test time is: kp = 0.2 seconds.
RP2: same as RP1, but the average test time is: kp = 0.3 seconds.
RP3: constructs decision lists; the function estimating the global re:
response time is linear:
ft = kp * number_of_contingencies_with_=_criticality,
where the average test time is: kp = 0.2 seconds, and the decisior
are built such that the pre-conditions discriminating
contingencies with the highest time pressure are tested first.
RP4: same as RP3, but the average test time is: kp = 0.3 seconds.

We have also used five agent models. The only difference among the
the computational load estimated to be imposed on the agent at executi
(for this situation), which has the effect of slowing the agent, that
increases the response time of the agent to a contingency by a factor Kt:

fro (timer) = timer = K¢ ;
The five agent models used are:
AM1: K¢ = 1, that is, there is no computational overhead estimated;
AM?2: Kt = 1.3, that is, there is a 30% computational overhead estimated;
AM3: K¢ = 1.8, that is, there is an 80% computational overhead estimate

AM4: Kt = 2.5;

AMS: K¢ = 4.0.

Contingency
Monitor

React (RPModel = decision trees - kp = 0.2)
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3
Car stop
yes
yes
yes
yes
yes

Cat
yes
yes
yes
yes
yes

5
Traffic light
yes
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yes
yes
yes

Tire

yes
yes
yes
yes

Hole

yes
yes
yes

Plane

Brake

10
Heat
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11
Radio

12
Meteor

13
Ball

Table 6.4. Optimality demonstrations results for reactive planner model
Contingency

Monitor
React (RPModel = decision trees - kp = 0.3)

Kt = 1.0
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Kt =1.3
Kt = 1.8
Kt = 2.5
Kt = 4.0

1
Child
yes

yes
yes
yes
yes
yes

Car-X
yes
yes
yes
yes
yes

3
Car stop
yes
yes
yes
yes

Cat
yes
yes
yes

5
Traffic light
yes
yes
yes
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Tire
yes
yes

Hole
yes
yes

Plane

Brake

10
Heat
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11
Radio

12
Meteor

13
Ball

Table 6.5. Optimality demonstrations results for reactive planner model
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Contingency

Monitor
React (RPModel = decision lists - kp = 0.2)

yes

Car-X
yes
yes
yes
yes
yes

3

Car stop
yes
yes
yes
yes
yes
yes
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Cat
yes
yes
yes

5
Traffic light
yes
yes
yes
yes
yes
yes

Tire

yes
yes
yes
yes
yes
yes

Hole

yes
yes
yes
yes
yes

Plane
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Brake

10
Heat

11
Radio

12
Meteor

13
Ball

Table 6.6. Optimality demonstrations results for reactive planner model



20

Contingency

Monitor
React (RPModel = decision lists - kp = 0.3)

ABRANANANA
— = + =

| | I (|
ANRFR PR
QU1 oowO

Child
yes

yes

yes

yes
yes

Car-X
yes

yes

yes

3

Car stop
yes
yes
yes
yes
yes
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yes

Cat
yes
yes

5
Traffic light
yes
yes
yes
yes
yes
yes

Tire

yes
yes
yes
yes
yes
yes

Hole

yes
yes
yes
yes

Plane
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Brake

10
Heat

11
Radio

12
Meteor

13
Ball
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Table 6.7. Optimality demonstrations results for reactive planner model

Tables 6.4 to 6.7 summarize the results of our demonstrations. The
the set of contingencies recommended by our framework for rea
response preparation, in each case. As expected, this set decreases wi
increase in the agent computational load, all other things being
(different columns in the same table). It also decreases with an increase
cost (here time) of the average tests to be performed (as can be se«
comparing the corresponding columns in tables 6.4 and 6.5, as well as th
columns in tables 6.6 and 6.7. In each case, the agent tries to optimize !
of the agent resources (i.e. to include as many contingencies as pos:
while maximizing the evaluation function on the subset of sele
contingencies, by essentially including the highest criticality conting
possible. Obviously, the more accurate the agent and planner models us
better the selected contingencies will actually optimize the use of ru
resources (the models used here are quite rough - assume all tests ta
same time and that the simple logarithmic and linear formulae stated
correctly approximate the agent).

In this example the decision trees model always selects t
contingencies in the strict order of criticality (which need not be the ¢
general), while the decision lists model allows for gaps in the strict ord
that it can accommodate a larger number of contingencies. This is one
proof that the algorithm proposed in chapter 3 optimizes the use of the
resources. For example, in table 6.7, =foz.3 the agent can respond to only
one contingency with a response time of maximum 1 second, so it choos
one with largest criticality (the child contingency); it can respond to
contingencies with maximum response time of 2 seconds (the car_stop
hole contingencies), and so on, but cannot respond to the other contir
with short (1 second) response time, so it will omit them from the fin
Also note that the decision lists based planner model assumes tha
contingencies are ordered by the response time allowed (in the final r
plan), and also that the test times for each contingency are constant.
first of these assumptions would have not been included in the re
planner model, then the default assumption is that the contingenci
ordered by criticality, and then the reactive plan for this case could nc
included the hole contingency since it would have been last in the d
list, and its response time would have exceeded its allowed response time,

One last observation from these experiments is that, for this part
set of data, it confirms our discussion of decision trees versus decisio1l
from section 3.4.1. We argued there that there are frequent cases in wh
set of contingencies recommended by the framework is larger when u:
decision lists planner than a decision trees planner, all other things
equal (which may seem somewhat counterintuitive at the first glance).
in this demonstration, the decision lists based agent includes
contingencies than its decision trees based counterpart for most of the
covered. In our example, the evaluation function value is wusually grea
the decision trees case, because of a subtle violation of the "all other
being equal" assumption: the decision trees based planner model assum
there is no test time needed to reach a response for a single contir
(log2 1 = 0), while the decision lists based planner model assumes that tI

needed to reach such a response is still the time needed to perform one
this assumption would have been made in the first case too, then the ¢
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lists planner model would have yielded also a higher evaluation functio
its corresponding decision trees counterpart, for the set of conting
recommended in at least some cases (like RP2 and RP4 (kp = 0.8} and AM<

4.0)).
6.3. Behavior Models

Though not intended as a simulation of human behavior, our apg
to solving the reaction planning decision problem has some pote
applications in this area too. Specifically, it provides the basis for a p
language to discuss the characteristics of different human behavior 1
related to this task. In this section we shall propose a way of represen!
our framework some such behavior models discussed in the literature, :
as the results of a few experiments we have done using this represen
Our discussion here is by no means intended to give a complete solution
problem of simulating human reactive behaviors, but is only intend
suggest a possible such representation, which needs a lot more reseas
prove its usefulness or to find its best application domain.

In section 5.3, we have justified the property that our reaction de
framework consistently implements behavior models. We stated ther
conjecture that for most types of reaction-related behaviors cited i
literature, there 1is a corresponding behavior model encoding in
framework which implements that type of reaction. Here, we go even a
further, by defining a couple more such behavior models and repre:
them in our framework too. Since we found no way to theoretically pros
conjecture, we have conducted a number of experiments designed to sur
which we present in this section. They show how our framework
determine an agent to exhibit different reactive behaviors for the ¢
domain described before, while also helping us to clarify the meaning
different thresholds and parameters in our framework.

Besides the so called "recommended" or "normal" behavior, we
found six more types of reaction-related behaviors - sometimes ¢
hazardous attitudes [Woods & al., 1987; FAA, 1991]. The last two behavior:
proposed by David Gaba (personal communication, 1993). Here is a
description of each of these behaviors:

m Recommended Behaviois the normal behavior expected by the exper
and from an expert in the domain.

m Antiauthority Behavior - is the "don't tell me!" type of behavior
which the agent regards rules, regulations and procedures
unnecessary, and thus tends to disobey them.

m Impulsivity Behaviois the "do anything quickly!" type of behavior, i
which the agent attempts to always do the first thing that come
mind, without stopping to think and select the best alternative.

m Invulnerability Behavior - is the "it won't happen to me" type
behavior, in which the agent is always inclined to take risks sinc
believes that the current situation is never one of those (less likel
still possible) situations when something wrong might just happen

m Macho Behavior - is the "I can do it!" type of behavior, in which
agent wants to impress others, and is ready to take significant risks
it. It is inclined to react even when not really necessary or when it
be more dangerous than not to react. Such agents either forget
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the possible side-effects of their actions, or at least discount de
these side-effects.

m Resignation Behavioris the "what's the use?" type of behavior, in
which the agent faced with a critical situation usually chooses t¢
nothing, since it underestimates its capacity to respond to the evei
the effectiveness of such a response, in the given time frame. It I
tendency to leave such actions to others, for better or for worse.

m Risk-averse Behavier the agent tries to avoid risk by all means
(considering both the consequences of not being prepared to rec
time, and the possible side-effects of reactions), but may therefore
sometimes less importance to the time pressure.

m Liability Conscious Behawviorhe agent is particularly interested in
avoiding any legal liabilities that may arise from its actions. Ther«
it tends to prepare to always do something, preferably what is le
bounding, even if that something may be believed not to succeed i
particular situation. This may prevent the agent to prepare for
other contingencies which are less liability creating, but which ¢
have been treated if there were enough resources available.

m Social Responsibility Behavior - the "socially conscious" agent tend
put the interests of the society before those of the individual, inc
itself.

Each of these behaviors can be simulated in our framework by adj

the parameters of the corresponding behavior model. While the
parameter values are less important, their relative values define the d
behavior models.

Behavior Model
Expert Model

Behavior

p1 pz p3 p4 ps p6
Tmax Tmin Csmax Lmin
Recommended

5 1 0 0 3 2
20.0 1.0 2.3 1.3
Antiauthority

S5 1 O O 3 0

Impulsivity
0O O O O O 3
10.0 5.0
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Invulnerability
5 1 O 0 3 2
4.2

Macho

4 1 O O O 3
10.0

Resignation

5 1 O 0 3 2

5.0

Risk-averse
2 2 4 2 1 1

Liability conscious
3 3 1 2 1 2
100.0 0.0 0.0

Social responsibility
4 3 O 0 4 3

Table 6.8 Representing Behavior Models

Table 6.8 summarizes the representation of these behavior models
our framework. Recall that a behavior model in our framework is imple
by a set of values for the parameters of the criticality function (comput
reaction value of the contingencies), and may also be influenced by
values of the thresholds given by the expert model (section 3.3). The val
the expert model parameters are completely specified in the table only
recommended behavior model; for the other models, only values that
changed from the initial specification are given. Also remember that
pressure is the only parameter which can take values outside the ir
[0,10], because it is converted from arbitrary real values using the
specified conversion functipn Therefore, the time pressure related

parameters are harder to generalize among domains, as will be notic
appendix 3, where we present the results of the same experiments run
anesthesiology domain, with the same parameter values as here except :
time pressure dimension. The expert models in table 6.8 were used i
demonstrations in the driving domain.

