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Abstract

Users of distributed virtual reality applications interact with users located across the network.

Similarly, distributed object visualization systems store dynamic data at one host and render it

in real-time at other hosts. Because data in both systems is animated and exhibits unpredictable

behavior, providing up-to-date information about remote objects is expensive. Remote hosts

must instead apply extrapolation between successive update packets to render the object's true

animated behavior. This paper describes and analyzes a \position history-based" protocol in

which hosts apply several recent position updates to track the position of remote objects. The

history-based approach o�ers smooth, accurate visualizations of remote objects while providing

a scalable solution.

1 Introduction

In distributed object visualization systems, a host must accurately display dynamic data located

at other hosts on a network. For example, each participant in a virtual reality environment moves

about the virtual world while continually interacting with other participants physically located

at other hosts (Figure 1); each machine must display the position and orientation of the local

participant along with the position and orientation of all visible participants.

Because virtual reality systems are highly interactive, users expect a positionally accurate,

behaviorally accurate, and smoothly rendered view of remote participants. Each user expects the

visual representations of other participants to exhibit positional accuracy : the average position

error of each remote representation should be small. For example, in an auto-racing simulation,

the user requires an accurate representation of competitors' cars in order to steer his own car and

avoid collisions. Any perceived inaccuracy leads to confusion, incorrect actions, and inconsistent

responses. The visual representations of remote objects should also exhibit behavioral accuracy :

the velocity and acceleration of each remote representation should mirror the behavior of the

true object (though the actual values may not be accurate). For example, the user might want

to see that a distant car is swerving repeatedly even if he tolerates seeing inaccuracies in the

car's actual position. Finally, the remote object should be animated smoothly at the local frame

rate. Distributed simulations therefore appear \seamless," meaning that users should be unable to

distinguish between local and remote objects on the display.

Transmission at the sender's frame rate of state updates to remote hosts is infeasible because

of network latency and bandwidth. Networks do not guarantee timely, in-order delivery of packets.
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Figure 1: Distributed Virtual Reality Applications Display Local and Remote Participants

Remote hosts must repeat the frame if a packet is delayed because they cannot wait for the data

to arrive. Moreover, most existing networks cannot support the necessary bandwidth for real-time

data. Transmitting 128-byte update packets at 60 frames per second, only 52 objects are needed to

impose a 40% load on a 10Mbps ethernet. Finally, a receiver's frame rate may be faster than that

of the sender, in which case the remote object rendered on the receiver's display does not exhibit

the same smoothness as local objects. The SGI Flight Simulator, for example, transmits frame-

by-frame position updates. The display at remote sites therefore depends on the transmitter's

update rate as well as the underlying network behavior. As a result, users often see a jerky view

of non-local objects.

A few existing simulations have utilized \dead reckoning" algorithms to overcome the update

rate problem, but almost no work has been done to study the accuracy of these techniques. In a dead

reckoning protocol, each host broadcasts state information about local objects at lower than frame

rate frequencies. All other hosts generate and display an approximate animation of the remote

participant by applying predictive techniques based on the available information. For example, the

Amaze multiplayer game [3] uses occasional position and velocity updates to track the location of

remote players. However, the slow speed of objects relative to update rate in this game simpli�es

the remote tracking problem considerably because the potential error in the remote model is always

small. Large virtual environments targeted by the DIS protocol [7] rely on position, velocity, and

acceleration updates to produce remote animations. However, no study has measured the overall

accuracy of the DIS dead reckoning algorithm for a general set of object motions. The Amaze and

DIS protocols only use information from the most recent packet to predict future behavior of an

object.

In this paper, we study a communication protocol in which objects transmit only their absolute

position to remote hosts. Using this approach, remote sites track the future object position based

on several previous updates and use curve �tting to characterize the overall behavior of the object.

After describing the basic protocol and the supporting \position history-based" algorithms for

remote object modeling, we analyze the accuracy of these techniques.1 By studying various classes

1A separate paper [13] analyzes the network and data rate performance of the protocol.
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Figure 2: Sites Process Position Updates from Remote Objects

of object behavior, we show that the history-based technique yields visually accurate and smooth

representations of object position and behavior. We conclude by discussing how this technique

applies to general problems of rendering dynamic objects in distributed simulation and virtual

reality applications.

