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Abstract

When a planning agent works in a complex, real-world domain, it is unable to plan for and

store all possible contingencies and problem situations ahead of time. The agent needs to

be able to fall back on an ability to construct plans at run time under time constraints.

This thesis presents a method for planning at run time that incrementally builds up plans

at multiple levels of abstraction. The plans are continually updated by information from

the world, allowing the planner to adjust its plan to a changing world during the planning

process. All the information is represented over intervals of time, allowing the planner to

reason about durations, deadlines, and delays within its plan. In addition to the method,

the thesis presents a formal model of the planning process and uses the model to investigate

planning strategies. The method has been implemented, and experiments have been run to

validate the overall approach and the theoretical model.
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Chapter 1

Introduction

When we as humans plan an activity, we draw upon a vast store of knowledge and experi-

ence. This knowledge and experience is accumulated over our lifetime, and in some cases is

even built up over eons of evolutionary development. When confronted with a new activity

to plan, we may �nd that we have done the same or a similar activity in the same or sim-

ilar situations, and we can use that information to suggest what we should do in this new

situation. Even when we are confronted by an unfamiliar activity or situation, we often can

�nd aspects of the situation and the activity that will be familiar, so we can piece together

a patchwork plan from bits of other plans.

Occasionally, we can �nd ourselves in situations that are so remote from our previous

experience that we have no idea what to do at �rst. For instance, we can approach that

state in games like chess, where as novices we learn the rules of the game, but we have no

experience or knowledge to suggest appropriate courses of action. Over time, we develop

the knowledge to be able to recognize familiar situations and recall the appropriate actions

for them, but at �rst we are basically searching blindly. To handle new situations, we have

the ability to build plans from scratch when our knowledge fails.

Now consider the plight of a computer agent dropped into the real world. It has neither

experience nor evolution to guide it through the countless situations and activities that it

will face in the world. The agent was likely programmed to handle some small space of
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2 CHAPTER 1. INTRODUCTION

situations, but the relative size of this small pre-programmed space compared to the vast

space of possible situations it may encounter makes it much more likely that it will range

outside of its store of knowledge and experience. As with humans, the computer agent must

have a facility to fall back on that will allow it to reason in these foreign environments. And

with the computer agent, this facility is even more important, since it will need to rely on

these skills a large percentage of the time.

This thesis addresses the problem of how a computer agent builds plans in the case

where it does not have pre-compiled information about how to achieve its goals. This is the

skill that the agent will need to have so that it can fall back on this skill when its meager

store of experiences is inadequate for its environment.

The �eld of planning has spawned a range of techniques that enable computers to

construct plans to achieve speci�c goals. Unfortunately, the world is not as simple as these

techniques would like to assume. The world is a complex web of interacting forces, many too

many for the computer to account for. And on a smaller scale, it is even too hard to model

single human (or other) agents in the world. So the computer agent can only imperfectly

predict what the future holds. In particular, while achieving its own goals, it may �nd that

actions do not have the precise results its internal model produces.

The agent may also need to monitor continuous events that coincide or overlap. It may

need to respond with actions over a duration of time. The actions themselves may coincide

or interact. So the agent must be able to represent and reason about these continuous

temporal events.

The world waits for nobody, not even the planner. As the environment dynamically

changes and moves forward, the agent faces time constraints within which it must take

actions. If the agent removes itself from the outside world to think deeply about a problem

it is trying to solve, it may awaken again only to �nd that the world has passed it by, and

the problem has either disappeared, changed, or progressed to the point where the original

solution is worthless. So the agent must be able to work within varying time bounds imposed

from the outside environment. Furthermore, it must not sever its ties with the environment

while it reasons, but rather should monitor the world and change its internal model of the
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world, and its resulting plan, accordingly.

We present a planning method that reasons about this dynamic world, continually up-

dating its world model to agree with the information it receives from the outside world.

The world model represents the temporal nature of events and actions. The planner incre-

mentally builds plans to achieve its goals, and adapts these plans to the changing situation.

The method as a whole provides an agent with the facility for building plans outside of its

breadth of experience.

1.1 Existing planning work

Other researchers have delved deeply into speci�c aspects of the planning problem, exploring

particular techniques or formalisms designed to work well within that speci�c niche. Little

attention, however, has been directed towards �nding approaches that are appropriate for

the entire problem as we have described it. As is often the case, adding the additional

requirements of the integrated approach complicates the details of the solution, but also

constrains the approach to eliminate many candidate approaches. In a general sense this

work follows directly from the constraints that building a real-world planner places on the

process. In a real sense many of the details were dictated by these constraints.

The majority of current planning work concentrates on planning in a space of plans

[Chapman, 1987; McAllester and Rosenblitt, 1991]. The operations within this space are

adding ordering constraints between steps, adding equality constraints between variables, or

adding steps to an existing partially-ordered plan. This general technique is not appropriate

for real-time environments, since the partially-ordered plan does not necessarily contain

actions that are applicable in the current world. Therefore, if an agent using this planning

technique is forced to act before completing its plan, it would receive no guidance from the

plan.

This thesis is based on an incremental planning technique. Other planners for resource-

bounded situations have taken the approach of incrementally expanding a plan (see for

instance [Drummond, 1989; Durfee and Lesser, 1986; Bratman et al., 1988]), but none has
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addressed the range of issues this work does. Existing approaches are limited to static

worlds, unchanging during the planning process, and static world descriptions, making it

cumbersome or impossible to represent the continuous nature of the real world.

Another approach used to build a plan under resource bounds is to use a \quick and

dirty" approach to build an approximate plan, then to improve the plan incrementally

[Rymon et al., 1992; Boddy and Dean, 1989]. The advantage is that often the rough

approximation is an executable plan from the current state to the desired goal state. But

the approximate plan may be arbitrarily bad. In addition, the approximate techniques

again use simpli�ed world descriptions that do not capture the dynamic nature of the real

world.

Formal approaches to resource-bounded planning are designed to explore and analyze

features of the planning process under speci�c and carefully crafted conditions [Horvitz,

1987; Dean and Boddy, 1988; Ginsberg, 1994]. These conditions are even more severely

limiting than for the other resource-bounded planning approaches, and the assumptions

hold for only a minuscule portion of the universe of planning situations where a planner

might be needed.

The most popular technique for \fast" real-time planning has been to precompile plans

for all or many possible world situations [Schoppers, 1987; Mulder and Braspenning, 1992].

For a limited domain that can be carefully controlled this is attractive. After all, this

places the problem back into the region where the computer can rely on existing experience

and knowledge to solve the problem, which we have said seems to be preferred at least

by humans. The problems are twofold. The \experience" must be generated brute force

rather than through experiential learning, so generating this knowledge is a formidable

computational task, not to mention a daunting storage and retrieval task. And beyond the

edges of its knowledge, the computer agent is lost, with not even a shred of information

to tell it what to do. In a real-world domain, the storage and computational complexity

would make it unrealistic to store all possibilities, or even a large portion of the space of

possibilities, so the chance of the computer agent straying beyond the limits of its knowledge

is dangerously, and we think unacceptably, high.
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The use of abstraction in planners is a well-accepted technique to organize the planning

process and make it more e�cient. Existing work has focused on constructing and using

abstraction in planners freed from the con�nes of resource bounds [Knoblock, 1991; Unruh,

1993]. But since one of abstraction's intended e�ects is for e�ciency, it is natural to apply

it to the problem of planning under time constraints.

Since we have argued for a world in which events and actions occur over intervals of

time, our own work rests on work for representing temporal information. The research that

focuses particularly on temporal representation is concerned more with the properties of the

temporal formalisms than with their application in a resource-bounded environment [Allen,

1983; Dean, 1985; Vere, 1981; Penberthy, 1993]. Since we are building on the ideas, we use

temporal representation more as a tool than an end in itself, so we are more concerned with

the details of how to represent and reason about time in a way that will support our more

general planning goals.

One of the fundamental distinctions of this work from much of the rest of the �eld is

its explicit attention to the fact that the world is a dynamic and somewhat unpredictable

environment. Thus any planning agent within the environment must be prepared to receive

information at any time that changes its model of the world. Furthermore it must incorpo-

rate that information into its planning process, modifying its plan as necessary to account

for this new information. Traditionally planning and replanning have been considered dis-

joint operations. We will argue that the two are inseparable in the changing real world,

where information may change during the planning process.

1.2 What is real time?

The term \real time" has nearly as many de�nitions as there are researchers who investigate

it [La�ey et al., 1988]. A common de�nition is that a real-time system should respond within

a �xed time bound. Although producing a response quickly is important, our emphasis is

not on the initial response time, but rather on the incremental improvement of the response

over time.
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A �xed time deadline is important for applications where a single response is required

within a hard deadline, after which the response is useless. For example, a system producing

real-time video output would need to produce a new video image every 1/30th of a second.

In our work, we are more interested in situations in which the time deadlines are variable,

even possibly changing after the agent receives them and starts to plan. Also, the deadlines

may be too short for the agent to produce an optimal solution. Therefore, we are particularly

concerned with the ability of our method to adapt to whatever time resources are available.

The absolute amount of time is not of paramount importance, as it is in real-time control

systems. Rather, the critical feature is the behavior of the agent under a range of time

bounds, where the bounds themselves may change during planning.

1.3 Contributions

This thesis describes an approach to planning that constructs plans under time constraints

while adapting to changes in the world. In particular, the planning method demonstrates

the following abilities:

� The method operates within arbitrary and changing time bounds, building the best

plan it can within the amount of time available. Given more time, it will produce a

better, more complete plan.

� The method continually incorporates new information into its model of the world and

adapts its plan accordingly.

� The method represents the dynamic and continuous nature of information and events

in the real world.

The desired planning behavior is achieved by incrementally building plans at multiple

levels of abstraction. In particular, the approach is realized in the following ways:

� The approach incrementally builds plans at multiple levels of abstraction. The plan

at any given level of abstraction may be incomplete, but is still used as a partial
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framework around which the planner can build more speci�c plans. As the abstract

plans deepen, they provide a more constraining and stable framework for the speci�c

plans, but even in an incomplete state, they o�er guidance to limit the search through

the more speci�c space.

� The approach plans forward in time, starting from the current state and adding oper-

ators that lead towards the goals. This ensures that there is always a plan pre�x that

is applicable in the current situation, even if the planning process has not completed.

If the plan has been expanded at the lowest level of abstraction, then the pre�x at

that level can be executed in the current situation.

� The approach merges planning and replanning into a seamless and inseparable process.

A plan is a changing data structure, changed by the planner adding actions to it, by

the world changing in unanticipated ways, and by the planner revising its plans to

match the world model.

� The approach represents information temporally over intervals of time. It maintains a

global record of its observations, expectations, and intentions, not just at a particular

instant in time, but over all times.

1.4 A guide to the thesis

In this chapter, we describe the problem that has motivated the work in this thesis, and we

broadly describe our work and how it extends current work in the �eld. In Chapter 2 we

discuss an example that illustrates the abilities that a planning agent needs to work in a

real-time, real-world domain. In Chapter 3 we explore our planning method in more detail,

elaborating the particular techniques that endow the method with its particular behavior.

In Chapter 4 we expand the discussion to include the implementation of the method in a

working system. In Chapter 5 we present an analysis of the method using a mathematical

model of the problem and approach. In Chapter 6 we see the results of examining the

method empirically for an o�ce robotics domain. In Chapter 7 we go into more detail on
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the existing work in the �eld and how our work compares to it. And in Chapter 8 we discuss

open issues and conclude.



Chapter 2

An Example

Consider a robotic agent with the task of building communications towers out of various

materials. For instance, the agent could be building towers using such materials as wood

poles, metal poles, plastic poles, cement, or pontoons. These pieces would be put together

into a base and a latticework for the tower (see Figure 2.1).

Suppose that the agent has descriptions of the domain at multiple levels of abstraction.

At the highest level of abstraction it could have operators for building pieces of the struc-

tures, for instance a tower base or a segment of a tower. Adding each piece of a tower

depends on previous pieces being there; for instance, the agent wouldn't plan to put the

top on the tower before it planned to build a base.

At a lower level of abstraction the agent could have operators for more detailed opera-

tions: digging holes, constructing forms, mixing cement, pouring cement, assembling poles,

etc. Again, there are dependencies among some of the operations. For instance, pouring

the cement requires that the forms are constructed.

At even lower levels the agent could plan the use of tools and materials to implement

the operations, and at the lowest level the agent could plan its executable motions.

One day, the agent receives two tasks: (1) build a 10-foot tower in one day, and (2)

build a 30-foot tower in three days. The actual time to build the towers is just under a day

for the smaller tower and two days for the larger tower, but because of delays the agent will

9
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Figure 2.1: A robot building a communications tower.

want to interleave steps (see Figure 2.2). Given the initial goals, the agent gets to work

putting together a plan to build the towers. Suppose it is on dry land, with a supply of

metal poles, wooden poles, and cement available.

At the most abstract level, the available operators that are applicable in the current

state are the operators to build the bases of the two towers. Building a higher level of a

tower depends on having the lower levels built, so those operators are unavailable at �rst.

Since there is no dependency between the two towers, the agent decides to add both

operators into the plan as a set (see Figure 2.3). Note however that the agent can be in only

one place at a time, so the time intervals over which the towers can be built are constrained

to avoid overcommitting the agent.

Because it only has access to certain base-building tools, for instance a cement mixer and

post-hole digger, for a short time, the agent decides to leave the abstract plan un�nished

while it expands out the base-building plan to an executable level. It will return to add

more to its abstract plan once it has expanded out some more speci�c plans. It could even

start executing the beginning of the plan before it has �nished planning the complete task.

The agent expects that once it has executed the actions in service of building the bases

of the towers, the bases will exist. Because of possible problems, it will wait until it gets

con�rmation of the bases existing before asserting the truth of the statement, but it can
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Goal:  10' tower built

Goal: 30' tower built

Exp: base-building tools available

Exp: metal poles available

Exp: wooden poles available

Exp: cement available

Exp: water available

Current State

0 1 2 3 4 5

Figure 2.2: The initial information available to the robot. Its goals are to build towers. Its
current expectations are that various building materials will be available for the foreseable
future and that some tools will be available for a limited time.

build 10' tower base

build 30' tower base

build both tower bases Exp: 10' base built

Exp: 30' base built

current state

Figure 2.3: Abstract operators applicable given the current information.
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additional goals constrain the choices available at the lower level. In particular, the agent

will switch from metal to wooden poles for the smaller tower.

At this point, the agent learns that other construction agents in the area have depleted

the water source, and that there won't be enough water for the cement for a day. This

precludes the possibility of mixing cement for that time period. This drastically changes

the part of the plan that deals with the larger tower, which now would not be �nished in

time given this delay. This narrows the choice of plan pre�xes to the point where building

the base with wooden poles is clearly preferred.

At this point the agent can commit to the plan using the wooden poles, considering the

time available and the superiority of that possibility. So it now can begin executing the

plan. The agent will build the base of the shorter tower because of its deadlines.

While the bases are being built, the agent may �nd a tool missing and may have to

use a di�erent tool to accomplish the same task, but the small change doesn't disturb the

overall plan.

The agent continues on with its plan for building the remainder of the towers. While it

is doing that, it receives word that the taller tower should really be only 20 feet tall. This

changes the part of the plan for that tower while leaving the rest of plan una�ected.

The agent �nishes the base of the �rst tower, and now moves on the the rest of that

tower and the base of the second tower. Because of the deadline for using the post-hole

digger, it decides to begin the base of the second tower.

However, one of the other construction agents accidentally backs into the already-

constructed base of the shorter tower and dislodges some of the poles. So suddenly our

agent's belief that the base is done has been contradicted by information it receives, and it

will have to replan that part of its plan.

In this way the plan for constructing the towers gets developed incrementally and mod-

i�ed as new information arrives. The agent executes the beginning of the plan before it

�nishes expanding the plan completely, and continues to add to the plan while it is execut-

ing.

The construction agent exhibits the types of abilities that the work in this thesis is
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designed to produce. In particular:

� The agent builds plans incrementally at multiple levels of abstraction, allowing it to

meet deadlines as they appear. The agent �rst builds an abstract plan that includes

steps for building tower bases, then expands that to an executable level because of

time constraints on the tools available for building bases.

� As the abstract plans are extended, they add constraints to the more speci�c plans.

The additional information about how the upper segments of the towers will use metal

poles constrains the agent to avoid using metal poles for the bases of the towers.

� The agent represents and reasons about temporal information, including deadlines,

durations, and delays. The agent is given deadlines to begin with, and learns about

new deadlines as it expands its plan. It receives information about the lack of water,

and reasons about the delay that would add to the plan.

� The agent adapts its plan to �t the current state of the world. As it receives informa-

tion, the agent incorporates it into the evolving plan. When the agent learns of the

lack of water, or the damage to the shorter tower base, it modi�es its plans according

to the new information, and continues planning from that point.