To illustrate the simulation of these behaviors in our framework
have run the framework with the behavior models presented in table ¢
the 13 contingencies presented previously the driving domain. Tabl
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summarizes the results of these experiments. We have also shown the r
values produced by the criticality function. Their absolute values ha
meaning whatsoever; what matters are their relative values (and only
the same behavior model), which represent the relative value of react
one contingency vs. another in a same situation and under the same t
model. For each behavior, the monitoring threshold was set (throug
expert model) in a region of the contingency space where there

substantial gap among the reaction values of the contingencies order
criticality. The threshold is represented by a thicker line separatin
contingencies for each behavior into two sets. The numbering
contingencies for each behavior model is the same as for the recomn
behavior. This was done in order to facilitate comparisons of each be
model with the "normal" one.

In chapter 5, we have defined a behavior model to be an o
relationship on the set of contingencies associated with a situation. The
in the experiments described in this section, we only concentrate o
ordering of contingencies by reaction value (and sometimes relative val
the criticality function, but never on its absolute values), and ignor
issues related to the reactive planner model and the agent model, that
ignore the final decision of applying the framework to a set of conting
This is consistent with the purpose of our demonstrations here, sinc
specific agent (with a given reactive planner and resource limitations
exhibit any of the reaction behaviors discussed, depending only on the
in which its behavior model recommends the contingencies for consid
to be reacted to, and not on the actual components and resources of the

Behavior Model 1

Behavior Model 2

Behavior Model 3

(Recommended)

(Antiauthority)

(Impulsivity)
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Child
3.95E9

Child
1.95E8

Cat
3.14E2



Car-X
8.00

Tire
2.17E6

T.light
2.87E5

Hole
4.68

Hole
1.34E6

Hole
1.71E5

Tire
3.48

Plane
5.83E2

Plane
1.94E3
10
Heat
3.26

Brake
6.56

Brake
3.28

Brake
2.82

10
Heat

29
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1.89
10

Heat
0.86

Radio
2.82

11
Radio
5.3E-2

Radio
2.6E-2

Plane
0.10

12
Meteor
0.00

12
Meteor
0.00

12
Meteor
0.00

13
Ball
0.00

Ball
0.00

Ball
0.00
Table 6.9 Reactive Behavior Experiments for the Driving Domain

Behavior Model 4

Behavior Model 5
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Behavior Model 6

(Invulnerability )

(Macho )

(Resignation )

Child
3.95E9

Cat
1.63E7

Car stop
1.90E8

3

Car stop
1.90E8

1

Child
9.11E6

5
T.light
2.22E7

Cat
9.84E7

Car-X
5.63E6

Tire
2.17E6
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5
T.light
2.22E7

3
Car stop
1.04E6

7
Hole
1.34E6

Car-X
4.70E4

Ball
8.75E5

Plane
5.83E2

Tire
1.47E3

T.light
1.65E5

Brake
6.56

Hole
1.15E3

Hole
6.17E4
10
Heat
1.89

Plane
5.83E2

Tire
9.01E3
11
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Radio
5.3E-2

Brake
6.56

Plane
8.10

Child
0.00

10
Heat
1.89

Brake
0.78
12
Meteor
0.00

11
Radio
5.3E-2
10
Heat
0.30

Car-X
0.00

12
Meteor
0.00

Radio
3.7E-2

Cat
0.00

13
Ball
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0.00

12
Meteor
0.00

13

Ball
0.00

Table 6.9 Reactive Behavior Experiments for the Driving Domain (contir

Behavior Model 7

Behavior Model 8

Behavior Model 9

(Risk-averse )

(Liability conscious )

(Social responsibility)

Child
1.2E11

Child
2.0E11

Child
1.0E12

Car-X
3.7E10



Car-X
7.0E10

Car-X
3.7E11

Cat
4.39E9
12
Meteor
3.8E10

Car stop
7.0E10

3

Car stop
5.05E8

4

Cat
7.56E9

5
T.light
2.3E10

7

Hole
1.08E8

3

Car stop
3.34E9

4

Cat
2.89E9

Tire
2.40E7

T.light
7.49E7

Tire
2.96E8

35



Heat
4.87E2
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11
Radio
0.78

12
Meteor
0.00

11
Radio
0.34

12
Meteor
0.00

13
Ball
0.00
13
Ball
0.00
13
Ball
0.00

Table 6.9 Reactive Behavior Experiments for the Driving Domain (contir

Here is a brief explanation of the changes required by the paran
for each behavior model, with respect to the normal behavior model de
in the previous section, as well as the main effects they have on the o:
of the 13 contingencies we have presented in the previous section, for !

driving domain:

m Antiauthority Behavior Model - do not take likelihood into account

likely events are usually covered by laws, regulations and proced
The traffic lighcontingency goes down in criticality, as the onl
regulation to be observed as a contingency in our set; the rest re
the same.

m Impulsivity Behavior Modekonsider a single response, for a

contingency with great (but serviceable) time pressure and
likelihood, to allow at least for a reasonable response in a signif
number of cases; the reactive plan will consist of a single reactio
this contingency. Consequences and side-effects are disregarded,
time pressure is considered only through nyiaisiftg 10) so as to
include only the high but still acceptable time pressures. Likeliho«
the only one still considered in the reaction value fopmulds and L
also raised significantly (Lmin = 5). Theretarte, ¢chatingency

becomes the only one selected for reaction preparation.

m Invulnerability Behavior Modelow and medium likelihood

contingencies are considered much less critical ("it won't happe
me..."); only high likelihood contingencies are really conside



critical, so the Lmin threshold is significantly increased (Lmin = 4.

our tests, the car crossomgingency falls a lot because its likelihood
becomes lower than this threshold.

m Macho Behavior Model - Forget about side-effects, and also t:
consequences less into account, since the agent mainly tries to im
others, by preparing for time pressured, but especially il
contingencies, so that it can react most of the time. The likelil
weight is increased, while tignCShreshold is also increased (CSmin

= 10.0) such that it becomes useless. In our derbahktradicances

all the way to number 4 because the difference between consequ
and side-effects is not considered hereatwhideeances to number
one since it is more likely than the first three, and its side-effect
also disregarded.

m Resignation Behavior Moddlere it is interpreted as underconfidence,
that is underestimating its own abilities, since we only talk al
reaction preparation at planning time, and not reaction behavi
execution time (were it would have been interpreted as 'giving up')
agent is willing to prepare to respond only to low time pressured e
and therefore the Tmax threshold is significantly reduced (by 7.
Tmax = 5). Therefore, many contingencies with higher time pre:

get zero reaction value and fall at the end of the list.

m Risk-averse Behavior Model - taking most precautions to avoid risk,
decision process considers mostly the side-effects of the react
followed by the consequences of not reacting and the sum
consequences and side-effects, and much less time pressure
likelihood. The driving domain contingencies become roughly or«
by this sum, with a few exceptions: the plane contingency has very
likelihood, the brake contingency has very low time pressure, anc
meteor contingency has a too short response time allowed for a re
to be effective.

m Liability Conscious Behavior Model - while the weight of time pres
and of the difference between contingencies and side-effects decr
the agent assigns more importance to consequences, side-effects
their sum. Also, there are no threshold for either time pressur
likelihood (Tmin = Lmin = 0; Tmax = 100), since a contingency sh
never be discarded only because a reaction to it is believed to be u
Thereforemeteor becomes very high priority here, and the agent
prepare roughly in the order of collision with people, moving
animals, objectBall is still not considered here at all because th
side-effects are still much higher (and potentially more liable) tha
consequences. Also in this case, more contingencies are considerec
monitoring than usually.

m Social Responsibility Behavior Mogaleparing a population optimal
behavior involves considering both consequences alone and
difference between consequences and side-effects, as well as
likelihood, more than before (with respect to time pressure). It is c
to the "normal" behavior described in the previous section, witk
only difference that traffic light gains priority with respect to
since this behavior tends to favor groups of people over single p
and people over animals. Notice here that significant overall chze
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in the values of the parameters, but small changes in their rel

order, have produced a very similar ordering of the contingenci

compared to the recommended behavior.

As can be noticed from the above discussion, the results of tl
demonstrations require a certain amount of interpretation. This is ne
especially since the definitions of these behavior models are generally
on execution time types of reactions, while we attempt here to implemer
at planning time. However, their interpretation shows that they
reasonable and consistent with the generally accepted (execution-
definition of each behavior model, and that there is a plausible explana:
the results that maps them into the corresponding (conceptual) beb
These demonstrations show that our framework may at least provi
reasonable basis for representing and exchanging information and
about reaction-related behavior models, and thus for interpreting
studying different behaviors. For example, given a specific behavior (or
the set of contingencies), we can automatically discover the parameters
behavior model which emulates it, and then we can characterize this b
and maybe attempt to correct it.

The specific values of the different parameters of the behavior m
used may vary in certain limits, producing essentially the same results
fact contributes to the robustness of our framework, and simplifie
knowledge acquisition process by easing the burden of specifying ac
values for the criticality space dimensions by the expert. More importe
the relative values the expert supplies, but this is generally easier to ¢
Also the expert model may influence some of the behavior models, s
expert should probably be informed in advance about the desired b
model. However, our experiments were conducted without informing
expert on the type of behavior model desired, and as can be seen f{rc
discussion here (and also according to our experts), the results a:
agreement with the definition of each behavior model.

We have also run the same demonstrations on a set of contingencic
a situation in the anesthesiology domain. Again the results satisfied the
interpretation of the different behavior models. A brief description c
experiment and a short interpretation of the results for each behavior
are presented in appendix 3.

In the next section we present a final experiment, aimed
demonstrating that the framework defined in this thesis can scale up
integrated in complex autonomous agents, designed to work in real, c«
domains, and that by doing this, we improve the agent's global real
performance (by making it more responsive to those events that
considered more critical in the domain). This way we not only impros
quantitative performance of the agent, but more importantly, the qualit
performance. The experiment presented in the next section was also air
supporting evidence that the knowledge required to apply our fran
exists in real domains, that it can be reasonably quantified by experts
domain, and that it can be acquired from these experts and produce re
results.

0.4. Complex Real World Domain
We present here one more experiment we have conducted with
framework, in a real life medical domain: patient monitoring in an in
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care unit (ICU). This time, our framework was integrated in a com
real-time agent architecture capable of planning, reaction, and dy
replanning: the Guardian system [Hayes-Roth & al., 1992, Hayes-Roth,
Our framework has the role of filtering the information which flows fro
planner to the reactive planner, according to the architectural ¢
outlined in appendix 1.

The two domain experts who have generously advised us (David
and Serdar Uckun) have identified 68 contingencies for a set of situ
corresponding to a general intensive care monitoring case (figure 6.1)
have also specified heuristic values for the four characteristics for ez
these contingencies. For an easier understanding of the presentation, w
present part of these experiments and most of the data concerned, in a
4, and shall discuss here only the main results.

Problem: Intensive care monitoring

T rat. morarar —postoperatrve—proceaure

Context: afterf—coronary artery bypass grartng (CABG) Jjprocedure
50 years old patient, no other history known

AcCtion: ventrrate—patret weantag extupate—patrent

Internal Expect:
External Expect:
Time: 0-8 hours / 9-18 hours / 18-48 hours

—= — PN — o 1 i AN | :
I'IgsUultcT O. 1. oltuatlulls 1U1 LIIT ICUU  UUllIAlll

Table A4.1 lists the entire set of contingencies and the characte
values for them, in the order specified by the experts (grouped by cat
of complications that may develop).

