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Abstract

Expert database systems extend the functionality of conventional database systems by

providing a facility for creating and automatically executing Condition-Action rules. While

Condition-Action rules in database systems are very powerful, they also can be very di�cult

to program, due to the unstructured and unpredictable nature of rule processing. We provide

methods for static analysis of Condition-Action rules; our methods determine whether a given

rule set is guaranteed to terminate, and whether rule execution is con
uent (has a guaranteed

unique �nal state). Our methods are based on previous methods for analyzing rules in active

database systems. We improve considerably on the previous methods by providing analysis

criteria that are much less conservative: our methods often determine that a rule set will ter-

minate or is con
uent when previous methods could not. Our improved analysis is based on a

\propagation" algorithm, which uses a formal approach based on an extended relational algebra

to accurately determine when the action of one rule can a�ect the condition of another. Our

algebraic approach yields methods that are applicable to a broad class of expert database rule

languages.

1 Introduction

In the past decade there has been a surge of interest in adding rule processing to database systems.

Deductive database systems use logic rules to provide an expressive query facility [CGT90,Ull89].

Active database systems use Event-Condition-Action rules to provide reactive behavior [HW93]. In

this paper we focus on what we refer to as expert database systems. An expert database system is

a conventional database system extended with a facility for creating and automatically executing

Condition-Action rules. Expert database systems originated by coupling a rule processor for a

production rule language such as OPS5 [BFKM85] to a conventional DBMS; this approach is taken

in, e.g., [Tzv88]. More recently the prevalent approach has been to build rule processing directly

into the database system. Examples of recent or ongoing projects in expert database systems are

[BM93,DE89,DOS+92,GP91,SLR88]. Note that some systems described as active database systems

actually use the Condition-Action rule paradigm, and hence fall into the class of expert database

�
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systems as we use the term here; examples of such systems are [Han92,SKdM92]. Since expert

database systems evolved from production rule systems such as OPS5 and are closely related to

active and deductive database systems, the techniques presented in this paper certainly can be

adapted for other database rule paradigms.

While expert database systems are very powerful, developing even small applications can be a

di�cult task, due to the unstructured and unpredictable nature of rule processing. During rule

processing, rules can activate and deactivate each other, and the intermediate and �nal states of

the database can depend on which rules are activated and executed in which order. It is highly

bene�cial if the rule programmer can predict in advance some aspects of rule behavior. This can

be achieved by providing a facility that statically analyzes a set of rules, before installing the rules

in the database [AWH92]. Static rule analysis can form the basis of a design methodology and

programming environment for expert database systems.

As has been observed in the past [AWH92,KU94,vdVS93], two important and desirable prop-

erties of rule behavior are termination and con
uence. A rule set is guaranteed to terminate if,

for any database state and set of modi�cations, rule processing cannot continue forever (i.e. rules

cannot activate each other inde�nitely). A rule set is con
uent if, for any database state and set

of modi�cations, the �nal database state after rule processing is independent of the order in which

activated rules are executed.

In this paper we propose a generally applicable algorithm for determining when the action of

one rule can a�ect the condition of another rule. The algorithm uses an extension of relational

algebra to model rule conditions and actions. Essentially, the algorithm \propagates" one rule's

action through another rule's condition to determine how the action may a�ect the condition;

hence, we call it the Propagation Algorithm. The Propagation Algorithm is useful for analyzing

termination since it can determine when one rule may activate another rule. The Propagation

Algorithm also is useful for analyzing con
uence since it can determine when the execution order

of two rules is signi�cant. The Propagation Algorithm determines these properties much more

accurately than previous methods, e.g. [AWH92,HH91,ZH90]. In addition, since we take a general

approach based on relational algebra, our method is applicable to most expert database systems

that use the relational model.

1.1 Previous Related Work

In traditional expert systems, i.e. production rule systems such as OPS5 [BFKM85], predicting

properties such as termination and con
uence is of far less importance than in the database en-

vironment; consequently, there has been little (or no) work on rule analysis in traditional expert

systems. There are several reasons why predicting behavior is less important in traditional expert

systems: Typically, they are stand-alone main-memory systems, so there is little fear of consum-

ing resources or blocking other users. Since traditional expert systems are used for \intelligent

inferencing"|deriving facts|the order of inferences or a unique �nal outcome may not be impor-

tant. Finally, rule processing in traditional expert systems might last for hours and indeed may not
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terminate, but this behavior may be considered acceptable, unlike in the database environment.

In the database context, [HH91,ZH90] give methods for analyzing Condition-Action rules that

are similar to the rules we consider. However, the goal of their work is to impose restrictions on rule

sets so that con
uence (a \unique �xed point" in their model) is guaranteed; we instead provide

techniques for analyzing the behavior of arbitrary rule sets. In addition, the methods in [HH91,

ZH90] have been shown to be weaker than the methods in [AWH92], which in turn are weaker

than the methods we present here. The methods in [AWH92] are developed in the context of the

Starburst Rule System, which uses an Event-Condition-Action (active database) rule model. Their

technique for analyzing rule interaction relies on a shallow comparison of the actions performed by

one rule and the events and conditions of another rule. We improve on this approach signi�cantly

by using a formal algebraic model that allows us to accurately analyze the interaction between rules

using the semantics of rule conditions and actions. In an initial report we applied our approach

to termination only [BCW93]; here we re�ne the techniques in [BCW93] and propose a general

framework for analysis of both termination and con
uence.

In other related work, [vdVS93] analyzes rule behavior in the context of object-oriented active

database systems. Their work focuses on di�erences between instance-oriented and set-oriented

rules (we consider only set-oriented rules in this paper) and on decidability properties for rule

analysis. Their rule model is rather restricted, in that rule actions (methods) can only modify data

selected by the corresponding rule condition, and deletions and insertions seem to be disallowed.

The properties of con
uence and of termination within some �xed number of steps are shown to be

decidable using an approach based on \typical databases"; a typical database contains all possible

data instances that could a�ect the outcome of rule processing. The rule set is \run" over the

typical database and the outcome is checked for the desired properties. This approach is clearly

infeasible in practical applications, so lower complexity algorithms are proposed, but the details

and applicability of these algorithms are not clari�ed.

A rather di�erent approach to rule analysis is taken in a recent paper [KU94], where Event-

Condition-Action rules are reduced to term rewriting systems, and known analysis techniques for

termination and con
uence of term rewriting systems are applied. The rule model they use is quite

di�erent from ours, and it is unclear whether a general relational rule model such as ours can be

expressed as a term rewriting system. However, in the future we plan to explore the relationship

between these di�erent approaches.

Our Propagation Algorithm is closely related to the problem of independence of queries and

updates, addressed in, e.g., [Elk90,LS93]. [LS93], which subsumes [Elk90], gives an algorithm for

detecting if the outcome of a query, expressed as a Datalog program, can be a�ected by a given

insertion or deletion. For analyzing expert database rules, we need a somewhat stronger technique:

when a query and update are not independent, we need to know whether the update adds to,

removes from, or modi�es the result of the query. Furthermore, while the algorithm presented in

[LS93] applies to more general queries than we consider here (e.g. recursive queries), their model

for database updates is considerably simpler than ours.

Finally, our Propagation Algorithm is somewhat related to incremental evaluation, as in [BW93,
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QW91,RCBB89]: both problems address the e�ect of a database modi�cation on a relational

expression. However, incremental evaluation techniques are designed for run-time, when the actual

modi�cations are known, while our techniques apply at compile-time, when the modi�cations are

expressed as database operations.

1.2 Outline of the Paper

In Section 2 we present our algebraic Condition-Action rule language and provide several examples

that are used throughout the paper. Section 3 contains the Propagation Algorithm, examples of

its application, and a proof of its correctness. In Sections 4 and 5 we apply the algorithm to

the analysis of termination and con
uence, respectively; again, several examples are included. In

Section 6 we draw conclusions and outline future work.

