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1. Introduction.

The push-relabel method [10, 13] is the best currently known way for solving the maximum


ow problem [1, 2, 18]. This method extends to the minimum cost 
ow problem using cost

scaling [10, 14], and an implementation of this technique has proven very competitive on a wide

class of problems [11]. In both contexts, the idea of periodic global updates of node distances

or prices has been critical to obtaining the best running times in practice.

Several algorithms for the bipartite matching problem run in O(
p
nm) time.1 Hopcroft

and Karp [15] �rst proposed an algorithm that achieves this bound. Karzanov [16] and Even

and Tarjan [5] proved that the blocking 
ow algorithm of Dinitz [4] runs in this time when

applied to the bipartite matching problem. Two phase algorithms based on a combination of

the push-relabel method [13] and the augmenting path method [7] were proposed in [12, 19].

Feder and Motwani [6] give a \graph compression" technique that combines with the algo-

rithm of Dinitz to yield an O(
p
nm log(n2=m)

logn
) algorithm. This is the best time bound known

for the problem.

The most relevant theoretical results on the assignment problem are as follows. The best

currently known strongly polynomial time bound of O(n(m + n logn)) is achieved by the

classical Hungarian method of Kuhn [17]. Under the assumption that the input costs are

integers in the range [�C; : : : ; C ], Gabow and Tarjan [9] use cost scaling and blocking 
ow

techniques to obtain an O(
p
nm log(nC)) time algorithm. An algorithm using an idea similar

to global updates with the same running time appeared in [8]. Two-phase algorithms with the

same running time appeared in [12, 19]. The �rst phase of these algorithms is based on the

push-relabel method and the second phase is based on the successive augmentation approach.

We show that algorithms based on the push-relabel method with global updates match

the best bounds for the bipartite matching and assignment problems. Our results are based

on new selection strategies: the minimum distance strategy in the bipartite matching case

and the minimum price change in the assignment problem case. We also prove that the

algorithms perform signi�cantly worse without global updates. Similar results can be obtained

for maximum and minimum cost 
ows in networks with unit capacities. Our results are a step

toward a theoretical justi�cation of the use of global update heuristics in practice.

This paper is organized as follows. Section 2 gives de�nitions relevant to bipartite matching

and maximum 
ow. Section 3 outlines the push-relabel method for maximum 
ow and shows

its application to bipartite matching. In Section 4, we present the time bound for the bipartite

matching algorithm with global updates, and in Section 5 we show that without global updates,

the algorithm performs poorly. Section 6 gives de�nitions relevant to the assignment problem

and minimum cost 
ow. In Section 7, we describe the cost-scaling push-relabel method for

minimum cost 
ow and apply the method to the assignment problem. Sections 8 and 9 gen-

1Here n and m denote the number of nodes and edges, respectively.
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eralize the bipartite matching results to the assignment problem. In Section 10, we give our

conclusions and suggest directions for further research.

2. Bipartite Matching and Maximum Flow

Let G = (V = X [ Y;E) be an undirected bipartite graph, let n = jV j, and let m = jEj.
A matching in G is a subset of edges M � E that have no node in common. The cardinality

of the matching is jM j. The bipartite matching problem is to �nd a maximum cardinality

matching.

The conventions we assume for the maximum 
ow problem are as follows: Let G = (fs; tg[
V;E) be a digraph with an integer-valued capacity u(a) associated with each arc2 a 2 E. We

assume that a 2 E ) aR 2 E (where aR denotes the reverse of arc a). A pseudo
ow is a

function f : E ! R satisfying the following for each a 2 E:

� f(a) = �f(aR) (
ow antisymmetry constraints);

� f(a) � u(a) (capacity constraints).

The antisymmetry constraints are for notational convenience only, and we will often take

advantage of this fact by mentioning only those arcs with nonnegative 
ow; in every case, the

antisymmetry constraints are satis�ed simply by setting the reverse arc's 
ow to the appropriate

value. For a pseudo
ow f and a node v, the excess 
ow into v, denoted ef (v); is de�ned by

ef (v) =
P

(u;v)2E f(u; v). A pre
ow is a pseudo
ow with the property that the excess of every

node except s is nonnegative. A node v 6= t with ef (v) > 0 is called active.