Chapter 3

Abstraction planning in real time

We describe the approach by decomposing it into its representation, its method for plan

construction, and its replanning behavior. The representation is the foundation on which

the planner is built. Since the planner is designed to work with concepts and actions over

time, the representation is designed around a temporal framework. The plan-construction

method is described by �rst explaining in some detail how individual operators are selected

and added to the plan. Then we step back to see how the plan as a whole develops at multiple

levels of abstraction. We then see how replanning is integrated into the planning method,

both in terms of individual operators and in terms of the overall behavior. Although many

of the details have been inuenced by what we learned from implementation, this discussion

is restricted to those aspects that would appear in any implementation.

3.1 Representation

The basic representation for operators derives its general form from the classical planners

such as Strips [Fikes and Nilsson, 1971], Nonlin [Tate, 1977], Sipe [Wilkins, 1988], and

Deviser [Vere, 1981], although some details have changed to support the particular needs

of this approach. The representation for states requires a general temporal representation,

such as Time Maps [Dean, 1985]. Again, there are particular features that are adapted to

this particular approach.

16



3.1. REPRESENTATION 17

3.1.1 State representation

The state of a planner must be expressive enough to represent the information necessary

to decide whether to plan and when to take particular actions. We choose for our state a

representation that captures the internal mental state of the planning agent. The internal

mental state captures not just the agent's beliefs about the current state of the world, but

also its beliefs about the past and future. This is an extension of traditional planners,

which view states as points in time. The expanded notion of state is because the choice of

an action may depend not only on what the world state is at a particular point in time, but

also on the state of the world before and after that time. For instance, if the agent is driving

towards a cli�, it must anticipate that it expects to drive o� the cli� enough ahead of time

to be able to brake to a stop. Or an agent may decide that since a warning sensor has been

on continuously for 60 seconds, that it should take an action to correct the problem. To

handle these sorts of situations, the agent acts based on its complete mental state about

the past, present, and future.

Thus our idea of state is a timeline of intervals1 representing the mental state of the

agent. We divide the timeline into three distinct types of information: occurred, expected,

and intended (this is derived from [Ash and Hayes-Roth, 1990; Pardee et al., 1989]). Oc-

curred intervals represent readings from the sensors with minimal interpretation. Expected

intervals represent the agent's derivations about the world. Information from the occurred

intervals is copied to the expected intervals, along with inferences about the persistence

of occurred intervals and predictions, and other inferences made by the planner or other

computational processes within the agent. The intended intervals hold the goals of the

agent|both the initial goals that the agent is trying to achieve, as well as intermediate

goals generated within the planning process.

By distinguishing these three types of timelines, the agent can compare the information

on them to derive information that will drive its planning behavior (see Figure 3.1). For

instance, if an interval appears on the occurred timeline that conicts with a corresponding

1We use the term interval to refer to a proposition (in particular, that a parameter satis�es a predicate)

over an interval of time. We use the term time interval to refer to the interval of time.
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occ: x = 5

exp: x = 5

int: x = 5

occ: y = 6

int: y = 7

exp: y = 7 exp: y = 8

I1

I3

I2

I4

I5 I6

I7
time

Figure 3.1: A planning state. Interval I1, I2, and I3 are compatible. Interval I4 mismatches
with I5, indicating that the expectation I5 is not met. Interval I6 mismatches with interval
I7, indicating that in the current state, the intentions are not expected to be met.

interval on the expected timeline, the agent can infer that its expectations may be incorrect;

thus, any plan based on those expectations may need revising. If the agent generates an

expected interval that conicts with an intended interval, it is predicting that it will not

achieve one of its goals; thus, it may be necessary to add to or change its plan to achieve

that goal.

Underlying temporal representation

The temporal representation necessary to support the planning method must capture a wide

range of constraints among time points. All of the reasoning in the system is expressed in

terms of time intervals, but constraints on the endpoints of the intervals suggest a point-

based approach. The particular constraints that are generated are:

� t1 R t2+c for time points t1 and t2, an arithmetic relation R (one of <;�;=; 6=;�; >),

and a numeric constant c.
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� t R c for a time point t, an arithmetic relation R, and a numeric constant c.

This is similar to Reid Simmon's Quantity Lattice [Simmons, 1986].

Time intervals are built out of these time points. We make a careful distinction between

open, closed, and half-open intervals, because they make an important di�erence when

�guring out when and whether actions are applicable. For example, if an action is planned

to execute as soon as a condition occurs, then the action will occur over an interval that is

open at the start time of the condition. Without the distinction, it is impossible to correctly

determine whether an action is applicable in a given situation, and unintended loops can

result. So a time interval is of the form (start-time-bound end-time-bound) where

a time bound is of the form (relation time-point), where a relation is the appropriate

arithmetic relation, in this case denoted as one of :lt, :le, :eq, :ne, :ge, :gt. For instance,

to represent the half-open interval [0; 10), the time-interval would be ((:ge 0) (:lt 10)).

Given this representation, we also need to make a distinction between necessity and

possibility. When looking up to see whether a time-point t falls in an interval i, the system

may �nd that t is necessarily outside of i, possibly within i, or necessarily within i.

3.1.2 Operators

Operators, as in any state-based classical planner, represent a transition from one state to

another. We generalize the traditional approach to allow a set of operators within a single

state transition (as in Drummond's Situated Control Rules [Drummond, 1989]). We discuss

sets of operators in more detail in Section 3.2 below. But a state transition, whether by one

operator or a set of operators, will involve a change to the expectations in the world state.

Consider the set of actions that an operator (or set of operators) generates. These actions,

when executed in the world, have a set of expected e�ects. The e�ects are expectations

because the system cannot necessarily predict with precision what e�ects the actions will

produce in the real world. In many cases, sensor readings will con�rm or deny the success of

the actions at execution time, but at planning time the system can only post expectations

about the actions' e�ects.
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preconditions:

((robot-location (:ge 0) (:le 0) ( 6= value :no-value) :assign

rob-loc)

(grant-location (:ge 0) (:le 0) (= value rob-loc)))

resource conditions:

((robot-resource (:ge 0) (:lt 10))

(grant-resource (:ge 0) (:lt 10)))

actions:

((pickup-grant '(:ge 0) '(:lt 10)))

effects:

((grant-location '(:ge 10) '(:le 10) :at-robot :at-robot))

Figure 3.2: A sample operator to pick up a grant.

A single operator has preconditions and postconditions that are similar to a classical

planning operator, but with added time intervals. The conditions describe the time intervals

over which the conditions must be true for the operator to legally execute (see Figure 3.2).

Each instance of an operator has associated with it an operator execution time variable t.

The range of t is those values for which each of the preconditions is true. Each precondition

of an operator is of the form

(parameter-name start-bound end-bound value-test

:assign temp-variable)

The start-bound and end-bound describe a relative time interval over which the condition

must hold. A relative time interval (:ge a) (:le b) describes the time interval [t+a; t+b],

where t is the operator execution time. A precondition is true when its value-test is true

everywhere within the interval [t+a; t+b]. The process of triggering an operator, or �nding

whether it is applicable in the current state, is the process of restricting the range of t by

matching successive preconditions against the state.

The value-test is the function that tests the condition, taking the parameter's value

and returns T or NIL, and the temp-variable assignment (optional) stores the value of the

parameter for a particular instance of the operator. Since the value-test may admit more

than one value (for instance, a test that the value is less than 3 could match intervals where



3.1. REPRESENTATION 21

the value was, say, 1 and 1.6), the assignment is done for the value at the start of the

interval. The temp-variable may be used in the value-tests of subsequent preconditions, as

well as the actions of the operator. The assignment could be generalized to save the entire

history of the parameter over the time interval, but at the cost of additional computational

complexity in later conditions that inspected the value.

A parameter may appear in two conditions of an operator. For instance, the operator

might look for an interval over which a parameter satis�ed one relation followed by an

interval over which the parameter satis�ed another relation.

Additionally, an operator has resource conditions, which describe a common resource

that multiple operators may share. A resource condition is of the form

(resource-name start-bound end-bound value-test)

with the bounds and value-test having the same meaning as in a precondition. For example,

a blocks world operator to move a block with a single robot arm would use a resource

condition on the robot arm so that other operators needing the arm would not be planned

concurrently. They are particularly used with sets of operators, discussed in Section 3.2.

An operator also has binding conditions, which are meant simply to retrieve parameter

values needed for the actions, but where the current value is not a condition on the legality

of the operator. A binding condition is of the form

(parameter-name time-value :assign temp-variable)

For instance, a binding condition on a simple robot-motion operator could bind the actual

position in the binding condition if the robot's motion is independent of its position (as

in an open space). These are separated from preconditions because a change in a binding

condition parameter will not require that an operator be re-evaluated.

The actions of an operator describe the executable actions implementing an operator,

if the operator is executable. In particular, each action is of the form

(action-name start-bound-form end-bound-form

start-value-form end-value-form)



22 CHAPTER 3. ABSTRACTION PLANNING IN REAL TIME

where all the forms are executed in the environment of all of the temp-variable bindings

to produce the time-interval, start-value, and end-value for the action (the start-value and

end-value allow the action to be parameterized).

The expected e�ects of an operator describe the expected intervals that result from

executing the operator. They are each of the form

(parameter-name start-bound-form end-bound-form

start-value-form end-value-form)

where all the forms are executed in the environment of all of the temp-variable bindings

to produce the time-interval, start-value, and end-value for that e�ect. If the intervals

of the operator's e�ects start before the end of the last precondition interval, it would be

possible to produce a sequence of operators that actually move successively back in time (see

Figure 3.3). There is no prohibition against having overlapping preconditions and e�ects,

though, since the backwards-�ring operators are a degenerate case, and the added power of

overlapping operators may prove useful in some domains. The only e�ect this has on the

approach is that the default heuristic for deciding whether a goal cannot be achieved relies

on forward-�ring operators (described in Section 3.2.1).

Triggering an operator produces a range of time-points (actually, a time-point with a

range of values) within which the operator can be legally executed. The operator's e�ects

are then computed based on the legal operator times, along with the variables bound by the

operator's conditions. The process of triggering an operator is described further in Section

3.2.

3.1.3 Hypothetical worlds

A triggered operator is not necessarily executed. It is merely added to the set of operators

being considered for inclusion in the �nal plan, along with all the other possible operators.

Thus its e�ects are hypothetical, and the current world state should not reect the expected

e�ects of a merely hypothesized operator. Therefore, as with a traditional classical planner,

multiple states are maintained to hold the possible world states that the planner would �nd
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Current state:

x = 0 [10,20]

y = 0 [5,10)

z = 0 [0,5)

Operator o1

preconditions:

((x (:ge 0) (:le 10) (zerop value)))

effects:

((y '(:ge 0) '(:le 0) 0 0))

Operator o2

preconditions:

((y (:ge 0) (:le 5) (zerop value)))

effects:

((z '(:ge 0) '(:le 0) 0 0))

Operator o3

preconditions:

((z (:ge 0) (:le 5) (zerop value)))

effects:

((z '(:ge 0) '(:le 0) 1 1))

The sequence of operator executions will be:

o1 with operator execution time 10

o2 with operator execution time 5

o3 with operator execution time 0

Figure 3.3: A set of operators that will appear to �re in reverse temporal order.
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itself in (i.e., what expectations it would have) if it were to follow a particular plan. With

the expanded notion of state, however, maintaining multiple states could be prohibitively

expensive if done naively (this problem was acknowledged in Tom Dean's thesis [Dean,

1985]).

Our approach maintains multiple hypothetical worlds by recording di�erences between

subsequent hypothetical worlds. Each world can be considered a mask on the previous,

supporting world(s), changing only those intervals speci�ed in the di�erence. In particular,

if a hypothetical world speci�es a value for a parameter over the time interval [t1; t2] but not

over the time interval [t3; t1) or (t2; t4], then the value of the parameter over the time interval

[t3; t4] is the value of the parameter in the supporting world for the time intervals [t3; t1)

and (t2; t4], and the value in the hypothetical world over [t1; t2]. Note that the lookup in

the supporting world over the two time intervals may recur if the supporting world is itself

hypothetical. This makes lookups more complicated and computationally complex, but it

makes world updates more e�cient (since e�ects don't need to be propagated throughout

the entire state network), and it reduces the space complexity as well.

The fundamental behavior of the approach does not depend on having hypothetical

worlds represented by di�erences, but it rather represents a decision about the time-space

tradeo�. The di�erence-based representation does make it more straightforward to identify

actions that are appropriate for a particular world, since the only intervals within the

representation for a hypothetical world are those intervals that di�er from the supporting

world. Therefore, actions that are triggered from intervals in a hypothetical world are

necessarily dependent on features particular to that world.

Each hypothetical world has one or more founders, which are the intervals that are

axiomatic in that world. They describe the fundamental changes that distinguish a hy-

pothetical world from its supporting world. All other di�erences between a hypothetical

world and its supporting world are derivable from the founders added to the supporting

world. In the case of planning, a set of instantiated operators is the set of founders for the

hypothetical world in which the operators are executed. The operators' e�ects are derived

from the instantiated operators, and appear in the hypothetical world.



3.1. REPRESENTATION 25

preconditions:

((pole-state (:ge 0) (:le 15) (= value :bending))

(bolt-state (:ge 10) (:le 15) (= value :deforming)))

effects:

((failure-state '(:ge 0) '(:le 15) :deformation :deformation))

Figure 3.4: A sample abstraction rule.

3.1.4 Abstraction

From a representational point of view, abstraction is a way of reformulating information

from one representation into a di�erent, simpler representation and back again. The trans-

formation rules for abstraction are represented similarly to the operators described above.

The abstraction rules are represented temporally to allow an abstract proposition to reect

a pattern of speci�c intervals. For instance, the bending of a pole over an interval [t; t+15]

accompanied by the deformation of a bolt over the interval [t + 10; t+ 15] might represent

a particular type of failure, say deformation failure, that is meaningful to the abstract plan

(see Figure 3.4). If the speci�c state contains an interval of pole-bending over [15; 50] and an

interval of bolt-deformation over [30; 50], then the abstraction rule will generate an abstract

interval of deformation failure over the interval [20; 50].

An abstraction transformation has preconditions and e�ects. The preconditions are of

the form

(parameter-name start-bound end-bound value-test

:assign temp-variable)

which is exactly the same as operators. The e�ects are of the form

(parameter-name start-bound-form end-bound-form

start-value-form end-value-form)

which should look equally familiar.

When the preconditions are true, the e�ects describe the transformed representation of

the same information (this works equally well for propagating information to more abstract
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and to more speci�c levels of abstraction). The di�erence from operators is in the fact

that whereas triggering an operator produces a legal time interval over which the operator

could possibly execute (so it produces a time point within that range), an abstraction rule

produces a time interval over which the transformation necessarily holds (so it produces a

time interval describing the range).

Note that we make no assumptions about the actual form of the transformation, other

than that we are able to transform information both from less abstract to more abstract and

from more abstract to less abstract levels of description. The actual transformation rules

are dependent on the structuring of the abstraction hierarchy and must be appropriate for

the operators at the corresponding levels of abstraction. If, for instance, one were to adopt

the representational scheme used in Abstrips, then the transformation to a more abstract

level would consist of dropping conditions in the �nal goal|conditions with a criticality

ignored by the more abstract level|and of dropping no information in the states (since the

states do not change, but only the operators and the goals). The transformation downward

would also delete nothing, since the intermediate goals are of the same representation in the

abstract level as they are in the speci�c level, just with some conditions unspeci�ed. In a

Gps style of abstraction, the transformations would completely reformulate the information

into the representation of the other layer.

3.2 Planning

Planning is the process of �nding a set of operators that will lead from the current state to

a state in which the goals are achieved, or at least are expected to be achieved. For plans at

multiple levels of abstraction, these plans are built at each level, with information owing

between adjacent levels. For a planner under time constraints, these plans may not in fact

achieve all the goals or may achieve some of them suboptimally, since there may not be

time to complete the planning process.

We �rst detail what happens within one level of abstraction, in terms of triggering

operators and adding them to the plan, and then step back to see how the di�erent levels
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preconditions:

((x (:ge 0) (:le 10) (= value 3)))

effects:

((x '(:gt 10) '(:le 20) 4 4))

Figure 3.5: A simple operator that adds one to the parameter x.

of abstraction interact to form the overall plan.

3.2.1 Planning at one level of abstraction

Planning within one level of abstraction involves �nding a legal set of operators for each

state, and adding those operators to the plan in an order most likely to lead quickly to the

goal. We describe each of the components of that process in turn. First, we describe how a

legal operator is found. Then we describe how it is added to the plan. Finally, we discuss

the control used to choose the best operators to add to the plan.