2 Algebraic Rule Language

A rule in our language has a condition and an action. Rule conditions are expressed as queries

over the database; rule actions are database modi�cations. We use a language in which conditions

and actions are both represented by relational algebra expressions. In this section we describe the

extensions to relational algebra that are required to represent general rule conditions and actions.

Then we specify the syntax of our rule language using this algebra, and we describe the semantics

of rule processing in our model. Finally, we give several examples of how Condition-Action rules

may be represented in our algebraic language.

2.1 Algebraic Operators

Based on [CG85,Klu82], we de�ne an extension to relational algebra that allows us to represent

any queries that are expressible in SQL (or Quel), with the exception of the handling of duplicates

and ordering conditions. We also introduce an extension that allows us to represent the SQL data

modi�cation operations insert, delete, and update.

Our extended relational algebra includes the basic relational algebra operators select (�), project

(�), cross-product (�), natural join (1), union ([), and di�erence (�), which we do not elaborate

on here; see [Ull89]. The �rst two lines of Table 1 present useful operators derived from the basic

operators, while the next three lines present additional operators that we use. In the table, X and

A denote attributes, B, A1, and A2 denote attribute lists, a is an aggregate function, and expr

is an expression (explained below). In line 1, E1 .<p E2 = �schema(E1)(�p(E1 � E2)); in line 3, �

renames the attributes in list A1 as A2. In the remainder of the paper, we adopt the shorthand

notation E1 .< E2 and E1 .< 69 E2 to denote E1 .<p E2 and E1 .<69p E2 when predicate p equates all

attributes in both schema(E1) and schema(E2) (similar to the natural join). We now discuss the

other operators in more detail, then we present the modi�cation operations.
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Operator Description

.<
p semijoin with predicate p

.<69p not-exists semijoin with predicate p

�A1;A2
attribute rename

E [X = expr] attribute extension and expression evaluation

A[X = a(A);B] attribute extension and aggregate function evaluation

Table 1: Additional algebraic operators

2.1.1 Not-Exists Semijoin

The not-exists semijoin operator, .<69p, is introduced to concisely express negative subqueries as they

are expressed in SQL (e.g. not exists); negative subqueries appear frequently in rule de�nitions

[CW90]. The not-exists semijoin operator is de�ned as:

E1 .< 69p E2 = E1 � (E1 .<p E2)

Note that we could instead de�ne the relational di�erence operator in terms of not-exists semijoin:

E1�E2 = E1.<69E2 (with renaming of attributes in E1 andE2 as necessary). Hence, for convenience,

we consider only the not-exists semijoin and not the di�erence operator in the remainder of the

paper.

2.1.2 Aggregate Functions and Expression Evaluation

The attribute extension operators allow us to extend a relational expression E with a new attribute;

this approach is used for aggregate functions and for modi�cation operations. We have:

� The E operator, which computes expressions applied to each tuple of E

� The A operator, which computes aggregate functions (e.g. max, min, avg, sum, count)

over partitions of E

E is a unary operator applied to a relational expression E producing a result with schema

schema(E)[ fXg. Recall from Table 1 that the E operator is expressed as:

E [X = expr]E

expr is an expression evaluated over each tuple t of E (a conventional expression involving attributes

of t and constants) yielding one value for each tuple; this value is entered into the new attribute

X for each tuple of E. For details of similar operators see [CCRL+90]; examples are given in later

sections.
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Operation Algebraic expression New database state

insert Eins R [Eins

delete Edel R .<69 Edel

update Eupd (R .< 69 Eupd) [ �A0
u
;Au

(�Ar;A
0
u
Eupd)

Table 2: Algebraic description of insert, delete, and update operations

A is also a unary operator applied to a relational expression E producing a result with schema

schema(E)[ fXg. Recall from Table 1 that the A operator is expressed as:

A[X = a(A);B]E

B de�nes a set of attributes on which the result of E is partitioned; each group in the partition

contains all the tuples with the same B value. a is an aggregate function that is applied to the

(multiset of) values contained in the projection of each partition on attribute A, yielding one value

for each partition; this value is entered into the new attribute X for each tuple of the partition.

The attributes B are optional: when B is omitted, no grouping is performed, and the aggregate

function a is applied to the entire result of E, yielding one value; that value is entered into the new

attribute X for each tuple of E. For details see [CG85].

2.1.3 Modi�cation Operations

We represent data modi�cation operations in relational algebra by characterizing the operations

in terms of the database state they produce. Table 2 presents inserts, deletes, and updates by

indicating the algebraic expressions that are used to denote the operations, and the way in which

these expressions are applied to a relation R to produce a new value for R. In the table, Au denotes

the attributes of R that are updated, A0
u
denotes primed versions of these attributes (explained

below), and Ar = schema(R)�Au.

Insert operation. An insert operation is denoted by a relational expression Eins. Eins produces

the tuples to be inserted (either a set of constant tuples or the result of an algebraic expression).

The schema of Eins must coincide with the schema of R.

Delete operation. A delete operation is denoted by a relational expression Edel. Edel produces

the tuples to be deleted. The schema of Edel must coincide with the schema of R.

Update operation. An update operation is denoted by a relational expression Eupd. Eupd has

schema schema(R)[A0
u
, where attributes A0

u
contain the new values for the updated attributes Au.

As convention, the new values for the updated attributes are always assigned the corresponding

\primed" attribute names. That is, if attribute A 2 Au is updated, then the new value for A is

assigned to attribute A0.
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A typical way to express Eupd is:

Eupd = E [A0
u1 = expr1] E [A

0
u2 = expr2] : : : E [A

0
un

= exprn]Ec

where Ec is an expression producing the tuples to be updated (i.e. the \selection condition" of

the update operation). The schema of Ec must coincide with the schema of R. E [A0
ui

= expri]

evaluates expression expri on each tuple of Ec and assigns the result to the new attribute A0
ui
.

Although this is a useful form, in its generality Eupd can be any relational expression with schema

schema(R) [A0
u
.

As speci�ed in Table 2, the new state of R after the update operation is the union of two terms:

1. The �rst term R .<69 Eupd includes in the result all tuples in R that are not modi�ed by the

update operation.

2. The second term �A0
u;Au

(�Ar ;A
0
u
Eupd) includes in the result the original values for the non-

updated attributes of the modi�ed tuples and the new values for the modi�ed attributes, with

the primed attribute names replaced by the original attribute names.

Given a relational expression E with schema schema(R)[A0
u
, we often need the corresponding

expression that is compatible in schema with R and contains either the pre-updated (old) or the

updated (new) values for the modi�ed attributes. For convenience we will use the abbreviations

�old(E) = �schema(E)�A0
u
E and �new(E) = �A0

u;Au
(�schema(E)�Au

E).

2.2 Rule Syntax and Semantics

A Condition-Action rule in our language is de�ned as:

Econd ! Eact

where:

� Econd states the rule's condition as an expression in our extended relational algebra.

� Eact states the rule's action as a data modi�cation operation expressed using Eins, Edel, or

Eupd as given in Table 2.1

When this rule is evaluated, the condition Econd is true if and only if Econd �Eold

cond
6= ;, where

Eold

cond
denotes the result of Econd the last time the rule was evaluated during rule processing. If the

rule has not previously been evaluated, then Eold

cond
= ;. That is, informally, the condition is true

whenever the query produces \new" tuples. This is identical to the interpretation of conditions

in the Condition-Action rules of, e.g., Ariel [Han92], RPL [DE89], and set-oriented adaptations

1
For simplicity, we consider rules with a single action here, although many expert database systems allow rules

with a sequence of actions. Our methods easily extend to multiple actions, usually simply by applying the method

once for each action [Bar94].