A 
ow is a pseudo
ow f such that, for each node v 2 V , ef (v) = 0. Observe that a pre
ow

f is a 
ow if and only if there are no active nodes. The maximum 
ow problem is to �nd a


ow maximizing ef (t).

3. The Push-Relabel Method for Bipartite Matching

We reduce the bipartite matching problem to the maximum 
ow problem in a standard way.

For brevity, we mention only the \forward" arcs in the 
ow network; to each such arc we give

unit capacity. The \reverse" arcs have capacity zero. Given an instance G =
�
V = X [ Y;E�

of the bipartite matching problem, we construct an instance
�
G = (fs; tg [ V;E); u� of the

maximum 
ow problem by

� setting V = V ;

� for each node v 2 X placing arc (s; v) in E;

� for each node v 2 Y placing arc (v; t) in E;

2Sometimes we refer to an arc a by its endpoints, e.g., (v; w). This is ambiguous if there are multiple
arcs from v to w. An alternative is to refer to v as the tail of a and to w as the head of a, which is
precise but inconvenient.
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Given Matching Instance

Bipartite Matching Instance Corresponding Maximum Flow Instance

(Reverse arcs not shown)

Figure 1. Reduction from Bipartite Matching to Maximum Flow

� for each edge fv; wg 2 E with v 2 X placing arc (v; w) in E

A graph obtained by this reduction is called a matching network. Note that if G is a matching

network, then for any integral pseudo
ow f and for any arc a 2 E, u(a); f(a) 2 f0; 1g. Indeed,
any integral 
ow in G can be interpreted conveniently as a matching in G: the matching is

exactly the edges corresponding to those arcs a 2 X � Y with f(a) = 1. It is a well-known

fact [7] that a maximum 
ow in G corresponds to a maximum matching in G.

For a given pseudo
ow f , the residual capacity of an arc a 2 E is uf (a) = u(a) � f(a).

The set of residual arcs Ef contains the arcs a 2 E with f(a) < u(a). The residual graph

Gf = (V;Ef) is the graph induced by the residual arcs.

A distance labeling is a function d : V ! Z
+. We say a distance labeling d is valid with

respect to a pseudo
ow f if d(t) = 0, d(s) = n, and for every arc (v; w) 2 Ef , d(v) � d(w)+ 1.

Those residual arcs (v; w) with the property that d(v) = d(w) + 1 are called admissible arcs.

We begin with a high-level description of the generic push-relabel algorithm for maximum


ow specialized to the case of matching networks. The algorithm starts with the zero 
ow,

then sets f(s; v) = 1 for every v 2 X . For an initial distance labeling, the algorithm sets

d(s) = n and d(t) = 0, and for every v 2 V , sets d(v) = 0. Then the algorithm applies push

and relabel operations in any order until the current pseudo
ow is a 
ow. The push and relabel

operations, described below, preserve the properties that the current pseudo
ow f is a pre
ow

and that the current distance labeling d is valid with respect to f .
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push(v; w).
send a unit of 
ow from v to w.

end.

relabel(v).
replace d(v) by min(v;w)2Ef

f d(w) + 1 g
end.

Figure 2. The push and relabel operations

The push operation applies to an admissible arc (v; w) whose tail node v is active. It consists

of \pushing" a unit of 
ow along the arc, i.e., increasing f(v; w) by one, increasing ef (w) by

one, and decreasing ef (v) by one. The relabel operation applies to an active node v that is not

the tail of any admissible arc. It consists of changing v's distance label so that v is the tail of

at least one admissible arc, i.e., setting d(v) to the largest value that preserves the validity of

the distance labeling. See Figure 2.

Our analysis of the push-relabel method is based on the following facts. See [13] for details;

note that arcs in a matching network have unit capacities and thus push(v; w) saturates the

arc (v; w).

(1) 8v 2 V , 0 � d(v) � 2n� 1.