Triggering operators

Each interval added to a state may allow an operator to execute in that state. It may be

enough by itself to trigger an operator, or it may be just the missing piece of a larger puzzle.

For instance, an interval where x = 3 over the time interval [5; 15] will clearly trigger the

operator in Figure 3.5. But suppose an interval instead asserts x = 3 over the interval

[9; 10], where the state already contains x = 3 over the intervals [5; 9) and (10; 15]. The

new interval would again make it possible to execute the operator, but in this case it is only

partly responsible for triggering the operator. Therefore, each operator must be considered

over the range of possible times that the new interval could assist with, not just be entirely

responsible for itself.

Given an interval over the time interval [t1; t2] and a corresponding operator precondition

over the relative time interval [tr
3
; tr

4
], the time interval that must be considered for the

operator execution time is [t1 � tr
4
; t2 � tr

3
]. We mean by operator execution time the time

point t with respect to which all of the conditions of the operator will hold, that is, for each
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preconditions:

((x (:ge 0) (:le 10) (numberp value) :assign temp-x)

(y (:ge 5) (:le 15) (numberp value) :assign temp-y)

(z (:ge 10) (:le 20) (and (numberp value) (= value (+ temp-x

temp-y)))))

effects:

((z '(:ge 25) '(:le 35) (+ temp-x temp-y 2) (+ temp-x temp-y 2)))

Figure 3.6: An operator for illustrating operator triggering. It triggers when a length-10
interval of z is the sum of x 10 time units earlier and y 5 time units earlier.

condition C with a relative time interval [trs; t
r
e], C is true over the time interval [t+trs; t+tre].

Thus the operator execution time range is a time point whose value is constrained to be

within the time interval [t1� tr4; t2� tr3]. Given the interval over [t1; t2] and the precondition

over [tr
3
; tr

4
], note that if the start bound of the interval is open, or either of the bounds of

the precondition is open, the resulting operator execution time range is open at the left.

Similarly, if the end bound of the interval is open, or either of the precondition bounds is

open, the resulting operator execution time range is open at the right.

This operator execution time range represents the broadest possible range of times for

operator execution. Once this range of times is determined, then the preconditions of

the operator are checked to narrow the time range down to one or more that satisfy the

conditions. Each condition is checked in turn. If the current estimate of the operator

execution time range is [t1; t2] and the precondition relative time interval is [tr3; t
r
4], then

all time intervals from [t1 + tr
3
; t1 + tr

4
] through [t2 + tr

3
; t2 + tr

4
] are checked to see whether

they satisfy the value test. This is done by collecting the values over the time interval

[t1+ tr3; t2+ tr4], separating o� the sub-intervals in which the value test is satis�ed, and then

returning those sub-intervals that are long enough to contain the time interval [c+ tr
3
; c+ tr

4
]

for some c. Note that this may return a set of sub-intervals, and in this case the operator

triggering procedure splits and tries to instantiate the operator further for each of the

sub-intervals.

An example may make this clearer. Consider the operator in Figure 3.6. Suppose the
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current state contains the following intervals:

x = 5 over [0,20]

x = 3 over [25,40]

y = 8 over [3,13)

z = 13 over [0,25]

z = 11 over [26,49]

Now suppose a new interval is added, either from expected plan e�ects or from the envi-

ronment, asserting y = 8 over [13,41]. The steps to trigger the operator given that interval

are the following:

1. The bounds on possible execution times for the operator are determined from the new

interval. By the formula above, the operator execution time range is constrained to

the time interval [-2,36].

2. The time range [-2,36] is now checked against the �rst precondition. The precondition

relative time interval [0,10] suggests a time interval of [-2,46] in which to �nd time

intervals where x is a number. There are two such time intervals, [0,20] and [25,40],

which, when transformed back via the precondition relative time interval [0,10], split

the execution time range into two ranges: [0,10] and [25,30]. The variable temp-x is

bound to 5 for the �rst range and to 3 for the second range.

3. The execution time range [0,10] is now checked against the second condition. The

precondition relative time interval [5,15] suggests a time interval of [5,25] in which to

�nd time intervals where y is a number. [3,41] is the interval where y is a number, and

the portion of this within the checked time interval is the time interval [5,25], which,

when transformed back via the precondition relative time interval [5,15], produces the

execution time range [0,10], unchanged. In addition, the variable temp-y is bound to

8.

4. Finally, the time range [0,10] is checked against the third condition. The precondition

relative time interval [10,20] suggests a time interval of [10,30] in which to �nd time
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intervals where z = x+y = 5+8 = 13. The condition holds over the interval [0,25], and

the portion of that within the checked time interval is the time interval [10,25], which,

when transformed back via the precondition relative time interval [10,20], produces

the execution time range [0,5]. This is one �nal execution time range.

5. The execution time range [25,30] is now checked against the second condition. The

precondition relative time interval [5,15] suggests a time interval of [30,45] in which to

�nd time intervals where y is a number. [3,41] is the interval where y is a number, and

the portion of this within the checked time interval is the time interval [30,41], which,

when transformed back via the precondition relative time interval [5,15], produces the

execution time range [25,26]. In addition, the variable temp-y is bound to 8.

6. Finally, the time range [25,26] is checked against the third condition. The precondition

interval [10,20] suggests a time interval of [35,46] in which to �nd time intervals where

z = x + y = 3 + 8 = 11. The condition holds over the interval [26,49], and the

portion of that within the checked time interval is the time interval [35,46], which,

when transformed back via the precondition interval [10,20], produces the execution

time range [25,26], which is another �nal execution time range.

The result of this procedure is the determination that the operator can be legally executed

in the time interval [0,5] or the time interval [25,26].

The procedure is similar with open and half-open intervals, the only change being that

since the transformations are not necessarily invertible, the retransformed execution time

range must be checked to make sure it still lies within the original time range. For instance,

the time range (0,5] when combined with a precondition interval (0,2], produces a time

interval of (0,7]. But the time range [0,7] combined with a precondition interval (0,2]

produces the identical time interval of (0,7]. So when the reverse transformation is done,

the algorithm �rst transforms the (0,7] back to the more generous [0,5], and then clips to

the original time range if necessary. This ensures that the time ranges are as inclusive as

possible without generating incorrect triggering ranges.
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Adding operators to the plan

The set of operators that trigger within a state is the set of operators that are applicable

in that state. Once an applicable operator has been found for a state, the agent may add

it to the plan to generate further states. Given an operator execution time range t 2 [t1; t2]

and an operator e�ect with a relative time interval [tr
3
; tr

4
], a new world is produced based

on this operator. Since the operator's execution within the time range t is hypothesized

by the agent, it is axiomatic in the new world and is the founder of that world. The

hypothetical world additionally contains the expected e�ect of the operator over the time

interval [t+ tr3; t+ tr4].

The set of operators legally executed in a state is restricted to those dependent on

some interval of that state, and not dependent solely on intervals of preceding states. In

other words, given two independent operators o1 and o2 executable in state s1, then if o1,

executed in s1, produces state s2, then operator o2 is not executable in s2. This avoids

the problem in simple state-based planners of having to consider all possible total orders of

independent operators. But to get the same functionality, our approach allows executing a

set of operators in a state. In our example, our approach allows executing o1, o2, or the set

fo1; o2g. This is also potentially a large set of possibilities, but it is of order O(2n) instead

of O(n!), and it more accurately reects the independence of the operators.

Allowing sets of operators introduces some additional complexity into the problem of

triggering, because of possible interactions among the operators in the set. For instance,

two operators may both use the same resource, so they must have their execution time

ranges adjusted so that they cannot be executed in a way that would cause a resource

conict. Also, if one operator's e�ects would a�ect another operator's preconditions, then

the execution time ranges must be modi�ed to avoid those times that would cause a conict.

Operators may be independent even when they have potential resource conicts or

precondition-e�ect interactions. Note �rst of all that all operators legal in a state are

triggered independently of all other operators' e�ects (in fact, the operators' e�ects do

not appear within this state, but rather in subsequent hypothetical states). And second,
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note that we are restricting the execution time ranges of operators within the set precisely

so that there are no resource conicts or precondition-e�ect interactions. The operators'

remaining execution time ranges are such that the operators are truly independent when

executed within those time ranges. Note that independence does not imply concurrency.

An operator executed at time 0 may be independent of an operator executed at time 100,

so we may include them in a set of operators. All independence means is that there is no

cause-e�ect relation between any pair of operators within the set.

To restrict the operators within a set so that they are truly independent, the planning

agent must, as we have said, restrict the execution time ranges so that there are no resource

conicts and no precondition-e�ect interactions. For every pair of operators within the set

of operators, the execution time range of the two operators in the set is restricted to avoid

these conicts, and that restricted time range is used in further pairwise comparisons.

To restrict the execution time range of a pair of operators o1 and o2 using resources,

constraints are constructed based on the operators' shared resources. Suppose for such a

resource, operator o1 has a resource relative time interval [tr11; t
r
12] and an execution time

range p1. Suppose similarly that operator o2 has a resource relative time interval for the

same resource of [tr21; t
r
22] and an execution time range p2. Then p1 and p2 are restricted by

adding the constraint:

[p1 + tr
11
; p1 + tr

12
] \ [p2 + tr

21
; p2 + tr

22
] = ;

To restrict the execution time range of a pair of operators o1 and o2 so that their

preconditions and e�ects do not interact, constraints are constructed based on parameters

that are mentioned in the e�ects of one operator and the preconditions of another. Suppose

that o1 has an e�ect relative time interval [tr
11
; tr

12
] (including persistence) and an execution

time range p1. Suppose similarly that operator o2 has a precondition relative time interval

for the same parameter of [tr21; t
r
22] and an execution time range p2. Then p1 and p2 are

restricted by adding the constraint:

[p1 + tr11; p1 + tr12] \ [p2 + tr21; p2 + tr22] = ;.
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The constraints based on resources and precondition-e�ect pairs are the most taxing for

a temporal representation. We discuss alternative ways of approaching the problem with a

simpler representation when we discuss the implementation in Chapter 4.

Control within one level of abstraction

Even within a single level of abstraction, the search space for planning is still prohibitively

large. That is, after all, why abstraction is needed in the �rst place. Once intermediate

goals are added from more abstract levels of abstraction, the search space becomes more

manageable, but it is still large, and plans that achieve the intermediate goals should be

favored over ones that do not. This �ts into the model of best-�rst search, so that is used

to control the search within a single level of abstraction. The default evaluation function

computes the extent to which the current plan expectations achieve all the goals. States

that more completely achieve the goals are favored over states that achieve them to a lesser

extent. For �nite goals and expectations, the measure is simply the percentage of the

goal interval where the expectation agrees/disagrees with the goal. For 0-length goals, the

measure is all-or-none. For in�nite goals, the theoretically correct measure is again all-or-

none, depending on whether the expectation is in�nite and completely covers the goal. But

potentially troublesome cases appear when both are in�nite but the expectation covers all

but a �nite amount of the goal (this looks the same to the evaluation as an expectation that

actually covers the entire goal), or when the expectation covers a large, but �nite amount of

the goal (this is indistinguishable from an expectation that achieves none of the goal). The

practical, although not as clean solution to this problem, is to set an upper bound on the

length of an interval for the purposes of evaluation, so there will be a small, but measurable

di�erence in the cases described above, while preserving the major di�erences that are used

in most cases.

A penalty may be placed on states in which goals cannot be achieved. Since we do not

know how to weight this appropriately in relation to the evaluation above, we do not include

this in the default evaluation function. But we consider it a potentially useful heuristic, so

we describe it here. A goal cannot be achieved over a time interval in a state when all of
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the founders of the state start after the end of the time interval. As long as one founder

starts earlier than the end of the time interval, there may be a sequence of operators that

achieves the goal (see Section 3.1.2 for necessary conditions on the operators for this to be

true in all cases).

Commitment

The expansion of operators and hypothetical states may provide useful information about

what e�ects we can expect from di�erent courses of action. But without committing to

these plans, the agent will not take any action, since none of these operators or e�ects

exist in the \current" state of the planner. Remember that the plans may not be complete,

but may represent the best partial set of operators known for making progress towards the

goals.

The agent decides to commit to a plan under a number of di�erent conditions. It may

be running short on the time available until its best plan will need to be executed. It may

�nd that a plan is good enough with respect to the goals that it is willing to ignore other

alternatives and commit to that plan. It may �nd that one plan, although not outstanding

on its own, far outshines the competing plans, so that work on the other plans would be

unproductive.

The agent will commit to any portion of a plan that satis�es the conditions for commit-

ment. The agent continues extending the plan after committing to a plan pre�x, but that

pre�x is considered �xed.

By committing to a plan, the agent e�ectively reduces its planning search space by

pruning alternative branches from the search space. All of the operators of the chosen plan

are added into the current state, along with their expectations. At the executable level,

any actions produced by the operators are then scheduled for execution by an independent

daemon|a simple sort of execution module|that compares the current time versus the

intended execution time of each action, and sends the actions to the appropriate e�ectors

when their time has come.

For the agent to commit to a plan, that plan must be the best one at that level of
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abstraction. Although the agent may consider many alternative plans while expanding its

search space, it always keeps track of the best plan known so far. As the plan is expanded,

the agent compares the expanding plan against its record of the best plan, and updates the

best plan as necessary to maintain current and correct information.

This model of commitment paints the picture of an agent that searches through a space of

hypothetical operators and states to �nd which operators it should add to the current plan.

In traditional planning this would be restricting the possible plan modi�cations to operator

additions. It also closely resembles the basic approach of the Soar architecture [Laird et

al., 1987], which performs automatic subgoaling to choose which of a set of operators to

execute in its current state, with the search continuing from that state. Our framework can

commit to multiple steps at a time, which resembles Soar with its chunking mechanism.

3.2.2 Planning at multiple levels of abstraction

Although the planning techniques described above form an interesting method in their

own right, such a method is, as are all single-level planning methods, too ine�cient to

solve complex problems in any reasonable amount of time. Certainly we cannot expect the

techniques to provide by themselves a real-time planner that will be of much use, since

they face a daunting search space both for initial planning and for recovering from errors

or unexpected changes in the world. To allow the planner to operate e�ectively in the real

world, we add in abstraction to help both in building the plan and in revising the plan as

more information is received. In this section we concentrate on the initial plan construction.

We discuss replanning in Section 3.3.

Propagating world information

Information about the outside world is received by sensors and posted in the current world

at the appropriate level of abstraction. Sensors are normally associated with the lowest,

executable level of abstraction, but there is no prohibition in our model against sensors at

arbitrary levels of abstraction.

The sensor information is posted in the current world on the \occurred" timeline. This
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Figure 3.7: Transfer of information between adjacent levels of abstraction.

information is checked against the current expectations (we discuss in Section 3.3 how this

a�ects the planning process), and it is also propagated to higher levels of abstraction to

ensure that their model of the world is correct and that their plans are useful for the

currently known state of the world (see Figure 3.7).

Recall from Section 3.1 that information is propagated across levels of abstraction using

abstraction rules, which resemble operators. As information arrives about one level of

abstraction, the abstraction rules are used to transform the information and post it in the

current state of the next higher level of abstraction.

Propagating initial goal information

The initial goals may be speci�ed at multiple levels of abstraction. Since the goals are

part of the state, represented as intended intervals, they can be treated similarly to world

information. As with world information, the information about the initial goals is prop-

agated throughout the abstraction levels to ensure that the abstract plans will be solving

the appropriate (albeit more abstract) problem. The process to abstract the initial goals

is precisely the same as for propagating world information: abstraction rules transform the
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Figure 3.8: Operator e�ects in an abstract plan are propagated to create intermediate goals
at the next lower level of abstraction.

goals and post them in higher levels of abstraction, from where they are propagated further.

Propagating intermediate goal information

When an operator is added to the best plan at any but the lowest level of abstraction, the

operator and its e�ects are added to a hypothetical state at that level. Since the system has

no way to directly execute the operator|unlike the executable level, where actions may be

sent to the e�ectors|it must �gure out how to actually achieve those e�ects. So the e�ects

are propagated to the next lower level of abstraction as goals to be achieved (see Figure

3.8). This type of goal propagation can also be found in Knoblock's thesis [Knoblock, 1991].

One can view this technique as posting generic actions which are then instantiated by the

lower levels. For instance, a higher level action might be to travel from one point to another,

leaving it for the lower level to choose the most appropriate form of transportation.

Unlike other approaches, we make no assumptions about a strict ordering among the
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effect3 [15,20]{o1,o2} o3

Figure 3.9: Operators may produce e�ects that are \out of order" with respect to the order
of plan construction. The resulting intermediate goals at the lower levels of abstraction will
be similarly ordered.

intermediate goals inherited from more abstract planning. Nor do we assume goal indepen-

dence, which many people who assume strict ordering also assume. For instance, Knoblock's

results rest on his assumption of goal independence, which even with strict goal ordering

does not hold for even simple classic problems such as Sussman's anomaly or register swap-

ping.