7



of OPS5 [GP91]; it also is similar to the way many Event-Condition-Action rules appear to be

programmed in practice [CW90].

The action Eact is a normal data modi�cation operation executed on the current database state.

In some expert database systems, e.g. [GP91,Han92], a rule's action implicitly operates only on the

data \selected" by the condition, rather than on the entire database. We could use a similar rule

model here, but it would complicate the syntax and semantics and has no bearing on our analysis

methods; see Section 6 for further discussion.

Rule processing is invoked after some set of user or application modi�cations to the database.

The basic algorithm for rule processing is:

repeat until no rule has a true condition:

select a rule r with a true condition;

execute r's action

In this paper, we do not consider the e�ect of a con
ict resolution policy for selecting among

multiple rules with true conditions [HW93]. However, as an extension to our framework we plan to

incorporate con
ict resolution using rule priorities; see Section 6. Note also that the \granularity"

of rule processing invocation with respect to database modi�cations [HW93] is irrelevant here in

the context of rule analysis.

2.3 Examples

In this section we give the algebraic representation of �ve rules. These rules will be used as examples

throughout the paper. All �ve rules refer to the following relations:

ACCOUNT(num,name,balance,rate)

CUSTOMER(name,address,city)

LOW-ACC(num,name,date)

Relation ACCOUNT contains information on a bank's accounts, while relation CUSTOMER contains

information on the bank's customers. Relation LOW-ACC contains all accounts with a low balance,

including the date on which the balance became low. We assume that the �rst attribute is a key

for each relation, although our method does not rely on this assumption.

Example 2.1: Rule bad-account states that if an account has a balance less than 500 and an

interest rate greater than 0%, then that account's interest rate is set to 0%. In our language this

rule is expressed as:

Econd ! Eupd

where

Econd = �balance;rate(�balance<500^rate>0ACCOUNT)

Eupd = E [rate0 = 0]Ec

Ec = �balance<500^rate>0ACCOUNT
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Example 2.2: Rule raise-rate states that if an account has an interest rate greater than 1%

but less than 2%, then the interest rate is raised to 2%. In our language this rule is expressed as:

Econd ! Eupd

where

Econd = �rate(�rate>1^rate<2ACCOUNT)

Eupd = E [rate0 = 2]Ec

Ec = �rate>1^rate<2ACCOUNT

Example 2.3: Rule SF-bonus states that when the number of customers living in San Francisco

exceeds 1000, then the interest rate of all San Francisco customers' accounts with a balance greater

than 5000 and an interest rate less than 3% is increased by 1%. In our language this rule is expressed

as:

Econd ! Eupd

where

Econd = �city;C(�C>1000(A[C = count(name)](�city=0SF0CUSTOMER)))

Eupd = E [rate0 = rate+ 1]Ec

Ec = (�balance>5000^rate<3ACCOUNT) .<name (�city=0SF0CUSTOMER)

and name is an abbreviation for ACCOUNT.name = CUSTOMER.name.

Example 2.4: Rule add-to-bad states that if an account has a balance less than 500 and is

not yet recorded in the LOW-ACC relation, then the information on that account is inserted into the

LOW-ACC relation, \time-stamped" with the current date. In our language this rule is expressed as:

Econd ! Eins

where

Econd = �num;balance((�balance<500ACCOUNT) .<69num LOW-ACC)

Eins = E [date = today()]�num;name((�balance<500ACCOUNT) .< 69num LOW-ACC)

and num is an abbreviation for ACCOUNT.num = LOW-ACC.num and today() is a system de�ned

function returning the current date.

Example 2.5: Rule delete-from-bad states that if an account in the LOW-ACC relation has

a balance of at least 500 in the ACCOUNT relation, then the account is deleted from the LOW-ACC

relation. In our language this rule is expressed as:

Econd ! Edel

where

Econd = �num(LOW-ACC .<num (�balance�500ACCOUNT))

Edel = LOW-ACC .<num (�balance�500ACCOUNT)

and num is an abbreviation for LOW-ACC.num = ACCOUNT.num.
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3 The Propagation Algorithm

We describe a general algorithm that uses syntactic analysis to predict how a database query (i.e.

a rule condition) can be a�ected by the execution of a data modi�cation operation (i.e. a rule

action). The outcome of our Propagation Algorithm is zero or more of the operations insert, delete,

and update, characterizing how the result of the query may change due to the execution of the

modi�cation: If the algorithm produces an insert operation, then the query may contain more data

after the modi�cation; if the algorithm produces a delete operation, then the query may contain

less data after the modi�cation; if the algorithm produces an update operation, then the query

may contain updated data after the modi�cation; if no operations are produced, then the result

of the query cannot change due to the modi�cation. The operations produced by our algorithm

are represented as relational expressions in the same way that we algebraically represent data

modi�cation operations in rule actions, except here the modi�cations apply to arbitrary relational

expressions instead of only to single relations.

The algorithm takes as input a rule condition C and a rule action A, both expressed in extended

relational algebra as de�ned in Section 2. As an initial �lter, if the condition C does not reference the

relation modi�ed by A, then clearly A cannot a�ect the result of C. Otherwise, A is \propagated"

through a tree representation of C's query. The leaves of the tree are relations, and one of these

leaves corresponds to the relation R that is modi�ed by A. (We assume there is only one reference

to R in condition C; our method can easily be extended to handle multiple references [Bar94].)

Action A is propagated from the a�ected relation up the query tree, and it may be transformed

into one or more di�erent actions (modi�cation operations) during the propagation process. To

describe the propagation, we give formal rules specifying how arbitrary actions are propagated

through arbitrary nodes of the tree. After each propagation through a node in the tree, the actions

obtained are checked for \consistency" (explained next). Inconsistent actions are discarded, while

consistent actions are further propagated. The propagation process continues until the root of the

query tree is reached or all actions have been discarded as inconsistent. At each point during the

propagation process, the actions associated with a node N in the tree indicate the actions that may

occur to N 's subtree as a result of performing the original action A. Hence, the consistent actions

that reach the root of the tree describe how the original action A may a�ect condition C.

An action produced by the propagation process is consistent when the algebraic expression de-

scribing the action does not contain contradictions, i.e. it is satis�able. Satis�ability of relational

expressions is undecidable in the general case, so we can give su�cient but not necessary condi-

tions for satis�ability of the expressions representing the propagated actions. However, for most

expressions that arise in practice, either we can see trivially whether the expression is satis�able

(as in examples below), or we can verify satis�ability using the tableau method in [Ull89].2

Figure 1 illustrates the propagation of an insert action (described by expression Eins) on relation

2
Note that a \conservative" test for satis�ability is not really a limitation here, since our entire approach is based

on syntactic analysis and hence is conservative: when an expression is satis�ed we determine only that the condition

may be a�ected, not that the condition necessarily will be a�ected.
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Figure 1: Propagation of Eins action

R3 through the nodes of the query tree representing the condition C = (�p1R1) 1p2
(�p3R2.< 69p4R3).

The bold line represents the propagation path of the Eins action: The Eins action is �rst substituted

for the a�ected relation R3. Then, starting from the .<69p4 node, for each node with an operand

a�ected by the Eins action, the corresponding propagated expression is computed. At the end of

the propagation process a delete action E00
del

is obtained at the root. As the reader may verify, an

insert operation on R3 may only cause data satisfying C to be deleted.