(2) Distance labels do not decrease during the computation.

(3) relabel(v) increases d(v).

(4) The number of relabel operations during the computation is O(n) per node.

(5) The work involved in relabel operations is O(nm).

(6) If a node v is relabeled t times during a computation segment, then the number of

pushes from v is at most (t + 1)� degree(v).

(7) The number of push operations during the computation is O(nm).

The above lemma implies that any push-relabel algorithm runs in O(nm) time given that

the work involved in selecting the next operation to apply does not exceed the work involved in

applying these operations. This can be easily achieved using simple data structures described

in [13].

4. Global Updates and the Minimum Distance Discharge Algorithm

In this section, we specify an ordering of the push and relabel operations that yields certain

desirable properties. We also introduce the idea of a global distance update and show that the

algorithm resulting from our operation ordering and global update strategy runs in O(
p
nm)

time.

For any nodes v; w, let dw(v) denote the breadth-�rst-search distance from v to w in the
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residual graph of the current pre
ow. If w is unreachable from v in the residual graph, dw(v)

is in�nite. Setting d(v) = minf dt(v); n + ds(v) g for every node v is called a global update

operation. Such an operation can be accomplished with O(m) work that amounts to two

breadth-�rst-search computations.

The ordering of operations we use is called Minimum Distance Discharge, and it consists of

repeatedly choosing an active node whose distance label is minimum among all active nodes

and, if there is an admissible arc leaving that node, pushing a unit of 
ow along the admissible

arc, otherwise relabeling the node. For convenience, we denote by �(f; d) (or simply �) the

minimum distance label of an active node with respect to the pseudo
ow f and the distance

labeling d. We let �max denote the maximum value reached by � during the algorithm so far.

Every time � attains a new maximum, we perform a global update operation.

Our analysis hinges on a parameter k in the range 2 � k � n, to be chosen later. We divide

the execution of the algorithm into four stages: In the �rst two stages, excesses are moved to

t; in the �nal two stages, excesses that cannot reach the sink return to s. We analyze the �rst

stage of each pair using the following lemma.

Lemma 4.1. The Minimum Distance Discharge algorithm uses O
�
(j � i)m

�
work during the

period beginning when � �rst exceeds i� 1 and ending when � �rst exceeds j.

Proof: The number of relabelings that can occur when �max lies in the interval [i; j] is at most

n(j� i+1). Thus the relabelings and pushes require O
�
(j� i)m� work. The observations that

a global update requires O(m) work and during the period there are O(j � i) global updates

complete the proof.

Lemma 4.1 allows us to account for the periods when �max 2 [0; k] and �max 2 [n; n+k]. The

algorithm expends O(km) work during these periods. To study the behavior of the algorithm

during the remainder of its execution, we introduce a combinatorial lemma that is a special

case of a well-known decomposition theorem [7] (see also [5]).

Lemma 4.2. Any integral pseudo
ow f 0 in the residual graph of an integral pre
ow f in

a matching network can be decomposed into cycles and simple paths that are pairwise node-

disjoint except at the endpoints of the paths. Each path takes one of the following forms:

� from s to t;

� from a node v with ef (v) > 0 to a node w with ef+f 0 (w) > 0 (w can be t);

� from a node v with ef (v) > 0 to s.

Lemma 4.2 allows us to show that when �max is outside the intervals covered by Lemma 4.1,

the amount of excess the algorithm must process is small.

Lemma 4.3. If �(f; d) � k > 2, the total excess that can reach the sink is at most n=(k � 1).
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Proof: Let f� be a maximum 
ow in G, and let f 0 = f� � f . f 0 is a pseudo
ow in Gf , and

therefore can be decomposed into paths as in Lemma 4.2. Because � � k and d is a valid

distance labeling with respect to f , any path from an active node to t in Gf must contain at

least k + 1 nodes. In particular, the excess-to-sink paths of Lemma 4.2 contain at least k + 1

nodes each, and are node-disjoint except for their endpoints. Since G contains only n+2 nodes,

there can be no more than n=(k � 1) such paths. Since f� is a maximum 
ow, the amount of

excess that can reach the sink in Gf is no more than n=(k � 1).