If the agent were to assume goal independence, it could treat goals as \milestones" to

be achieved one at a time, ignoring all other goals. This is not reasonable in the case of

interacting goals, so for complex, real-world problems this is not a feasible approach.

Even the assumption of a total order of goals is unreasonable when working with tem-

poral information. For instance, at the abstract level one operator may have e�ects over

the time interval [0,10], which triggers another operator that produces e�ects over the time

interval [5,15]. When these goals are propagated to the next more speci�c level, the inter-

mediate goals overlap.

Furthermore, since sets of independent operators may carry the search from one state

to another, there is not even a guarantee that steps at the abstract level will have any

particular temporal relation to earlier steps. For instance, an agent may have a set of two

operators, o1 producing e�ects over the time interval [0,10] and o2 producing e�ects over

the time interval [30,40] (see Figure 3.9). Suppose an operator o3 is triggered by the e�ects

of o1 and produces e�ects over the range [15,20]. Operator o3 is \after" o1 and o2 in the

plan-construction process, but its e�ects actually appear before those of o2. So when we

propagate these e�ects to a lower level of abstraction, the temporal order of the intermediate

goals will not mirror the order of the plan-construction process.

So what can a planning agent do with this potential jumble of goals? It takes them as a
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conjunction of goals and gauges its progress in relation to the entire conjunction. This can be

performed more e�ciently than it might seem at �rst glance. All of the goals are intervals on

the timeline. If intervals are indexed by parameter and time, then as expectations are added

to the timeline, they can be checked against those goal intervals that share the parameter

and overlap in time. This restricted check is su�cient for determining goal satisfaction, and

is an operation local to a small portion of the total set of timeline intervals. In this way,

updating of goal achievement can be computed locally.

Recovery from subgoal failure

When an intermediate goal is found to be unachievable, the agent should propagate infor-

mation about that back up to the level from which the goal was derived. In particular, a

failed intermediate goal in our approach corresponds to the possible failure of an operator's

expected e�ect at the more abstract level. The abstract operator's expected e�ect is over-

ridden by the information from the speci�c level. Any operators, and more generally any

parts of the plan, that depend on that e�ect will have to be modi�ed or replaced. The basic

approach here is similar to how the agent replans given sensor reading mismatches|the

details of that and the replanning process appear in Section 3.3.

Note then that a goal failure does not necessitate replanning at the more abstract level.

If, despite this failure, the abstract plan is still determined to be the best available, then

the abstract plan remains untouched. In this case, the intermediate goal at the lower level

is removed, and the planner continues without that goal. Depending on the criticality of

the goal to the overall plan, the agent may decide either to ignore the goal or to replan to

compensate for its failure. For example, if the agent decides at the abstract level to build a

tower on a base of metal poles, but �nds that it has no spare metal poles but instead has a

base already made of wooden poles, then it may ignore the \metal" goal and continue with

its plan, building the rest of the tower on the wooden base.
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Figure 3.10: Plans may be expanded at any of multiple levels of abstraction.

Control over multiple levels of abstraction

The agent interleaves the incremental expansion of its plan at multiple levels of abstraction.

Because of this, the agent is faced with the task of deciding how much planning to perform

at each level at any given time (see Figure 3.10). If all the agent's energy were applied to the

most abstract level, it would mimic the behavior of systems such as Abstrips, expanding

each level completely before continuing on to the next level of abstraction. The problem

with this approach is that it requires that the optimal plan is found at every non-executable

level before the �rst step is planned at the executable level. This is unreasonable in a real-

time environment, where the agent may not have the resources to �nd the optimal plan at

any level of abstraction, much less almost every level, before it begins to act.

Suppose instead that the agent took the opposite approach, and planned a minimal

amount at each abstraction level, perhaps just enough to stay ahead of the speci�c level's

plan. This also is likely to be suboptimal. The abstract plan has a high chance of error,

since it is only minimally expanded and might change substantially when expanded. Also, if

the intermediate goals interact, the agent will discover the interactions only when the goals

are all present. If the goals are added after the agent has planned a signi�cant amount of

the speci�c plan, the speci�c plan might well prove less optimal than if the complete set of
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interacting goals were available while the agent built the speci�c plan.

The appropriate plan-expansion strategy falls somewhere in between these two extremes.

The general problem of formulating an ideal strategy depends on many characteristics of

the problem, such as the branching factor of the plan, the variability of the world, and the

depth of the plan, so there is no universally optimal approach. In Chapter 5 we describe

how to �nd strategies that are optimal for some important aspects of the problem. Here we

discuss the tradeo�s inherent in the choice of a strategy.

Expanding a plan at any level of abstraction is a search process, and as such, may be

expensive. Abstract plans often do not become as deep as speci�c plans, but they still carry

a fair overhead. On the other hand, abstract plans provide intermediate goals to the more

speci�c plans, so they reduce the search at that more speci�c level. If an abstract plan is

producing goals that do not reduce the speci�c search more than the cost of the abstract

search (for instance, the goals are too far in the future, or they are too vague to limit the

speci�c possibilities signi�cantly), then it is a net loss in search time to expand the abstract

level instead of the speci�c plan.

Emphasizing one of the points mentioned above, we see that the amount of aid an

abstract plan gives to a speci�c plan depends on the usefulness of its goals. So the approach

needs to be sensitive to the ability of the goals generated by the abstract plan to reduce the

speci�c search. If the abstract plan is expanded too far, then its goals are likely to be less

useful to the speci�c plan.

A longer plan is more likely to approximate the optimal plan for a given level of ab-

straction. In particular, since abstract plans form a framework within which the speci�c

plans are built, longer abstract plans o�er a more stable overall plan. However, as shown

in the extreme case, a speci�c plan, or at least a partial plan, must be generated in the

amount of time available. In addition, the speci�c plan may be used to react quickly if the

time available is reduced dramatically and the system is forced to execute something. Thus

there is a tradeo� between reactivity to changing resources and the stability of the overall

plan.

In a similar vein, a longer abstract plan is more likely to give rise to a more optimal
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overall plan. The longer abstract plan is more likely to be correct, and this is used as a

framework around which lower level plans are built. Therefore the overall plan is more

likely to be correct when more work is done at abstract levels.

If an abstract plan is too uncertain, then it may be worth postponing further planning

work until the agent receives more information from the world that will constrain the

abstract plans. Otherwise expanding the plan will o�er vanishingly small amounts of useful

aid to the lower-level plans.

A planning agent also must not ignore the amount of time available until an action is

required. With a short deadline, the agent might not be assured of �nding an executable

action in time if it ignores the deadline, so this also must be taken into account when

deciding how much e�ort to expend at each level of abstraction. With shorter deadlines,

more relative e�ort must be spent at the executable level than some of the other tradeo�s

might suggest.

Control of plan execution

As the agent commits to steps of its plan, the corresponding executable actions are scheduled

for execution. In particular, the action intervals describe a schedule for execution, and this

schedule is sent to the e�ectors. Depending on the sophistication of the e�ectors, the actions

are either sent along with time information when they should be executed, or a daemon

within the agent relays them at the appropriate time.

In the extreme time-pressured case, we might reach a deadline before arriving at a

single executable action. Although the control strategy should prevent this from happening

in all but the most extreme cases, our approach can produce an action quickly if necessary.

First, remember that the approach always maintains the complete list of actions that it has

triggered for each state. This includes the current state at the executable level. Although

the initial goal is likely to be of little use, an obvious �rst cut would be to �nd the operator

rated highest by the search control with respect to that goal. But given a bit more time,

we can follow the following procedure: Find the lowest level of abstraction at which a plan

exists. Propagate the e�ects from that plan to goals at the next lower level of abstraction.
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Find the best �rst step with respect to those goals at the lower level of abstraction. That

in turn will produce a set of intermediate goals at a still lower level of abstraction, and the

procedure is repeated until the executable level is reached. The rationale behind this is

that the abstract levels produce goals that are close enough to the current state to provide

meaningful guidance to the lower level plans, while expending a minimum of e�ort to supply

the guidance.

3.3 Replanning

An important, but oft-neglected feature of real-world domains is that the world does not

always conform to the internal model that the agent maintains. The planning agent is not

necessarily the only agent acting on the world, so events may occur that are unexpected by

the planner. Some of the predictions made by the planning agent may not be completely

accurate in a dynamic environment; in particular, the planned actions might not have the

e�ects that the planning agent has envisioned.

To function in such an environment, the planner must be able to accept unexpected

information, incorporate it into its model of the world, and adjust its plan to conform to

this new model. Within a single level of abstraction, the new information may force some

operators to be removed from the plan, possibly requiring the plan to be revised. Operators

may also be triggered by the additional information, adding steps and branches to the plan.

The new information may cause replanning at multiple levels of abstraction.

Since our approach is designed to work with partial plans at multiple levels of abstrac-

tion, replanning actually uses the same mechanism as planning in the �rst place. Once

the world model and plan have been adjusted to �t the new information from the world,

partial plans remain at the various abstraction levels. They are possibly less complete than

they were before the information arrived, but they are still just as usable by the planning

method (see Figure 3.11).
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structure (the plan) and reacting to changes in it.
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3.3.1 Replanning at a single level of abstraction

When a sensor records an event in the world, an interval is placed on the occurred time-

line at the appropriate level of abstraction. That information is then propagated to the

expected timeline. If the new information triggers new operators, the operation of the plan-

ner is exactly as described in Section 3.2.1 above: the possible range of execution times is

computed for the operators, and they are added, singly and in combination with any other

operators applicable in that state, to the space of operators that the planner is searching.

For further information about the process of triggering operators and adding them to the

plan, see Section 3.2.1.

If, however, the new information contradicts information that an existing operator relies

on, then the operator is revised. The planner maintains dependency information about

which intervals are used to trigger each operator, so when an interval is overridden, it is

a simple matter to �nd the set of a�ected operators. If the new information only partly

obviates some condition of the operator, then the range of possible execution time ranges

is narrowed to match the remaining condition that does match, using the same procedure

as operator triggering to determine the new range of possible execution times.

Once an operator's execution time range has been changed, the time range of the e�ects

will also change. Note that this is a change to a set of expected intervals. So the same

procedure that we just described, revising operators based on changes to expected intervals,

now applies to these new intervals. This procedure will iteratively update the plan and

propagate the changes throughout the a�ected portion of the plan.

The agent is left with the portion of the plan that is applicable in the new state of the

world, as the agent now knows it. Since the basic planning process takes a partial plan as

input and expands it, this new plan is suitable input to the planning process. So the agent

can continue expanding the plan from this new state. Basically, we can view the agent as

reacting to changes in the plan. It reacts in the same way to its own changes to the plan

and changes imposed by the world.
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3.3.2 Replanning at multiple levels of abstraction

When a plan is being constructed at multiple levels of abstraction, then unexpected changes

in the world may a�ect more than just the particular level of abstraction to which they are

reported by the sensors. So the additional problem presents itself of �nding the a�ected

plans at all levels of abstraction. Here we can adopt an approach dating back to Noah

[Sacerdoti, 1977], in which the change is abstracted up through the abstraction hierarchy

until the abstraction transformation produces data that do not change the world at some

level of abstraction.

This behavior of abstracting the change up through the levels of abstraction actually falls

out of our existing method without any additional mechanism. We describe in Section 3.2.2

how state information is propagated up through the levels of abstraction. And we describe

in Section 3.3.1 how world changes are represented as new state information. Therefore

the changes are propagated automatically by the mechanisms for recording changes and

propagating state information.

Moreover, the desired behavior at each level of abstraction also falls out automatically

from the single-level replanning as described in Section 3.3.1. At each level, the plan is

revised to match the new information.

Note that this may have e�ects at more than a single level. As the plans are revised,

the intermediate goals propagated to lower levels of abstraction may change. So as the

changes propagate throughout the layers of the plan, the intermediate goals may change

also, which may change the idea of the best plan at a level. That may in turn change the

goals propagated to the next lower level, and so forth. But the important point of all of

this is that this behavior is all covered by the existing planning mechanisms.

3.4 Summary

We have described an approach to constructing partial plans simultaneously at multiple lev-

els of abstraction. These plans are built based on the planner's state of information about

the past, present, and future. The plans are expanded incrementally as long as the planner
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has time available. In addition, the planner remains sensitive to the dynamic environment,

revising the plan to match new information as it arrives. This process of replanning �ts

within the model of building the plan initially, so that planning and replanning are inte-

grated together into a seamless process that incrementally molds the plan into a increasingly

optimal form.



Chapter 4

Implementation

The planning approach in this thesis has been implemented within the BB1 blackboard

problem-solving architecture [Hayes-Roth, 1985]. We will discuss the aspects of the architec-

ture that are relevant to the planning system, and then discuss details of the implementation

as they augment or di�er from the method as discussed in Chapter 3.

4.1 BB1

BB1 is a blackboard-based problem-solving architecture. For a complete treatment of BB1,

see one of [Hayes-Roth, 1985; Hayes-Roth et al., 1987]. Here we give an overview of the

architecture and then present the details that are particularly relevant for the work in this

thesis.

BB1 is a reasoning architecture that supports opportunistic reasoning. The blackboard

is a global data structure that serves as a communication medium for multiple reason-

ing components. The reasoning components are implemented as set of knowledge sources,

which are activated by changes in the contents of the blackboard and execute to produce

more changes. Opportunistic reasoning is enabled by this data-driven knowledge-source

activation|when something changes on the blackboard, a knowledge source may be acti-

vated automatically. Contrast this with a typical programming language, where procedure

calls are made in accordance with a �xed control structure, rather than as a direct response

48
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to changes in the data. This much of BB1 closely resembles production systems as seen in

[Laird et al., 1987; Nilsson, 1992].

An additional feature of BB1 is its explicit and declarative representation of control.

Many production-style systems retain a �xed control structure, allowing opportunistic rea-

soning within this �xed control. But BB1 has a control plan that is declarative and mod-

i�able by reasoning actions. In particular, a knowledge source may have as its results a

change in the overall control of the system.

4.1.1 The concept hierarchy

All information in BB1 is stored as part of a concept hierarchy, which is similar to a semantic

network or conceptual graph [Sowa, 1984]. Objects are part of a type hierarchy, but also

have named links to other objects, expressing relationships among them. All objects in the

BB1 system, including knowledge sources, control objects, and reasoning data structures,

are objects in the hierarchy and may be inspected and reasoned about by the system.

4.1.2 The basic architecture

The basic reasoning cycle of BB1 is shown in Figure 4.1. We start at the bottom, with

events that record changes in the blackboard. The agenda manager checks each available

knowledge source against each event, and all triggered knowledge source instantiations

(KSARs) are placed on the agenda (along with the unexecuted KSARs from previous cycles).

The scheduler then uses the information from the control plan to choose the best KSAR

to execute. The executor executes the KSAR, and its actions create events that start the

cycle over again. The reasoning continues as long as there are KSARs to be executed.

The control plan provides global coherence to the reasoning process by favoring KSARs

that are relevant for the goals of the reasoning system. Given appropriate control knowledge,

the system may notice important KSARs from other reasoning modules and modify the

control to execute the new KSARs and follow that line of reasoning.

The architecture is designed to support multiple reasoning components concurrently.

The information from each component appears on the blackboard and may be used by other
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Figure 4.1: The basic BB1 reasoning cycle.

reasoning components. The planner we describe in this thesis may be considered one of many

reasoning components within a larger reasoning agent. For instance, the basic persistence

module could be supplanted by a component that follows a more knowledge-based approach

to prediction. In addition, these other components may modify the blackboard contents and

consequently a�ect the plan much in the way that an external environment might. When

we discuss the interactions of the planner with the external environment, we also include in

our view any other reasoning modules that might be a�ecting the plan, or in other words,

anything external to the planner itself.

4.1.3 Interaction with the environment

BB1 has been extended to interact with an external environment. In Figure 4.2, the basic

control structure has been augmented with a communication channel to sensors and e�ec-

tors. The basic cycle is unchanged, except that now external events may be generated by

sensors and used to trigger reasoning operations, and the execution of KSARs may gener-

ate external actions in the e�ectors. The external communication with the outside world
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Figure 4.2: The BB1 cycle augmented to communicate with an external environment.
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is asynchronous and controlled by the reasoning system (BB1) as well as by the communi-

cation channel to avoid overwhelming the system with data [Washington and Hayes-Roth,

1989].

The data that do arrive at the system can trigger KSARs, so that with this added

communication channel, reasoning can be opportunistic with respect to the external en-

vironment. The interaction of the environment with internal reasoning is critical to our

approach, both in the initial planning and in changing the plan in ways that require replan-

ning.