2 Position History-Based Protocol and Algorithms

The position history-based protocol allows hosts to generate a visually accurate animation of remote

objects in spite of typical network delays. As shown in Figure 2, a source host periodically multicasts

the current object position to remote sites across the network. During the tracking step, each remote

host uses a short history of these updates to estimate the object's position, velocity, and acceleration

until the next update arrives. The convergence step calculates a velocity and acceleration that

correct the object's current displayed position to smoothly converge with the tracked position.

Finally, the extrapolation step samples the convergence path at the local frame rate to produce an

animation on the display.
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2.1 Source Generation of Updates

The source host transmits an update packet whenever it determines that the remote tracking of

an object di�ers signi�cantly from the object's true position. The host concurrently maintains

two models of each object: the true position is determined indirectly from user input; the remote

tracking position (described in the next section) estimates the position based on previous network

updates. By calculating the di�erence between the true position and the remote tracking position,

the source host therefore approximates the dead reckoning error at remote hosts. A maximum

error threshold is associated with each object. The host transmits an update packet for an object

whenever the distance between the true position and the remote tracking position exceeds this

threshold. To prevent remote hosts from relying on old information when a packet is lost, the

source host transmits an update if none is generated within a timeout period

An update packet only reports the object's current position (along each axis) and orientation

(using Euler angles or quaternions). Remote sites use this \absolute state" information to track

the object's position, velocity, acceleration, orientation, angular velocity, and angular acceleration.

Each packet includes a timestamp which is used by receivers to account for transmission latency.

2.2 Receiver Processing of Updates

Upon receiving an update packet, a host updates its tracking of the remote object and converges

the displayed position to the tracked position (Figure 3):

� Tracking Step: The host predicts the object location until the next update arrives, com-

pensating for position updates not arriving at frame-rate frequencies. The dotted line in

Figure 3 indicates the predicted object path.

� Convergence Step: The animated object smoothly converges with the tracked position at

the Convergence Point, as shown by the dashed line in Figure 3. Because the host estimates
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Figure 4: Local Angle of Embrace Determines Adaptive Tracking

the object's future location, the current displayed position is somewhat inaccurate relative

to the actual position provided in the update packet. Rather than directly \jumping" to the

correct position, smooth convergence provides users with a seamless view of remote objects.

2.2.1 Adaptive Tracking Algorithm

The tracking algorithm adapts to the object's behavior by using either a second-order (parabolic)

estimation with the three most recent position updates or a �rst-order (linear) estimation with the

two most recent position updates (Figure 4). To determine which of the two tracking techniques

to use, the remote host calculates the angle between the three most recent update positions. This

angle, de�ned in di�erential geometry as the angle of embrace, estimates the local Gaussian curva-

ture of the object's path [5]. A small angle|implying a sharp turn|indicates �rst-order tracking

(Figure 4a); a larger angle|implying smooth motion|indicates second-order tracking (Figure 4b).

The second-order tracking technique is used when the object is moving smoothly. If the three

most recent positions are x0 at time 0, x
�1 at time (��
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By common subexpression elimination, these parameters are evaluated with ten multiplications
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Figure 5: Using Adaptive Tracking to Model Sudden Path Changes

The chosen convergence period is long enough to eliminate jerky path corrections, yet it is short

enough so that path correction is complete when the next update packet is expected to arrive.

The �rst-order tracking technique is used when the object makes a sharp change in direction,

for example as a result of a collision. In this situation, a second-order technique as described above

is inaccurate. The dotted line in Figure 5a shows that a second-order curve over-compensates for

the turn and introduces new error in the remote tracking; the resulting displayed path, represented

by the dashed line, does not re
ect the object's true behavior. A �rst-order approach, on the other

hand, o�ers better results by ignoring information from before the sharp turn (Figure 5b). The

resulting displayed path converges to the true position more rapidly, as re
ected in the dashed

line. Using �rst-order tracking, the remote tracking at time 0 has initial position x(�)
���
�=0

= x0,

and velocity x0(�) = 1

��1
x
�1 +

1

��2
x0. By common subexpression elimination, these parameters are

evaluated with one multiplication and two additions. The displayed position converges with the

tracked position in � = min (�
�1; 0:25) seconds, meaning that the convergence point is

x(�)

�����
�=�

�1

= �x
�1 + 2x0

or

x(�)