The rules for propagation are given in tables based on the kind of incoming action: insert and

delete actions in Tables 3 and 4 respectively, and update actions in Tables 5 and 6. Each row in the

tables contains the propagated action(s), Eout, as a function of the incoming action, Ein, and the

relational operator in the query tree. The column labeled \Applicability condition" speci�es when

di�erent propagation rules are used for di�erent cases. In the tables, A1, A2, and B are attribute

lists, Ajn = schema(E1)\schema(E2), AE2
= schema(E2), Au are the updated attributes, Ap and

Ae are the attributes involved in predicate p and expression expr respectively, p0 = �Au;A0
u
p and

expr0 = �Au;A0
u
expr, p(B) equates all attributes in list B, and p0(AuB) equates all attributes in A

0
uB

with the corresponding B attributes. Since the natural join, cartesian product, and union operators

are symmetric, without loss of generality we assume that the �rst operand is modi�ed; analogous

rules apply for modi�cations to the second operand. Observe that aggregate functions require, in

addition to the incoming action, the entire relational expression E to which the aggregate function

is applied.

The formulas given in Table 5 don't take into account the internal structure of selection predi-

cates and update expressions. In the case of simple predicates (comparisons between an attribute

and a constant3) and simple arithmetic update expressions (addition or subtraction of constants

from an attribute), in many cases it is possible to eliminate some of the propagated actions. For

example, consider the propagation of the update A = A+1 through the operation �A>5. Intuitively,

3
Actually, any expression involving non-updated attributes and constants can be considered as a constant in this

context.
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Propagated action: Ein

ins ! Eout

action

Node Applicability Resulting expression

condition

�pE Eout

ins = �pE
in

ins

�A1
E Eout

ins = �A1
Ein

ins

E1 1 E2 Eout

ins = Ein

ins 1 E2

E1 �E2 Eout

ins = Ein

ins � E2

E1 [E2 Eout

ins = Ein

ins
.< 69 E2

E1 .<p E2 insert into E1 Eout

ins = Ein

ins
.<p E2

insert into E2 Eout

ins = E1 .<p E
in

ins

E1 .<69p E2 insert into E1 Eout

ins = Ein

ins
.< 69p E2

insert into E2 Eout

del = E1 .<p E
in

ins

�A1;A2
E Eout

ins = �A1;A2
Ein

ins

E[X = expr]E Eout

ins = E[X = expr]Ein

ins

A[X = a(A);B]E B = ; Eout

ins = Ein

ins 1 A[X = a(A)](E [Ein

ins)

Eout

upd = (A[X 0
= a(A)](E [ Ein

ins)) 1 (A[X = a(A)]E)

B 6= ; Eout

ins = Ein

ins 1 A[X = a(A);B](E [Ein

ins)

Eout

upd
= ((A[X 0

= a(A);B](E [Ein

ins)) 1 (A[X = a(A);B]E)) .<p(B) E
in

ins

Table 3: Insert action propagation

Propagated action: Ein

del ! Eout

action

Node Applicability Resulting expression

condition

�pE Eout

del = �pE
in

del

�A1
E Eout

del = �A1
Ein

del

E1 1 E2 Eout

del = Ein

del 1 E2

E1 �E2 Eout

del = Ein

del �E2

E1 [E2 Eout

del
= Ein

del
.<69 E2

E1 .<p E2 delete from E1 Eout

del
= Ein

del
.<p E2

delete from E2 Eout

del = E1 .<p E
in

del

E1 .<69p E2 delete from E1 Eout

del
= Ein

del
.<69p E2

delete from E2 Eout

ins = E1 .<p E
in

del

�A1;A2
E Eout

del = �A1;A2
Ein

del

E[X = expr]E Eout

del
= E[X = expr]Ein

del

A[X = a(A);B]E B = ; Eout

del = Ein

del 1 (A[X = a(A)]E)

Eout

upd = (A[X 0
= a(A)](E .< 69 E

in

del)) 1 (A[X = a(A)]E)

B 6= ; Eout

del = Ein

del 1 A[X = a(A);B]E

Eout

upd = ((A[X 0
= a(A);B](E .< 69 E

in

del)) 1 (A[X = a(A);B]E)) .<p(B) E
in

del

Table 4: Delete action propagation
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Propagated action: Ein

upd ! Eout

action

Node Applicability Resulting expression

condition

�pE Au \Ap = ; Eout

upd = �pE
in

upd

Au \Ap 6= ; Eout

ins = �new((�p0Ein

upd) .
<
69 (�pE

in

upd))

Eout

del
= �old((�pE

in

upd
) .<69 (�p0Ein

upd
))

Eout

upd = (�p0Ein

upd) 1 (�pE
in

upd)

�A1
E Au \A1 = ; ;

Au \A1 = Au1 Eout

upd = �A1;A
0

u1
Ein

upd

E1 1 E2 Au \Ajn = ; Eout

upd = Ein

upd 1 E2

Au \Ajn = Aujn Eout

ins = �new((E
in

upd 1 (�Aujn;A0

ujn
E2)) .<69 (Ein

upd 1 E2))

Eout

del = �old((E
in

upd 1 E2) .<69 (E
in

upd 1 (�Aujn;A0

ujn
E2)))

Eout

upd = ((Ein

upd 1 (�AE2 ;A
0

E2

E2)) 1 (Ein

upd 1 E2))

E1 � E2 Eout

upd = Ein

upd �E2

E1 [ E2 Eins

out = �new((E
in

upd
.< E2) .< 69 (�Au;A0

u
E2))

Edel

out = �old((E
in

upd
.<69 E2) .< (�Au;A0

u
E2))

E
upd

out
= (Ein

upd
.<69 E2) .< 69 (�Au;A0

u
E2)

E1 .<p E2 update E1, Eout

upd = Ein

upd
.<p E2

Au \Ap = ;

update E1, Eout

ins = �new((E
in

upd
.<

p0 E2) .<69 (E
in

upd
.<p E2))

Au \Ap 6= ; Eout

del
= �old((E

in

upd
.<p E2) .<69 (E

in

upd
.<

p0 E2))

Eout

upd = (Ein

upd
.<

p0 E2) 1 (Ein

upd
.<p E2)

update E2, ;

Au \Ap = ;

update E2, Eout

ins = (E1 .<p0 Ein

upd) .
<
69 (E1 .<p E

in

upd)

Au \Ap 6= ; Eout

del = (E1 .<p E
in

upd) .
<
69 (E1 .<p0 Ein

upd)

E1 .< 69p E2 update E1, Eout

upd = Ein

upd
.<69p E2

Au \Ap = ;

update E1, Eout

ins = �new((E
in

upd
.<

69p0 E2) .< 69 (E
in

upd
.<69p E2))

Au \Ap 6= ; Eout

del
= �old((E

in

upd
.<69p E2) .<69 (E

in

upd
.<69p0 E2))

Eout

upd = (Ein

upd
.<69p0 E2) 1 (Ein

upd
.< 69p E2)

update E2, ;

Au \Ap = ;

update E2, Eout

ins = (E1 .<69p0 Ein

upd
) .<69 (E1 .<69p E

in

upd
)

Au \Ap 6= ; Eout

del = (E1 .<69p E
in

upd) .
<
69 (E1 .<69p0 Ein

upd)

�A1;A2
E A1 \ Au = ; Eout

upd = �A1;A2
Ein

upd

A1 \ Au = Au1; Eout

upd
= �A1;A2

�A0

u1
;A0

u2
Ein

upd

E[X = expr]E Au \Ae = ; Eout

upd = E[X = expr]Ein

upd

Au \Ae 6= ; Eout

upd
= E[X = expr]E[X 0

= expr0]Ein

upd

Table 5: Update action propagation
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Propagated action: Ein

upd ! Eout

action

Node Applicability Resulting expression

condition

A[X = a(A);B]E Au \A = ;, Eout

upd = Ein

upd 1 (A[X = a(A);B]E)

Au \B = ;

B = ;, Eout

upd1 = Ein

upd
1 ((A[X = a(A)]E) 1 (A[X 0

= a(A)](�new(E
in

upd
)[

Au � A (E .<69 E
in

upd))))