The proof of the next lemma is similar.

Lemma 4.4. If �(f; d) � n+ k, the total excess at nodes in V is at most n=(k� 1).

Lemma 4.3 and Lemma 4.4 show that outside the intervals covered by Lemma 4.1, the

total excess processed by the algorithm is at most 2n=(k� 1). To complete the bound on the

work expended by the algorithm outside these intervals, we use the following lemma and the

fact that at most O(m) work takes place between consecutive global updates to deduce that

O
�
nm=k

�
time su�ces to process the excess outside the intervals covered by Lemma 4.1.

Lemma 4.5. Between any two consecutive global update operations, at least one unit of excess

reaches the source or the sink.

Proof: For every node v, at least one of ds(v), dt(v) is �nite. Therefore, immediately after a

global update operation, at least one admissible arc leaves every node, by the de�nition of a

global update. Hence the �rst unit of excess processed by the algorithm immediately after a

global update arrives at t or at s before any relabeling occurs.

The time bound for the Minimum Distance Discharge algorithm is O
�
km+ nm=k

�
. Choos-

ing k = �(
p
n ) to balance the two terms, we see that the Minimum Distance Discharge

algorithm with global updates runs in O(
p
nm) time.

Feder and Motwani [6] give an algorithm that runs in o(
p
nm) time and produces a \com-

pressed" version G
�

= (V [W;E
�

) of a bipartite graph in which all adjacency information is

preserved, but that has asymptotically fewer edges if the original graph G = (V ;E) is dense.

This graph consists of all the original nodes of X and Y , as well as a set of additional nodes W .

If an edge fx; yg appears in E, either fx; yg 2 E�

or G
�

contains a length-two path from x to y

through some node of W . It is possible to show that an analogue to Lemma 4.2 holds in such

a graph; the paths in the decomposition may not be node-disjoint at nodes of W , but remain

so at nodes of X and Y , and this is enough to show that the Minimum Distance Discharge

algorithm with graph compression runs in O
�p

nm log(n2=m)

logn

�
time. This bound matches the

bound of Feder and Motwani for Dinitz's algorithm.
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1. Initialization establishes jX j units of excess, one at each node of X ;
2. Nodes of X are relabeled one-by-one, so all v 2 X have d(v) = 1;
3. While ef (t) < jY j,

3.1. a unit of excess moves from some node v 2 X to some node w 2 Y with d(w) = 0;
3.2. w is relabeled so that d(w) = 1;
3.3. The unit of excess moves from w to t, increasing ef(t) by one.

4. A single node, x1 with ef (x1) = 1, is relabeled so that d(x1) = 2.
5. ` 1.
6. While ` � n,

Remark: All nodes v 2 V now have d(v) = ` with the exception of the one node
x` 2 X , which has d(x`) = `+ 1 and ef (x`) = 1; all excesses are at nodes of X ;

6.1. All nodes with excess, except the single node x`, are relabeled one-by-one so that
all v 2 X with ef (v) = 1 have d(v) = ` + 1;

6.2. While some node y 2 Y has d(y) = `,
6.2.1. A unit of excess is pushed from a node in X to y;
6.2.2. y is relabeled so d(y) = `+ 1;
6.2.3. The unit of excess at y is pushed to a node x 2 X with d(x) = `;
6.2.4. x is relabeled so that if some node in Y still has distance label `,

d(x) = `+ 1;
otherwise
d(x) = `+ 2 and x`+1  x;

6.3. ` `+ 1;
7. Excesses are pushed one-by-one from nodes in X (labeled n+ 1) to s.

Figure 3. The Minimum Distance Discharge execution on bad examples.

5. Minimum Distance Discharge Algorithm without Global Updates

In this section we describe a family of graphs on which the Minimum Distance Discharge

algorithm without global updates requires 
(nm) time (for values of m between �(n) and

�(n2)). This shows that the updates improve the worst-case running time of the algorithm.