4.1.4 BB1 languages

The basic BB1 knowledge-source language has been augmented with a higher-level descrip-

tion language that is designed to enhance understandability and also internal control of the

reasoning process. Instead of arbitrary lisp-syntax knowledge sources, the conditions and

actions of knowledge sources are expressed in a simple template grammar, where the objects

in the grammar are themselves part of the concept hierarchy. This way a knowledge source

can produce a speci�c e�ect in the blackboard that will trigger a knowledge source with a

more general condition. In planning, for instance, changing the start bound of an operator

may trigger a knowledge source that looks for any change to an operator.

We have extended the basic BB1 languages to implement our method, allowing multiple

language actions in a single knowledge source, and allowing hierarchical implementation of

an action (where a single language action may be executed by executing many subsidiary lan-

guage actions). This was necessary to implement the sometimes complex plan-modi�cation

operators.

4.2 Timeline

The temporal representation has been realized as the Timeline component. The Timeline

component is a program of 18000 lines of Common Lisp and BB1 code. The Timeline

component's basic algorithms and data structures reside in Lisp for e�ciency purposes.
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The Timeline maintains and updates a parallel model in BB1 for reasoning purposes. This

separation allows it to perform its innermost data structure handling at least an order of

magnitude faster than BB1 operations. The results of the Lisp manipulations are then

propagated to BB1 once they have been optimized to minimize the BB1 operations. The

BB1 operations cause changes in the reasoning that the system performs, so in this way we

can use the power of BB1 while maintaining the speed of a standard programming language.

4.2.1 Data structures

The approach as described in Chapter 3 represents world information using the basic unit

of an interval, which represents a proposition over a time interval. The implementation

breaks this down further, to sub-intervals, interval segments, and time points.

Underneath everything lies a network of time points. This network maintains a strictly-

ordered timeline of time points for each variable in the system. This loses the complete

generality that we need to express the general constraints of Section 3.1.1, but it limits the

computational complexity of reasoning about time points. In retrospect, the di�erence in

speed between Lisp and BB1 would suggest that this computational complexity is probably

acceptable, so we might prefer a richer temporal representation.

The time points serve as endpoints of the intervals that represent information in the

timeline. The intervals themselves are subdivided into smaller pieces for reasoning purposes.

If multiple intervals intersect and disagree over a time interval, the system has to choose a

single interval to be true over that time interval for the sake of consistency. The interval

that is chosen to be true by the system is called active within that time interval. In Figure

4.3, if C overrides B, which overrides A, then in the time interval [10,15], A and B intersect,

and B is the active interval.

If the currently active interval is removed from the timeline, one of the other intervals

will become active over the time interval. This leads to a stack-like behavior, where the

topmost in the stack is active within the time interval. To maintain that behavior, the

timeline is subdivided into interval segments. An interval segment is a time interval over

which a set of intervals intersects. In Figure 4.3, the time interval [0,10] is an interval
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Figure 4.3: The representation of intervals in the implementation. Intervals are subdivided
into interval segments and sub-intervals. In this example, interval C overrides B, which
overrides A.

segment, as are [10,15], [15,25], etc. Each interval segment maintains a stack of intervals

that intersect over the interval segment. Adjacent interval segments have di�erent sets of

intervals; in other words, an interval segment is the maximal time interval included in the

same set of intervals.

The planner and other reasoning components focus on the active interval for each interval

segment. For reasoning purposes, the set of inactive intervals is uninteresting. Therefore

the timeline maintains a set of sub-intervals, where each sub-interval is a time interval

that contains a set of interval segments with the same active interval. In Figure 4.3, the

time interval [0,15] is a sub-interval over which B is active, and it contains the interval

segments [0,10] and [10,15]. Adjacent sub-intervals have di�erent active intervals; that is,

a sub-interval is the maximal time interval over which an interval is active.

Note that there is a many-to-one mapping from interval segments to sub-intervals. Since

a sub-interval is a maximal contiguous set of interval segments with the same active interval,

each interval segment will belong to one sub-interval.

Note also that there is a many-to-one mapping from sub-intervals to intervals. An
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interval may be active over multiple time intervals because of \holes" caused by other

intervals that are active within the time intervals of the holes.

As intervals on the blackboard are added, modi�ed, and deleted, the underlying data

structures are updated automatically to reect their changes. BB1 data structures are

maintained for sub-intervals and intervals, so the reasoning system may react to changes to

either of those levels of description.

4.2.2 BB1 blackboard structures

The BB1 data structures are maintained in parallel with the Lisp data structures. As the

Lisp data structures are updated, models of the BB1 objects are updated simultaneously.

Once all of the modi�cations have been made to the Lisp structures, the BB1 object addi-

tions, modi�cations, and deletions are propagated to the BB1 blackboard. This is primarily

an e�ciency consideration, but there are also other reasons as well. Consider splitting a

sub-interval into two sub-intervals, where one will point to a new interval. Using normal

programming techniques, the sub-interval will be duplicated, and then the pointers from

the second sub-interval will be changed. If the system were to propagate the changes as

they occurred, there would be a period where the blackboard information was inconsis-

tent. By propagating the changes as a whole, the system can make a single addition of a

now-consistent object to the blackboard.

Even some of the e�ciency gains will be substantial. Consider the e�ect of adding

an interval, then deleting it. Perhaps that interval will be deemed important enough to

completely change the control plan of the BB1 system. Suppose that the interval was

merely an intermediate step in some other interval operation. Then by storing the results

of the data structure manipulations, the BB1 object would end up never being created in

the �rst place. By avoiding this object creation, the system can also avoid the potentially

expensive and useless changes to its plan that the object would cause.
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4.2.3 Hypothetical worlds

As described in Chapter 3, hypothetical worlds are represented as deltas from their sup-

porting worlds. Therefore, operations that look up information within hypothetical worlds

must return information not only about the intervals that are found, but also the time in-

tervals within which these intervals are used in the hypothetical world (since an interval in

the supporting world may be masked by an interval in the hypothetical world). The lookup

routines actually return a set of sub-interval objects (since intervals may not be active over

a single, contiguous time interval, but sub-intervals will be). These sub-intervals are paired

with time-intervals over which they contribute to the lookup.

The relations among worlds, world-founders, timelines, and intervals are all represented

in the Lisp data structures and mirrored in the BB1 object network. This way reasoning

may be performed about the BB1 objects and links, while retaining the e�ciency of working

at the Lisp level for internal timeline processing.

4.3 Planning

Planning is much as described in Chapter 3. The planning component comprises an addi-

tional 11000 lines of Common Lisp and BB1 code on top of the Timeline code. Intervals

added to the timeline trigger planning knowledge sources. These knowledge sources are in-

stantiated as KSARs for particular operators and triggering intervals. The KSARs' actions

will add those operators to the plan.

The parameters that appear in an operator's conditions are also objects in the BB1

object network. Links are strung from the operator (which is also a BB1 object) to the

parameter. As an interval is added to the timeline, the interval's parameter is checked

to see whether any operators could be triggered by the new interval. That condition will

trigger the knowledge source that does the actual planning work of triggering the planning

operator. If the planning operator's conditions are satis�ed by the new interval and the

other information on the timeline, an operator possibility object is added, which records the

variable bindings generated by the operator triggering and the time intervals over which
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the operator could be executed.

As multiple operator possibilities appear for a world, they will trigger a knowledge

source for combining the possibilities into operator sets. The combination KSARs then

check for resource and precondition-action conicts as described in Chapter 3. Because of

the simpler temporal representation, the resulting operator combinations may end up as

multiple worlds, each of which represents one part of the complex constraints that resolve

the conict. For instance, given a constraint that x 6= y for two time points x and y, two

worlds will be created, one in which x > y, and one in which x < y.

4.4 Replanning

Replanning, as described in Chapter 3, is a natural extension of our planning method.

Indeed, the very events that cause new planning operators to be added to the plan may also

cause the loss of information on which a plan step depends. In particular, as operators are

added to the plan, links are formed from the plan steps to the timeline intervals on which

they depend. As these intervals are modi�ed or deleted, the plan steps are rechecked and

revised as necessary to maintain consistency with the new information.

If an interval changes enough that an operator is no longer applicable in the world in

which it appears, that operator is removed from the plan, and its world and all worlds that

depend on it are removed as well. The planning method then expands the newly-shrunken

plan.

The same interval may also trigger new operators that were not applicable before, or

expand their potential execution interval. This also changes the possible plan expansions

available to the planner, which continues on from that situation.



Chapter 5

Analytical results

We have investigated the e�ects of abstraction on planning search analytically. Korf [Korf,

1987] shows that abstraction can reduce an exponential search problem to linear in a macro-

operator network. The macro-operator model di�ers signi�cantly from our own. The states

themselves are no more abstract at higher levels of abstraction; rather, an abstract space

contains a subset of the states at lower levels of abstraction. The only states that can be

abstracted are those states shared with the next more abstract level, so there is a search

within a level of abstraction to �nd a state that can be abstracted. And the abstract search

completely obviates the need for lower-level search.

Knoblock [Knoblock, 1991] uses a more traditional planning search space. He shows that

abstraction can reduce an exponential planning search to linear with appropriate abstrac-

tions, but that result only holds under a set of strong assumptions. We take a di�erent and

weaker set of assumptions that are more reasonable for a temporally-represented domain.

We cannot achieve the exponential-to-linear gains under our model, but we can show the

following:

� how much abstraction is appropriate when the environment may change;

� the optimal amount of abstraction for any given problem;

� the change in the optimal amount of abstraction as the plan lengthens.

58
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First we review the assumptions that underlie the analysis and discuss how the planning

process operates under these assumptions. Then we address each of the three points above.

5.1 Basic assumptions

We assume blind search at each level of abstraction, with a constant branching factor b

across all levels. As described in Chapter 3, the states of an abstract search are translated

into goals for the next more speci�c level of search. The reason for this is that the agent

is trying to implement the abstract plan at the lower level by achieving each of the states

that the abstract plan reaches.

Our approach to planning only enforces dependencies among subsequent steps in a

plan at a given level of abstraction. If there is a sequence of states s0; s1; s2 in the plan,

where a set of operators O1 = fo11; o12; :::o1mg produces s1 from s0, and a set of operators

O2 = fo21; o22; : : : ; o2ng produces s2 from s1, then each o2i depends on the results of some

o1j . Each such o2i does not have to strictly follow the e�ects of the o1j , but may overlap.

Hence the e�ects of an operator o2i may overlap with the e�ects of the operator o1j on

which it depends, and may be completely temporally independent of all other operators in

the set O1. When these steps are propagated to become goals at a lower level of abstraction,

subsequent intermediate goals may overlap temporally or even be \out of sequence."

Because of this lack of strict ordering among intermediate goals, the search at the speci�c

level cannot use the goals as \milestones" in the sense of [Knoblock, 1991]. Knoblock

assumes that the search can achieve one intermediate goal completely independently from

all previous and subsequent goals. This is a problem even without our lack of strict temporal

sequence (for instance, the Sussman anomaly or register swapping are examples where this

assumption does not hold), but in our domain it is completely untenable.

Instead of viewing the set of intermediate goals as milestones, we see the goals, taken as

a set, as constraining the search at the lower level of abstraction. We express this by taking

the probability of an arbitrary goal ruling out an arbitrary state (i.e., if the system reaches

the state, the goal will never be achieved) as p. For g goals, the probability that any single
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state is not ruled out by a goal is (1� p)g. For a search of branching factor b, the fringe at

depth 1 will be b(1� p)g, the fringe at depth 2 will be ((b(1� p)g)b)(1� p)g = (b(1� p)g)2,

and in general the fringe at depth i will be (b(1�p)g)i. Therefore, where a completely blind

search of branching factor b and search depth d expands

bd+1
� 1

b� 1

nodes, adding g goals will reduce the search space to

(b(1� p)g)d+1
� 1

b(1� p)g � 1

nodes.

Given n levels of abstraction, where level 1 is the most speci�c and level n is the most

abstract, and plans expanded to depth di at each level i, we assume that there is some k � 1

such that d1 = d2k = : : : = dnk
n�1. That is, for any two adjacent levels of abstraction,

the ratio of their plan lengths is k. Note that for any speci�c domain there would also be

an upper bound on k corresponding to the ratio of steps at one level to steps at the next

more abstract level; otherwise the abstract search could lag behind the speci�c search. Our

analyses are valid with or without this upper bound.

When an abstract search propagates a goal to a speci�c level, the existing search tree at

the speci�c level is �rst revised using the new goal, then extended from the new (smaller)

fringe. This incurs some overhead for revising the existing search tree, but remember that

the fringe of a full search tree is of the same order as the entire search tree, so this overhead

is balanced by the savings in extending the search. Since the new search will be from the

smaller fringe, the savings will be at least as high an order as the revision work.

5.2 Abstraction in a changing environment

The problem we address in this section is how much abstraction is desirable when the

world can change. We assume a blind search to some depth d at the executable level.

Given di�erent abstraction depths and di�erent probabilities of world changes a�ecting
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the abstraction levels, we show how much work is lost. We normalize across the di�erent

problem situations by analyzing the work lost as a percentage of the total work.

A blind search of branching factor b and search depth d expands

bd+1
� 1

b� 1

nodes. Recall that we assume that given n abstraction levels, for n > 1, where level 1 is the

most speci�c, level n is the most abstract, and the plans are expanded to depths d1; : : : ; dn,

d1 = d2k = : : : = dnk
n�1 for some k.

We de�ne wi =
bdi+1�1

b�1
to be the amount of work done at level i.

Given a change in the external environment, we denote by pi the probability that the

change will a�ect level i, causing it to be replanned. We assume that 1 > p1 > p2 > : : : >

pn > 0, which indicates that more abstract plans are more immune to noisy or changing

data. We assume strict inequality, discarding the case p1 = p2 = : : : = pn, since in that case

we can derive that the percentage of work lost is constant (namely pi for any i) independent

of any other factor. The case where the pis are equal not only makes the analysis unrevealing

in terms of how much abstraction is appropriate, but it is also, we believe, an unrealistic

assumption.

To compute the amount of work lost, �rst we note that when level k is a�ected by a

world change, all levels < k will also need to be replanned. So the absolute amount of work

expected to be redone for n levels of abstraction can be represented by the value of W (n)

for the following recurrence relation:

W (i) = pi
Pi

j=1 wj + (1� pi)W (i� 1); for i > 1

W (1) = p1w1

If we de�ne �i = pi
Qn

j=i+1(1� pj)for i < n and �n = pn, we can restate W (n) in the form:

W (n) =
nX

i=1

�i

iX
j=1

wj

The total amount of work done is:
nX

m=1

wm
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Hence the percentage of work lost is the ratio of the two, or:

Pn
i=1

�i
Pi

j=1
wjPn

m=1
wm

To determine how di�erent amounts of abstract search a�ect the amount of work lost,

we observe the result of varying k, the ratio of search depths between adjacent levels of

abstraction. In particular, consider taking k and k
0

, where k > k
0

. Consider the case where

the total amount of work done in the two cases is equal, so that

nX
i=1

wi =
nX

j=1

w
0

j

In general, we will use �
0

to refer to the value of � when using k
0

as the ratio between levels

of abstraction.

Thus in comparing the percentage of work lost, we only need to compareW (n) toW
0

(n).

In particular, we will determine the sign of W (n)�W
0

(n).

Note that

W (n) =
Pn

i=1 �i
Pi

j=1 wj

=
Pn

i=1
wi

Pn
j=i �j

We de�ne ci =
Pn

j=i �j and restate the formula above as

W (n) =
nX

i=1

wici

Similarly for the case where the ratio is k
0

, we de�ne

W
0

(n) =
nX

i=1

w
0

ici

Now recall that d1 > : : : > dn and d
0

1
> : : : > d

0

n. From this it follows that w1 > : : : > wn

and w
0

1
> : : : > w

0

n. Furthermore, since k > k
0

, it follows that w1 > w
0

1
and wn < w

0

n.

Therefore, there exists a value l such that wi � w
0

i; 1 � i � l and wi < w
0

i; l < i � n.

Also observe that 1 > c1 > : : : > cn > 0, which follows from the de�nition of the cis.
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We are trying to determine the sign of W (n)�W
0

(n):

W (n)�W
0

(n) = (c1w1 + : : :+ cnwn)� (c1w
0

1
+ : : :+ cnw

0

n)

= c1(w1 � w
0

1
) + : : :+ cn(wn � w

0

n)

= [c1(w1 � w
0

1
) + : : :+ cl(wl � w

0

l)]�

[cl+1(w
0

l+1
� wl+1) + : : :+ cn(w

0

n � wn)]

> cl[(w1 � w
0

1
) + : : :+ (wl � w

0

l)]�

cl+1[(w
0

l+1
� wl+1) + : : :+ (w

0

n � wn)]

> cl[
Pn

i=1
wi �

Pn
j=1

w
0

j ] = 0

Therefore, when k > k
0

, W (n) > W
0

(n). In other words, a smaller amount of abstraction

leads to a greater amount of lost work. We can derive from this result that in a changing

environment, doing more abstract work is better, because less work needs to be redone.