Eout

upd2 = ((A[X = a(A)]E) 1 (A[X 0
= a(A)](�new(E

in

upd)[

(E .<69 E
in

upd)))) .
<
69 E

in

upd

B 6= ;; Eout

upd1 = Ein

upd 1 ((A[X = a(A);B]E) 1 (A[X 0
= a(A);B](�new(E

in

upd)[

Au � A, (E .<69 E
in

upd))))

Au \B = ; Eout

upd2 = ((A[X = a(A);B]E) 1 (A[X 0
= a(A);B](�new(E

in

upd)[

(E .<69 E
in

upd)))) .
<
p(B) E

in

upd) .
<
69 E

in

upd

B 6= ;, Eout

upd1 = Ein

upd 1 ((A[X = a(A);B]E) 1 (A[X 0
= a(A);B](�new(E

in

upd)[

Au \B = AuB (E .<69 E
in

upd))))

Eout

upd2 = ((A[X = a(A);B]E) 1 (A[X 0
= a(A);B](�new(E

in

upd)[

(E .<69 E
in

upd))) .
<
p(B)^ p0(AuB) E

in

upd) .
<
69 E

in

upd

Table 6: Update action propagation (cont.)

Arithmetic update expression

predicate addition subtraction other

Au = k, Au 6= k Eupd Eupd Eupd

Au > k, Au � k Edel Eins �

Au < k, Au � k Eins Edel �

Table 7: Eliminated actions

this update will never cause tuples to be deleted from the expression rooted in �A>5. Thus, the

propagated delete operation can be eliminated. Table 7 shows the actions that can be eliminated

in the di�erent cases. In the table, \other" indicates an arbitrary arithmetic expression, which in

the case of an equality or non-equality predicate still allows an update action to be eliminated.

3.1 Examples

We give two examples of the Propagation Algorithm applied to rules from Section 2.3. In each

example, we analyze the e�ect of one rule's action on another rule's condition by fully describing

the propagation process and the satis�ability test.

Example 3.1: Consider condition Econd in rule bad-account (Example 2.1) and the update

action in rule SF-bonus (Example 2.3). The input to the algorithm is:

14



C = �balance;rate(�balance<500^rate>0ACCOUNT)

A = Eupd = E [rate0 = rate+ 1](�balance>5000^rate<3(ACCOUNT .<name SF-cust))

where name is an abbreviation for ACCOUNT.name = CUSTOMER.name and SF-cust is an abbreviation

for �city=0SF0CUSTOMER. Using Table 5, the propagation of Eupd through the selection operation in

C yields insert and update actions (the delete action is eliminated, see Table 7). We have:

E0
ins

= �new((�balance<500^rate0>0Eupd) .<69 (�balance<500^rate>0Eupd))

E0
upd

= (�balance<500^rate0>0Eupd) 1 (�balance<500^rate>0Eupd)

In both cases, predicates balance < 500 and balance > 5000 (the latter from Eupd) are contra-

dictory, so both expressions E0
ins

and E0
upd

are unsatis�able. Intuitively, action A operates on data

not read by condition C. We conclude that action A cannot a�ect condition C.

Example 3.2: Consider condition Econd in rule bad-account (Example 2.1) and the update

action in rule raise-rate (Example 2.2). The input to the algorithm is:

C = �balance;rate(�balance<500^rate>0ACCOUNT)

A = Eupd = E [rate0 = 2](�rate>1^rate<2ACCOUNT)

The propagation of Eupd through the selection operation in C yields insert, delete, and update

actions:

E0
ins

= �new((�balance<500^rate0>0Eupd) .<69 (�balance<500^rate>0Eupd))

E0
del

= �old((�balance<500^rate>0Eupd) .<69 (�balance<500^rate0>0Eupd))

E0
upd

= (�balance<500^rate0>0Eupd) 1 (�balance<500^rate>0Eupd)

These expressions do not contain contradictory predicates, thus they may be satis�able and the

propagation continues. The propagation of E0
ins
, E0

del
, and E0

upd
through the projection operation

in C yields:

E00
ins

= �balance;rateE
0
ins

E00
del

= �balance;rateE
0
del

E00
upd

= �balance;rate;rate0E
0
upd

All three expressions are satis�able, thus action A can a�ect the result of condition C. Furthermore,

E00
ins
, E00

del
, and E00

upd
describe the actions that can be performed on C as a result of the execution

of A.

3.2 Correctness of the Algorithm

The following Theorem states the correctness of the Propagation Algorithm. The proof proceeds

step-by-step for each propagation rule given in Tables 3{6, and the proof technique is analogous for

all rules. Hence, due to space constraints, we outline the proof procedure for only one propagation

rule; see [Bar94] for a complete proof.
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Theorem 3.1: Let Q be the query tree corresponding to a relational expression C and let A

be an action performed on a relation in Q. Let Eout be the actions produced at the root of Q by

application of the propagation rules in Tables 3{6. Eout describes a superset of all actions that can

be performed on expression C as a result of executing the original action A.

Proof sketch: The proof proceeds by induction on the depth of Q. Base case: Q is a single

node representing the modi�ed relation. Then Eout = A; correctness in this case is obvious.

Induction step: Let the root of Q be a unary (resp. binary) relational operator op over a subtree

S with incoming actions Ein (resp. over two subtrees S and S0, of which S has incoming actions

Ein). By the induction hypothesis, we assume Ein describes a superset of the actions that are

performed on the expression rooted in S as a result of executing the original action A. We must

show that, if we apply the appropriate propagation rule for op to obtain Eout from Ein, then

Eout describes a superset of the actions that are performed on the expression rooted in Q as a

result of executing the original action A. As an example, let op be a selection �p performed over

an arbitrary subtree S and consider an update action Ein

upd
associated with S and performed on

an attribute in p. Applying our propagation rules from the second line of Table 5, we obtain

a triple hEout

ins
; Eout

del
; Eout

upd
i, corresponding to tuples added to, deleted from, and updated in the

result of Q = �pS. It can be seen that Eout

ins
= �new((�p0E

in

upd
) .<69 (�pE

in

upd
)) describes tuples that

now satisfy the selection predicate as a result of Ein

upd
, hence they are added to the result of Q.

Analogously, it can be seen that Eout

del
= �old((�pE

in

upd
) .<69 (�p0E

in

upd
)) describes tuples that now do

not satisfy the selection predicate as a result of Ein

upd
, hence they are deleted from the result of

Q. Finally, Eout

upd
= (�p0E

in

upd
) 1 (�pE

in

upd
) describes the tuples that satisfy the selection predicate

before and after Ein

upd
but with di�erent values, hence they are updated in the result of Q. The

other propagation rules are veri�ed similarly. 2

4 Termination Analysis

Recall the rule processing loop from Section 2.2. Termination for a rule set is guaranteed if rule

processing always reaches a state in which no rule has a true condition. Notice that, according to

the semantics in Section 2.2, after the �rst execution of each rule r, r's condition is true again if

and only if new data satis�es the condition. Hence, informally, rule processing does not terminate

if and only if rules provide new data to each other inde�nitely.

We say that a rule r1 may activate a rule r2 if executing r1's action may cause new data to

satisfy r2's condition. We analyze termination by building an Activation Graph. In the graph,

nodes represent rules, and directed edges indicate that one rule may activate the other. If there are

no cycles in the graph, then rule processing is guaranteed to terminate [BCW93,AWH92]. Hence,

the core of termination analysis is determining when an edge should be included in the graph, i.e.

when one rule may activate another rule. The more accurately we can make this decision, the more

accurately we can analyze termination.