Given ~n and ~m < ~n2=4, we construct a graph G as follows: G is the complete bipartite

graph with V = X [ Y , where

X =

(
1; 2; : : : ;

$
~n�p~n2 � 4 ~m

2

%)
and Y =

(
1; 2; : : : ;

&
~n+
p
~n2 � 4 ~m

2

')
:

It is straightforward to verify that this graph has n = ~n + O(1) nodes and m = ~m+ O( ~m=~n)

edges. Note that jX j > jY j.
Figure 3 describes an execution of the Minimum Distance Discharge algorithm on G, the

matching network derived from G, that requires 
(nm) time. With more complicated analysis,

it is possible to show that every execution of the Minimum Distance Discharge algorithm on

G requires 
(nm) time.

It is straightforward to verify that in the execution outlined, all processing takes place at
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active nodes with minimum distance labels among the active nodes. Another important fact

is that during the execution, no relabeling changes a distance label by more than two. Hence

the execution uses �(nm) work in the course of its �(n2) relabelings.

6. Minimum Cost Circulation and Assignment Problems

Given a weight function c : E ! R and a set of edges M , we de�ne the weight of M to be

the sum of weights of edges in M . The assignment problem is to �nd a maximum cardinality

matching of minimum weight. We assume that the costs are integers in the range [0; : : : ; C ]

where C � 1. (Note that we can always make the costs nonnegative by adding an appropriate

number to all arc costs.)

For the minimum cost circulation problem, we adopt the following framework. We are given

a graph G = (V;E), with an integer-valued capacity function as before. In addition to the

capacity function, we are given an integer-valued cost c(a) for each arc a 2 E.
We assume c(a) = �c(aR) for every arc a. A circulation is a pseudo
ow f with the property

that ef(v) = 0 for every node v 2 V . (The absence of a distinguished source and sink accounts

for the di�erence in nomenclature between a circulation and a 
ow.)

The cost of a pseudo
ow f is given by c(f) =
P

f(a)>0 c(a)f(a). The minimum cost circula-

tion problem is to �nd a circulation of minimum cost.

7. The Push-Relabel Method for the Assignment Problem

We reduce the assignment problem to the minimum cost circulation problem as follows. As in

the unweighted case, we mention only \forward" arcs, each of which we give unit capacity. The

\reverse" arcs have zero capacity and obey cost antisymmetry. Given an instance
�
G = (V =

X [ Y;E); c� of the assignment problem, we construct an instance
�
G = (fs; tg[ V;E); u; c� of

the minimum cost circulation problem by

� creating special nodes s and t, and setting V = V [ fs; tg;
� for each node v 2 X placing arc (s; v) in E and de�ning c(s; v) = �nC;
� for each node v 2 Y placing arc (v; t) in E and de�ning c(v; t) = 0;

� for each edge fv; wg 2 E with v 2 X placing arc (v; w) in E and de�ning c(v; w) =

c(v; w);

� placing n=2 arcs (t; s) in E and de�ning c(t; s) = 0.

If G is obtained by this reduction, we can interpret an integral circulation in G as a matching

in G just as we did in the bipartite matching case. Further, it is straightforward to verify that

a minimum cost circulation in G corresponds to a maximum matching of minimum weight in

G.
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Given Assignment Instance

t s

Assignment Problem Instance Corresponding Minimum Cost Circulation Instance

Given Costs

Large Negative Costs

Zero Costs

Figure 4. Reduction from Assignment to Minimum Cost Circulation

A price function is a function p : V ! R. For a given price function p, the reduced cost of

an arc (v; w) is cp(v; w) = c(v; w) + p(v)� p(w).

Let U = X [ ftg. Note that all arcs in E have one endpoint in U and one endpoint in its

complement. De�ne EU to be the set of arcs whose tail node is in U .

For a constant � � 0, a pseudo
ow f is said to be �-optimal with respect to a price function

p if, for every residual arc a 2 Ef , we have�
a 2 EU ) cp(a) � 0;
a =2 EU ) cp(a) � ��:

A pseudo
ow f is �-optimal if f is �-optimal with respect to some price function p. If the arc

costs are integers and � < 1=n, any �-optimal circulation is optimal.