5.3 The optimal amount of abstraction

The next problem we will address is �nding the optimal amount of abstract work to do for a

given problem situation. Given a partially-expanded plan to depth d1 at the executable level,

we would like to know how much work to do at each level of abstraction to extend the plan

s1 steps further. In particular, given the assumption stated earlier that the search depths

are related by the relation d1 = d2k = : : : = dnk
n�1, and similarly s1 = s2k = : : : = snk

n�1,

we would like to know the value of k that minimizes the work to extend the search.

The variables involved in the equation will be:

n: the number of levels of abstraction,

d: (= d1) the number of steps so far at the executable level,

s: (= s1) the number of steps to extend the plan,

p: the probability that a goal rules out a possible step in the plan,

b: the branching factor at each level of abstraction.
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The model of search we use is that the plan is extended in the following order:

� For k = 0; : : : n� 2:

{ sn�k steps are taken at the n� kth level of abstraction.

{ The additional sn�k states are propagated to goals at the next lower level of

abstraction.

{ These additional goals are used to narrow the existing plan space at the n�k�1st

level|this revision of the existing plan incurs some overhead, but is quickly

outweighed by the savings in extending the space.

� Finally, the plan at level 1 is extended s1 steps.

If we denote by R(b; d; p; k; n; i) the amount of work necessary to revise a plan at the

ith level of abstraction, and by W (b; d; p; s; k; n; i) the amount of work necessary to extend

a plan s steps at the ith level of abstraction, then we can see that the total amount of work

T (b; d; p; s; k; n) necessary to extend a plan s1 steps at the executable level is:

T (b; d; p; s; k; n) =

8>>>><
>>>>:

(
Pn�1

i=1
R(b; d; p; s; k; n; i)+W (b; d; p; s; k; n; i))+

W (b; d; p; s; k; n; n); for n > 1

W (b; d; p; s; k; n; n); for n = 1

Note that the revision work is done at all but the highest level of abstraction.

The amount of work necessary to revise a plan at a given level of abstraction is merely

the size of the search space so far. The overhead of this revision is considerable, but when

we considers that the fringe of the search space is of the same order as the entire search

space, and that the size of the search space to extend a plan multiplies the size of the fringe

by the (exponential) extension search space, then the overhead is more than compensated

for by the savings when extending the search space. The actual amount of work necessary

to revise the existing plan at the ith level of abstraction is the size of the search space for

the �rst di steps when constrained by the extra si+1 goals:

R(b; d; p; k; n; i) =
[b(1� p)

d+s

ki ]
d

ki�1
+1
� 1

[b(1� p)
d+s

ki ]� 1
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The amount of work necessary to extend a plan s steps at the ith level of abstraction

di�ers when i < n and i = n. When i = n, the highest level of abstraction, the search is

not narrowed by any goals from a higher level of abstraction. At every other level, goals

from the next higher level of abstraction narrow the search.

First, we de�ne A(b; d
0

; p; g
0

; s
0

) to be the amount of work necessary to extend a search

with branching factor b, at depth d
0

, with probability p of a goal ruling out a step in the

plan, with the number of goals g
0

, and the number of steps to extend the plan s
0

:

A(b; d
0

; p; g
0

; s
0

) = [b(1� p)g
0

]d
0

2
4 [b(1� p)g

0

]s
0

+1
� 1

[b(1� p)g
0

]� 1
� 1

3
5

Then we can de�ne W in terms of A:

W (b; d; p; s; k; n; i) =

8><
>:

A(b; d
ki�1

; p; d+s
ki

; s
ki�1

); for i < n

A(b; d
ki�1

; p; 0; s
ki�1

); for i = n

We can expand this out completely to get a full de�nition of T :

T (b; d; p; s; k; n) =

8>>>>>>>>>>><
>>>>>>>>>>>:

�Pn�1
i=1

[b(1�p)
d+s

ki ]

d

ki�1
+1
�1

[b(1�p)
d+s

ki ]�1

+

[b(1� p)
d+s

ki ]
d

ki�1

"
[b(1�p)

d+s

ki ]

s

ki�1
+1
�1

[b(1�p)
d+s

ki ]�1

� 1

#!
+

b
d

kn�1

�
b

s

kn�1
+1
�1

b�1
� 1

�
; for n > 1

bd
h
bs+1�1
b�1

� 1
i
; for n = 1

We can see from this that for n > 1, as k !1,

T (b; d; p; s; k; n)!
bd+1

� 1

b� 1
+ bd[

bs+1
� 1

b� 1
� 1] > T (b; d; p; s; k; 1)

Since T (b; d; p; s; k; 1) is blind search, we see that the total work exceeds blind search slightly

as the search approaches in�nity (and the amount of excess is due to revising the existing

search space, which is not necessary when k =1, since there will be no change at any level

> 1). The value of T as k! 1 corresponds to an in�nitesimal amount of work at abstract

levels, so it makes sense that it corresponds to pure blind search.
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Figure 5.1: The amount of total work as a function of k, the ratio between levels of ab-
straction. The di�erent curves result from di�erent search depths.

We also can see that when n > 1 and k = 1,

T (b; d; p; s; k; n) = (
Pn�1

i=1

[b(1�p)d+s]d+1�1

[b(1�p)d+s]�1
+ [b(1� p)d+s]d

h
[b(1�p)d+s]s+1�1

[b(1�p)d+s]�1
� 1

i
)+

bd
h
bs+1�1
b�1

� 1
i

> T (b; d; p; s; k; 1)

The reason that this is more work than blind search is that the search space at the highest

level of abstraction is exploring the same size search space as a blind search when k = 1.

Note that the highest level of abstraction is the only level not constrained by goals from a

higher level of abstraction, so its search is not narrowed by a deeper abstract search. As long

as the search at abstract levels is signi�cantly shallower than at speci�c levels, the overhead

of this unconstrained search will be outweighed by the savings in narrowing lower search

spaces. But at k = 1, the overhead is already as large as blind search, so it is guaranteed

to take more work than blind search.

The general shape of the curve is as shown in Figure 5.1. The curve drops sharply as

the amount of abstraction decreases below the point where the overhead is the dominant

term. Then it rises again and asymptotically approaches blind search again. The optimal

value of k is the value for which the amount of work is minimized.
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Figure 5.2: The optimal value of k increases with search depth.

Although T
0

does not yield to analysis, we can use numerical methods to �nd the optimal

value of k for any given problem situation. In fact, because of the steepness of the curve,

numerical methods converge quickly on the approximate minimum.

5.4 The optimal amount of abstraction at di�erent depths

Given the analysis of the previous section, we can compute the optimal value of k, hence

the optimal amount of abstraction, for any given problem situation. For instance, we can

examine the behavior of the optimum as the depth of the search increases.

Figure 5.2 shows this for one speci�c (but representative) case. Here we assume that

we have searched to depth d at the most speci�c level of abstraction (level 1). We also

assume that to extend the search s steps, we �rst search s
kn�1

steps at level n, then s
kn�2

steps at level n � 1, using the goals inherited from level n, then so forth until we search s

steps at level 1, using the goals inherited from level 2. The two lines on the graph are the

optimum for doubling the search depth versus extending it a small constant amount (in this

case 3 steps). Note that in both cases, as the search depth increases, the optimal value of

k increases, which means that the optimal amount of abstraction decreases.
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Because we are using numerical methods to �nd the optimal value of k, this trend can

only be explained qualitatively. Recall that the most abstract search is unconstrained by

any goals. So as the search deepens, the cost of taking more steps at the most abstract level

increases. At the same time, the lower searches are becoming more and more constrained

by the goals from the more abstract plans. After a point, the incremental constraint of

adding another goal is outweighed by the cost at the most abstract level of extending the

search, so the optimum shifts in the direction of less abstract search.

5.5 Summary

Starting with a reasonable set of assumptions, we have shown the following:

� When the environment is changing, more abstraction leads to a more stable plan.

� For any given problem situation, we can determine through numerical methods the

optimal ratio of work between adjacent levels of abstraction.

� As the depth of the plan increases, the optimal amount of abstraction decreases, as

the cost of extending the abstract plan outweighs the added bene�t of the additional

goals.



Chapter 6

Empirical results

To further validate the method beyond the analysis presented in Chapter 5, we tested

it empirically by applying it to a speci�c domain. The results were produced using a

simulation of the planning system. The implemented system runs on smaller examples, but

the simulation was necessary to generate the wider range of empirical data that we needed.

We investigated the overall performance of the method to see whether it had the desired

behavior of graceful degradation under resource constraints. In addition, we repeated a

part of the analysis to see whether its predictions would hold for a real problem domain.

6.1 The domain

We chose to apply our method to the domain of an o�ce robot shuttling papers around

for grant proposal preparation. Within the domain of grant-proposal preparation, there are

operators to carry documents in various stages of preparation to other people and places for

them to be further processed. The abstract operators are more concerned with the status

of the grant as a whole and less with the robot's position relative to the paperwork.

The search space of the speci�c operators is shown in Figure 6.1. Since the arcs between

the states are of varying length, the actual search tree followed by the planner may visit a

single state several di�erent times. The actual search space with the added dimension of

time is thus unlimited in size, even though the number of states (independent of time) is

69
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R1 G1 S1     R1 G2 S1     R1 G3 S1     R1 G4 S1     R1 G5 S1

R2 G1 S1     R2 G2 S1     R2 G3 S1     R2 G4 S1     R2 G5 S1

R3 G1 S1     R3 G2 S1     R3 G3 S1     R3 G4 S1     R3 G5 S1

R4 G1 S1     R4 G2 S1     R4 G3 S1     R4 G4 S1     R4 G5 S1

R1 G1 S2     R1 G2 S2     R1 G3 S2     R1 G4 S2     R1 G5 S2

R2 G1 S2     R2 G2 S2     R2 G3 S2     R2 G4 S2     R2 G5 S2

R3 G1 S2     R3 G2 S2     R3 G3 S2     R3 G4 S2     R3 G5 S2

R4 G1 S2     R4 G2 S2     R4 G3 S2     R4 G4 S2     R4 G5 S2

R1 G1 S3     R1 G2 S3     R1 G3 S3     R1 G4 S3     R1 G5 S3

R2 G1 S3     R2 G2 S3     R2 G3 S3     R2 G4 S3     R2 G5 S3

R3 G1 S3     R3 G2 S3     R3 G3 S3     R3 G4 S3     R3 G5 S3

R4 G1 S3     R4 G2 S3     R4 G3 S3     R4 G4 S3     R4 G5 S3

R1 G1 S4     R1 G2 S4     R1 G3 S4     R1 G4 S4     R1 G5 S4

R2 G1 S4     R2 G2 S4     R2 G3 S4     R2 G4 S4     R2 G5 S4

R3 G1 S4     R3 G2 S4     R3 G3 S4     R3 G4 S4     R3 G5 S4

R4 G1 S4     R4 G2 S4     R4 G3 S4     R4 G4 S4     R4 G5 S4

R1 G1 S5     R1 G2 S5     R1 G3 S5     R1 G4 S5     R1 G5 S5

R2 G1 S5     R2 G2 S5     R2 G3 S5     R2 G4 S5     R2 G5 S5

R3 G1 S5     R3 G2 S5     R3 G3 S5     R3 G4 S5     R3 G5 S5

R4 G1 S5     R4 G2 S5     R4 G3 S5     R4 G4 S5     R4 G5 S5

Figure 6.1: The space of states possibly visited in the grant-proposal domain. Each state is
a triple of robot location (R), grant location (G), and grant status (S). The arcs represent
the possible transitions between states.
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limited.

The experiments we performed fall under the following two categories:

1. Overall performance. We explored the behavior of the method under varying resources

and search strategies. The aim here was to see whether the method would actually

exhibit the desired behavior of graceful degradation under time stress.

2. Finding optimal strategies. We examined how much search work was actually required

to expand the plan to various depths under di�erent search strategies. The aim here

was to see whether the analytical results about optimal search strategies could be

replicated in an actual problem domain.

All of the experiments are the result of applying the planning method with two levels of

abstraction to a problem that requires a search depth of 16 steps at the speci�c level, and

a search depth of 8 steps at the abstract level.

6.2 Overall performance

The �rst category of experiments measures how performance is a�ected by varying the

resources available to the planner. We measured the quality of the evolving plan during

plan construction, where quality represents the percentage of the goals actually achieved

if the steps in the plan were actually executed (see 3.2.1 for the precise de�nition). We

measured this over a number of search strategies.

Each search strategy requires a di�erent amount of search to fully expand the plan. So

combining the results from multiple search strategies can be done either by just using the

absolute search size of the searches for each strategy, or by normalizing the searches to be

a percentage of the search required to fully expand the plan. We present results from both

of those possibilities.

First, consider the absolute search e�ort expended. In Figure 6.2 that the quality of the

plan rises as the amount of search work increases. This particular result is swamped by the

worst search strategies, however. The worst search strategies will require the most search
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Figure 6.2: The quality of the plan in relation to the search e�ort expended. The data are
averaged to determine each graphed point.

e�ort, so the data points contributing to the graph at the upper end of the search e�ort

scale are almost solely from the worst search strategies.

To inspect more closely how the curve behaves in the areas a�ected by all search strate-

gies, we restrict our focus to the lower end of the search-e�ort spectrum. See Figure 6.3

for the results within that range. Although there is more variation, we still get the kind of

incremental improvement we are looking for.

Now consider the case where we normalize the results so that the total search work to

expand the plan fully is the same for every search strategy. See Figure 6.4 for the graph of

these results. The resulting curve again shows the desired behavior.

Note in all the curves that, as we might expect, we gain a fair amount of improvement

early, but require much more e�ort to improve the plan to a near-optimal level. This

supports the idea that with limited resources, we can still generate useful, albeit potentially

suboptimal plans.

To see what improvement abstraction o�ers, we compare the amount of search work

done with the optimal abstraction strategy versus search solely at the base level. In Figure

6.5 we see that the time to reach an optimal plan with abstraction is signi�cantly shorter
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Figure 6.3: The quality of the plan in relation to the search e�ort expended, restricted to
the lower end of the search-e�ort spectrum.
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Figure 6.4: The quality of the plan in relation to the search e�ort expended, when the
search spaces are normalized across search strategies.
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Figure 6.5: The quality of the plan in relation to the search e�ort expended, with abstraction
and without. The abstract plan reaches the optimum near the left edge of the graph.

than search without abstraction.

Since the graph is not overly informative about the abstract search, we further inspect

the relation between abstraction and base-level search by concentrating on the section of

the search where both abstraction and base-level search are present. See Figure 6.6 for that

portion of the graph. We see that search with abstraction is signi�cantly better for the

same amount of search than search without abstraction.

In summary, the empirical results support the basic underpinnings of the work: pro-

ducing plans with graceful degradation under time stress, and producing the plans more

e�ciently than with only base-level planning.

6.3 Finding optimal strategies

Next we explore the repeatability of the analytical results on �nding optimal strategies. For

this experiment, we varied the search depth and the search strategies to see which strategies

were best for each search depth.

Recall from the analytical results in Chapter 5 that a search strategy is changed by
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Figure 6.6: The quality of the plan in relation to the search e�ort expended, with abstraction
and without, restricted to lower amounts of search e�ort.

varying the ratio of the work done at successive levels of abstraction. So a ratio of 2 reects

that the search depth at the less abstract level is twice the search depth at the more abstract

level. This is in terms of the number of steps, since we expect the more abstract search to

extend further in time than the less abstract search.

In the actual problem domain, the abstract search reached its goal in 8 steps. Because

of that, a search depth of 8 and a ratio of 1 would reach the abstract goal. Any deeper

search would fall outside of the analytical model, so we restricted our experiment to search

depths of less than 8. Search depths of 0{4 were basically at, because the states within

that range are una�ected by the abstract goals. We include search depth 4 to reect those

depths, but we focus on search depths of 5{8 at the base level.

Figure 6.7 shows results similar to those from a purely analytical setting. Note that

in this case, the limiting value of the search work as the ratio increases past the optimal

is higher than the amount of search work required with a search ratio of 1. This di�ers

from the original analytical results because the abstract search space in the experimental

domain has a lower branching factor than the speci�c level. In the analytic model, the

branching factor is the same across levels, so the work required when the ratio is 1, where
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Figure 6.7: A plot of total search work required versus the search ratio of base-level steps
to abstract steps, for search depths 4{8.

the majority of the work is due to the abstract level, is equivalent to the work required as

the ratio approaches1, where the search is entirely at the base level. Note also in the �gure

that the work required levels o� rather than asymptotically approaching the limit. This is

because for these particular problem descriptions, the abstract level performs no work after

the point where the curve levels o� (a point which is only asymptotically approached in the

analytical model).