The first part of this demonstration consisted in running the crit
function part of the framework on this data set, for the recomm:
behavior model (section 6.3), for several expert models. We have
exemplified for a large real-life case, the influence of varying diff
expert model parameters, over the ordering of contingencies by criti
Appendix 4 presents a partial set of results from this demonstration
A4.2 to A4.5).

The most important conclusion to be drawn from this demonstrati
that the recommendations of our framework are reasonable from the
point of view. Our experts have agreed, in each case (i.e. for each expert
used) with the ordering of the contingencies proposed by our system,
them reasonable and finding reasonable interpretations for them. Sinc
is no other (objective) way to evaluate the framework's recommendatio
may conclude that the framework and the "normal" behavior model wi
defined are a reasonable solution to our original problem.

#

Contingency (Response would be the typical response for this event)
Resp.

time

Conse-

quences

Side-

eff.

Likeli-
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hood
Criti-
cality

34
et-tube-disconnection

18
ventricular-tachycardia

13
ventricular-fibrillation

35
kinked-et-tube

20
hypoxia

7
myocardial-ischemia

[
o

6.1E11
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15
sinus-bradycardia
5
7
5
3
1.24E9
14
ventricular-ectopy
5
7
7
6
7.62E8
5
cardiac-tamponade
5
8.5
7.5
3
6.84ES8
19
sinus-tachycardia
10
6
5
7
8.21E7
22
cardiogenic-pulmonary-edema
10
8.5
7
3
3.26E7
1
myocardial-depression-post-cpb
8.5
7
3
3.26E7

32
pulmonary-embolism
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10
7.5
2.13E7

6
hypovolemia
20

2.08E7

3
decreased-preload
20

2.08E7

25
pneumothorax
10
8
7
3
2.01E7

40
acute-hemolytic-transfusion-react
10
8.5
5
1
1.28E7

26
hemothorax

9
right-heart-failure
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8.94E6

11
postop-hypertension
20
6.5
5
4
1.38E6

Table 6.10. Selected Contingencies for kp = 0.5 (30 seconds)
for Explorerll (kt = 1.166)

The second part of the demonstration considers the behavior of
framework in the context of the Guardian system. The blackboard-
[Hayes-Roth, 1985] Guardian agent has a reactive planner (ReAct) 1
action-based hierarchies [Ash, 1994].

#
Contingency (Response would be the typical response for this event)
Resp.
time
Conse-
quences
Side-
eff.
Likeli-
hood
Criti-
cality

34
et-tube-disconnection

—_
@)

18
ventricular-tachycardia

13
ventricular-fibrillation
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35
kinked-et-tube

20
hypoxia

7
myocardial-ischemia

15
sinus-bradycardia

14
ventricular-ectopy

5
cardiac-tamponade

6.1E11
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19
sinus-tachycardia
10
6
5
7
8.21E7

22
cardiogenic-pulmonary-edema
10
8.5
7
3
3.26E7

1
myocardial-depression-post-cpb

8.5
7
3
3.26E7

gﬁlmonary—embolism
10
7.5
2.13E7
6

hypovolemia
20

2.08E7
3

decreased-preload
20

2.08E7

25
pneumothorax



47

10

8

7

3
2.01E7

40
acute-hemolytic-transfusion-react
10
8.5
5
1
1.28E7

26
hemothorax
10

1.05E7

9
right-heart-failure
10

8.94E6

11
postop-hypertension

4

increased-afterload
20
6.5

1.38E6

36
right-mainstem-intubation
20
6.5
3
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16
atrial-fibrillation

41

1.23E6

20

7

§)

4
9.78E5

febrile-nonhemolytic-transfus-react

67
low-k

42
mechanical-bleeding

66
dilutional-low-na

604
low-na

20
6.5
4
2
0.98E5

30
7.5
R

6.63E5

~I N
n

7.5
3.54ES5

30

3.48E5

30

3.48E5
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17
paroxysmal-supraventric-tachycardia
20
6
6
4
2.83E5

23
noncardiogenic-pulmonary-edema
20
8.5
8
2
1.81E5

68
high-k
30

1.47E5

31
bronchospasm
30

1.47ES5

62
low-mg
60

8.57E4

45
intrinsic-pathway-defects
60
7
3
5
4.37E4

Table 6.11. Selected Contingencies for kp = 0.5 (30 seconds)
for SPARC10 (k¢ = 1.02)
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The reactive planner model for it (kindly specified by my colleague
its designer, David Ash) states that the reactive plan built tends to
implicit hierarchy with about 3 levels, with a roughly constant brar
factor throughout. Actually distinguishing a child node in the im
hierarchy is accomplished in the real hierarchy with a decision lis
structure. According to this model, reaching a contingency in the plar
for n contingencies takes roughly a constant time, equal to 3* time
amount of time for a single test (assuming the tests take approxin
constant time). This assumption can be made in our domain and for ou
since tests which take much longer (e.g. laboratory tests) are to be inclt
the main plan by the planner, to be performed regularly so that their
always meaningful. This is generally the way physicians operate in rea
settings. Therefore, for the purpose of our model, we can assume th:
length of a test is roughly given by the time a human operator needs i
to retrieve and check a piece of data and to input it into the comput
approximately 30 seconds. The reactive planner model also allows for a
set of contingencies (say, three) to be hooked directly to the top o
hierarchy, and thus to be reached by tests independently of the
contingencies to be solved by this reactive plan. This is useful when the
a few very time critical contingencies, and the rest are with a much s
time pressure.

#
Contingency (Response would be the typical response for this event)
Resp.
time
Conse-
quences
Side-
eff.
Likeli-
hood
Criti-
cality

34
et-tube-disconnection

—
)

18
ventricular-tachycardia
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13
ventricular-fibrillation
1
10
8
1
6.1E11
35
kinked-et-tube
5
8
2
4
1.8E10
20
hypoxia
5
8
6
4
2.53E9
7
myocardial-ischemia
5
8
6
3
1.42E9
15
sinus-bradycardia
5
7
5
3
1.24E9
14
ventricular-ectopy
5
7
7
6
7.62E8

5
cardiac-tamponade
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19
sinus-tachycardia

S
7
8.21E7

22
cardiogenic-pulmonary-edema
10
8.5
7
3
3.26E7

Table 6.12. Selected Contingencies for kp = 0.6 (36 seconds)
for Explorerll (kt = 1.166)

The agent model only takes into account the slowdown of the syster
to computational overhead. Simulations on two different platforms
yielded significantly different results: if Guardian is run on Explc
machines, the computational overhead is on average 16% for the sim
time period we are interested in (approximately two hours of simulated
on a SPARC10 workstation, this overhead is reduced to approximately 2%.
6.10 presents the results of running our entire framework, with the r
planner and agent models described here, for the Guardian agent runr
an Explorerll platform. Table 6.11 presents the same results for a SPA
workstation. We have run the same experiment for an estimated test ti
20% larger (36 seconds) and the results are presented in tables 6.12 ar
for Explorerll and SPARC10 respectively. In the second case, the system
able to include about 75% more contingencies in the reactive plan. Als«
that in all cases the system was able to include about 66% more contin:
in the reactive plan to be run on the SPARCI10.

#
Contingency (Response would be the typical response for this event)
Resp.
time
Conse-
quences
Side-
eff.
Likeli-
hood
Criti-
cality
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34
et-tube-disconnection

18
ventricular-tachycardia

13
ventricular-fibrillation

35
kinked-et-tube

20
hypoxia

7
myocardial-ischemia

15
sinus-bradycardia

—_
o

6.1E11
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5
7
5
3
1.24E9
14
ventricular-ectopy
5
7
7
6
7.62E8
5
cardiac-tamponade
5
8.5
7.5
3
6.84ES8
19
sinus-tachycardia
10
6
5
7
8.21E7
22
cardiogenic-pulmonary-edema
10
8.5
7
3
3.26E7
1
myocardial-depression-post-cpb
8.5
7
3
3.26E7
32
pulmonary-embolism
10
8.5
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2.13E7

6
hypovolemia
20

2.08E7

3
decreased-preload
20

2.08E7

25
pneumothorax
10
8
7
3
2.01E7

40
acute-hemolytic-transfusion-react
10
8.5
5
1
1.28E7

26

hemothorax
10

1.05E7
9

right-heart-failure
10

8.94E6
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Table 6.13. Selected Contingencies for kp = 0.6 (36 seconds)
for SPARC10 (kt = 1.02)

The sets of selected contingencies include the first as many as po
contingencies in the order of their criticality value (table A4.2). They «
include the fourth contingency in table A4.2 because of the special tre
of highly time pressured contingencies in the reactive planner mod
allows for three contingencies to be reacted to faster than the rest - ott
the set of contingencies might have included only the first
contingencies, but very few others if any). Due to the decision tree form
reactive plan, all leaves are reached in approximately the same time (
3.4.1), so the set of contingencies selected is limited by the response time
most time pressured contingency included (in our case 5 minutes, sin
one and two minute contingencies are treated separately).

These experiments reinforce a few statements we have made along
thesis. They show that the framework proposed here is useful in pruni
set of contingencies for which the agent should prepare to react. TI
however necessary only in such domains where the number of continy
is large enough to pose problems due to agent resource limitations (a
have characterized such domains in chapter 2); Guardian and its dom:
typical in this respect. The performance of the enhanced agent improve
the performance of the same agent without the benefit of our fram:
because in the latter case, the reactive planner would have prepa
reactive plan to include all 68 contingencies, and due to its size, the r
requirements for such a plan could not achieve reactions to the mos
pressured contingencies in this set. The set of contingencies selected d
on the characteristics of the agent and of its reactive planner (as repr
by the agent model and reactive planner model). The more accurate
models are, the better will be the use of agent resources made by the
contingencies selected. Also note that the agent may exhibit different r
behaviors, as defined by the reactive behavior model.

Our experiments also show that the necessary data for our framewc
be applicable exists in practice and can be acquired from experts in rea
domains. The more difficult part of the knowledge acquisition process w
identification of the set of contingencies possible in a given situatior
acquisition of the characteristic values for them was much easier, esp
since their absolute values are less important than their relative order,
the robustness of the framework).

The experiments described in this chapter and performed in dif
domains requiring quite different types of human expertise (mundane
highly skilled domains, etc.) demonstrate the applicability of our fran
in the general types of domains described in chapter 2.



Chapter 7
Conclusions

Most research projects have their roots in one or two basic ques
attempt (more or less successfully) to provide answers to these questior
during this process usually generate many more new questions than a
This thesis was no exception. In the next section, we present a summary
answers which our work provides, and in the following section we enu:
a few questions raised and research avenues opened during our efforts
solutions to the original problems stated in chapter 2.