For a given f and p, an arc a 2 Ef is admissible i��
a 2 EU and cp(a) < � or
a =2 EU and cp(a) < 0:

The admissible graph GA = (V;EA) is the graph induced by the admissible arcs.

Our asymmetric de�nitions of �-optimality and admissibility are natural in the context of

the assignment problem. They have the bene�t that the complementary slackness conditions

are violated on O(n) arcs (corresponding to the matched arcs). For the symmetric de�nition,

complementary slackness can be violated on 
(m) arcs.
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procedure min-cost(V;E; u; c);
[initialization]
� C ; 8v, p(v)  0; 8a, f(a) 0;
[loop]
while � � 1=n do

(�; f; p) re�ne(�; f; p);
return(f);

end.

Figure 5. The cost scaling algorithm.

procedure refine(�; f; p);
[initialization]
� �=�;
8a 2 E with cp(a) < 0, f(a) u(a);
[loop]
while f is not a circulation

apply a push or a relabel operation;
return(�; f; p);

end.

Figure 6. The generic re�ne subroutine.

First we give a high-level description of the successive approximation algorithm (see Fig-

ure 5). The algorithm starts with � = C, f(a) = 0 for all a 2 E, and p(v) = 0 for all v 2 V . At
the beginning of every iteration, the algorithm divides � by a constant factor � and saturates

all arcs a with cp(a) < 0. The iteration modi�es f and p so that f is a circulation that is

(�=�)-optimal with respect to p. When � < 1=n, f is optimal and the algorithm terminates.

The number of iterations of the algorithm is dlog�(nC)e.
Reducing � is the task of the subroutine re�ne. The input to re�ne is �, f , and p such

that (except in the �rst iteration) circulation f is �-optimal with respect to p. The output

from re�ne is �0 = �=�, a circulation f , and a price function p such that f is �0-optimal with

respect to p. At the �rst iteration, the zero 
ow is not C-optimal with respect to the zero

price function, but because every simple path in the residual graph has length of at least �nC,
standard results about re�ne remain true.

The generic re�ne subroutine (described in Figure 6) begins by decreasing the value of �,

and setting f to saturate all residual arcs with negative reduced cost.

This converts f into an �-optimal pseudo
ow (indeed, into a 0-optimal pseudo
ow). Then the

subroutine converts f into an �-optimal circulation by applying a sequence of push and relabel

operations, each of which preserves �-optimality. The generic algorithm does not specify the

order in which these operations are applied. Next, we describe the push and relabel operations
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push(v; w).
send a unit of 
ow from v to w.

end.

relabel(v).
if v 2 U

then replace p(v) by max(v;w)2Ef
f p(w)� c(v; w) g

else replace p(v) by max(u;v)2Ef
f p(u) + c(u; v)� � g

end.

Figure 7. The push and relabel operations

for the unit-capacity case.

As in the maximum 
ow case, a push operation applies to an admissible arc (v; w) whose tail

node v is active, and consists of pushing one unit of 
ow from v to w. A relabel operation applies

to an active node v. The operation sets p(v) to the smallest value allowed by the �-optimality

constraints, namely max(v;w)2Ef
fp(w)� c(v; w)g if v 2 U , or max(v;w)2Ef

fp(w)� c(v; w)� �g
otherwise.

The analysis of cost scaling push-relabel algorithms is based on the following facts [12, 14].

During a scaling iteration

(1) no node price increases;

(2) every relabeling decreases a node price by at least �;

(3) for any v 2 V , p(v) decreases by O(n�).

8. Global Updates and the Minimum Change Discharge Algorithm

In this section, we generalize the ideas of minimum distance discharge and global updates to

the context of the minimum cost circulation problem and analyze the algorithm that embodies

these generalizations.

We analyze a single execution of re�ne, and to simplify our notation, we make some as-

sumptions that do not a�ect the results. We assume that the price function is identically zero

at the beginning of the iteration. Our analysis goes through without this assumption, but the

required condition can be achieved at no increased asymptotic cost by replacing the arc costs

with their reduced costs and setting the node prices to zero in the �rst step of re�ne.