We use our Propagation Algorithm to decide when an edge ri ! rj belongs in the Activation
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Graph. Note that rules may activate themselves, so ri = rj is included in the analysis. To detect

if ri may activate rj , the Propagation Algorithm is applied to rj 's condition C and ri's action A.

If the algorithm yields an insert or update operation, then ri may provide new data satisfying rj's

condition. Thus, ri may activate rj , and the edge ri ! rj belongs in the graph. If only a delete

operation or no operation is produced by the algorithm, then ri cannot provide new data to rj's

condition, and the edge is not included in the graph.

Our use of the Activation Graph is similar to, e.g., [AWH92,CW90], but our approach is far

less conservative since we exploit the algebraic structure of conditions and actions to accurately

determine when edges belong in the graph.

4.1 Examples

Consider the rules from Section 2.3. We present two examples where we apply our analysis tech-

niques to determine that a pair of rules does not produce a cycle in the Activation Graph, i.e. the

rules cannot activate each other inde�nitely. In both of these examples, the technique in [AWH92]

is unable to determine that these rules terminate.

Example 4.1: Consider rule bad-account (Example 2.1) and rule raise-rate (Example 2.2)

that here will be called r1 and r2 respectively. Both rule conditions reference attribute rate, and

both rule actions update rate. Hence, intuitively (and according to the method in [AWH92]), the

two rules might activate each other inde�nitely. We have shown in Example 3.2 that r2's action may

provide data to r1's condition (since insert and update operations are produced by the Propagation

Algorithm), thus the edge r2 ! r1 belongs in the Activation Graph. Now we use the Propagation

Algorithm to determine if r1 may activate r2. The input to the algorithm is:

C = �rate(�rate>1^rate<2ACCOUNT)

A = Eupd = E [rate0 = 0](�balance<500^rate>0ACCOUNT)

The propagation of Eupd through the selection operation in C yields:

E0
ins

= �new((�rate0>1^rate0<2Eupd) .<69 (�rate>1^rate<2Eupd))

E0
upd

= (�rate0>1^rate0<2Eupd) 1 (�rate>1^rate<2Eupd)

E0
del

= �old((�rate>1^rate<2Eupd) .<69 (�rate0>1^rate0<2Eupd))

Since predicates rate' > 1 and rate' = 0 (the latter from Eupd) are contradictory, expressions

E0
ins

and E0
upd

are not satis�able and hence are discarded. The propagation of E0
del

through the

projection operation in C yields:

E00
del

= �rateE
0
del

which is satis�able. Thus, r1's actionmay result in a deletion of tuples from r2's condition. However,

since neither an insert nor an update action is produced, r1 cannot activate r2, the edge r1 ! r2 is

not included in the Activation Graph, and we conclude that rules r1 and r2 will always terminate.
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Example 4.2: Consider rule add-to-bad (Example 2.4) and rule delete-from-bad (Exam-

ple 2.5) that here will be called r1 and r2 respectively. Here again, intuitively (and according to the

method in [AWH92]), the two rules might activate each other inde�nitely. We use the Propagation

Algorithm to determine if r1 may activate r2. The input to the algorithm is:

C = �num(LOW-ACC .<num (�balance�500ACCOUNT))

A = Eins = E [date = today()](�num;name((�balance<500ACCOUNT) .< 69num LOW-ACC))

where num is an abbreviation for LOW-ACC.num = ACCOUNT.num. The propagation of Eins through

the semijoin operation in C yields:

E0
ins

= (E [date = today()](�num;name(low-bal .<69num LOW-ACC))) .<num high-bal

where low-bal is an abbreviation for �balance<500ACCOUNT and high-bal is an abbreviation for

�balance�500ACCOUNT. This expression is not satis�able, since it requires a tuple with a given

num value to satisfy both predicates balance < 500 and balance � 500. Hence, r1 cannot activate

r2, edge r1 ! r2 is not included in the Activation Graph, and rules r1 and r2 are guaranteed to

terminate.

5 Con
uence Analysis

Recall again the rule processing loop from Section 2.2. In each iteration, there may be multiple

rules eligible for execution, since more than one rule may have a true condition. A rule set is

con
uent if the �nal state of the database does not depend on which eligible rule is chosen for

execution at any iteration.

To formally describe con
uence and con
uence analysis, we introduce the notion of a rule

execution state and a rule execution sequence. Let R be the set of rules under consideration.

De�nition 5.1: A rule execution state S is a pair (db; RA), where db is a state of the database

and RA � R is a set of activated rules. 2

De�nition 5.2: A rule execution sequence is a sequence � consisting of a series of rule execution

states linked by (executed) rules. A rule execution sequence is complete if the last state is (db; ;),

i.e. the last state has no activated rules. A rule execution sequence is valid if it represents a

correct execution sequence: only activated rules are executed, and pairs of adjacent states properly

represent the e�ect of executing the corresponding rule; for details see [AWH92,Bar94]. 2

We now de�ne con
uence in terms of execution sequences.

De�nition 5.3: A rule set is con
uent if, for every initial rule execution state S (corresponding

to an initial database and set of modi�cations), every valid and complete rule execution sequence

beginning with S has the same �nal state. 2
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Clearly we cannot use this de�nition directly to analyze con
uence, since it requires the exhaus-

tive veri�cation of all possible execution sequences for all possible initial states. We give su�cient

conditions for con
uence based on the commutativity of rule pairs. Two rules ri and rj commute if,

starting with any execution state S, executing ri followed by rj produces the same execution state

as executing rj followed by ri. The conditions for commutativity require that the two rules cannot

activate or deactivate each other,4 and their actions can be executed in either order:

De�nition 5.4: Distinct rules ri and rj commute if: (1) ri's action cannot a�ect the outcome

of rj 's condition (i.e. ri can neither activate nor deactivate rj); (2) executing ri's action cannot

change the e�ect of executing rj's action; (3) conditions (1) and (2) with i and j reversed. 2

Note that even though conditions (1){(3) are not necessarily satis�ed when ri = rj, it is the case

that a rule always commutes with itself.

We prove two Lemmas, followed by the main Theorem on con
uence. The �rst Lemma states,

under the assumption of commutative rules, that two execution sequences with the same initial

state and executed rules have the same �nal state; the second Lemma states, again under the

assumption of commutativity, that two sequences with the same initial state must have the same

executed rules.

Lemma 5.1: Let all pairs of rules in R commute. Let �1 and �2 be two valid and complete rule

execution sequences with the same initial state, such that the same rules are executed in �1 and �2

although not necessarily in the same order. Then �1 and �2 have the same �nal state.

Proof: Since �1 and �2 have the same executed rules, we can \permute" �1 so that its rules are

considered in the same order as �2. We exchange adjacent rules in �1 one pair at a time; with each

exchange, there is no change to the outer two execution states due to commutativity. Hence, since

�1 and �2 have the same initial state, they must have the same �nal state. 2

Lemma 5.2: Let all pairs of rules in R commute. Let �1 and �2 be two valid and complete rule

execution sequences with the same initial state. Then the same rules are executed in �1 and �2.

Proof: We again use commutativity to permute sequences without a�ecting outer execution

states. In each sequence, we exchange rules one pair at a time until the rules appear in \sorted"

order according to some criterion (the criterion is irrelevant as long as the same criterion is used

for �1 and �2). Suppose, for the sake of a contradiction, that �1 and �2 have di�erent executed

rules, and consider the �rst point of divergence, i.e. where a rule r appears in �1 but a di�erent

rule r0 appears in �2. Let S be the execution state preceding these rules; S is the same in �1 and

�2, so r and r
0 are both activated in S. Without loss of generality, assume that r precedes r0 in the

sorted order. Then r cannot appear in �2 beyond S. Consequently, execution of some rule other

than r in �2 must deactivate r. But this contradicts condition (1) of commutativity. 2

4
Rule ri deactivates rule rj if ri's action deletes all new data satisfying ri's condition.
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Based on these Lemmas, the following Theorem presents a su�cient condition to guarantee

con
uence of a rule set.