7.1. Summary

Executing plans in the real world has long ago been recognized
difficult and wuncertainty-filled problem, due to contingencies generat
interactions between the executing agent and its environment. Cond
planning, reaction and dynamic replanning are all possible control mc
solve this problem, but none of them alone is entirely suitable for agen
limited resources working in complex environments. Therefore, the
arises for a mechanism to select, from the set of possible contingencies
domain, the subsets which should be treated using each of the prey
mentioned control modes. In this thesis we have defined a framework to
the subset of contingencies which are best suited for reactive response
framework's decisions are based on the plan situation under considerati
characteristics of the contingencies and of an expert model specifying
as well as on the reactive planner and agent models. A behavior 1
determines the type of reactive behavior to be exhibited by the ager
these models are designed as application-dependent plug-in modules
attached to our framework, thus substantially increasing its generalit
applicability across domains and types of agents. The decision of whet
prepare a reaction to a given contingency or not is taken while cons:
the entire set of contingencies that may appear in that situatio:
relationship with the limitations of the agent's execution time resource
have justified a few theoretical claims about our framework (includin
optimal wuse of agent's resources), and then we have verified
experimentally. We have also demonstrated other properties of the fran
the most important being that the reactive behavior of an agent usit
framework has the agreement of the experts in the field.

A couple of extensions to our framework were also discussed. The
one involves a similar framework to decide on the subset of contingenc:
which to prepare a conditional branch (all the way to the final goal)
plan. The second involves a proposal for a knowledge represent
formalism for the types of knowledge involved in our framew
contingencies, reactions and situations. It was designed to facilitate
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structuring and manipulation of this knowledge, as well as to facilitate t
of automatic knowledge acquisition and learning techniques to cope wi
explosion of the related knowledge in complex domains. However, both
extensions were discussed only at a theoretical level and, as stated in tt
section, they need more work in order to be fully understood and fo
potential to be fully used.

7.2. Future Work

It is unfortunate (or maybe actually very fortunate) that a thesis
encompass an entire research career. Unfortunate because while tryi
solve the originally stated problems, there are so many new problem
arise and which I would have liked to address. Fortunate because I am su
while trying to address these new issues, many other problems would
and then no thesis would ever be finished. We shall briefly overview i
section a few of the research issues which came up while solving the pr
mentioned before.

Two already stated issues are the extensions to our framework
above. The first involves the framework for deciding whether to prepare
conditional branch for a contingency. While we have defined the g«
framework in section 3.5, there are many details that still have to be sor
before a usable framework like the one for reactions can be obtained
function computing the conditional planning value of a contingency m
identified and tested, and the values for its parameters must be specifie
normal behavior model (and possibly for other types of behavior m
Guidelines for specifying the planner model and especially the agent
(from the perspective of conventional plan execution) must also be set.

The second issue involves the knowledge representation forma
proposed in chapter 4. Since specifying the nonterminals of the gre
imposes some additional burden on the experts, it would be very helj
devise a set of knowledge acquisition and learning tools to help the ex]
this task. We believe that the best results here can be achieved by con
automatic learning methods with interactive knowledge acquisition
(similarly with the methods used in [Dabija & al., 1992a]). Such an ap;
would better use the potential for bias shifting [Utgoff, 1988] and c«
classification that this knowledge representation formalism is appropria

Another open research issue related to our framework is its pot
integration with case based reasoning and planning techniques. Figui
presents the possible information flow in such a system. The ag
knowledge base (contingencies and associated reactions in specific situ
may be organized as a library of cases. The agent may also have a libr
reactive plans already built (each reactive plan built, may be cached in
library), organized by the situations in which they may apply. New kno
may be added at any time to the case library, and each time an a
encountered situation arises, the reactive plan that may already exist
plan library is combined with any new contingency-reaction pairs app
in that situation that have been included in the agent's knowledge bas
the last use of this reactive plan. Our framework will decide, for each
situation, which are the best contingencies for which reactions shou
included in the wupdated reactive plan. If no new relevant knowledge
applicable in the current situation) has been added to the knowledg:
since its last use, this reactive plan may be used without any changes or



3

Many issues arise here related to the independent management of th
libraries (knowledge structuring, and "forgetting") as well as
relationships between them. There are also interesting research issues
to the problem of acquiring the knowledge for the two libraries: knov
for each of them may be acquired from an expert (and here inter
knowledge acquisition techniques may be wused) or from the agent's
domain experience.

Main Plan Formalis.m for
Situation Reapt_lon
\ Decisions
(?ase Reactive Plan ReaL‘?tt)'VG Plan
Library Generation Iorary

New Reactive Plan

Figure 7.1. Extended system architecture

In domains where strong theories about possible contingencies
these theories can be used to anticipate all the contingencies that may
for situations along the plan, and to specify their characteristics. Howe"
most domains with which we are concerned, such theories either do no
or they are very weak (e.g. cover the domain only partially, or can ant
only certain kinds of events all over the domain). In such cases, the age
generate prototype cases (akin to the cases in the case library) and g
solutions for them. They may then be evaluated and comparec
corresponding actual cases, and the differences may be used to impro
weak domain theory that has generated them in the first place.

In this thesis we have also introduced a formalism to describe re:
behavior models. As we have shown in chapter 6, most of the human r
behavior models described in the literature can be conveniently expres
our framework, which therefore provides a possible vehicle for the ex
of information on this subject. However, we have only touched the tip
iceberg in this respect. Considerably more research is needed to refin
formalism so that it can be really wuseful for providing comp
characterizations of these behavior models and therefore become use
attempts to correct or influence human behaviors in critical domain
nuclear power plant supervision or aircraft flying. For example, in or«
better model the differences between behaviors like social responsibili
individualism, the consequences dimension of the criticality space m
split into two components: (i) internal-consequences (which directly
our agent) and (ii) external-consequences (effects of not responding
contingency, over other agents in the environment).

As stated at the beginning of this section, the range of open pro
suggested by this research is very wide, and we believe that at least p
them are worth further investigation.






Appendix 1
System Architecture

We briefly present here the way our framework is to be integrate
the general architecture of an agent with planning, reaction and mor
capabilities. We assumed a modular system, in which each component c
principle, be plugged in and out and the agent's performance should
gracefully. For example, if the agent is to operate without a reactive p.
then it will be able to respond only to the contingencies for which conc«
branches have been prepared by the planner, while if it is to operat
with a reactive planner, then the agent should be able to react to a
contingencies for which it has reactions prepared for, but may never
the overall goal since it lacks the main plan to do it. The framework to
whether to prepare to react may be regarded as another such module,
when present, ensures that the agent is better prepared to cope wi
different contingencies that may appear during its plan execution.

An alternative view is that the other agent modules (the plar
reactive planner, execution mechanisms, knowledge base, the expert
and the behavior model) are all independent modules which can be ¢
into, and out of, the framework discussed in the thesis. The framewor
defined in a general manner such that all these modules are parameter
will change the outcome of the analysis, but the general principles pre¢
in chapters 3 and 4 and the theoretical analysis in chapter 5 remain a
(since they all were done independent of any particular such module).
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Figure Al presents how all these modules fit together in a "comrg
agent, as well as the information flow during the plan modification p:
We assume this process starts whgiatlreer has produced a complete
(conditional) plan to solve a given problem. In order to identify the sit
that may generate contingencies in the plan, the plan analyzer scans t
and for each stage (situation) searches the agent's knofdedpe dease
of contingencies that may appear in that situation, and their appr
reactions. Each situation for which there are known contingencies wi
further analyzed to prepare reactive plans for it.

All relevant contingencies found in the agent's knowbgdgke base
contingency extractor for a certain situation are passedeaatiom the
decision makerhich uses our framework presented in chapter 3, togel
with an expert model, a behavior madehtthmodel (corresponding to the
execution capabilities of this agent), and the reactive planner n
(corresponding to the reactive planner available to this agent), to selec
contingencies for which reactive responses should be prepared by
reactive plan generafldre reactive plan is passed back to the planne
together with monitoring actions to be included in the plan. The reactiv
is eventually attached to the context-specific plan and the next stage
plan will be subsequently analyzed.

This entire process is performed first at planning time, before the
starts executing the main plan, and is repeated each time the agent is fc
dynamically replan its actions (and generate a new main plan) durir
execution phase because of a major failure in executing the initial main

One agent with such an architecture with which we have condt
demonstrations of our framework is the Guardian agent (for moni
patients in an intensive care unit) [Hayes-Roth, 1990]. The results of
demonstrations are discussed in section 6.4.



Appendix 2
Knowledge Representation
in the Car-Driving Domain

We continue here the example started in section 4.2, with
hierarchical vocabularies and the corresponding grammars for repre
reactions and situations in the car driving domain. While we do not p
specify the complete vocabularies for this domain, the ones that are
here are sufficient to represent all the examples encountered in chapte
well as the experiments discussed in chapter 6 for the driving domain
are also enough to represent a good deal more knowledge from this dom

Figure A2.1 presents the hierarchical vocabulary for represer
reactions in the car driving domain. This hierarchy is equivalent (acc
to the formalism discussed in chapter 4) to the following grammar:

G = (N, T, P, S), where:

N = { Reaction, Brake, Steer, Other, Left, Right, Hard, Gently,
Adjust_Radio }

T = { B.Hard, B.Gently, B.None, Left&Hard, Right&Hard, Left&Gently,
Right&Gently, None, Turn_on_Lights, Adjust_Volume,
Adjust_Station, Open_Window }

P = { Reaction -> Brake - Steer | Other
Brake -> B.Hard | B.Gently | B.None
Steer —> Left | Right | Hard | Gently | None
Left —> Left&Hard | Right&Hard
Right -> Right&Hard | Right&Gently
Hard -> Left&Hard | Right&Hard
Gently -> Left&Gently | Right&Gently
Other -> Turn_on_Lights | Adjust_Radio | Open_Window | ...
Adjust_Radio -> Adjust_Volume | Adjust_Station }

S = Reaction



Reaction Brake
Brake - Steer Other B.Hard B.Gently B.None
Steer
Left Right Hard Gently None

Left & Hard Right & Hard Left & Gently Right & Gently

Other

Turn_on_Lights Adjust_Radio Open_Window

Adjust_Volume Adjust_Station

Figure A2.1. Vocabulary for describing reactions in the driving doma
Every reaction specified in table 3.1 can be obtained through a ni
of different derivations in this very small and simple grammar. Also,
other reactions in the driving domain can be expressed using this voc
(this is generally true especially for reactions, since there are usually ¢
set of actions in a domain which can make up wuseful reactive plans i
domain). Since general reactions are often enough to be specified,
derivations may be stopped at those levels where the reaction expressed
sentential form obtained thus far "contains" (according to the order
defined in chapter 4) all the elementary reactions acceptable in that si
For example, if the agent only needs to reduce speed somewhat, than "
may be sufficient, without qualifying the action further.

Here is an example of deriving the reaction "Brake hard and ¢
right" to the first contingency in table 3.1 ("Child runs from right 2
front of car"):

Reaction —>

Brake - Steer —>
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B.Hard - Steer —>
B.Hard - Right.

This derivation has already been stopped before reaching a sent
form made up only of terminals in the vocabulary, since the "R
nonterminal could have been further refined to one of the two ter
given by the production:

Right -> Right&Hard | Right&Gently.
It therefore represents a set of possible reactions, contained in
description (i.e. derivable from it).

Figure A2.2 presents the hierarchical vocabulary for represer
situations in the car driving domain.