����
�=0:25

= �

0:25

�
�1

x
�1 +

�
1 +

0:25

�
�1

�
x0

Each receiver accounts for packet delay by \backdating" the position update to its transmission

time provided by the packet timestamp. Although hosts receive the packet with di�erent latencies,

all remote sites consequently track the object in nearly the same manner. The source host therefore

can accurately measure error in the remote tracking position.
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Angle Between Curve Tracking Convergence

Three Recent Updates Characterization Model Model

Small Sharp Turn First-Order Second-Order

Medium Smooth Curve Second-Order Second-Order

Large Straight Line Second-Order First-Order

Table 1: Adaptive Modeling Technqiues for Extrapolation and Convergence
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Figure 6: Convergence Smoothly Corrects the Current Displayed Position

2.2.2 Adaptive Convergence Algorithm

The convergence algorithm adapts to the object's behavior by producing either a second-order

(parabolic) path of constant acceleration or a �rst-order (linear) path of constant velocity. The

angle of embrace calculated during the tracking algorithm determines which path is used. A

large angle, indicating almost linear motion, requires �rst-order convergence, and a smaller angle,

indicating curved motion, requires second-order convergence. Table 1 summarizes how angle of

embrace determines the adaptive tracking and convergence algorithms.

Second-order convergence generates a smooth curve between the object's previous absolute

position, current displayed position, and the convergence point on the tracked path (Figure 6a). If

the previous absolute position is x
�1 at time ��

�1, the current displayed position is x0 at time 0,

and the convergence point (determined in the previous section) is x1 at time �1, then convergence

has initial position x(�)
���
�=0

= x0, initial velocity

x0(�)

����
�=0

= �

�1x�1

�
�1(��1 + �1)

+
(�1 � �

�1)x0

�
�1�1

+
�
�1x1

(�
�1 + �1)�1
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Jerk Jerk Sample Algorithm(s) Providing

Magnitude Smoothness Motion Accurate Remote Display

Low No Spikes Line, Parabola Tracking, Convergence

High No Spikes Oscillation Tracking

Low Spikes Bouncing Convergence

High Spikes Random Neither

Table 2: Summary of Four Curve Classes

and acceleration

x00(�) =
2x

�1

�
�1(��1 + �1)

�

2x0

�
�1�1

+
2x1

(�
�1 + �1)�1

By common subexpression elimination, the parameters are computed in ten multiplications and six

additions.

When the object is almost moving in a straight line, �rst-order convergence linearly joins the

current displayed position to the convergence point as shown in Figure 6b. Using �rst-order con-

vergence, the initial position is x(�)
���
�=0

= x0 and the velocity is

x0(�) =
x1 � x0

�1

These parameters are calculated in one multiplication and one addition.

The convergence process is complete once the object's displayed position reaches the conver-

gence point. Until the next update arrives, the displayed object follows the position, velocity, and

acceleration predicted by the remote tracking algorithm.

3 Position History-Based Protocol Accuracy

By using second-order curves to locally approximate smooth object motion, the protocol perfectly

tracks any object exhibiting constant acceleration. Furthermore, the algorithm is highly accurate

for smooth curves whose acceleration changes slowly because those paths locally exhibit near-

parabolic behavior. For these curves, the remote error at each position update is relatively small,

and the remote tracking easily corrects the error by perturbing the acceleration applied between

position updates.

To evaluate the algorithm for rapidly changing acceleration|that is, non-zero jerk|we char-

acterize object motion into three classes (summarized in Table 2):

� High jerk with no spikes: For example, a bus traveling along a winding road exhibits

smooth jerk.

� Low jerk with occasional spikes: Jerk may spike when an external force is temporarily

applied to the object. For example, a bouncing object exhibits near-zero jerk except at the

ground, where the jerk spikes, changing the velocity. In this case, the convergence algorithm

must quickly recover from errors resulting from the unpredicted collision with the ground.2

2We assume here that the object is tracked in isolation, without advance knowledge of the impending collision.
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� High jerk with frequent spikes: This case includes all remaining types of motion, in-

cluding random motion. For example, a person in a crowd moves around smoothly at varying

velocity but is occasionally pushed by someone else. Tracking and convergence algorithms

are of little bene�t in predicting or correcting the remote object display.

Though an object's motion is generally complex, its behavior can at least locally be described in

one of these cases.