Theorem 5.1: A rule set R is con
uent if all pairs of rules in R commute.

Proof: Suppose all rule pairs commute, and consider two valid and complete execution sequences

�1 and �2 with the same initial state. By Lemma 5.2, �1 and �2 have the same set of executed

rules. Then by Lemma 5.1, �1 and �2 have the same �nal state. 2

The requirement for con
uence in Theorem 5.1 may seem rather strong, but there is no way to

weaken this requirement in a rule model without a more sophisticated con
ict resolution policy or

priorities among rules. We believe this argues for the importance of rule priorities, which we plan

to investigate in this context as future work. Notice also that, in the case where no rule can activate

itself, the con
uence requirement as stated in Theorem 5.1 trivially implies termination, since the

pairwise commutativity of all rules includes the requirement that no rule activates another rule.

However, if one or more rules can activate themselves, then con
uence does not imply termination.

Commutativity of rule pairs forms the basis of most methods for analyzing con
uence of

database rules, e.g. [AWH92,vdVS93]. The remainder of this section describes our technique for

determining commutativity of rule pairs. Since commutativity itself is a \subroutine" to prov-

ing con
uence, our commutativity analysis technique also can be applied in other contexts, e.g.

[AWH92]. Needless to say, we use our Propagation Algorithm to analyze commutativity, exploiting

the algebraic description of rule conditions and actions to yield a much more accurate analysis

technique than, e.g., [AWH92].

To guarantee commutativity of two rules ri and rj , we must verify conditions (1), (2), and (3)

in De�nition 5.4. For (1), we determine that ri cannot activate rj exactly as we have done for

termination; recall Section 4. To show that ri cannot deactivate rj , we must show that ri's action

A cannot \take away" data from rj 's condition C. It is easy to see that action A can take away

data from condition C only if the Propagation Algorithm applied to A and C produces a delete

operation. Hence, one application of the Propagation Algorithm is su�cient for verifying (1).

For (2), we must determine if ri's action Ai can change the e�ect of rj's action Aj . We do this

by transforming action Aj into a condition Cj such that if the result of condition Cj cannot be

a�ected by the execution of Ai, then Ai cannot change the e�ect of action Aj . We then apply the

Propagation Algorithm to analyze Ai and Cj : if the algorithm produces ;, then Ai cannot change

the e�ect of Aj ; if the algorithm produces one or more of insert, delete, or update, then Ai may

change the e�ect of Aj .

Consider how condition Cj is derived from actionAj . If Aj is an insert operation, then Aj = Eins

is a condition describing the inserted data, hence we let Cj = Eins. Similarly, if Aj is a delete

operation, then Aj = Edel is a condition describing the deleted data, and we let Cj = Edel.

Suppose Aj is an update operation on attribute A, de�ned by Eupd = E [A0 = expr]Ec.
5 We start

5
The extension to multiple updated attributes is obvious. Note that here we require updates to be speci�ed with

explicit use of Ec; this does not limit expressiveness.
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with the \selection condition" Ec. Cj is the projection of Ec onto all attributes referenced within

Ec together with all attributes referenced in the E operation (both A and the attributes referenced

in expr). If any of these attributes can be a�ected by the execution of Ai, then Ai may change the

e�ect of Aj 's update; if not, then Ai cannot change the e�ect of Aj . By using the projection here,

rather than the entire expression Ec, we ignore modi�cations to attributes that do not a�ect the

evaluation of Ec or the assignment of the new values to the updated attribute.

Finally, we analyze (3) by reversing the roles of ri and rj in the analysis of (1) and (2).

5.1 Examples

Consider the rules from Section 2.3. We present two examples where we apply our analysis tech-

niques to determine that a pair of rules are commutative (and hence the set of these two rules is

con
uent). In both of these examples, the technique in [AWH92] is unable to determine that these

rules commute.

Example 5.1: Consider rule bad-account (Example 2.1) and rule SF-bonus (Example 2.3),

that here will be called r1 and r2 respectively. Both rules reference attribute rate and both

update this attribute. Hence, intuitively (and according to the method in [AWH92]), the two rules

may not commute. We �rst analyze the e�ect of r1's action on r2. Since r2's condition does not

reference the relation updated by r1, r1's action trivially cannot a�ect r2's condition. We use the

Propagation Algorithm to analyze the e�ect of r1's action on the condition corresponding to r2's

action: �balance;rate;name;cityEc. The input to the algorithm is:

C = �balance;rate;name;city(�balance>5000^rate<3(ACCOUNT .<name (�city=0SF0CUSTOMER)))

A = Eupd = E [rate0 = 0](�balance<500^rate>0ACCOUNT)

The propagation of Eupd through the semijoin operation in C yields:

E0
upd

= Eupd
.<

name (�city=0SF0CUSTOMER)

The propagation of E0
upd

through the selection operation in C yields:

E00
ins

= �new((�balance>5000^rate0<3E
0
upd

) .<69 (�balance>5000^rate<3E
0
upd

))

E00
del

= �old((�balance>5000^rate<3E
0
upd

) .<69 (�balance>5000^rate0<3E
0
upd

))

E00
upd

= (�balance>5000^rate0<3Eupd) 1 (�balance>5000^rate<3Eupd)

In all three expressions, predicates balance > 5000 and balance < 500 (the latter from Eupd) are

contradictory, so the expressions are unsatis�able. Hence, the Propagation Algorithm produces no

actions and we conclude that executing r1's action cannot change the e�ect of r2's action.

A similar analysis reveals that r2's action cannot a�ect r1's action, and we have already shown

in Example 3.1 that r2's action cannot a�ect r1's condition. Hence, we conclude that rules r1 and

r2 commute.
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Example 5.2: Consider rule add-to-bad (Example 2.4) and rule delete-from-bad (Exam-

ple 2.5) that here will be called r1 and r2 respectively. We have already shown in Example 4.2 that

r1's action cannot a�ect r2's condition. An analogous analysis shows that r1's action cannot a�ect

the condition corresponding to r2's action, i.e. Edel. Consider the e�ect of rule r2 on rule r1. We

�rst apply the Propagation Algorithm to r2's action and r1's condition. The input to the algorithm

is:

C = �num;balance((�balance<500ACCOUNT) .<69num LOW-ACC)

A = Edel = LOW-ACC .<num (�balance�500ACCOUNT)

where num is an abbreviation for LOW-ACC.num = ACCOUNT.num. The propagation of Edel through

the .< 69 operation in C yields:

E0
ins

= low-bal .<num (LOW-ACC .<num high-bal)

where low-bal is an abbreviation for �balance<500ACCOUNT and high-bal is an abbreviation for

�balance�500ACCOUNT. This expression is not satis�able, as it requires a tuple with a given num

value to satisfy both predicates balance < 500 and balance � 500. Hence, r2's action cannot

a�ect r1's condition. An analogous analysis shows that r2's action cannot a�ect the condition

corresponding to r1's action, i.e. Eins. Hence, we conclude that rules r1 and r2 commute.

6 Conclusions and Future Work

We have de�ned a representation of Condition-Action expert database rules based on an extended

relational algebra, and we have described a generally applicable algorithm for analyzing the inter-

actions between one rule's condition (a query) and another rule's action (a modi�cation). We have

shown how this algorithm is applied to check termination and con
uence for sets of rules. Our

technique improves considerably upon previous methods, because our formal approach allows us to

exploit the semantics of conditions and actions to analyze the interaction between rules. Note that

the methods we describe also are applicable to rule languages that \pass data" from the condition

to the action (e.g. [GP91,Han92]), since our algorithm detects the actual modi�cations to rule

conditions (inserts, deletes, and updates), not simply the transition between true and false. As in

[AWH92], our analysis techniques identify the responsible rules when termination or con
uence is

not guaranteed; hence, our techniques can be used as the kernel of an interactive development tool

that helps rule de�ners develop sets of rules that are guaranteed to have the desired properties.