Some productions (both shown in figure A2.2 and omitted) may
realized through identification functions, as shown in chapter 4. For e:
the grammar symbols Slow, Medium, Fast, can be considered nonterr
(instead of terminals like in this example), and the actual values of the
can be considered terminals.



Situation

Problem - Plan — Context — Action — Internal_Expectations — External_Expectations — Time

Problem Plan Context Action
/‘\
Object - Place  Airplane Local.Transp Walk --- C.Time Weather --- Direction - Speed Adjust_Control
Internal_Expectations External_Expectations Time
/N
Object Sound --- Object Sound --- Very.Short Short Medium Long Very.Long

Figure A2.2a. Vocabulay for describing situations in the driving domain




Object

T T

Human Animal Large Small Heavy Light

Can_take_care_of_himself A.Small A.Big Large & Heavy Small & Heavy Large & Light Small & Light
Cannot_take care of himself

N N\

Old Infant ---. Cat Cow Meteor Brick Mattress Book Ball

Figure A2.2b. Vocabulay for describing situations in the driving domain (continued)




Local.Transp

T

Place Drive K Public.Transp
Close Far Known Unknown Car Truck Bike Horse Bus Subway - - -

Close & Known Far & Known Close & Unknown Far & Unknown

Office
C.Time K
/MJWN %Time\sunny .
Morning Afternoon Evening Night - -- Winter Spring Summer Fall

Figure A2.2c. Vocabulay for describing situations in the driving domain (continued)




Speed

/Diredion\ % Aciler\ate ?&i
Straight Steer Slow Medium Fast A.Hard A.Slowly B.Hard B.Slowly
Left Right Hard Gently

Left & Hard Right & Hard Left & Gently Right & Gently /Sound\
Adjust_Control Type 7Tsi<
Window Radio --- Gentle Harsh ---  Soft Loud ---

Figure A2.2d. Vocabulay for describing situations in the driving domain (continued)




An example of such a function may then be:
Slow = fg (speed) = 5 mph < speed < 20 mph,
which can be used to perform the transition over the edge linking "Slow
the actual terminal, say "speed = 15 mph".
We have collapsed the seven vocabularies for representing values
the seven dimensions of the situation space into a single vocabulary, w:
help of the first production of the grammar. Alternatively, we could
specified seven independent grammars, by throwing out the first pro
and the nonterminal Situation; each of these grammars would have I
starting symbols the nonterminals: Situation, Problem, Plan, Context, A
Internal _Expectations, External_Expectations, Time (respectively),
productions all the productions which can be reached from their res
start symbols wusing the productions of the reunited grammar, an
nonterminals and terminals all those from the large grammar whic
involved in the productions of each respective grammar.
The hierarchy in figure A2.2 is equivalent (according to the form
discussed in chapter 4) to the following grammar:
G = (N, T, P, S), where:
N = { Situation, Problem, Plan, Context, Action, Internal_Expectations
External_Expectations, Time,
Object, Animate, Human, Cannot_take_care_of_himself, Anima
A.Small, A.Big, Non-animate, Large, Small, Heavy, Light,
Large&Heavy, Small&Heavy, Large&Light, Small&Light,
Place, Close, Far, Known, Unknown, Close&Unknown,
Local.Transp, Drive, Ride, Public.Transp,
C.Time, Day.Time, Year.Time, Weather,
Direction, Steer, Left, Right, Hard, Gently,
Speed, Constant, Accelerate, Break,
Adjust_Control,
Sound, Type, Intensity }
T = { Airplane, Walk,
Very.Short, Short, Medium, Long, Very.Long,
Can_take_care_of_himself, Old, Infant, Cat, Cow, Meteor, Brick,
Mattress, Book, Ball,
Office, Far&Known, Close&Unknown, Far&Unknown,
Car, Truck, Bike, Horse, Bus, Subway,
Morning, Afternoon, Evening, Night,
Winter, Spring, Summer, Fall,
Sunny, Rain, Snow,
Straight, Left&Hard, Right&Hard, Left&Gently, Right&Gently,
Slow, Medium, Fast, A.Hard, A.Slowly, B.Hard, B.Slowly
Window, Radio,
Gentle, Harsh, Soft, Loud,

P = { Situation -> Problem - Plan - Context - Action -
Internal_Expectations - External_Expectations - Time
Problem -> Object - Place
Plan -> Airplane | Local.Transp | Walk | . . .
Context —> C.Time | Weather | . . .
Action -> Direction - Speed | Adjust_Control
Internal_Expectations -> Object | Sound | . . .
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External_Expectations -> Object | Sound | .

Time -> Very.Short | Short | Medium | Long | Very.Long

Object -> Animate | Non-animate

Animate -> Human | Animal

Human -> Can_take_care_of_himself |

Cannot_take_care_of_himself

Cannot_take_care_of_himself -> Old | Infant | . . .

Animal -> A.Small | A.Big

A.Small -> Cat | . .

A.Big —> Cow | . ..

Non-animate -> Large | Small | Heavy | Light

Large -> Large&Heavy | Large&Light

Small -> Small&Heavy | Small&Light

Heavy -> Large&Heavy | Small&Heavy

Light -> Large&Light | Small&Light

Large&Heavy -> Meteor | . . .

Small&Heavy —> Brick | . . .

Large&Light -> Mattress | . . .

Small&Light -> Book | Ball | . . .

Place -> Close | Far | Known | Unknown

Close -> Close&Known | Close&Unknown

Far -> Far&Known | Far&Unknown

Known -> Close&Known | Far&Known

Unknown -> Close&Unknown | Far&Unknown

Close&Unknown -> Office | . . .

Local.Transp -> Drive | Ride | Public.Transp

Drive -> Car | Truck

Ride -> Bike | Horse

Public.Transp -> Bus | Subway | . . .

C.Time -> Day.Time | Year.Time

Day.Time -> Morning | Afternoon | Evening | Night | . . .

Year.Time -> Winter | Spring | Summer | Fall

Weather -> Sunny | Rain | Snow

Direction -> Straight | Steer

Steer -> Left | Right | Hard | Gently

Left —> Left&Hard | Left&Gently

Right -> Right&Hard | Right&Gently

Hard -> Left&Hard | Right&Hard

Gently -> Left&Gently | Right&Gently

Speed -> Constant | Accelerate | Break

Constant -> Slow | Medium | Fast

Accelerate -> A.Hard | A.Slowly

Break -> B.Hard | B.Slowly

Adjust_Control -> Window | Radio | . . .

Sound -> Type | Intensity

Type -> Gentle | Harsh | . . .

Intensity -> Soft | Loud | . . .}

S = Situation
Most of the driving domain situations encountered during this 1

can now be obtained through a number of different derivations ir
grammar. Also, many other situations in the driving domain can be ex]
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using this vocabulary. Clearly, this vocabulary is not enough to descri
possible contingencies in the driving domain. It was not our goal to
such a vocabulary and grammar. However, it can be easily extende
encompass, in the same domain, any other desired situation which can
represented yet.

Contingencies and reactions are, in general, associated with set:
situations. Therefore, general situations are most often enough to be sp
and the derivations may be stopped at those levels where the siti
expressed by the sentential form obtained thus far "contains" (accord
the order relation defined in chapter 4) all the elementary situations tc
the contingency or reaction apply. This knowledge structuring prope
the representation formalism is most important here, since it helps «
the explosion of the situations in the domain, ensuring the representab
the knowledge needed for our planning-to-react decision framework in
domains.

While most situations encountered in chapter 3 can be derived ir
formalism, it also supports the derivation of many other situations f
driving domain. In fact, just by enlarging the set of terminals, the num
situations expressible with this small grammar becomes very large ir
This fact underlines the most important advantage of this represer
formalism, namely imposing a (hierarchical) structure on the set of p
situations in the domain, which then makes them much easier to be
managed, analyzed and reasoned about.



Appendix 3
Anesthesiology Domain Experiments

In order to demonstrate the applicability and scalability of the re
decision framework presented in chapter 3, we have run demonstrati
one other domain than those described in chapter 6. We briefly descrit
these demonstrations. The domain is anesthesiology, and I am indebted
David Gaba for letting me benefit from his time and knowledge by servi
role of the domain expert both for the knowledge acquisition task, as v
for the evaluation phase of the experiments. Working in a professional
of high expertise, we have used this time a single expert to provide t
necessary knowledge (in contrast with the driving domain where we
acquired it through a statistical analysis of the opinions of a group of
in the domain, as explained in section 6.1).

Table A3.1 lists the set of 13 contingencies selected for this experi
together with the reactions for each of them (in the "random" order s
by the expert), for the following situation:

Problem: Anesthetize patient for bowel obstruction

Plan: Induce anesthesia [rapid sequence induction]

Context: Middle of the night, emergency case, patient has coron:
artery disease (moderate) and chronic obstructiy
pulmonary disease (severe)

Ext. Expect.Change in vital signs

Int. ExpectPatient becomes unresponsive to commands

Action: Rapid sequence induction (Pentothal and Succinylcholi
have just been administered)
Timeg: 60 seconds.

The expert was asked to translate his qualitative feelings i
quantitative values, and to concentrate more on relative values than
absolute values he was going to specify. The expert was not asked to orc
contingencies as he feels would be appropriate for a normal behavior.
we have presented him with the system's results and ask him to evalu:
behavior recommended by our framework. The knowledge acquired fro
expert was for the following contingency characteristics: time to re:
(real values in seconds), criticality, side-effects, and likelihood (all these
on a scale of [0,10]).

Contingency
Reaction

1
Patient wvomits
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Turn head; suction mouth; intubate

2
Patient does not "fall asleep”
Check IV and syringe; give more drug

3
Muscle fasciculations (twitching 2" to drug)
Ensure patient does not fall asleep

4
Decreased blood pressure
Increase IV rate; administer vasopressor

5
Increased heart rate
Consider deeper anesthesia or p blocker

6
Cardiac Arrest
ACLS (Advanced Cardiac Life Support)

7
Meteor strikes OR
Move patient out of OR

8
Failure of pipeline oxygen supply
Switch tanks ON; disconnect pipeline

9

Failure of 1° and backup electric power
Obtain flashlight

10
Inability to intubate trachea
Ventilate by mask if possible; emer-gency procedures for difficult airwa:

11
Message from PACU about previous patient
Listen to the message

12
Severe bronchospasm (wheezing)
Ensure correct intubation; treat with bronchodilators

13
02 saturation decreases to < 90%
Ventilate by mask or tube with 100% O2

Table A3.1. Contingencies for the anesthesia domain experiments
We have also asked the expert to calibrate his data by supplying »
for the expert model parameters for the recommended behavior model.
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values were: 1 second for minimum real time (corresponding to Tmas
minutes for maximum real time threshold (corresponding to Tmin), .
minimum likelihood (Lmin), and 2.3 for the difference between conseq
and side-effects (CSmin). We did not ask the expert to actually give

function to translate from real time to time pressure, but rather we
specified it ourselves, in such a way as to include most of the time press
the interval [0,10]. The function we came up with is:
ftc =k / timerc =50/ timerc .