We make the following observations:

Level-of-Detail Tradeo� Observation A lower protocol threshold provides greater level of de-

tail but requires higher network bandwidth. The balance of this tradeo� depends on the

particular curve class being modeled.

Behavioral Accuracy Observation A higher protocol threshold retains behavioral accuracy de-

spite reducing the positional level-of-detail in remote tracking.

Threshold Estimation Observation Setting the protocol threshold to double the average tol-

erable visualization error provides a reasonable balance of visualization error and network

bandwidth for most curves.

3.1 High Jerk With No Spikes

If the jerk is smooth, the object's acceleration changes uniformly. When a remote site uses the

second-order tracking algorithm between position updates, jerk in the actual object motion in-

troduces a minimum error of
�
j
6
t3 + j0

24
t4
�
where j is the initial jerk and j0 is the change in jerk

per unit time. Jerk is mostly smooth, so j0 is small and the �rst term dominates the expression.

Because time between update packets is typically on the order of one second, the error is roughly

proportional to jerk. The position history used by remote tracking o�ers a fair estimate of the

future position because a smooth jerk cannot generate signi�cant position error within a short time

interval.

3.1.1 Oscillatory Motion

Oscillation is a common example of this class of behavior. At tight protocol thresholds, the position

history-based protocol accurately tracks high-speed oscillatory motion (Figure 7a) by transmitting

update packets soon after the object's behavior changes. A tight threshold requires higher packet

rates of over �ve per second. By increasing the protocol threshold, the sender allows remote sites

to \overshoot" the oscillation amplitude (Figures 7b-c) and consequently reduces the packet rate

to less than one per second. Despite the lower positional level-of-detail, we observe that the remote

tracking still exhibits oscillatory motion, maintaining behavioral accuracy.

3.1.2 Circular Motion

Circular or spherical motion results when jerk smoothly changes in direction rather than in mag-

nitude. Analysis of circular motion has broader applicability, however, for a large family of curves

can be locally approximated as circles [15]. Figure 8a shows the average remote tracking error as

a function of the position threshold. The graph shows that average error is substantially lower
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Figure 7: History-Based Modeling of Sinusoidal Oscillation (amplitude 50 meters; period 9 seconds; 5 second
timeouts; threshold (a) 1, (b) 25, and (c) 50 meters)
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Figure 8: Average History-Based Protocol (a) Error and (b) Packet Rate for Circular Motion

than the protocol tolerance. Furthermore, the average error rises linearly with increasing protocol

threshold, and the packet rate rises exponentially with tighter threshold (Figure 8b). When consid-

ering the Level-of-Detail Tradeo�, we observe that protocol threshold a�ects bandwidth usage more

severely than average error. If all other factors are equal, the protocol threshold should therefore be

as high as possible to minimize bandwidth requirements, as long as the minimum required level of

visualization detail is provided. The Threshold Estimation Observation, which sets the threshold

to twice the average visual tolerance, balances visual error requirements with the need to manage

data tra�c.

3.2 Low Jerk With Occasional Spikes

We now consider the situation in which the overall jerk is near zero but exhibits occasional \spikes"

of high magnitude. In such motion, the acceleration remains fairly constant for some time but some-

times may change suddenly. For example, when two objects collide, they both instantaneously ex-

hibit high acceleration as momentum is reversed. After the resulting almost instantaneous velocity

change, the acceleration returns to a stable state.

A bouncing object provides an example of this class of behavior (Figure 9). The jerk is zero as

the object is moving, but it exhibits a positive spike as the object changes direction and a negative

spike as the object returns to the original acceleration. The corresponding acceleration remains

constant as the object is moving, but it spikes as the object bounces and velocity reverses direction.

Remote sites cannot use prior position information to predict a sudden spike in jerk such as

occurs during collisions; the tracking and convergence steps must instead quickly recover from the

error after the change is reported. Because the acceleration changes instantaneously at the collision
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Figure 10: Average History-Based Protocol (a) Error and (b) Packet Rate for Bounce Motion

point, the error in the remote tracking increases quadratically after the collision until it exceeds

the protocol threshold. In particular, suppose that the object acceleration and velocity respectively

change by a� and v� during the collision (here, a� and v� are calculated from the instantaneous

acceleration and velocity before and after the collision). The remote tracking error at time � after

the collision is
���1
2
a��

2 + v��
���. Setting this expression equal to T , the protocol error threshold, yields

the expected delay before remote tracking learns of the acceleration change. For large v�, the delay

is less than T
v�
. For large a�, the delay is less than

q
2T
a�
. For roughly equal a� and v�, the delay is

on the order of

�
T
v�
�

T 2

2a2
�

�
.