We plan to extend our rule model and analysis techniques to incorporate additional features of

expert database rules:

� Rule priorities and con
ict resolution. Priorities restrict the possible execution se-

quences of rules, making analysis more complex but perhaps more precise. Coupling our

accurate analysis of rule interactions with the priority-based methods in [AWH92] should

immediately produce a quite powerful analysis method for prioritized rules.
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� Di�erent semantics for rule condition evaluation. In some database rule languages, rule

conditions may be evaluated over the entire database, as opposed to considering only \new"

data as we have done here. This interpretation yields a di�erent notion of rule activation,

since a rule condition remains true unless execution of some rule action renders it false.

� Events. We can handle Event-Condition-Action rules that have a semantics similar to our

Condition-Action rules, e.g. the event-based rules of Ariel [Han92], with minor modi�cations

to our techniques. (In fact, it is our feeling that event-based rules often are programmed

this way in practice, e.g. [CW90].) However, general Event-Condition-Action rules, especially

those in which the condition is evaluated over the entire database, will require a rede�nition

of rule activation (as discussed in the previous point), along with corresponding modi�cations

to our method.

We also hope to use our algebraic rule model and Propagation Algorithm as the basis for compile-

time and run-time optimizations to rule processing.

Acknowledgements

We are grateful to members of the Stanford Database Group, especially Ashish Gupta and Je�

Ullman, for lively and useful discussions about this work, and to Stefano Ceri for providing the

technical impetus and enabling the collaboration.

References

[AWH92] A. Aiken, J. Widom, and J.M. Hellerstein. Behavior of database production rules: Termination,

con
uence, and observable determinism. In Proceedings of the ACM SIGMOD International
Conference on Management of Data, pages 59{68, San Diego, California, June 1992.

[Bar94] E. Baralis. An Algebraic Approach to the Analysis and Optimization of Active Database Rules.
PhD thesis, Politecnico di Torino, Torino, Italy, February 1994.

[BCW93] E. Baralis, S. Ceri, and J. Widom. Better termination analysis for active databases. In Proceed-
ings of the First International Workshop on Rules in Database Systems, Edinburgh, Scotland,
August 1993.

[BFKM85] L. Brownston, R. Farrell, E. Kant, and N. Martin. Programming Expert Systems in OPS5: An
Introduction to Rule-Based Programming. Addison-Wesley, Reading, Massachusetts, 1985.

[BM93] D.A. Brant and D.P. Miranker. Index support for rule activation. In Proceedings of the ACM
SIGMOD International Conference on Management of Data, pages 42{48, Washington, D.C.,

May 1993.

[BW93] E. Baralis and J. Widom. Using delta relations to optimize condition evaluation in active

databases. Technical Report Stan-CS-93-1495, Computer Science Department, Stanford Uni-

versity, November 1993.

[CCRL+90] S. Ceri, S. Crespi-Reghizzi, L. Lamperti, L. Lavazza, and R. Zicari. Algres: An advanced

database for complex applications. IEEE Software, June 1990.

[CG85] S. Ceri and G. Gottlob. Translating SQL into relational algebra: Optimization, semantics, and

equivalence of SQL queries. IEEE Transactions on Software Engineering, 11(4):324{345, April
1985.

23



[CGT90] S. Ceri, G. Gottlob, and L. Tanca. Logic Programming and Databases. Springer-Verlag, Berlin,
1990.

[CW90] S. Ceri and J. Widom. Deriving production rules for constraint maintenance. In Proceedings
of the Sixteenth International Conference on Very Large Data Bases, pages 566{577, Brisbane,
Australia, August 1990.

[DE89] L.M.L. Delcambre and J.N. Etheredge. The Relational Production Language: A production lan-

guage for relational databases. In L. Kerschberg, editor, Expert Database Systems|Proceedings
from the Second International Conference, pages 333{351. Benjamin/Cummings, Redwood City,

California, 1989.

[DOS+92] H.M. Dewan, D. Ohsie, S.J. Stolfo, O. Wolfson, and S. Da Silva. Incremental database rule

processing in PARADISER. Journal of Intelligent Information Systems, 1992.

[Elk90] C. Elkan. Independence of logic database queries and updates. In Proceedings of the Ninth
ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, pages 154{
160, March 1990.

[GP91] D.N. Gordin and A.J. Pasik. Set-oriented constructs: From Rete rule bases to database systems.

In Proceedings of the ACM SIGMOD International Conference on Management of Data, pages
60{67, Denver, Colorado, May 1991.

[Han92] E.N. Hanson. Rule condition testing and action execution in Ariel. In Proceedings of the
ACM SIGMOD International Conference on Management of Data, pages 49{58, San Diego,

California, June 1992.

[HH91] J.M. Hellerstein and M. Hsu. Determinism in partially ordered production systems. IBM

Research Report RJ 8009, IBM Almaden Research Center, San Jose, California, March 1991.

[HW93] E.N. Hanson and J. Widom. An overview of production rules in database systems. The Knowl-
edge Engineering Review, 8(2):121{143, June 1993.

[Klu82] A. Klug. Equivalence of relational algebra and relational calculus query languages having ag-

gregate functions. Journal of the ACM, 29(3):699{727, 1982.

[KU94] A.P. Karadimce and S.D. Urban. Conditional term rewriting as a formal basis for analysis of

active database rules. In Fourth International Workshop on Research Issues in Data Engineering
(RIDE-ADS '94), Houston, Texas, February 1994.

[LS93] A. Levy and Y. Sagiv. Queries independent of updates. In Proceedings of the Ninetenth Inter-
national Conference on Very Large Data Bases, pages 171{181, Dublin, Ireland, August 1993.

[QW91] X. Qian and G. Wiederhold. Incremental recomputation of active relational expressions. IEEE
Transactions on Knowledge and Data Engineering, 3(3):337{341, September 1991.

[RCBB89] A. Rosenthal, S. Chakravarthy, B. Blaustein, and J. Blakeley. Situation monitoring for active

databases. In Proceedings of the Fifteenth International Conference on Very Large Data Bases,
pages 455{464, Amsterdam, The Netherlands, August 1989.

[SKdM92] E. Simon, J. Kiernan, and C. de Maindreville. Implementing high level active rules on top of

a relational DBMS. In Proceedings of the Eighteenth International Conference on Very Large
Data Bases, pages 315{326, Vancouver, British Columbia, August 1992.

[SLR88] T. Sellis, C.-C. Lin, and L. Raschid. Implementing large production systems in a DBMS environ-

ment: Concepts and algorithms. In Proceedings of the ACM SIGMOD International Conference
on Management of Data, pages 404{412, Chicago, Illinois, June 1988.

[Tzv88] A. Tzvieli. On the coupling of a production system shell and a DBMS. In Proceedings of
the Third International Conference on Data and Knowledge Bases, pages 291{309, Jerusalem,

Israel, June 1988.

24



[Ull89] J.D. Ullman. Principles of Database and Knowledge-Base Systems, Volumes I and II. Computer

Science Press, Rockville, Maryland, 1989.

[vdVS93] L. van der Voort and A. Siebes. Termination and con
uence of rule execution. In Proceedings of
the Second International Conference on Information and Knowledge Management, Washington,

DC, November 1993.

[ZH90] Y. Zhou andM. Hsu. A theory for rule triggering systems. InAdvances in Database Technology|
EDBT '90, Lecture Notes in Computer Science 416, pages 407{421. Springer-Verlag, Berlin,
March 1990.

25