We have experimented with significantly different wvalues for k (bet
[10,100]) and the results obtained were remarkably similar (actually mo
identical) with the ones reported here. However, we have settled for the
k = 50, for the reason stated above (all but one time pressure value
between [0,10], with a reasonable spread in this interval). The results
knowledge acquisition process in this domain are summarized in table A
the same order as the previous table).

Contingency

timerc
timep
consequence

side-effect
likelihood

not fall asleep
45.0
1.11
7.0
4.0
4.0

3
muscle fascic.

decreased BP
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cardiac arrest
5.0
10.0
10.0
7.0
2.0

7
meteor
0.1
500.0
9.0
7.
0.01

8
02 supply fails
30.0

power failure
30.0

6.0
5.0
1.0

10
can't intubate
10.0
5.0
9.5
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PACU message
200.0
0.25
1.0

1.0
4.0
12
bronchospasm
25.0

2.0
.0

(@Yo

7.
0.
13
02 sat < 90%
15.0
3.33
8.0

4.0
6.0

Table A3.2. Data values for the anesthesiology domain experiments

We have first run the "normal" behavior model on these continge
The wvalues for the criticality function parameters given by the bel
model were the same as for the driving domain:

pl=5:p2=11p3=01p4=01p5=31p6=2’

with the parameters specified by the expert model (and discussed above
to those given in section 6.2. Table A3.3 summarizes the results of this rt
contingencies are this time numbered in the order specified by the cr
function for this «case, which we shall call from now on t
"system-recommended" order (since it was obtained by running the
with the recommended behavior model). There are two possible mon
thresholds, since there are two significant gaps in the sequence of
returned by the criticality function.

Contingency
Criticality

Monitor

1
cardiac arrest
5.95E8



yes

vomit
9.22E7
yes

3
can't intubate
4.07E7
yes

4

02 sat < 90%
2.96E7
yes

5
decreased BP
1.76E7
yes

6
increased HR
1.47E6
yes

7
bronchospasm
8.24E5

yes

8
not fall asleep

2.82E4
7

9
02 supply fail
2.13E4
27



10
power failure

2.77E3
7

11
muscle fascic.

4.77E2
7

12
PACU messg
0.19

13
meteor
0.00

Table A3.3. Criticality values for the "normal" behavior model,
for the anesthesiology domain experiments

As mentioned before, the expert was not required to order
contingencies by reaction value according to his belief of what
recommended behavior should be like. However, when presented wit
results, he characterized them as "definitely reasonable". This sho
significant portability of the behavior model and of all the parameter
for the «criticality function, across domains (since the driving
anesthesiology domains are significantly different in nature, and the
have specified their knowledge in the two domains independent of
other).

We have then run our framework on this data, for all the o
behavior models defined in section 6.3. We summarize in table A3.4 the
we have wused for the criticality function parameters in each run fo
domain. Note that all the behavior model paramegrshape teeqerived

identical values for the two domains. Also most of the expert model par:
are unchanged, and the changes reflect the different calibrations ¢
experts when they have specified the data.

Behavior Model
Expert Model

Behavior
pl pz p3 p4 ps p6
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Tmax Tmin CSmax Lmin
Recommended

5 1 0 0 3 2
50.0 0.028 2.3 1.0
Antiauthority

5 1 O O 3 0

Impulsivity
0O O O O O 3
5.0 5.0
Invulnerability
5 1 O 0 3 2
5.2
Macho
4 1 O O O 3
10.0
Resignation
5 1 O 0 3 2
2.0

Risk-averse
2 2 4 2 1 1

Liability conscious
3 3 1 2
500.0 0.0 0.0

[
N

Social responsibility
4 3 O 0 4 3

Table A3.4 Representing Behavior Models
Table A3.5 summarizes the results of these experiments. We have
shown the reaction values produced by the criticality function. Their a
values have no meaning whatsoever; what matters are their relative



9

(and only within the same behavior model), which represent the r«
value of reacting to one contingency vs. another in a same situation. Fo
behavior, monitoring thresholds were set (for the expert model) in regi
the contingency space where there are big gaps among the reaction val
the contingencies ordered by criticality. The thresholds are represent
thicker lines separating the contingencies for each behavior into two o
sets (in many cases, two possible places were indicated for this thresholc

Behavior Model 1
Behavior Model 2

Behavior Model 3

(Recommended)
(Antiauthority)
(Impulsivity)

1

cardiac arrest

5.95E8

1

cardiac arrest

1.48E8

3

can't intubate

1.25E2

2

vomit

9.22E7

2

vomit

1.88E6

11

muscle fascic.

22.62

3
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can't intubate
4.07E7

3

can't intubate
1.62E6

2

vomit

18.52

4

02 sat < 90%
2.96E7

4

02 sat < 90%
8.23E5

§)

increased HR
18.52

§)
decreased BP
1.76E7

5
decreased BP
4.90E5

7
bronchospasm
14.69

5

increased HR
1.47E6

§)

increased HR
3.00E4

5

decreased BP
14.69

7
bronchospasm
8.24E5

7
bronchospasm
2.28E4

4
02 sat < 90%
14.69

8
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not fall asleep
2.82E4

9

02 supply fail
2.13E4

8

not fall asleep
8.00

9
02 supply fail
2.13E4

10
power failure
2.77E3

12
PACU messg
8.00

10

power failure
2.77E3

8

not fall asleep
1.76E3

1

cardiac arrest
2.82

11

muscle fascic.
4.77E2

11

muscle fascic.
7.45

9

02 supply fail
1.00

12

PACU messg
0.19

12

PACU messg
1.1E-2

10

power failure
1.00

13



12

meteor
0.00

13
meteor
0.00

13
meteor
0.00

Table A3.5 Reactive Behavior Experiments for Anesthesiology

Behavior Model 4

Behavior Model 5

Behavior Model 6

(Invulnerability)
(Macho)
(Resignation)

2
vomit

9.22E7

1

cardiac arrest
8.00ES5

7

bronchospasm
8.24E5

4

02 sat < 90%

2.96E7

3

can't intubate
7.42E5

8

not fall asleep
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2.82E4

5

decreased BP
1.76E7

2

vomit

3.28E5

9

02 supply fail
2.13E4

§)

increased HR
1.47E6

§)

increased HR
2.54E5

10

power failure
2.77E3

7
bronchospasm
8.24E5

5
decreased BP
2.13E5
11
muscle fascic.
4.77E2

1

cardiac arrest
2.44E4

4

02 sat < 90%
2.13E5

12

PACU messg
0.19

3

can't intubate
0.38E3

7
bronchospasm
3.11E4

1

cardiac arrest
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0.00

11

muscle fascic.
4.77E2

8

not fall asleep
0.82E2

3

can't intubate
0.00

8

not fall asleep
1.68E2

11

muscle fascic.
96.00

13

meteor

0.00

9

02 supply fail
1.46E2

9

02 supply fail
65.58

2

vomit

0.00

10

power failure
52.65

10

power failure
46.29

5

decreased BP
0.00

12

PACU messg
0.43

12

PACU messg
0.25

4

02 sat < 90%
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0.00

13

meteor

0.00

13

meteor

0.00

§)

increased HR
0.00

Table A3.5 Reactive Behavior Experiments for Anesthesiology (continue

Behavior Model 7

Behavior Model 8

Behavior Model 9

(Risk-averse)

(Liability conscious)

(Social responsibility)

1

cardiac arrest
7.3E10

13

meteor

7.0E10

2

vomit

1.0E11

3

can't intubate
5.3E10

1
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cardiac arrest
4.2E10

1
cardiac arrest
6.3E10

7
bronchospasm
5.13E9

3
can't intubate
2.4E10

4
02 sat < 90%
2.1E10

5

decreased BP
2.38E9

5

decreased BP
3.05E9

3

can't intubate
1.3E10

§)

increased HR
1.20E9

4

02 sat < 90%
2.47E9

5

decreased BP
1.0E10

4
02 sat < 90%
9.90ES8

7
bronchospasm
1.61E9

7
bronchospasm
8.61E8

9

02 supply fail
1.32E8

2
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vomit

1.54E9

§)

increased HR
2.55E8

2

vomit

06.061E7

§)

increased HR
7.78E8

8

not fall asleep
2.64E7

8

not fall asleep
3.97E7

8

not fall asleep
1.93E7

9

02 supply fail
5.36E6

10

power failure
2.49E7

9

02 supply fail
1.50E7

10

power failure
1.97E5

11

muscle fascic.
1.23E3

10

power failure
1.99E6

11

muscle fascic.
2.95E5

12

PACU messg
2.30

11



18

muscle fascic.
1.48E4

12

PACU messg
6.99

13

meteor
0.00

12

PACU messg
2.30

13

meteor
0.00

Table A3.5 Reactive Behavior Experiments for Anesthesiology (continue

The numbering of contingencies for each behavior model in table

is the same as for the recommended behavior. This was done in orc
facilitate comparisons of each behavior model with the "normal" one.

In chapter 5, we have defined a behavior model to be an o
relationship on the set of contingencies associated with a situation. The
in these experiments, we only concentrate on the ordering of conting
by reaction value (and sometimes relative values of the criticality ful
but never on its absolute values), and ignore any issues related to the
planner model and the agent model, that is we ignore the final decis
applying the framework to a set of contingencies. This is consistent wit
purpose of our demonstrations here, since any specific agent (with a
reactive planner and resource limitations) may exhibit any of the re
behaviors discussed, depending only on the order in which its behavior
recommends the contingencies for consideration to be reacted to, and
the actual components and resources of the agent.

The results of these demonstrations require a certain amoun
interpretation (this is necessary especially since the definitions of
behavior models are generally based on execution time types of reac
while we attempt here to implement them at planning time). For examrg
the antiauthority behavior model, the order of contingencies does not
much, since here almost all contingencies considered are coverec
regulations or procedures; only "not fall asleep" goes down since after ¢
is precisely what we want to achieve and is therefore best coverec
procedures in this case. Ihntvlhdnerability case, "cardiac arrest" and "can'
intubate" fall significantly (possibly even below the monitoring thre
because they are not likely enough in this particular situation (fo1
particular patient) where the likelihood threshold has been increased
the type of behavior under consideration. Also "muscle fasciculat
advances a lot because of its high Ilikelihood compared to the ¢
contingencies. In the liability consbihassior, the agent considers almost
all consequences, except "message from PACU" because of its very long tii
response which should allow for replanning (here "meteor strikes op«
room" becomes very high priority, since once it is considered - regardl
its much too short response time allowed - its very high time pressur
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consequences make it very high priority. Similar arguments can be ma
the results of each of the behavior models used in this demonstration.

The interpretation of our results shows (in the expert's opinion)
they are reasonable and consistent with the generally acce;
(execution-time) definition of each behavior model, and that there
plausible explanation for the results that maps them into the corresy
(conceptual) behaviors. These demonstrations again show that our for
may at least provide a reasonable basis for representing and exche
information and ideas about reaction-related behavior models, and th
interpreting and studying different behaviors, in a considerable wvari
domains (from mundane tasks like car driving, to highly specialized on
medical domains). A possible use is to start from a specific behavior (or
the set of contingencies) exhibited by an agent, discover - using me
learning techniques - the parameters of the behavior model which er
this behavior in our framework, and then use these parameter
characterize the behavior and maybe to attempt to consciously mod
However, these are only speculations at this point, since as stated before
research is still needed to refine such a behavior description formalism
useful tool for changing ideas among behavioral experts.