While network utilization is the sensitive resource in Level-of-Detail Tradeo� for smooth mo-

tion, average error is more critical when considering bouncing motion. Figure 10a shows that

the average tracking error rises almost quadratically with increased protocol threshold. On the

other hand, the number of packets transmitted over time is less dependent on the protocol thresh-

old (Figure 10b). Because error after a sudden acceleration change increases quadratically over

time, the remote tracking always eventually exceeds the protocol tolerance and requires an update.

Figure 10 therefore indicates that the protocol threshold a�ects average error more severely than

network bandwidth. If all other factors are equal, therefore, we desire to keep the threshold as

tight as possible (to provide the most accurate remote visualization), without exceeding the avail-

able network bandwidth. Based on the data in Figure 10, the Threshold Estimation Observation

appears to o�er a reasonable starting point for achieving this balance.

Figure 11 shows the protocol's visual performance on bounce motion. As long as the acceleration

is constant, the remote tracking is exact. When the acceleration suddenly changes, the remote

tracking continues along the old path until it violates the protocol threshold. After the host receives

an update packet, convergence spreads the acceleration change over a time interval to smoothly

correct the displayed position.

Remote tracking of bounce motion demonstrates the Behavioral Accuracy Observation. Fig-

ure 11 shows that the tracking behavior remains fairly stable as the protocol threshold increases.

For tight thresholds, the remote behavior follows the actual path accurately (Figure 11a). Although

the object is bouncing at a high frequency, models with wide thresholds may display a lower fre-
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Figure 11: History-Based Modeling of Bounce Motion (height 25 meters; timeout 5 seconds; threshold (a) 1,
(b) 10, and (c) 25 meters)
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quency bounce of varying height, as shown in Figure 11c. Despite providing a lower positional

level-of-detail because of the higher protocol threshold, the remote model retains considerable be-

havioral accuracy. This type of tracking is acceptable to a low-�delity observer who is less interested

in the local perturbations of the object but does need to observe the object's overall behavior.

3.3 High Jerk With Frequent Spikes

This type of curve exhibits both smooth, rapid changes and sharp, unpredictable changes. Such

behavior includes most random motion, such as a person weaving through a crowd or a particle

travelling through a wind tunnel. Because the curve behavior changes so quickly, remote modeling

of these curves is error prone. The tracking step cannot accurately predict the future position,

and the convergence step does not recover from a display error before the object behavior changes

again.

Despite the complexity of this class of curves, the position history-based protocol provides

good support for such erratic behavior. Figure 12 demonstrates the algorithm's behavior on a

sample object path of this curve class. The curve trace was generated by randomly perturbing

the acceleration smoothly over time, with large acceleration jumps occurring 5% of the time on

average. For this and all other curves that we have studied from this class, the Threshold Estimation

Observation provides a reasonable tradeo� between visual error and network utilization.

In summary, no remote modeling algorithm can expect to accurately support random motion.

However, by sampling position periodically and smoothing between these samples, the position

history-based protocol provides good behavioral accuracy with an acceptable positional accuracy.

4 Comparison to the DIS Protocol

Dead reckoning techniques are central to the large virtual environments targeted by the Distributed

Interactive Simulation (DIS) protocols (IEEE Standard 1278). The current DIS protocol [7], [8]

transmits position, velocity, and acceleration information whenever the remote object model ex-

ceeds a threshold or a �ve second timeout elapses. Using the most recent position, velocity, and

acceleration information, DIS dead reckoning algorithms generate a second-order model to predict

the future object location. We observe that the position history-based protocol performs at least as

well as DIS for smooth object motion, and it potentially performs better than DIS for non-smooth

object motion while requiring less network bandwidth.

At �rst, the DIS technique appears more e�ective than the history-based protocol for modeling

a simple class of curves having smooth circular motion. Consider the path of an F-16 performing

\Air Combat Maneuvering" (ACM) turning maneuvers as shown in Figures 13 and 14. The DIS

protocol generates 25% lower error than the history-based protocol. Transmitting almost 25% fewer

packets over the network, DIS would therefore appear to outperform the history-based technique

for these types of curves.