Under the assumption that each iteration begins with the zero price function, the price

change of a node v during an iteration is �p(v). By analogy to the matching case, we de�ne

�(f; p) = minef (v)>0

��p(v)�, and let �max denote the maximum value attained by �(f; p) so

far in this iteration. The minimum change discharge strategy consists of repeatedly choosing

a node v with p(v) = �� and applying a push or relabel operation at v.
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In the weighted context, a global update takes the form of setting each node price so that

there is a path in GA from every excess to some de�cit (a node v with ef (v) < 0) and every

node reachable in GA from a node with excess lies on such a path. This amounts to a modi�ed

shortest-paths computation, and can be done in O(m) time using ideas from Dial's work [3].

We perform a global update every time �max has increased by at least � since the last global

update. We developed global updates from an implementation heuristic for the minimum cost

circulation problem [11], but in retrospect, they prove similar in the assignment context to the

one-processor Hungarian Search technique developed in [8].

We use essentially the same argument as for the unweighted case to analyze the part of the

algorithm's execution when �max is small.

Lemma 8.1. The Minimum Change Discharge algorithm uses O
�
(j � i)m) work during the

period beginning when � �rst exceeds i� 1 and ending when � �rst exceeds j.

Proof: Similar to Lemma 4.1.

When �max is large, the argument we used in the unweighted case does not generalize because

it is not true that �p(v) gives a bound on the breadth-�rst-search distance from v to a de�cit

in the residual graph. Let E(f) denote the total excess in pseudo
ow f , i.e.,
P

ef (v)>0 ef (v).

The following lemma is analogous to Lemma 4.2.

Lemma 8.2. Given a matching network G and a circulation g, any pseudo
ow f in Gg can

be decomposed into

� cycles and

� paths, each from a node u with ef (u) < 0 to a node v with ef (v) > 0,

where all the elements of the decomposition are pairwise node-disjoint except at the endpoints

of the paths, and each element carries one unit of 
ow.

We denote a path from node u to node v in such a decomposition by (u v).

The following lemma is similar in spirit to those in [8] and [12], although the single-phase

push-relabel framework of our algorithm changes the structure of the proof.

Lemma 8.3. At any point during re�ne, E(f)� �max �
�
(3 + �)n+ 2

�
�.

Proof: Let c denote the (reduced) arc cost function at the beginning of this execution of

re�ne, and let G = (V;E) denote the residual graph at the same instant. For simplicity in the

following analysis, we view a pseudo
ow as an entity in this graph G. Let f , p be the current

pseudo
ow and price function at the most recent point during the execution of re�ne when
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�(f; p) = �max. Then we have

E(f)� �max � �
X

ef (v)>0

p(v)ef(v):

We will complete our proof by showing thatX
ef (v)>0

p(v)ef(v) = cp(f)� c(f)

and then deriving an upper bound on this quantity.

By the de�nition of the reduced costs,

cp(f)� c(f) =
X

f(v;w)>0

�
p(v)� p(w)

�
f(v; w):

Letting P be a decomposition of f into paths and cycles according to Lemma 8.2 and noting

that cycles make no contribution to the sum, we can rewrite this expression asX
(u v)2P

(p(u)� p(v)):

Since nodes u with ef (u) < 0 are never relabeled, p(u) = 0 for such a node, and we have

cp(f)� c(f) = �
X

(u v)2P

p(v):

Because the decomposition P must account for all of f 's excesses and de�cits, we can rewrite

cp(f)� c(f) = �
X

ef (v)>0

p(v)ef(v):

Now we derive an upper bound on cp(f)� c(f). It is straightforward to verify that for any

matching network G and integral circulation g, Gg has exactly n arcs a =2 EU , and so from the

fact that the execution of re�ne begins with the residual graph of an (��)-optimal circulation,

we deduce that there are at most n negative-cost arcs in E. Because each of these arcs has

cost at least ���, we have c(f) � ��n�. Hence cp(f)� c(f) � cp(f) + �n�.