Appendix 4
Intensive Care Domain Experiments

We present here some of the results of the experiments we I
conducted with our framework in the intensive care monitoring domair
appendix mainly complements section 6.4.

#
Contingency (Response would be the typical response for this event)
Response
time (min)
Conse-quences
Side-effects
Likeli-hood

1
myocardial-depression-post-cpb
1
8.5
7
3
2
myocardial-depression-sepsis
20
8
7.5
1
3
decreased-preload
20
7
3
7
4
increased-afterload
20
6.5
5
4



2

cardiac-tamponade

6
hypovolemia

7
myocardial-ischemia

8
myocardial-infarction

9
right-heart-failure

10
digitalis-toxicity

11
postop-hypertension

12
cardiac-arrest
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10
8
1
13
ventricular-fibrillation
1
10
8
1
14
ventricular-ectopy
5
7
7
6
15
sinus-bradycardia
5
7
5
3
16
atrial-fibrillation
20
7
6
4
17
paroxysmal-supraventric-tachycardia
20
6
6
4
18
ventricular-tachycardia
1
9
7
2
19
sinus-tachycardia
10
6



7
20
hypoxia
5
8
6
4
21
respiratory-acidosis
60
6
4
4
22
cardiogenic-pulmonary-edema
10
8.5
7
3
23
noncardiogenic-pulmonary-edema
20
8.5
8
2
Table A4.1 Contingencies for the ICU domain
24
atelectasis
120
6.5
5
6.5
25
pneumothorax
10
8
7
3
26
hemothorax
10
7



27
chylothorax

28
aspiration-pneumonia

29
pneumonia

30

diaphragmatic-paralysis

31
bronchospasm

32
pulmonary-embolism

33
ARDS
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34
et-tube-disconnection
2
10
2
4
35
kinked-et-tube
5
8
2
4
36
right-mainstem-intubation
20
6.5
3
2
37
disseminated-intravascular-coagulat
60
8
7
2
38
dilutional-coagulopathy
60
7
3
5
39
platelet-deficiency
60
7
3
5
40
acute-hemolytic-transfusion-react
10
8.5
5
1
41

febrile-nonhemolytic-transfus-react



42
mechanical-bleeding

43
fibrinogen-defects

44
extrinsic-pathway-defects

45
intrinsic-pathway-defects

46
cerebrovascular-ischemia

47
cerebrovascular-embolism

48
endotoxemia

20
6.5

20

7.5
4

(o)) (o))
LHUJ\IO LHUJ\IO

(o))
LHUJ\IO

2

120



49
rewarming

50
hypothermia

51
hyperglycemia

52
metabolic-acidosis

53
acute-renal-failure

54
acute-tubular-necrosis

55
prerenal-azotemia
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56
renal-azotemia

57
renal-embolism

58
high-cl

59
low-cl

60
high-ca

61
low-ca

62
low-mg

63
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o)
~Nw~g



10

high-mg
60
8
5
2

64

low-na
30
7
2
2

65

high-na
60
6
3
2

66

dilutional-low-na
30
7
2
2

67

low-k
30
7.5
5
5

68

high-k
30
8
7
4

Table A4.1 Contingencies for the ICU domain (continued)

#

Contingency (Response would be the typical response for this event)

Resp.

time

Conse-

quences

Side-

eff.
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Likeli-
hood
Criti-
cality

34
et-tube-disconnection

18
ventricular-tachycardia

13
ventricular-fibrillation

12
cardiac-arrest

35
kinked-et-tube

20
hypoxia

[
)

6.1E11

10

6.1E11
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7
myocardial-ischemia

15
sinus-bradycardia

14
ventricular-ectopy

5
cardiac-tamponade

19
sinus-tachycardia

22

2.53E9

R
7
8.21E7

cardiogenic-pulmonary-edema

10
8.5
7
3
3.26E7
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myocardial-depression-post-cpb

8.5
7
3
3.26E7

32
pulmonary-embolism
10

7.5
2.13E7

6
hypovolemia
20

2.08E7

3
decreased-preload
20

2.08E7

25
pneumothorax
10
8
7
3
2.01E7

40
acute-hemolytic-transfusion-react
10
8.5
5
1
1.28E7

26
hemothorax
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1.05E7

9
right-heart-failure
10

8.94E6

11
postop-hypertension

4
increased-afterload
20
6.5

1.38E6

36
right-mainstem-intubation
20

3
1.23E6

16
atrial-fibrillation
20
7
§)
4
9.78E5

41
febrile-nonhemolytic-transfus-react
20
6.5
4
2
6.98E5
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67
low-k
30
7.5
5

6.63E5

42
mechanical-bleeding

~I N
n

7.5
3.54ES5

66
dilutional-low-na
30

3.48ES5

604
low-na
30
7
2
2
3.48E5

17
paroxysmal-supraventric-tachycardia
20
6
6
4
2.83E5

23
noncardiogenic-pulmonary-edema
20
8.5
8
2
1.81E5

68
high-k
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31
bronchospasm

62
low-mg

45
intrinsic-pathway-defects

44
extrinsic-pathway-defects

43
fibrinogen-defects

39
platelet-deficiency

30

1.47E5

30

1.47E5

60

8.57E4

60

4.37E4

60

4.37E4
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4.37E4

38
dilutional-coagulopathy
60
7
3
5
4.37E4

2
myocardial-depression-sepsis
20
8
7.5
1
4.260E4

61
low-ca
60

3.21E4

47
cerebrovascular-embolism
30

7.5
1.58E4

21
respiratory-acidosis
60
6
4
4
7.63E3

Table A4.2. ICU domain contingencies ordered by criticality
for Tmin = 0.5 (2 hours) and Lmin = 1

52
metabolic-acidosis
00
6.5
4
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6.46E3

63
high-mg
60

4.76E3

65
high-na
60

3.57E3

8
myocardial-infarction
60

1.94E3

46
cerebrovascular-ischemia
60
8.5
7.5
2
1.22E3

37
disseminated-intravascular-coagulat
60
8
7
2
1.14E3

58

high-cl
120

5.36E2
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24
atelectasis

60
high-ca

59
low-cl

33
ARDS

51
hyperglycemia

27
chylothorax

48
endotoxemia

120
6.5
4.70E2

60

2.51E2

22.46

120

10.64

120



20

29
pneumonia

10
digitalis-toxicity

50
hypothermia

49
rewarming

28
aspiration-pneumonia

55
prerenal-azotemia

1.07

wunul o
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0.41
54
acute-tubular-necrosis
300
9
8
1
0.32
53
acute-renal-failure
300
9
8
1
0.32
57
renal-embolism
300
7
7
1
0.16
56
renal-azotemia
300
5
§)
1
5.9E-2
30
diaphragmatic-paralysis
000
8
7
1
5.3E-2

Table A4.2. ICU domain contingencies ordered by criticality
for Tmin = 0.5 (2 hours) and Lmin = 1 (continued)

Table A4.1 lists the entire set of 68 contingencies defined by the e
in the domain for the situations described in figure 6.1, together witl
characteristic valuesm. The contingencies are listed in the order specif
the experts (grouped by categories of complications that may develop).

The first part of this demonstration consisted in running the crit
function part of the framework on this data set, for the recomm:
behavior model (section 6.3). We have done this for several expert n
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which differ in the minimum time pressure thyephokhldd, and the
minimum likelihood thresheldn ) Lvalue. We shall present here only the

results of four such experiments, although we have made a much
number.

Table A4.2 shows the order of the contingencies given by the "no:
behavior model for a maximum reaction time of Rimouar8.5)Tand a
minimum likelihood of 1. The rest of the expert model parameters ar
unchanged during all these experiments (they are: ftc = 60 / timerc; Tma

(36 seconds); CSmin = 2.3).

#
Contingency (Response would be the typical response for this event)
Resp.
time
Conse-
quences
Side-
eff.
Likeli-
hood
Criti-
cality

34
et-tube-disconnection

—_
@)

18
ventricular-tachycardia

35
kinked-et-tube

20
hypoxia
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7
myocardial-ischemia

15
sinus-bradycardia

14
ventricular-ectopy

5
cardiac-tamponade

19
sinus-tachycardia

22

8.21E7

cardiogenic-pulmonary-edema



24

3.26E7

1
myocardial-depression-post-cpb
1

8.5
7
3
3.26E7

Is)tzllmonary—embolism
10
7.5
2.13E7
6

hypovolemia
20

2.08E7
3

decreased-preload
20

2.08E7
25

pneumothorax
10

2.01E7
26

hemothorax
10

1.05E7
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right-heart-failure

11
postop-hypertension

4
increased-afterload

36
right-mainstem-intubation

16
atrial-fibrillation

13
ventricular-fibrillation

12
cardiac-arrest

10

8.94E6

20

6.5

1.38E6

1.23E6

20

9.78ES

10

7.86E5

10
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8
1
7.86E5

41
febrile-nonhemolytic-transfus-react
20
6.5
4
2
6.98E>5

67
low-k
30
7.5
5

6.63E5

42
mechanical-bleeding

~I N
wn

7.5
3.54ES5

66
dilutional-low-na
30

3.48E5

604
low-na
30
7
2
2
3.48E5

17
paroxysmal-supraventric-tachycardia
20
6
6
4
2.83E5
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23

noncardiogenic-pulmonary-edema

68
high-k

31
bronchospasm

62
low-mg

45
intrinsic-pathway-defects

44
extrinsic-pathway-defects

43
fibrinogen-defects

20
8.5
8
2
1.81E5

30

1.47E5

30

1.47E5

60

8.57E4

60

4.37E4

60

4.37E4
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60

4.37E4

39
platelet-deficiency
60

4.37E4

38
dilutional-coagulopathy
60

4.37E4

61
low-ca
60

3.21E4

21
respiratory-acidosis
60
6
4
4
7.63E3

Table A4.3. ICU domain contingencies ordered by criticality
for Tmin = 0.5 (2 hours) and Lmin = 2

52
metabolic-acidosis
60
6.5
4
3
6.46E3

63
high-mg



29

60
8
5
2
4.76E3

40
acute-hemolytic-transfusion-react
10
8.5
5
1
3.59E3

65
high-na
60

3.57E3

8
myocardial-infarction
60

1.94E3

46
cerebrovascular-ischemia
60
8.5
7.5
2
1.22E3

37
disseminated-intravascular-coagulat
60
8
7
2
1.14E3

58
high-cl
120



30

6
5.36E2
24
atelectasis
120
6.5
5
6.5
4.70E2
2
myocardial-depression-sepsis
20
8
7.5
1
2.06E2
47
cerebrovascular-embolism
30
9
7.5
1
1.25E2
59
low-cl
120
6
4
2
59.63
33
ARDS
120
8.5
8
2
23.32
51
hyperglycemia
120
5
4
2

22.46
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60
high-ca

27
chylothorax

48
endotoxemia

29
pneumonia

10
digitalis-toxicity

50
hypothermia

49
rewarming

60

15.86

240
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28
aspiration-pneumonia

55
prerenal-azotemia

54
acute-tubular-necrosis

53
acute-renal-failure

57
renal-embolism

56
renal-azotemia

~l W w

1.32
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5.9E-2

30
diaphragmatic-paralysis
600
8
7
1
5.3E-2

Table A4.3. ICU domain contingencies ordered by criticality
for Tmin = 0.5 (2 hours) and Lmin = 2 (continued)

To show the effect of varying the likelihood parameter in the e
model, table A4.3 presents the ordering of contingencies according to th
behavior model, with all the parameters unchanged except the mir
likelihood raised at 2. We can see that highly consequential but low like
contingencies like ventricular-fibrillattandamdarrest experience a
significant drop in criticality (from the 3rd place to the 22nd). Howeves
high consequences and high time pressure ensure that they do not fa
much (they are still ranked by the framework in the first third of a
contingencies considered).