However, the history-based protocol actually performs comparably to the DIS protocol in net-

worked applications containing smoothly moving objects. In real applications, data updates are not

delivered instantaneously by the network, and virtual reality systems must expect packet latencies

of up to 250ms for cross-country tra�c. The e�ectiveness of the DIS protocol is limited because

the tracking relies on acceleration information. An object's acceleration can change more rapidly
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Figure 12: Average History-Based Protocol Error for Modeling Acceleration Changing Both Smoothly and
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Figure 13: Modeling Error of F-16 Turning Maneuvers Using the DIS and History-Based Protocols
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Figure 15: E�ect of Packet Latency on Curves of (a) Figure 13 and (b) Figure 14

than its position, so if packets are delayed, then the DIS algorithm is likely to use out-of-date in-

formation to predict object behavior. Figure 15 demonstrates the e�ects of latency using the F-16

paths studied in Figures 13 and 14. In these tests, the sender's threshold level is set at 20 feet and

the DIS algorithm is implemented using timestamp information to account for packet latency.3 We

observe that for realistic packet latencies, the average error in both algorithms rise comparably at

their respective packet rates. This result indicates that both algorithms are generating very similar

tracking models for circular motion in response to each update packet.

The position history-based protocol is furthermore potentially superior to the DIS protocol for

tracking non-smooth object motion. The DIS protocol is highly sensitive to sudden acceleration

changes because the algorithm utilizes only the most recent update information. Velocity and accel-

eration may change instantaneously by an order of magnitude or more. If an update is transmitted

at the moment that the acceleration spikes, receivers use inaccurate information to track the object.

This error becomes apparent, for example when modeling oscillatory motion (compare Figure 16

with Figure 7) and bouncing motion (compare Figure 17 with Figure 11). We observe that better

results are obtained through a longer-term curve analysis as provided by the history-based protocol.

This protocol relies on information|namely object position|that changes least rapidly and least

randomly. In particular, a physical object's position must be continuous. Furthermore, position

changes are generally an indirect response to physical or mechanical forces applied to the object.

For example, position cannot change signi�cantly until the velocity and acceleration have changed

and acted for some time; position changes are thus delayed reactions to forces. By exploiting the

relatively stable behavior of position, the history-based protocol o�ers better modeling than the

DIS protocol relying on more transient attributes.

Superior performance on these non-smooth paths makes the history-based protocol more useful

than DIS protocols in virtual reality applications and visual simulations. Accurate visualization is

3The current DIS dead reckoning protocol speci�cation does not use timestamps to control the remote tracking

step. Timestamps could easily be added to the DIS protocol, however, and this extension appears warranted. Without

timestamp information, DIS dead reckoning error is higher by an order of magnitude.
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Figure 16: DIS modeling of Sinusoidal Oscillation (Amplitude 50 Meters; Period 9 Seconds; Timeout 5 Seconds;
Threshold (a) 1, (b) 25, and (c) 50 Meters)
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Figure 17: DIS Modeling of Bounce Motion (height 25 meters; timeout 5 seconds; threshold (a) 1, (b) 10, and
(c) 25 meters)
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most critical when the object is nearby in the virtual environment, but most objects do not exhibit

smooth behavior when viewed at close range. For example, a car bounces slightly even as it travels

over smooth roads. Similarly, a nearby adversary in a multi-player game most likely will move

unpredictably to avoid being hit. Error is tolerable when the remote object is distant enough so

that it appears to move smoothly, but when it comes closer, inaccuracy is unacceptable.

To transmit velocity and acceleration information, the DIS protocol also requires larger packets

than the history-based protocol. By transmitting only position data in update packets, the history-

based protocol can transmit over 1.75 times as often as DIS and still reduce bandwidth requirements.

Taking this information into account when reconsidering the smooth F-16 paths, we observe that

by transmitting 1.75 times as many update packets, the history-based protocol outperforms DIS

because of the lower average tracking error.