One feature of the state space explored by the planner is that there is a great deal

of duplication: the same state appears in multiple positions in the search tree. We have

discussed how the states are augmented with temporal information, so there are more states

possible than the set shown in Figure 6.1. However, even with the additional temporal

information, there are multiple equivalent states within the search tree.

The implemented system does not look for repeated states, since that is a potentially

computationally complex operation. But to see whether eliminating repeated states would

make a signi�cant di�erence for �nding optimal search strategies, we eliminated repeated

states from the experimental results. The results of that are shown in Figure 6.8. The opti-

mal search strategies are shifted somewhat from the original case, but overall the inuence



6.3. FINDING OPTIMAL STRATEGIES 77

0

100

200

300

400

500

600

700

800

1 2 3 4 5 6 7 8 9

se
ar

ch
 s

ta
te

s 
ex

pa
nd

ed

search ratio

’strategy-no-dup4’
’strategy-no-dup5’
’strategy-no-dup6’
’strategy-no-dup7’
’strategy-no-dup8’

Figure 6.8: A plot of total search work required versus the search ratio of base-level steps
to abstract steps, for search depths 4{8. Duplicate states are eliminated.

of the search strategies is quite similar.

A further test we can perform is to regenerate the analytical data for the particular

problem we are using for the experiments. Although the analytical model is somewhat

simpli�ed, so that some parameters of the model aren't easily characterized for a particular

problem (such as the probability of a goal a�ecting a state), we modeled the domain as

accurately as possible. The results of regenerating the analysis for various depths are shown

in Figure 6.9.

A few di�erences appear between the analytical data and the empirical data. First and

most obvious is the smoothness of the analytical data. This is because the analysis does not

model the discrete nature of the planning search|for instance, there is no way to expand

the search 0.3 steps. For the purposes of comparison, we can discretize the analytical data.

Doing that produces the graph shown in Figure 6.10. The graph now looks more similar to

the empirical results, but still some di�erences remain.

The optimal value for the search ratio is a bit di�erent in the analytical model, ranging

from 1.52 at a depth of 4 to 1.68 at a depth of 8. This compares to an optimal ratio of 1.7{

2.6 for the actual domain. The discrepancy is due to the di�erences in the actual domain
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Figure 6.9: The results of the analytical model applied to the experimental problem for
search depths 4{8.
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Figure 6.10: The results of discretizing the analytical model for the experimental problem.
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versus the model that we constructed for the analysis. But it is important to note that the

optimal search strategy for the analysis is close enough to optimal for the empirical case to

make the analytical model a useful approximation for the real domain.

The other di�erence is the behavior of the analysis for large values of the search ratio.

Because of the particular behavior of the operators in the experimental problem, the total

work required levels o� after a certain depth. The analytical model doesn't account for

such behavior, so it continues to grow slowly as the search ratio increases. This is again

a minor di�erence in qualitative terms, as it makes no di�erence in the area where we are

interested.

These results show that the analytical model provides a reasonable approximation to

the data from an actual problem. The techniques described in Chapter 5, applicable to the

analytical model, may thus be used in actual problems.



Chapter 7

Related work

This work has roots and relations spread over a wide range of the planning and reasoning

literature. In this chapter we will show how our ideas are similar and di�erent from other

work in planning and other related areas. We will organize our discussion around some of the

major themes that appear in the work: resource-bounded planning, abstraction, temporal

reasoning, replanning, blackboard-based planning, and integrated execution and planning.

Some of the cited works may fall in more than one category, or only �t crudely within one

of the boxes we have drawn; we will point out these as they appear. The discussion is not

meant to be exhaustive, but rather to cover the major ideas in the �elds.

7.1 Resource-bounded planning

A growing body of work is devoted to the problem of resource-bounded planning. There

are a few major themes within the �eld. One group of researchers �nds an imperfect but

complete plan and then incrementally improves it. Another group incrementally adds steps

to a partially-developed plan. Others �nd a single plan using static information about the

problem and resource constraints. And �nally some researchers abandon run-time planning

altogether, opting for a precomputed plan.

80
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7.1.1 Improving imperfect plans

One approach to incrementally building a plan is to build an approximate plan �rst, then

to improve it incrementally. The attractive aspect of this approach is that the system

always has a complete plan reaching from the start state to the goal, so the plan may be

improved up until execution time. The drawbacks of this approach are that building the

�rst approximate plan may take a signi�cant amount of time itself, and the quality of that

�rst plan may be arbitrarily bad.

All of the approaches discussed here assume that planning occurs before run-time. The

major e�ect of this is that there is no mechanism for incorporating new information into

an existing plan, and no way to repair a plan when it becomes outdated.

In addition, all of the approaches operate within a single level of abstraction.

Progressive horizon planning

Rymon, Webber, and Clarke [Rymon et al., 1992] present an algorithm they call progressive

horizon planning. The basic idea is that a simple polynomial algorithm is used to produce

as complete a plan as possible. Then the beginning of the plan is explored exhaustively:

for each possible alternative plan pre�x, the simple algorithm is run to add a more-or-less

complete plan from the end of the pre�x to the goal. This complete plan is then evaluated

to compare the competing plan pre�xes.

The reason that the plan pre�xes are more carefully explored is that the �rst few steps

are the most important in a real-time, unpredictable domain, and the world may change

and make later steps inapplicable by the time they are reached anyway. The pre�xes are

restricted to a �xed size, which is 1 in the described implementation. This size, or any

�xed size, may not be appropriate for all problems or resource limitations, and may lead to

horizon e�ects. Also, the initial plan may be arbitrarily bad, so optimizing the �rst step or

�rst few steps of an arbitrarily bad plan may not get you very far.

The reason that complete plans are evaluated is to provide some global perspective on

the evaluation. But again, the completions of the plan pre�xes may have no relation to
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the best possible plan completion, so evaluating the results of the quick and dirty plan

completion algorithm may have no relation to the actual worth of the plan pre�x.

Boddy and Dean

Boddy and Dean [Boddy and Dean, 1989] present a continuation of their work on anytime

algorithms [Dean and Boddy, 1988], focusing here on ways to build and improve plans in an

anytime fashion. Their paper actually falls within both the realm of improving imperfect

plans and extending incomplete plans.

Their basic idea is to construct an incremental planner, speci�cally a path planner,

by combining an incremental best-�rst search with an incremental edge-swapping route-

improvement algorithm. Within their limited domain, they found that combining the two

incremental techniques provided more bene�t than either one in isolation. To reach this

conclusion, they make the assumption that all steps of the plan are of equal cost, so the

result is of questionable generality.

If one considers the operations of adding a step to the plan and swapping two edges of

the plan to be the basic plan modi�cation operations, then the algorithm becomes a best-

�rst search through the space of plan modi�cations, which is a standard planning technique,

in this case exhibiting strict anytime behavior.

Reaction-�rst search

The work on reaction-�rst search [Drummond et al., 1993] falls best under the heading of

improving incomplete plans, although it is actually restricting a search space by incremen-

tally extending a simulation of a reactive system. The approach assumes an underlying

reactive system that is simple enough to simulate. A planning system on the side is allowed

a certain amount of time to suggest plan constraints to the reactor to help it improve its

plan.

The planning system is told that the reactor's job will be to achieve a goal or set

of goals. The planning system then simulates the reactor's program faithfully, including

any probabilistic choice points. When it �nds a dead end, it backs that information out
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and revises its plan to eliminate the dead end from consideration. The evolving plan is

guaranteed to improve monotonically, since at worst the planner is simulating the best plan

known, and at best is improving it. So the expected value of the plan improves monotonically

over time. When the deadline for action arrives, the planner sends the reactor the revisions

to its original plan in the form of advice not to take certain branches of the plan, namely

the ones that are guaranteed to lead to dead ends.

For a complex domain, the assumption that the reactor's search space can be e�ectively

explored is at best a questionable one. Since the plan only improves when dead ends are

reached, then these dead ends must actually be found, which may take a large amount of

search. In addition, a domain with reversible actions will completely defeat the method.

7.1.2 Extending incomplete plans

The planning method described in this thesis relies on incrementally extending the plan at

multiple levels of abstraction. A few other researchers have also adopted the approach of

extending an incomplete plan. By building a plan incrementally in this way, the planner

always has an executable plan pre�x that it can use when deadlines arrive.

For this approach to be useful, the planning must be done left to right so that there is a

usable plan pre�x. Also, the quality of the plan pre�x depends on the search control. With

good search control, the plan pre�x will closely approximate the optimal plan. With search

control of lower quality, the plan pre�x may diverge arbitrarily far from the optimal plan.

Real-time A�

Korf [Korf, 1990] describes a heuristic search technique for incrementally extending a search

in best-�rst fashion. This is a weak-method search, in that it can be used anywhere a

standard search technique is used. It relies completely on its search control, since it operates

at a single level of abstraction. It also uses the classical notion of static and discrete states

and operators, so it is of limited use in dynamic domains. The basic technique is useful as

a basis for other algorithms, however.
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Bratman, Israel, and Pollack

Bratman, Israel, and Pollack [Bratman et al., 1988] o�er a general discussion of the is-

sues involved with combining means-ends reasoning, deliberation among alternatives, and

resource-bounded reasoning. The architecture they present is general, and vague on details,

but the general idea is that unsatis�ed \intentions" are the important aspects of the plan

(as opposed to \desires"). Means-ends reasoning is used to build plans for those intentions.

Other gaps in the plans are �lled in with means-ends reasoning as resources allow. The

deliberation mechanism is left undescribed.

The major drawback with this approach is that by committing to build plans for the

intentions, the planner is required to do a potentially large amount of work before the

resource-dependent improvements are made.

Durfee and Lesser

Durfee and Lesser [Durfee and Lesser, 1986] present a blackboard-based approach that uses

multiple levels of abstraction. Within the domain of vehicle control, the system plots tracks

at high levels of abstraction, which then provide intermediate goals to the lower levels of

abstraction.

The generalities sound similar to the work in this thesis, but there are many di�erences.

First, the plans at the higher levels of abstraction are completely expanded|only the lowest

level of abstraction is expanded incrementally. In contrast, our approach is uniform across

all levels of abstraction, so that the plans are expanded incrementally at all levels. The states

are annotated with times, but they are merely annotations about the expected position of

the vehicle at particular times, as with as air-tra�c control system. There is no general

treatment of time. The states and goals are considered to be \milestones" by the lower

levels, which try to to achieve them in sequence. We have argued that this is unrealistic for

complex domains.
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Situated control rules

Some of the basic underlying ideas of this thesis share some similar features with situated

control rules [Drummond, 1989]. The ideas of situated control rules are relatively simple: A

plan is built incrementally from the current state forward in time, allowing sets of parallel

operators as well as individual operators. A best-�rst search is performed within this space

of operators and operator sets, and this may be terminated at any time. In addition, new

information about the environment will move the current state to a di�erent point in the

search space, where the search will continue or restart.

The simplicity of the approach is also its weakness. There is no treatment of time in

situated control rules, and the states are discrete and static. There also is no treatment of

abstractions and how they a�ect the search.

7.1.3 Formally-based approaches

In this section we discuss approaches to resource-bounded planning that are concerned

mainly with the problem of having a clear mathematical formulation of the planning problem

and solution. In doing that, they of necessity give up some of the power that more informal

solutions provide, trading that o� for mathematical elegance and simplicity. For example,

abstraction is not an easily-formalized technique, so is missing from these approaches. Also,

although temporal information has been formalized by a number of researchers, temporally-

based resource-bounded approaches have not yielded to much mathematical analysis.

The formal approaches can also su�er from the problem that real domains often do

not behave the way that formal models require. Real domains may not have context-

independent utilities, or at least not any that are easy to determine. They also just may

not follow any easily-determined rules that would be necessary to carry out the analysis

required by the approaches.
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Decision theory

Horvitz [Horvitz, 1987] is the name most closely associated with resource-bounded planning

using decision theory. His approach shows how one could �nd the optimal planning step to

take given enough utility measures. Although the approach is attractive in that it assures

an optimal solution given the resource constraints, it also requires utilities of an order that

are rarely available, or would require immense e�ort to catalog even approximately.

Dean and Boddy's original work on anytime planning [Dean and Boddy, 1988] also

falls reasonably within the category of decision-theoretic approaches, since it is designed

to produce a plan of increasing utility over time. Again, it su�ers from the problem of

determining utility, and also from the lack of complex algorithms that strictly satisfy the

de�nition. It puts a number of restrictive requirements on the problem domains that are

not easily realized in real domains. For instance, actions must occur at exactly the expected

time.

Approximate planning

Ginsberg [Ginsberg, 1994] tackles the problem of resource-bounded planning by building

an \approximate" plan. An approximate plan is a nonlinear plan that is approximately

correct, in the sense that any exceptions to the plan|things that would make the plan

fail|are of measure 0 in the plan. For instance, if there are an in�nite number of possible

variable assignments, a plan with a variable assigned is of measure 0 in the plan without an

assignment. Basically, the idea is that there are in�nitely more ways for the plan to succeed

than to fail, so the probability of the plan failing is 0.

One obvious problem with this approach is that it needs an in�nite domain. A �nite

domain will have no plans of measure 0. There is no distinction between low and high

probability exceptions in a �nite domain, so a complete plan would have to be built for all

�nite domains.

Even for in�nite domains, this approach still requires a �xed amount of time no matter

what the resource bounds, so there is no adaptation to various resource allocations.
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7.1.4 Reactive planning

An extreme approach to resource-bounded planning is to precompute the optimal action for

all possible situations. In that case \planning" is reduced to matching the current situation,

via a table lookup or discrimination net, to the set of precomputed situation-action pairs,

and then performing the associated action.

The prototype of this approach is the universal plans approach [Schoppers, 1987]. A

universal plan is given a goal or set of goals, and it uses a simple backward-chaining planner

to �nd all the possible states that can reach the goal via a sequence of actions. For each such

state and action sequence, the �rst action of that sequence is associated with the situation,

and the process continues.

The obvious advantage of this approach is speed, since it reduces the planning problem

to a simple match problem. Given a complex problem, the number of situations may make

the match process nontrivial, but it is still potentially much faster than planning de novo.

Another advantage of the approach is that replanning is immediate and integrated into

the approach. In fact, that is one of the initial reasons for the rise of this approach. Since

all the situations are precomputed, then the planner never assumes that it is in the state

that a classical planner would have predicted it to end up in. Instead, each new situation is

matched against its situation-action set, and the appropriate action is executed. This way

another agent may a�ect the world, and the planner will be able to take the appropriate

action for the changed situation with no extra e�ort.

The obvious disadvantage of this approach is space. A complex domain may require an

immense, if not in�nite, amount of space to capture the entire possible search space. See

[Ginsberg, 1989] for a in-depth discussion of the problems inherent in the approach.

If a less extreme position is taken, where only some of the plan is precomputed, then

the question that arises is what happens when a situation is reached for which no action

has been precomputed. This reverts to the problem of planning, and by itself the reactive

planning approach has no advice to o�er when planning is required at run time. Our

approach takes the opposite approach|since we acknowledge that some planning must be
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done at run time, we are trying to �gure out how to solve that part of the problem. If you

can run even 90% of the time, but don't know how to walk, the remaining 10% of the time

you will be stuck. If you know how to walk 100% of the time, you may be slower 90% of

the time, but you won't get stuck.

Mulder and Braspenning [Mulder and Braspenning, 1992] o�er a compromise from the

strict reactive approach by building a planner that puts together pieces of reactive plans

into a larger plan. The problem here is that the initial reactive plans are built only by

carefully analyzing the domain to choose appropriate partial plans for the problem at hand.

Again, the appropriate reactive plans must be on hand in order for the planner to be able

to compose them into a larger plan.

7.2 Abstraction

Abstraction is used in our approach both to provide global search control for the planning

process and to construct a framework around which replanning can operate. Neither of

these notions is particularly revolutionary, although allowing partial abstract plans is not

common in the abstraction literature.

7.2.1 Early uses of abstraction

Abstraction in planning dates back to Planning Gps[Newell and Simon, 1972]. In that

system, a logic theorem was transformed into a more abstract formulation, where it was

then solved, and the abstract solution was used to guide the lower-level solution.

Abstrips [Sacerdoti, 1974] was the �rst general-purpose abstraction-based planner.

Using abstractions generated semi-automatically based on criticality ratings, Abstrips

generated a plan for the most abstract level, then tried to �ll in the missing steps at the

next more speci�c level, and so forth. The language at each level is the same, except that

preconditions below the criticality rating for that abstraction level are dropped. Each level

of abstraction was planned completely before the next level.
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Noah [Sacerdoti, 1977] and its derivatives take a di�erent view of abstraction that is

more like procedure calling. An \abstract" operator is merely a placeholder for a sequence

of lower-level goals, where the lower-level goals are de�ned ahead of time. In Noah, this

expansion into lower-level goals was hidden in Lisp code, but in more recent planners of this

sort like Sipe [Wilkins, 1988], the expansion is declarative and represented as part of the

abstract operator. Theoretically there could be multiple expansions of an abstract operator,

but the planners of this sort either could not backtrack over operator expansions or at best

discouraged this, since the search space of operator expansions is orders of magnitude larger

than the base-level search space [Christensen, 1989].