#
Contingency (Response would be the typical response for this event)
Resp.
time
Conse-
quences
Side-
eff.
Likeli-
hood
Criti-
cality

34
et-tube-disconnection

—_
)

18
ventricular-tachycardia
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13
ventricular-fibrillation
1
10
8
1
6.1E11
12
cardiac-arrest
1
10
8
1
6.1E11
35
kinked-et-tube
5
8
2
4
1.8E10
20
hypoxia
5
8
6
4
2.53E9
7
myocardial-ischemia
5
8
6
3
1.42E9
15
sinus-bradycardia
5
7
5
3
1.24E9

14
ventricular-ectopy



35

7
7
6
7.62E8
5
cardiac-tamponade
5
8.5
7.5
3
6.84ES8
19
sinus-tachycardia
10
6
5
7
8.21E7
22
cardiogenic-pulmonary-edema
10
8.5
7
3
3.26E7
1
myocardial-depression-post-cpb
10
8.5
7
3
3.26E7
32
pulmonary-embolism
10
8.5
7.5
3
2.13E7
6
hypovolemia

N
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36

2.08E7

3
decreased-preload
20

2.08E7

25
pneumothorax
10
8
7
3
2.01E7

40
acute-hemolytic-transfusion-react
10
8.5
5
1
1.28E7

26
hemothorax
10

1.05E7

9
right-heart-failure
10

8.94E6

11

postop-hypertension
20
6.5

1.38E6
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increased-afterload
20
6.5

1.38E6

36
right-mainstem-intubation
20
6.5
3
2
1.23E6

16
atrial-fibrillation
20
7
§)
4
9.78ES5

41
febrile-nonhemolytic-transfus-react
20
6.5
4
2
6.98E5

67
low-k
30
7.5
5

6.63E5

42
mechanical-bleeding

~I N
n O

7.5
3.54E5

06
dilutional-low-na
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3.48E5

604
low-na
30
7
2
2
3.48E5

17
paroxysmal-supraventric-tachycardia
20
6
6
4
2.83E5

23
noncardiogenic-pulmonary-edema
20
8.5
8
2
1.81E5

68
high-k
30

1.47E5

31
bronchospasm
30
8
7
4
1.47E5

2
myocardial-depression-sepsis
20
8
7.5
1
4.26E4
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47
cerebrovascular-embolism
7.5
1.58E4
62

low-mg
60

2.92E2
45

intrinsic-pathway-defects
60

2.09E2
44

extrinsic-pathway-defects
60

2.09E2
43

fibrinogen-defects
60

2.09E2
39

platelet-deficiency
60

2.09E2

38
dilutional-coagulopathy
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60

2.09E2

61
low-ca
60

1.79E2

21
respiratory-acidosis
60
6
4
4
87.36

Table A4.4. ICU domain contingencies ordered by criticality
for Tmin = 2 (30 minutes) and Lmin = 1

52
metabolic-acidosis
00
0.5
4
3
80.43
03
high-mg
00
8
5
2
09.02
065
high-na
00
§)
3
2
59.77
8

myocardial-infarction
60
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6
5
3
44.05
46
cerebrovascular-ischemia
60
8.5
7.5
2
34.95
37
disseminated-intravascular-coagulat
60
8
7
2
33.91
58
high-cl
120
6
4
6
23.16
24
atelectasis
120
6.5
5
6.5
21.70
60
high-ca
60
7
6
1
15.86
59
low-cl
120

NRAO
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33
ARDS

51
hyperglycemia

27
chylothorax

48
endotoxemia

29
pneumonia

10
digitalis-toxicity

50

7.72
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hypothermia

49
rewarming

28
aspiration-pneumonia

55
prerenal-azotemia

54
acute-tubular-necrosis

53
acute-renal-failure

57
renal-embolism

1.07
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—~

0.16

56
renal-azotemia
300

5.9E-2

30
diaphragmatic-paralysis
600
8
7
1
5.3E-2

Table A4.4. ICU domain contingencies ordered by criticality

for Tmin = 2 (30 minutes) and Lmin = 1 (continued)
Tables A4.4 and A4.5 show the effect of increasing the time pres
threshold. While table A4.2 contains the contingencies ordered according
expert model which recommends reactions for contingencies with al
response time of up to 2 hours from the time a contingency is detectec
A4.4 reduces this time to half an hour (minimum time pressure Tmin =

table A4.5 reduces it even further, to just 5 minutes (minimum time p
Tmin = 12). Notice that contingencies with very low likelihood but highe
pressure (like myocardial-depression-sepsis and cerebrovascular-embc
advance over more likely contingencies but with time pressure lower th
recommended reaction threshold, in table A4.4. However, when the
pressure threshold is raised significantly more (table A4.5), we obta
identical ordering with the initial one in table A4.2, because the expe
recommended reactions only for very time critical contingencies, which
ranked as having high criticality by the framework even from the beg
other things being equal. There is however a significant difference be
tables A4.2 and A4.5 (and to a lesser extent table A4.4), namely a
threshold for monitoring. In the case of a very low time pressure thresl
hours), there is no such clear threshold, since the criticality of contin
decreases gradually in table A4.2, without a clear gap. This is because,
the maximum reaction time recommended is very large, the time pressi
contingencies with long allowed response time is so small anyway, that i
not influence the criticality of that contingency too much. This contrast
the cases when the maximum reaction time recommended is small, for
the time pressure is high enough to make a significant difference i
criticality value. This is why in table A4.5 we have a clear threshold (giv
a significant gap in the sequence of criticality values) after the
contingency in the sequence (cardiac-tamponade). The same pheno
takes place in table A4.4 after the cerebrovascular-embolism contingenc
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#
Contingency (Response would be the typical response for this event)
Resp.
time
Conse-
quences
Side-
eff.
Likeli-
hood
Criti-
cality
34
et-tube-disconnection
2
10
2
4
4.2E12
18
ventricular-tachycardia
1
9
7
2
2.2E12
13
ventricular-fibrillation
1
10
8
1
6.1E11
12
cardiac-arrest
1
10
8
1
6.1E11

35
kinked-et-tube

A DNOCOWD
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20
hypoxia

7
myocardial-ischemia

15
sinus-bradycardia

14
ventricular-ectopy

5
cardiac-tamponade

19
sinus-tachycardia

22

1.8E10
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cardiogenic-pulmonary-edema
10
8.5
7
3
5.71E3

1
myocardial-depression-post-cpb
1

8.5
7
3
5.71E3

32
pulmonary-embolism
10

7.5
4.62E3

6
hypovolemia
20

4.56E3

3
decreased-preload
20

4.56E3

25
pneumothorax
10
8
7
3
4.48E3

40

acute-hemolytic-transfusion-react
10
8.5
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3.59E3

26
hemothorax
10

3.25E3

9
right-heart-failure
10

2.99E3

11

postop-hypertension
20
6.5

1.17E3

4

increased-afterload
20
6.5

1.17E3

36
right-mainstem-intubation
20
6.5
3
2
1.11E3

Table A4.5. ICU domain contingencies ordered by criticality
for Tmin = 12 (5 minutes) and Lmin = 1

16
atrial-fibrillation



49

§)
4
9.88E2

41
febrile-nonhemolytic-transfus-react
20
6.5
4
2
8.35E2

67
low-k
30
7.5
5

8.14E2

42
mechanical-bleeding

~I N
n

7.5
5.95E2

66
dilutional-low-na
30

5.90E2

04
low-na
30
7
2
2
5.90E2

17
paroxysmal-supraventric-tachycardia
20
6
6
4
5.32E2
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23

noncardiogenic-pulmonary-edema

68
high-k

31
bronchospasm

62
low-mg

45
intrinsic-pathway-defects

44
extrinsic-pathway-defects

43
fibrinogen-defects

20
8.5
8
2
4.25E2

30

3.83E2

30

3.83E2

60

2.92E2

60

2.09E2

60

2.09E2
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60

2.09E2

39
platelet-deficiency
60

2.09E2

38
dilutional-coagulopathy
60

2.09E2

2
myocardial-depression-sepsis
20
8
7.5
1
2.06E2

61

low-ca
60

1.79E2
47
cerebrovascular-embolism
30
7.5
1.25E2

21
respiratory-acidosis
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52
metabolic-acidosis

63
high-mg

65
high-na

8
myocardial-infarction

46
cerebrovascular-ischemia

37

87.36

69.02

60

59.77

60

44.05

disseminated-intravascular-coagulat

60
8
7
2
33.91
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58
high-cl

24
atelectasis

60
high-ca

59
low-cl

33
ARDS

51
hyperglycemia

27
chylothorax

15.86

N A O o

7.72

—
I\)OOPON
Ko

4.82

N ROy

4.73

120



54

48
endotoxemia

29
pneumonia

10
digitalis-toxicity

50
hypothermia

49
rewarming

28
aspiration-pneumonia

N~ ~

3.26
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1.07
55
prerenal-azotemia
300
5
5
3
0.41
54
acute-tubular-necrosis
300
9
8
1
0.32
53
acute-renal-failure
300
9
8
1
0.32
57
renal-embolism
300
7
7
1
0.16
56
renal-azotemia
300
5
§)
1
5.9E-2
30
diaphragmatic-paralysis
600
8
7
1
5.3E-2

Table A4.5. ICU domain contingencies ordered by criticality
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for Tmin = 12 (5 minutes) and Lmin = 1 (continued)

The most important conclusion to be drawn from this demonstrati
that the recommendations of our framework were found to be reasona
our domain experts. They have agreed, in each case (i.e. for each expert
used) with the ordering of the contingencies proposed by our system,
them reasonable and finding reasonable interpretations for them. Sinc
is no other (objective) way to evaluate the framework's recommendatio
may conclude that the framework and the "normal" behavior model wi
defined are a reasonable solution to our original problem.
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1 In order to simplify the analysis for clarity of exposition, we have delibe
excluded the conventional driver's wisdom case that a ball popping up in the ¢
usually followed by a running child.

2 Again we stress that, in this work we study conscious forms of reaction, prep.
planning time and consciously taken, as opposed to precognitive types of reacti
locomotion type reaction).

3 Hopefully not at the same time...
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5 We have specifically excluded the conventional driver's wisdom case that a ball
up in the street is usually followed by a running child.