5 Other Related Work

The generation of smooth curves and surfaces from discrete data has been an important issue within

the computer graphics research community, but most of the prior research in this �eld cannot be

applied to real-time distributed applications. A large body of graphics research concentrates on

using quadratic and cubic Bezier splines for interpolating a set of points (consider [4], [6]). Em-

phasizing high-order continuity between piecewise splines, these techniques require that all sample

points be provided in advance. These algorithms also attempt to generate smooth curvature, not

allowing for sharp turns or random motion. An adaptive spline calculation technique [16] attempts

to recursively subdivide the time period and locally apply linear, quadratic, or cubic splines within

each interval. This technique requires that considerably more data samples are provided in ad-

vance. Non-linear optimization techniques, unsuitable for real-time use, have become popular for

approximating curves, orientations, and surfaces (consider [1], [2], [12]). The history-based protocol

obviates the need for complex algorithms of this sort by relying on short-term position history. This

minimzation of parameters allows the protocol to derive extrapolation coe�cients analytically and

therefore quickly.

The idea of dead reckoning is similar to predictive encoding in control theory and signal pro-

cessing, but most of this theory is also inapplicable to the remote object visualization problem. The

most common signal processing techniques, Gaussian least-squares estimation [14] and Kalman �l-

tering [10], [9], both assume Gaussian normal error in the sensor input. Distributed visualizations,

however, receive accurate information from remote hosts. On the other hand, many control sys-

tems [11] utilize gradient descent methods which are unsuitable for use at frame-rate speeds. More

importantly, both signal processing and control systems operate over a long-term series of sam-

ples, implicity assuming fairly stable data behavior. This assumption is unreasonable in simulation

systems where object behavior may change quickly.

6 Conclusions and Future Work

Modeling of geometric position using periodic position updates and dead reckoning at receivers

allows accurate, smooth visualizations of remote objects. The technique o�ers greater accuracy

and better performance than both frame-rate protocols and competing algorithms; remote objects

are visually indistinguishable from local objects. The protocol o�ers several notable features:
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� Remote sites apply local computation on position history from multiple updates to accurately

track position.

� Adaptive tracking and convergence characterize the object's overall behavior by using curve-

�tting. The algorithm smoothly visualizes a broad range of object paths including straight

lines, smooth curves, and sharp turns.

� Remote tracking uses timestamps to maintain a common view of the remote object at all sites

despite network latency.

The history-based protocol, using several position updates instead of extra derivatives, more

accurately tracks remote objects because it is less sensitive to sporadic changes in an object's state.

This robustness is evident from the accurate remote modeling of oscillatory and bouncing motion.

Protocols using instantaneous derivative data are more likely to see local velocity or acceleration

spikes in response to external forces; such short-term 
uctuations make these protocols unreliable.

In addition, the history-based protocol requires less bandwidth than alternative algorithms because

velocity and acceleration information are not transmitted.

Adaptive tracking techniques e�ectively model a variety of object behaviors. The protocol

generates perfect representations for simple second-order (quadratic) curves, yet it also performs

acceptably for complex motion characterized by unpredictable acceleration. Furthermore, adaptive

extrapolation and convergence assure optimal performance for straight lines and sharp turns, two

cases often neglected by other proposed algorithms.

Clock-time synchronization is more e�ective than frame-rate synchronization for addressing

latency issues in real-time visualization systems. By using timestamp information to track remote

objects, the position history-based protocol reduces real-time dependencies between hosts. The

protocol can therefore withstand substantial network latency and di�erent frame-rates between the

source and receivers. This decoupling approach departs signi�cantly from traditional multimedia

and virtual reality systems which attempt to synchronize the senders and receivers by transmitting

frame-by-frame data. Such systems rely on network bandwidth and latency guarantees to achieve

acceptable performance.

The dead reckoning protocol appears applicable to a wider class of visualization problems. We

are interested in applying this technique in several areas:

� Visualization of data from information services and large remote databases: For example, a

local application program might visualize the performance of world-wide stock prices obtained

from remote servers in real-time.

� Distributed CAD/CAM and architectural design: Sites transmit the location, size, color, etc.

of components while remote sites depict the complete design.

� Factory automation and monitoring: Sites throughout the factory 
oor transmit performance

information, sensor readings, and robot diagnostics while remote sites dynamically project

factory output and maintenance requirements.

With increasing video resolution, network bandwidth, and processor speed, distributed virtual

reality and visualization systems are becoming increasingly common in the entertainment indus-

try and scienti�c community. However, these applications face numerous fundamental challenges.

Position history-based dead reckoning stands to address many of these di�culties by providing a
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general framework for the real-time modeling of remote objects in distributed applications. Though

considerable work remains to be done in this emerging area, we feel the technique o�ers a promising

solution.
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