Now consider cp(f). Clearly, f(a) > 0 =) aR 2 Ef , and �-optimality of f with respect to p

says that aR 2 Ef =) cp(a
R) � ��. Since cp(aR) = �cp(a), we have f(a) > 0 =) cp(a) � �.

Now by Lemma 8.2, f can be decomposed into cycles and paths from de�cits to excesses. Let P
denote this decomposition, and observe that cp(f) =

P
P2P cp(P ). Let �(P ) denote the interior

of a path P , i.e., the path minus its endpoints and initial and �nal arcs, and let @(P ) denote

the set containing the initial and �nal arcs of P . If P is a cycle, �(P ) = P and @(P ) = ;. We

can write

cp(f) =
X
P2P

cp
�
�(P )

�
+
X
P2P

cp
�
@(P )

�
:

The total number of arcs in the cycles and path interiors is at most n+2, by node-disjointness.

Also, the total excess is never more than n, so the initial and �nal arcs of the paths number
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no more than 2n. And because each arc carrying positive 
ow has reduced cost at most �, we

have cp(f) � (3n+ 2)�.

Therefore, cp(f)� c(f) � �(3 + �)n+ 2
�
�.

Now to complete our time bound, we use the following lemma.

Lemma 8.4. Between any two consecutive global update operations, at least one unit of excess

reaches a de�cit.

Proof: This lemma is a simple consequence of the �-optimality of f with respect to p. In

particular, the de�nition of �-optimality implies that no push operation can move a unit of

excess from a node to another node with higher price change, and indeed, two consecutive push

operations on any given unit of excess su�ce to move the excess to some node with strictly

lower price change. By the de�nition of a global update operation, these properties su�ce to

ensure that a unit of excess reaches some de�cit immediately after a global update, and before

any relabeling occurs.

Lemma 8.3 shows that when �max � k, the total excess remaining is O(n=k). Lemma 8.4

shows that O(m) work su�ces to cancel each unit of excess remaining. As in the unweighted

case, the total work in an execution of re�ne is O(mk + nm=k), and choosing k = �(
p
n )

gives a O(
p
nm) time bound on an execution of re�ne. The overall time bound follows from

the O(log(nC)) bound on the number of scaling iterations.

Graph compression methods [6] do not apply to graphs with weights because the compressed

graph preserves only adjacency information and cannot encode arbitrary edge weights. Hence

the Feder-Motwani techniques do not apply in the assignment problem context.

9. Minimum Change Discharge Algorithm without Global Updates

We present a family of assignment instances on which we show re�ne without global updates

performs 
(nm) work in the �rst scaling iteration, under the minimum distance discharge

selection rule. Hence this family of matching networks su�ces to show that global updates

account for an asymptotic di�erence in running time.

The family of assignment instances on which we show re�ne without global updates takes


(nm) time is structurally the same as the family of bad examples we used in the unweighted

case, except that they are have two additional nodes and one additional edge. The costs of the

edges present in the unweighted example are zero, and there are two extra nodes connected

only to each other, sharing an edge with cost �.

At the beginning of the �rst scaling iteration, � = �. The execution starts by setting

� = 1. From this point on, the execution of re�ne restricted to the nodes and arcs present
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in the unweighted example parallels the execution of the maximum 
ow algorithm detailed in

Section 5.

10. Conclusions and Open Questions

We have given algorithms that achieve the best time bounds known for bipartite matching,

namely O
�p

nm log(n2=m)

logn

�
, and for the assignment problem in the cost scaling context, namely

O (
p
nm log(nC)). We have also given examples to show that without global updates, the

algorithms perform worse. Hence we conclude that global updates can be a useful tool in

theoretical development of algorithms.

We have shown a family of assignment instances on which re�ne performs poorly, but our

proof seems to hinge on details of the reduction, and so it applies only in the �rst scaling iter-

ation. An interesting open question is the existence of a family of instances of the assignment

problem on which re�ne uses 
(nm) time in every scaling iteration.
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