7.2.2 Alpine

Knoblock formalized the Abstrips approach in Alpine [Knoblock, 1991]. He also analyzed

the e�ects of abstraction and showed that under a particular set of assumptions abstraction

could reduce the overall e�ort of a planner from exponential to linear.

Unfortunately, the assumptions do not hold up well in real domains. The main assump-

tion, the downward solution property, assumes that any re�nement of an abstraction will

lead the lower-level search to a goal. Also, the intermediate goals generated by the abstract

search can be solved independently in the order generated. We have argued in Chapter

3 that this latter characteristic is unrealistic, and we have performed analyses with a set

of assumptions more appropriate for the domain characteristics we think are found in real

domains.

7.2.3 Spatula

We have briey mentioned Unruh's system Spatula in Chapter 3. It is a planner built in

the Soar problem-solving architecture for dynamically formulating and using abstractions

while planning. The basic idea is that when the planner is faced with a choice among

operators, it will abstract the space dynamically and continue building its plan in the

abstract space. This process continues dynamically until an operator becomes preferred

over the other possibilities. The information learned from the abstract search is then used
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as search control at the executable level. Where the search control is lacking, the planner

will again face a choice and dynamically abstract to choose an operator.

Although Unruh's approach is not designed for resource-bounded planning, the dynamic

abstraction does provide a model for a possible alternative approach to resource-bounded

planning with abstraction. Instead of working top-down from the abstract space to the ex-

ecutable level, the planner could work at the executable level, abstracting only as necessary

to choose operators at the executable level. The drawbacks of that approach are that since

the abstraction is built and destroyed dynamically, it does not remain as a framework for

extending the plan or replanning.

7.3 Temporal reasoning

Although the focus of this thesis is not on temporal reasoning, it draws heavily on ideas

from previous work in the �eld. The basis of our representation is temporal intervals, and

our states are sets of these intervals reecting the current state of knowledge within the

planning system.

Much of the work on temporal reasoning has been on the logical foundations underlying

the representation [McDermott, 1982; Allen, 1983; Shoham, 1989]. We have chosen a more

applied approach, incorporating ideas from these formal models as appropriate to realize

our conceptions of how time can be used in a resource-bounded system.

Allen's classic work on temporal intervals [Allen, 1983] describes how time relations

can be represented and reasoned about, and [Allen and Koomen, 1983] describes how this

representation could be used for building plans. As with other temporal-reasoning systems,

however, there is no idea of real-time reasoning using this temporal information. The work

in [Allen, 1983] describes a way of clustering intervals into hierarchies that could make the

reasoning more e�cient, but this was just one step in the right direction.

Dean's thesis on time maps [Dean, 1985] resembles closely the type of representation

our method has grown to become. In fact, Dean briey acknowledges the e�ciency and

representational problems of hypothetical worlds when using a representation of this sort to
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perform planning. The planning system actually described in his thesis maintains a single

world state, however, and is not concerned with resource bounds. Also, abstraction and

replanning are not addressed in that work.

Deviser [Vere, 1981] was one of the early planning systems to use time in a system de-

signed for real problems. The system basically added temporal information to a Noah-style

planner. Using the added temporal information, the planner could augment the standard

constraints of operator precedence found in Noah with more sophisticated temporal in-

formation. Deviser had no handling of abstraction, nor did it concern itself with resource

bounds. It was more suited to scheduling tasks before execution time, so it was not designed

to handle run-time problems that required replanning or resource-bounded reasoning.

More recently, Penberthy [Penberthy, 1993] has formulated what amounts to a formal-

ization of Deviser. Building on recent formalizations of Noah-style planners, Penberthy

adds temporal information to the formal model in much the same way that Vere added

temporal information to Noah. As such, it provides an interesting formal model, but as an

implemented system, it has little to say about the problem of resource-bounded planning,

since it and its underlying formal planner are built for formal cleanliness and su�er along

the lines of e�ciency. In addition, all the planning is at one level, and replanning is not

supported.

7.4 Replanning

A fundamental aspect of our method is that it is designed to operate in a dynamic environ-

ment, where the world may change in unexpected ways, and actions may not always have

their expected e�ects. We consider the plan to be a constantly-evolving structure that is

modi�ed not only by the planner but also by the outside world and potentially by other

reasoning modules within the planning agent. So the planner must always be prepared to

respond to changes whenever and wherever they occur within the plan.

Other researchers have recognized the need for replanning. Most have considered replan-

ning to be a separate operation from planning: the plan is built in isolation from the world,
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and then it is handed to an execution module. The execution module will call the planner

when a part of the plan fails and needs replanning. This approach dates back to Strips

[Fikes and Nilsson, 1971], where triangle tables were introduced for replanning. Triangle

tables have only limited replanning power, since they are restricted to changes that move

within the particular plan sequence already computed. A generalization of triangle tables,

teleo-reactive trees [Nilsson, 1994], falls more in the category of reactive planning.

The �rst use of abstraction for replanning is due to Noah. Noah introduced the idea of

�nding the \wedge" of the plan a�ected by a world change, and replanning just that wedge.

We follow a similar approach to that of Noah for �nding the highest level of abstraction

where the world change has an e�ect on the plan, although as described in Chapter 3, our

approach only replans as much of the plan as required by the dependencies of the plan on

the particular bit of information that changes.

Pollack's work on Irma [Pollack, 1992] is a higher-level view of the planning and replan-

ning process. She ignores the lower-level plan-construction process, apparently assuming

that plans to achieve individual goals will be short enough to be performed within limited

resource bounds. This is despite criticism of traditional planners for not viewing the world

as a dynamic environment while building and repairing plans (an opinion that we share).

Irma instead focuses on controlling the overall planning process. In particular, the work

addresses the decision whether to plan for intentions. In other words, as new information

arrives from the world, new intentions are formed. As opposed to our approach, where the

planner �nds partial plans to satisfy all of its goals, Irma decides to ignore some of its goals

and plan completely for the rest of them. This work also could be described as an incremen-

tal planner, but with its emphasis on incorporating dynamic information into the planning

process, there are more similarities in spirit with our work in the area of replanning.

Mulder and Braspenning's work was described in Section 7.1.4. It also includes facilities

for monitoring and replanning. For each of a prede�ned set of classes of time available,

an amount of replanning is associated with it. When a conict is noticed in its existing

plan, the plan is replanned to the amount prede�ned. Since the entire approach relies on

precomputation of the component reactive plans and the required amount of replanning, it
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presents a somewhat inexible approach to the problem.

The entire �eld of case-based planning [Alterman, 1988; Hammond, 1988] could be

considered related to replanning, since the emphasis is on �tting an existing plan to a new

situation. Case-based planning and reactive planning are closely related, although it is

unclear that either �eld would admit to the relation. Case-based planning tries to �nd an

existing plan in its library that most closely �ts the current situation, and then modi�es

it to be applicable to the situation. The plans in the plan library are pre-stored. The

advantages of case-based planning over reactive planning are that plans can be stored as a

result of experience, and that a relatively small set of pre-stored plans can be modi�ed to �t

a wide range of situations. The disadvantages are that the match in case-based planning is

much more computationally expensive (and relatively ill-de�ned), and the plan-modi�cation

procedure is potentially expensive itself (and again ill-de�ned). In case-based planning little

thought is given to operating in a dynamic environment because of the computational cost

of the planning process.

7.5 Blackboard-based planning

The work in this thesis derives many of its basic ideas about incremental planning and the

combination of goal-driven and data-driven reasoning from the blackboard problem-solving

framework.

Some early ideas about blackboard-based planning appear in the work on OPM [Hayes-

Roth and Hayes-Roth, 1979]. OPM is an attempt to replicate human planning behavior,

in particular opportunistic planning and replanning. The work builds plans at multiple

levels of abstraction, and builds up plans incrementally, modifying them opportunistically

as new information arrives. The work is an illustration of the application of blackboards

to planning to exhibit exible behavior, and is not a general-purpose planning framework

itself.

The work on BB1 control planning [Hayes-Roth et al., 1986; Johnson and Hayes-Roth,

1987; Garvey et al., 1987] has followed up on some of the ideas from the OPM work. The
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emphasis is on exible and general use of control plans at the architectural level. As in

OPM, planning is incremental, with plan execution allowed to begin while the plan is being

elaborated. The approach relies on skeletal plan re�nement, using a set of alternative

prede�ned skeletal plans.

7.6 Integrated execution and planning

A number of researchers have integrated planners into a robot control architecture to achieve

multi-level planning for real-time problems [Lyons and Hendriks, 1992; Hanks and Firby,

1990; Gat, 1992; Myers and Wilkins, 1994]. All of these add a planner to an existing

reactive robot control architecture: Lyons and Hendriks build on the RS reactive model

[Lyons, 1990], Hanks and Firby as well as Gat build on the RAP reactive model [Firby,

1989], and Myers and Wilkins combine the PRS system [George� and Lansky, 1987] with

the SIPE planner [Wilkins, 1988]. In each case, the reactive controller is designed to handle

the real-time issues that arise. The planner is run concurrently with the reactive controller

to aid in the robot control problem, but is not a real-time program itself. Rather, the

results of the planner are used when they become available|assuming that the world has

not changed and invalidated the plan|to guide the reactive controller.

The reactive controller may use the planner in a variety of ways: the planner may restrict

the space of possible actions that the robot controller may follow [Lyons and Hendriks,

1992]; the planner may generate goal orderings for the robot controller [Gat, 1992]; or the

planner may generate actions to �ll in situations for which there are no reactions good

enough [Hanks and Firby, 1990; Myers and Wilkins, 1994]; or the planner may replan when

conditions or subgoals fail [Myers and Wilkins, 1994]. But in all of these cases, the planner

itself is not sensitive to real-time issues, but rather works in isolation from the world and

with no representation of the temporal information available about the world. This leaves

the planner susceptible to the same sorts of problems that motivated the work in this thesis.
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Discussion

In this thesis, we have presented a method for building plans in a dynamic environment. In

this chapter we discuss directions that the work suggests for further exploration. We close

with a brief review of the work.

8.1 Issues

With a complex problem such as real-time planning in the real world, we cannot expect one

piece of work to resolve all remaining questions. That is not the general nature of science,

nor certainly is it of AI. In this section we discuss some of the issues that have arisen from

the work and some directions where it could lead.

8.1.1 Incorporating pre-computed plans

In our initial description of the problem, we emphasized that this approach was designed

to �ll in the void where pre-stored plans could not cover. This is not to denigrate pre-

stored plans. If the planning agent could retrieve a satisfactory plan for a situation without

resorting to planning, that would be preferable. Our argument is that pre-stored plans by

themselves are not adequate for a real-world planning agent.

One obvious extension of the work would be to incorporate pre-stored plans when they

are available, resorting to planning from scratch only when we indeed reach the frontiers of

95
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our knowledge. A planning system that could draw on both pre-stored plans and synthesized

plans would potentially be able to span a spectrum of domains, from those where the agent

is endowed with a wealth of experience to those where the agent is lacking in all but the

most basic of information.

We will sketch a basic outline of how pre-computed plans could be integrated into our

planner without a�ecting the basic underlying planning skills. Many of the details will no

doubt be more complicated to realize than they are to describe in general.

A pre-stored plan will be a sequence of states and actions, where the states and actions

are the same as in the normal planning search space. The only di�erence is that the work

of searching through the search space is saved. We will generalize the idea a small amount

and add the ability for the sequence to be augmented with alternative branches. In other

words, a pre-stored plan may be seen as a portion of a search space stored away for re-use.

Since we are working within a temporal representation, the pre-stored plan will need

to be represented temporally as well. Since absolute times will be next to useless, the

pre-stored plans will need to have times relative to some starting reference point. This

view of pre-stored plans make them sound like a very complex planning operator, which is

essentially how we consider them. In fact, one could store an entire pre-computed plan in a

single macro-operator. The problem with that is that the longer the plans get (and hence

the more search they will save), the less likely they are to have all their conditions satis�ed

in a new situation.

We adopt the approach of treating the plan as a set of operators that we are trying to

add into the plan. If we decide to add the conglomerated operator, we will add the initial

operator into the plan if and when it is applicable. We then pick o� the remaining operators

and add them into the plan as long as they are applicable. Note that with our generalization

of branching plans, we may have some branches that will transfer and some that will not.

What we end up with is a highly directed search deep into the search space. If the plan

transfers bene�cially, we will �nd that the worth of the plan has increased dramatically.

A particular place where pre-stored plans would be useful is in implementing abstract



8.1. ISSUES 97

operators. We would like to be able, given enough information, to mimic the pseudo-

abstraction of Noah and its derivatives, where an abstract operator is accompanied by the

prescription for how to expand it into more speci�c operators. In our approach, we could

have pre-stored plans for achieving the intermediate goals generated by the abstract plan.

The plans, if they proved to be applicable in the current planning situation (after all, the

same intermediate goal may appear in more than one circumstance), would in e�ect provide

an implementation of the abstract goals, while not robbing the basic planning method of its

ability to explore alternatives in the case where the pre-stored plan is not the best possibility

available.

The related issue of learning plans could also revolve around the intermediate goals. As

in Soar, where chunks are learned dependent on the particular results returned from a

subgoal, we propose learning plan fragments as they achieve particular intermediate goals.

Since multiple intermediate goals may be a�ecting the planning process, the plan learner

would need to unravel the operator dependencies into chains that achieve each of the goals,

and store the relevant chain for use in other situations.

8.1.2 Generating abstractions automatically

Since the planning method relies heavily on abstraction, it is critical that the planner have at

its disposal a good abstraction of the domain. The abstraction will determine the framework

around which the plan is built.

Automatically generating abstractions is a �eld unto itself, generating theses for those

who have chosen to attack it [Christensen, 1991; Knoblock, 1991; Unruh, 1993]. In general,

the problem requires a careful analysis of the domain to identify abstractions that will be

useful, although the work of [Unruh, 1993] provides an example of a dynamically-computed

abstraction based on the context of the problem-solving episode.

The context-dependent approach for dynamically abstracting from a particular problem-

solving episode is particularly intriguing, but that approach works in a bottom-up manner,

which presents challenges about how to use the approach for resource-bounded planning

and replanning.
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8.1.3 Generating strategies automatically

The results of the analytical and empirical studies show that an optimal plan-expansion

strategy can be found for a given problem. The analytical model serves as an approximation

to the actual domain, and it lends itself to numerical methods to �nd the optimal strategy.

So far this technique exists only outside the actual planner.

Certainly the strategy could be chosen ahead of time by analyzing the domain and using

the mathematical model to predict the best approach. But a more interesting use of the

technique would have the planner automatically analyze the domain and adjust the strategy

to track the optimal strategy for the particular part of the plan where the planner is at that

moment.

8.1.4 Richer temporal representations

There is a tension between complete and e�cient representations in much of AI, not just in

this work. We described our method in terms of a more sophisticated temporal representa-

tion than the one actually used for the implementation.

The ideal would be to have a language that could provide full expressive power but could

also cut corners and lose completeness under resource bounds. In other words, we would

like some sort of \anytime" representation that is sensitive to the amount of time available

for its computations. The details of such an approach are unclear.

8.2 Conclusion

In this thesis, we have presented a planner that can build plans under resource bounds in

dynamic environments. In particular, we have shown:

� The planner represents the dynamic and continuous nature of information and events

in the real world. The planner is built upon a foundation of a temporal representation,

which maintains information about the world over time intervals.



8.2. CONCLUSION 99

� The planner continually incorporates new information into its model of the world

and adapts its plan accordingly. The planner views the plan as a dynamic data

structure that is undergoing constant modi�cation, both from the planner itself and

from external forces, such as the world or other reasoning components. The planner

maintains records of the dependencies that parts of the plan have on world states.

As the states change, the plan is updated using the dependencies. In addition, new

branches may be added to the plan as the states change.

� The planner operates within arbitrary and changing time bounds, building the best

plan it can within the amount of time available. The plans are built incrementally

at multiple levels of abstraction. As deadlines approach, the planner will commit to

its best plan. Given more time, the planner will produce a better, more complete

plan before committing to it. As the plans at the various levels of abstraction are

elaborated, they provide an increasingly complete and accurate approximation to a

full plan.

We have presented an analytical model of our planning method. Using the model, we

can �nd the bene�ts of abstraction, and we can �nd an optimal strategy for expanding the

plans at the various levels of abstraction. Our empirical results validate the method and

the analysis.
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